

GeoNode’s Documentation

Welcome to GeoNode’s Documentation.

GeoNode is an Open Source, Content Management System (CMS) for geospatial data. It is a web-based application and platform for developing geospatial information systems (GIS) and for deploying spatial data infrastructures (SDI).

First Steps

The following sections give an overview of GeoNode from different perspectives, they are targeted at a non-technical audience and the quick installation guide at people who just want to get it installed and will come back later to the complete documentation.

	About GeoNode

	Quick Installation Guide

	GeoNode Users Quickstart Manual

How To Use The Documentation

The documentation is geared toward three distinct types of users:

	Users: Are people who log into a GeoNode website and use its functionality.

	Administrators: Are people who install and deploy GeoNode websites in production for their Users.

	Developers: Are people who write code to add functionality, integrate with other systems, fix bugs, and potentially help an Administrator setup a server and deploy a GeoNode instance for production.

The documentation is divided into three sections:

	Tutorials: Step-by-step instructions in workshop format that help a user to accomplish a set of tasks.

	Reference: Architecture, component information, API descriptions etc.

	Organizational: About the project, how to contribute, links, resources, other info.

Table of contents

About GeoNode

	About GeoNode
	Online demo

	Geospatial data storage

	Data mixing, maps creation

	GeoNode as a building block

	Convinced! Where do I sign?

Tutorials

The Tutorials section contains step-by-step workshops that are oriented around performing particular sets of tasks, like adding data or publishing maps, setting up and maintaining a server, or setting up a project to extend from GeoNode. These tutorials are written in a workshop like format and are broken into three groups: Users, Administrators and Developers.

	Tutorials

Reference

The Reference section provides details about the internals of the GeoNode project. It has background information about components that make up GeoNode, the security system, APIs and much more.

	Reference documentation

Organizational

The Organizational section contains information about the GeoNode project itself, how to contribute, learn about the community, helpful links, about the patch review process, the project road map and other administrative items.

	Organizational
	Project Information

	Contributing

	Table of Content
	Roadmap Process

	Community Resources
	Main Links

	Community Contact

	Github Project Links

	Demo Sites

	Testing and Packaging

	Important Forks

	Downstream Github Projects

	Additional Modules

	Public Sites

	Community Bylaws
	Committers

	GeoNode Improvement Proposals (GNIPS)

	Project Steering Committee

	Contributing to GeoNode
	Participate in the Discussion

	Report Problems on the Issue Tracking System

	Write Documentation

	Provide Translations

	Write Code

	Further Reading

	GeoNode Patch Review Process
	Goals

	Review Criteria

	Process

	Core Committers

	Becoming a Core Committer

	Patch Review criteria

	How to contribute to GeoNode’s translation
	Edit translations using Transifex

	Translate on local machine from github

	Only for transifex maintainers
	For main Geonode localization files

	How to add a new language

	How to contribute to GeoNode’s Documentation
	Create an account on GitHub

	Fork a repository

	Edit files

	Add images

	Pull Request

	How to write Documentation
	Sphinx Syntax
	Basic markup

	Sections, subtitles and titles

	Page labels

	Linking

	Lists

	List-tables

	Notes and warnings

	Images

	External files

	Reference files and paths

	Reference commands

	Reference an element in a GUI

	Menu traversal

	Show Source

	How to Translate the Documentation
	Translate using Github Locally

Need Help?

Having trouble? Cant find what you are looking for? We’d like to help!

	Search for information in the archives of the GeoNode mailing list [https://lists.osgeo.org/pipermail/geonode-users/], or
subscribe and post a question [https://lists.osgeo.org/mailman/listinfo/geonode-users].

	Join the GeoNode chat in gitter.im/GeoNode [https://gitter.im/GeoNode].

	Ask a question in the #geonode IRC channel using
Freenode’s web based client [http://webchat.freenode.net].

	Report bugs with GeoNode in our issue tracker [https://github.com/GeoNode/geonode/issues].

About GeoNode

[image: _images/logo.png]
GeoNode is a geospatial content management system, a platform for the management and publication of geospatial data. It brings together mature and stable open-source software projects under a consistent and easy-to-use interface allowing non-specialized users to share data and create interactive maps.

Data management tools built into GeoNode allow for integrated creation of data, metadata, and map visualizations. Each dataset in the system can be shared publicly or restricted to allow access to only specific users. Social features like user profiles and commenting and rating systems allow for the development of communities around each platform to facilitate the use, management, and quality control of the data the GeoNode instance contains.

It is also designed to be a flexible platform that software developers can extend, modify or integrate against to meet requirements in their own applications.

Online demo

A live demo of the latest stable build is available at demo.geonode.org [http://demo.geonode.org].

Anyone may sign up for a user account, upload and style data, create and share maps, and change permissions.
Since it is a demo site, we don’t make any guarantee that your data and maps will always be there.
But it should hopefully allow you to easily preview the capabilities of GeoNode.

[image: _images/demo-site.png]

Geospatial data storage

GeoNode allows the user to upload vector data (currently only shapefiles) and raster data in their original projections using a web form.
Vector data is uploaded in ESRI shapefile format and satellite imagery and other kinds of raster data are uploaded as GeoTIFFs.

Special importance is given to standard metadata formats like ISO 19139:2007. After the upload is finished, the user is presented with a form to fill in the metadata and it is made available using a CSW [http://www.opengeospatial.org/standards/cat] interface. Users may also upload a metadata XML document (in ISO, FGDC, or Dublin Core format) to fill in key GeoNode metadata elements automatically.

Similarly, GeoNode provides a web based styler, that lets the user change how the data looks and preview the changes in real time.

Data mixing, maps creation

Once the data has been uploaded, GeoNode lets the user search for it geographically or via keywords and create maps.

All the layers are automatically re-projected to web mercator for maps display, making it possible to use different popular base layers, like Open Street Map, Google Satellite or Bing layers.

Once maps are saved, it is possible to embed them in any web page or get a PDF version for printing.

GeoNode as a building block

A handful of other Open Source projects extend GeoNode’s functionality by tapping into the re-usability of Django applications. Visit our gallery to see how the community uses GeoNode: GeoNode Projects [http://geonode.org/gallery/].

The development community is very supportive of new projects and contributes ideas and guidance for newcomers.

Convinced! Where do I sign?

The next steps are to follow the Quick Installation Guide, read the tutorials and subscribe to the geonode-users [https://lists.osgeo.org/mailman/listinfo/geonode-users] and/or geonode-devel [https://lists.osgeo.org/mailman/listinfo/geonode-devel] mailing lists to join the community. Thanks for your interest!

Tutorials

The tutorials are based around performing tasks, like adding data or publishing maps. The tutorials are written in a workshop like format and are broken into three groups Users, Administrators and Developers.

	GeoNode Overview & Reference

	This module guides the user to an overview of GeoNode and its main components.

At the end of this section you will have a clear view of what GeoNode is and can do.
You will be able also to use the GeoNode main functionalities and understand some of
the basic concepts of the system infrastructure.

	Installation & Admin

	This module is more oriented to users having some System Administrator background.

At the end of this section you will be able to setup from scratch the whole GeoNode infrastructure and understand how to the different pieces are interconnected and which are their dependencies.

	Prerequisites

	Before proceeding with the reading, it is strongly recommended to be sure having clear the following concepts:

	GeoNode and Django framework basic concepts

	What is Python

	What is a DBMS

	What is a Java Virtual Machine and the JDK

	Linux OS basic shell and maintenance commands

	Basic TCP/IP and networking concepts

	Apache HTTPD Server and WSGI Python bindings

	Users Workshop

	This workshop will teach how to use the GeoNode going in depth into what we can do with software application.
At the end of this section you will master all the GeoNode sections and entities from a user perspective.

You will know how to:

	Manage users accounts and how to modify them.

	Use and manage the different GeoNode basic resources.

	Use the GeoNode searching tools to find your resources.

	Manage Layers and Maps, update the styles and publish them.

	Load datasets into GeoNode and keep them synchronized with GeoServer.

	Prerequisites

	Before proceeding with the reading, it is strongly recommended to be sure having clear the following concepts:

	GeoNode and Django framework basic concepts

	What is Python

	What is a geospatial server and a basic knowledge of the geospatial web services.

	What is a metadata and a catalog.

	What is a map and a legend.

	Administrators Workshop

	This workshop will teach how to install and manage a deployment of the GeoNode [http://geonode.org/] software application.
At the end of this section you will master all the GeoNode sections and entities from an administrator perspective.

You will know how to:

	Use the GeoNode’s Django Administration Panel.

	Use the console Management Commands for GeoNode.

	Configure and customize your GeoNode installation.

	Prerequisites

	Before proceeding with the reading, it is strongly recommended to be sure having clear the following concepts:

	GeoNode and Django framework concepts

	Good knowledge of Python

	Good knowledge of what is a geospatial server and geospatial web services.

	Good knowledge of what is metadata and catalog.

	Good knowledge of HTML and CSS.

	Developers Workshop

	This workshop will teach how to develop with and for the GeoNode [http://geonode.org] software application.
This module will introduce you to the components that GeoNode is built with, the standards that it supports and the services it provides based on those standards, and an overview its architecture.

	Prerequisites

	GeoNode is a web based GIS tool, and as such, in order to do development on GeoNode itself or to integrate it into your own application, you should be familiar with basic web development concepts as well as with general GIS concepts.

	Advanced Workshop

	This module introduces advanced techniques and methodologies for the management of the geospatial data and the maintenance and tuning of the servers on Production Environments.

The last sections of the module will teach also you how to add brand new classes and functionalities to your GeoNode installation.

	Prerequisites

	You should be familiar with GeoNode, GeoServer, Python framework and

development concepts other than with system administrator and caching concepts and techniques.

GeoNode Overview & Reference

Welcome to the GeoNode Training Overview & Reference documentation v2.8.

This module guides the user to an overview of GeoNode and its main components.

At the end of this section you will have a clear view of what GeoNode is and can do.
You will be able also to use the GeoNode main functionalities and understand some of
the basic concepts of the system infrastructure.

	Users’ Features

	Open Source Geospatial Content Management System

GeoNode is a web-based application and platform for developing geospatial information systems (GIS) and for deploying spatial data infrastructures (SDI).

What GeoNode can be used for…
GeoNode Demo [http://demo.geonode.org/]
(admin/admin)

	Introduction

	This section introduces the GeoNode GUI and functionalities through a step-by-step workshop.

At the end of this module the users will be familiar with the GeoNode default GUI and objects.

	Reference Doc

	In this section, you will find information about each and every component of GeoNode, for example GeoServer, GeoNode Settings, Security, etc.

Users’ Features

Open Source Geospatial Content Management System

GeoNode is a web-based application and platform for developing geospatial information systems (GIS) and for deploying spatial data infrastructures (SDI).

What GeoNode can be used for…
GeoNode Demo [http://demo.geonode.org/]
(admin/admin)

	Spatial Data Discovery

	Import and Manage

	Interactive Mapping

Spatial Data Discovery

GeoNode allows users to browse and search for geospatial data.
By combining collaboration found in social networks with specialized geospatial tools, GeoNode makes it easy to explore, process, style, and share maps and geospatial data.
Spatial datasets can be imported and shared, all through a non-technical user interface.

Features include:

	Powerful spatial search engine

	Federated OGC services

	Metadata catalogue

Import and Manage

GeoNode allows users to upload and share geospatial data, securely.
GeoNode makes it easy to upload and manage geospatial data on the web. Any user can upload and make content available via standard OGC protocols such as Web Map Service (WMS) and Web Feature Service (WFS). Data is available for browsing, searching, styling, and processing to generate maps which can be shared publicly or restricted to specific users only.
Supported upload formats include shapefile, GeoTIFF, KML and CSV. In addition, it is possible to connect to existing external spatial databases and services.

Features include:

	Publish raster, vector, and tabular data

	Manage metadata and associated documents

	Securely or publicly share data

	Versioned geospatial data editor

Interactive Mapping

GeoNode allows users to create and share interactive web maps.
GeoNode comes with helpful cartography tools for styling and composing maps graphically. These tools make it easy for anyone to assemble a web-based mapping application with functionality traditionally found in desktop GIS applications.
Users can gain enhanced interactivity with GIS-specific tools such as querying and measuring.

Features include:

	GeoExplorer GIS client

	Graphical style editor

	Create multi-layer interactive maps

	Share and embed maps in web pages

Introduction

This section introduces the GeoNode GUI and functionalities through a step-by-step workshop.

At the end of this module the users will be familiar with the GeoNode default GUI and objects.

	A Tour Of GeoNode

	GeoNode Quickstart
	1. Register a new account

	2. Add a new layer

	3. Create a new map

	4. Share your map

	To be continued

A Tour Of GeoNode

In order to get started, let’s look at the GeoNode interface and get a feel for how to navigate around it.

The GeoNode web interface is the primary method of interacting with GeoNode as a user.
From this interface, one can view and modify existing spatial layers and maps, as well as find information on other GeoNode users.

Without being logged in, you are limited to read-only access of public layers.

	Navigate to your GeoNode instance (online demo available here [http://demo.geonode.org/]):

[image: Welcome page]
Welcome page

This page shows a variety of information about the current GeoNode instance.
At the top of the page is a toolbar showing quick links to view layers [http://docs.geonode.org/en/latest/tutorials/users/layers/index.html#layers],
maps [http://docs.geonode.org/en/latest/tutorials/users/maps/index.html#maps], documents (metadata),
people [http://docs.geonode.org/en/latest/tutorials/users/accounts/index.html#accounts], and a search field. Below this is a listing of recently updated layers,
including abstract, owner, rating, and download button (if available).

	Click Explore button and choose Preview. Table data could be visualized as: Grid, Graph or Map.

[image: Explore Layers page]
Explore Layers page

This page shows all layers known to GeoNode, available in either List or Grid viewing.
Layers can be sorted by Most Recent, Most Popular, or Most Shared.
Also available are a list of categories, with which layers can be connected with.

	Find a layer and click on its name.

[image: Viewing a layer]
Viewing a layer

	A layer viewing page will display, with the layer itself superimposed on a hosted base layer (in this case MapQuest OpenStreetMap [http://open.mapquest.com/]). Explore this page, noting the various options available to you.

	Now click the Maps link in the tool bar to go to the Explore Maps page.

[image: Explore Maps page]
Explore Maps page

This page shows all maps known to GeoNode, available with similar viewing options as with the layers.
Currently, there are no maps here, but we will create one later on in the workshop.

	Click the Search link in the toolbar to bring up the Search page.

[image: Search page]
Search page

This page contains a wealth of options for customizing a search for various information on this GeoNode instance.
While a simple search box is available at the top of every page, this search form allows for much more fine-tuned searches.

Now that you are familiar with the basic interface, the next step is to create your own account so you manage some GeoNode resources of your own.

GeoNode Quickstart

Open Source Geospatial Content Management System

GeoNode is a web-based application and platform for developing geospatial information systems (GIS) and for deploying spatial data infrastructures (SDI).

In this Quickstart guide you will learn the following:

	How to register a new account to get started

	How to add a new layer

	How to create a map using your new layer

	How to share your map with others

Start GeoNode on your Live DVD or local VM and redirect your browser at http://localhost:8000/ (this is the default port).
The page will look like shown in the image below.

[image: Welcome page]
Welcome page

1. Register a new account

From the interface shown above, one can view and modify existing spatial layers and maps, as well as find information on other GeoNode users.
But, without being logged in, you are limited to read-only access of public layers.
In order to create a map and add layers to it, you have to have create an account first.

	From any page in the web interface, you will see a Sign in link. Click that link, and in the dialog that displays, click the Register now link.

[image: Sign in Form]
Sign in Form

	On the next page, fill out the form. Enter a user name and password in the fields. Also, enter your email address for verification.

[image: Register Form]
Register Form

	You will be returned to the welcome page. An email will be sent confirming that you have signed up. While you are now logged in, you will need to confirm your account. Navigate to the link that was sent in the email.

	By clicking Confirm you will be returned to the homepage. Now you’ve registered an account, you are able to add layers to it as well as create maps and share those with other users.

Note

Depending on how the GeoNode you are using is configured, registration may not be available, or you may not be required to confirm your email address before logging in.

2. Add a new layer

Layers are a published resource representing a raster or vector spatial data source. Layers also can be associated with metadata, ratings, and comments.

	To add a layer to your account, navigate to the welcome page. There the following toolbar can be seen:

[image: Toolbar]
Toolbar

	By clicking the Layers link you will be brought to the Layers menu where a new subtoolbar can be seen. This toolbar allows you to Explore, Search and Upload layers.

[image: Upload Button]
Upload Button

	Now click Upload Layers and you’ll see the upload form.

[image: Upload Form]
Upload Form

	You have two possibilities to add your files. You can either do that by using drag & drop or you choose to browse them. Be aware that you have to upload a complete set of files, consisting of a shp, a prj, a dbf and a shx file. If one of them is missing, GeoNode will warn you before you upload them.

	You shold now be able to see all the files you want to upload.

[image: Files to be Uploaded]
Files to be Uploaded

	GeoNode has the ability to restrict who can view, edit, and manage layers. On the right side of the page you can see the Permission section, where you can limit the access on your layer. Under Who can view and download this data, select Any registered user. This will ensure that Anonymous view access is disabled. In the same area, under Who can edit this data, select your username. This will ensure that Only You are able to edit the data in the layer.

[image: Permissions]
Permissions

	To upload data, click the Upload button at the bottom.

3. Create a new map

The next step for you is to create a map and add the newly created layers to this map.

	Click the Maps link on the top toolbar. This will bring up the list of maps.

[image: Create new Map Button]
Create new Map Button

	Currently, there aren’t any maps here. To add one click the Create a New Map button and a map composition interface will display.

[image: Maps Editor]
Maps Editor

In this interface there is a toolbar, layer list, and map window. The map window contains the MapQuest OpenStreetMap layer by default.
There are other service layers available here as well: Blue Marble, Bing Aerial With Labels, MapQuest, and OpenStreetMap.

	Click on the New Layers button and select Add Layers.

[image: Add Layers]
Add Layers

	Now you should be able to see all the availabel layers. In your case, this should only be the ones you’ve added before (San Andreas?).

	Select all of the layers by clicking the top entry and Shift-clicking the bottom one. Click Add Layers to add them all to the map.

[image: Add Layers]
Add Layers

	The layers will be added to the map. Click Done (right next to Add Layers at the bottom) to return to the main layers list.

	To save the map click on the Map button in the toolbar, and select Save Map.

[image: Save Map]
Save Map

	Enter a title and abstract for your map.

[image: Edit Map Metadata]
Edit Map Metadata

	Click Save. Notice that the link on the top right of the page changed to reflect the map’s name.

[image: Save Map]
Save Map

This link contains a permalink to your map. If you open this link in a new window, your map will appear exactly as it was saved.

4. Share your map

Now let’s finish our map.

	Check the box next to the highway layer to activate it. If it is not below the POI layer in the list, click and drag it down.

[image: Activate Layers on Map]
Activate Layers on Map

	Make any final adjustments to the map composition as desired, including zoom and pan settings.

	Click the Map button in the toolbar, and then click Publish Map.

[image: Publish Map button]
Publish Map button

	The title and abstract as previously created should still be there. Make any adjustments as necessary, and click Save.

	A new dialog will appear with instructions on how to embed this map in a web page, including a code snippet. You can adjust the parameters as necessary.

[image: Publish the Map]
Publish the Map

Your map can now be shared!

To be continued

Now you’ve gotten some quick insight in the possibilities of GeoNode. To learn more about GeoNode and its features, visit the official GeoNode web page [http://geonode.org/].

Stay in touch with the GeoNode community through the Gitter.im chatroom [https://gitter.im/geonode/] or by asking your question in our mailing list [https://lists.osgeo.org/cgi-bin/mailman/listinfo/geonode-users]!

Reference Doc

In this section, you will find information about each and every component of GeoNode, for example GeoServer, GeoNode Settings, Security, etc.

	The Big Picture
	Architecture

	Django Architecture

	WSGI

	GeoNode and GeoServer

	GeoNode and PostgreSQL/PostGIS

	GeoNode and pycsw

	Publishing

	Discovery

	Javascript in GeoNode

	Components
	Django

	GeoServer

	GeoExplorer

	PostgreSQL and PostGIS

	pycsw

	Geospatial Python Libraries

	Django Pluggables

	jQuery

	Bootstrap

The Big Picture

Architecture

[image: GeoNode Component Architecture]
GeoNode Component Architecture

GeoNode core is based on Django web framework with few more dependencies necessary for the communication with the geospatial servers (GeoServer, pyCSW)

On the left side you can see the list of Entities defined in GeoNode and managed by the Django ORM framework. Those objects will be detailed in a future section.

On the right side the list of Services available allowing GeoNode to communicate with the social world.

The GeoNode catalog is strictly connected to the GeoServer one (see the bottom of the figure). The geospatial dataset and the OGC Services are implemented and managed by GeoServer.
GeoNode acts as a broker for the geospatial layers, adding metadata information and tools that make easier the management, cataloging, mapping and searching of the datasets.

Thanks to the ORM framework and the auxiliary Python libraries, GeoNode is constantly aligned with the GeoServer catalog. An ad-hoc security module allows the two modules to strictly
interact and share security and permissions rules.

In the advanced sections of this documentation we will go through GeoNode commands allowing administrators to re-sync the catalogs and keep them consistently aligned.

Django Architecture

GeoNode is based on Django [https://www.djangoproject.com/] which is a high level Python web development framework that encourages rapid development and clean pragmatic design.
Django is based on the Model View Controller (MVC [https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller]) architecture pattern, and as such,
GeoNode models layers, maps and other modules with Django’s Model [https://docs.djangoproject.com/en/1.8/topics/db/models/] module and these models are used via
Django’s ORM [https://en.wikipedia.org/wiki/Object-relational_mapping] in views which contain the business logic of the GeoNode application and are used to drive
HTML templates to display the web pages within the application.

Django explained with model/view/controller (MVC [http://reinout.vanrees.org/weblog/2011/12/13/django-mvc-explanation.html])

	Model represents application data and provides rich ORM functionality.

	Views are a rendering of a Model most often using the Django template engine.

	In Django, the controller part of this commonly discussed, layered architecture is a subject of discussion. According to the standard definition, the controller is the layer or component through which the user interacts and model changes occur.

MVP/MVC

MVP

Model, View, Presenter

In MVP, the Presenter contains the UI business logic for the View. All invocations from the View delegate directly to the Presenter.
The Presenter is also decoupled directly from the View and talks to it through an interface.
This is to allow mocking of the View in a unit test. One common attribute of MVP is that there has to be a lot of two-way dispatching.
For example, when someone clicks the Save button, the event handler delegates to the Presenter’s OnSave method.
Once the save is completed, the Presenter will then call back the View through its interface so that the View can display that the save has completed.

MVP tends to be a very natural pattern for achieving separated presentation in Web Forms.

Two primary variations (You can find out more about both variants [http://webclientguidance.codeplex.com/wikipage?title=MVPDocumentation&referringTitle=bundles].)

Passive View: The View is as dumb as possible and contains almost zero logic. The Presenter is a middle man that talks to the View and the Model. The View and Model are completely shielded from one another. The Model may raise events, but the Presenter subscribes to them for updating the View. In Passive View there is no direct data binding, instead the View exposes setter properties which the Presenter uses to set the data. All state is managed in the Presenter and not the View.

	Pro: maximum testability surface; clean separation of the View and Model

	Con: more work (for example all the setter properties) as you are doing all the data binding yourself.

Supervising Controller: The Presenter handles user gestures. The View binds to the Model directly through data binding. In this case it’s the Presenter’s job to pass off the Model to the View so that it can bind to it. The Presenter will also contain logic for gestures like pressing a button, navigation, etc.

	Pro: by leveraging data binding the amount of code is reduced.

	Con: there’s less testable surface (because of data binding), and there’s less encapsulation in the View since it talks directly to the Model.

MVC

Model, View, Controller

In the MVC, the Controller is responsible for determining which View is displayed in response to any action including when the application loads.

This differs from MVP where actions route through the View to the Presenter.
In MVC, every action in the View correlates with a call to a Controller along with an action. In the web each action involves a call to a URL on the other side of which there is a Controller who responds. Once that Controller has completed its processing, it will return the correct View.
The sequence continues in that manner throughout the life of the application:

	1
2
3
4

	Action in the View
 -> Call to Controller
 -> Controller Logic
 -> Controller returns the View.

One other big difference about MVC is that the View does not directly bind to the Model. The view simply renders, and is completely stateless. In implementations of MVC the View usually will not have any logic in the code behind. This is contrary to MVP where it is absolutely necessary as if the View does not delegate to the Presenter, it will never get called.

Presentation Model

One other pattern to look at is the Presentation Model pattern. In this pattern there is no Presenter. Instead the View binds directly to a Presentation Model.
The Presentation Model is a Model crafted specifically for the View. This means this Model can expose properties that one would never put on a domain model as it would be a violation of separation-of-concerns.
In this case, the Presentation Model binds to the domain model, and may subscribe to events coming from that Model.
The View then subscribes to events coming from the Presentation Model and updates itself accordingly.
The Presentation Model can expose commands which the view uses for invoking actions.
The advantage of this approach is that you can essentially remove the code-behind altogether as the PM completely encapsulates all of the behaviour for the view.

This pattern is a very strong candidate for use in WPF applications and is also called Model-View-ViewModel [https://msdn.microsoft.com/en-us/magazine/dd419663.aspx].

More: http://reinout.vanrees.org/weblog/2011/12/13/django-mvc-explanation.html

WSGI

Web Server Gateway Interface (whis-gey)

	This is a python specification for supporting a common interface between all of the various web frameworks and an application (Apache, for example) that is ‘serving’.

	This allows any WSGI compliant framework to be hosted in any WSGI compliant server.

	For most GeoNode development, the details of this specification may be ignored.

More: http://en.wikipedia.org/wiki/Wsgi [https://en.wikipedia.org/wiki/Wsgi]

GeoNode and GeoServer

GeoNode uses GeoServer for providing OGC services.

At its core, GeoNode provides a standards-based platform to enable integrated, programmatic access to your data via OGC Web Services, which are essential building blocks required to deploy an OGC-compliant spatial data infrastructure (SDI). These Web Services enable discovery, visualization and access your data, all without necessarily having to interact directly with your GeoNode website, look and feel/UI, etc.

	GeoNode configures GeoServer via the REST API

	GeoNode retrieves and caches spatial information from GeoServer. This includes relevant OGC service links, spatial metadata, and attribute information.

In summary, GeoServer contains the layer data, and GeoNode’s layer model extends the metadata present in GeoServer with its own.

	GeoNode can discover existing layers published in a GeoServer via the WMS capabilities document.

	GeoServer delegates authentication and authorization to GeoNode.

	Data uploaded to GeoNode is first processed in GeoNode and finally published to GeoServer (or ingested into the spatial database).

OGC Web Services:

	operate over HTTP (GET, POST)

	provide a formalized, accepted API

	provide formalized, accepted formats

The OGC Web Services provided by GeoNode have a mature implementation base and provide an multi-application approach to integration. This means, as a developer, there are already numerous off-the-shelf GIS packages, tools and webapps (proprietary, free, open source) that natively support OGC Web Services.

There are numerous ways to leverage OGC Web Services from GeoNode:

	desktop GIS

	web-based application

	client libraries / toolkits

	custom development

Your GeoNode lists OGC Web Services and their URLs at http://localhost:8000/developer. You can use these APIs directly to interact with your GeoNode.

The following sections briefly describe the OGC Web Services provided by GeoNode.

Web Map Service (WMS)

WMS provides an API to retrieve map images (PNG, JPEG, etc.) of geospatial data. WMS is suitable for visualization and when access to raw data is not a requirement.

WFS

WFS provides an API to retrieve raw geospatial vector data directly. WFS is suitable for direct query and access to geographic features.

WCS

WCS provides an API to retrieve raw geospatial raster data directly. WCS is suitable for direct access to satellite imagery, DEMs, etc.

CSW

CSW provides an interface to publish and search metadata (data about data). CSW is suitable for cataloguing geospatial data and making it discoverable to enable visualization and access.

WMTS

WMTS provides an API to retrieve pre-rendered map tiles of geospatial data.

WMC

WMC provides a format to save and load map views and application state via XML. This allows, for example, a user to save their web mapping application in WMC and share it with others, viewing the same content.

More: http://geoserver.org

GeoNode and PostgreSQL/PostGIS

In production, GeoNode is configured to use PostgreSQL/PostGIS for it’s persistent store. In development and testing mode, often an embedded SQLite database is used. The latter is not suggested for production.

	The database stores configuration and application information. This includes users, layers, maps, etc.

	It is recommended that GeoNode be configured to use PostgreSQL/PostGIS for storing vector data as well. While serving layers directly from shapefile allows for adequate performance in many cases, storing features in the database allows for better performance especially when using complex style rules based on attributes.

GeoNode and pycsw

GeoNode is built with pycsw embedded as the default CSW server component.

Publishing

Since pycsw is embedded in GeoNode, layers published within GeoNode are automatically published to pycsw and discoverable via CSW. No additional configuration or actions are required to publish layers, maps or documents to pycsw.

Discovery

GeoNode’s CSW endpoint is deployed available at http://localhost:8000/catalogue/csw and is available for clients to use for standards-based discovery. See http://docs.pycsw.org/en/latest/tools.html for a list of CSW clients and tools.

Javascript in GeoNode

GeoNode provides a number of facilities for interactivity in the web browser built on top of several high-quality JavaScript frameworks:

	Bootstrap [http://getbootstrap.com/] for GeoNode’s front-end user interface and common user interaction.

	Bower [https://bower.io/] for GeoNode’s front-end package management.

	ExtJS [https://www.sencha.com/products/extjs/] for component-based UI construction and data access

	OpenLayers [http://openlayers.org/] for interactive mapping and other geospatial operations

	GeoExt [http://geoext.org/] for integrating ExtJS with OpenLayers

	Grunt [http://gruntjs.com/] for front-end task automation.

	GXP [https://github.com/boundlessgeo/gxp] for providing some higher-level application building facilities on top of GeoExt, as well
as improving integration with GeoServer.

	jQuery [http://jquery.com] to abstract Javascript manipulation, event handling, animation and Ajax.

GeoNode uses application-specific modules to handle pages and services that are unique to GeoNode. This framework includes:

	A GeoNode mixin [https://github.com/GeoNode/geonode/blob/master/geonode/static/geonode/js/extjs/GeoNode-mixin.js] class
that provides GeoExplorer with the methods needed to properly function in GeoNode. The class
is responsible for checking permissions, retrieving and submitting the CSRF token [https://docs.djangoproject.com/en/1.8/ref/csrf/],
and user authentication.

	A search module [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/search] responsible for the GeoNode’s site-wide search functionality.

	An upload and status module [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/upload] to support file uploads.

	Template files [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/templates] for generating commonly used html sections.

	A front-end testing module [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/tests] to test GeoNode Javascript.

The following concepts are particularly important for developing on top of the
GeoNode’s JavaScript framework.

	
	Components

	Ext components handle most interactive functionality in
“regular” web pages. For example, the scrollable/sortable/filterable table
on the default Search page is a Grid component. While GeoNode does use some
custom components, familiarity with the idea of Components used by ExtJS is
applicable in GeoNode development.

	
	Viewers

	Viewers display interactive maps in web pages, optionally decorated
with Ext controls for toolbars, layer selection, etc. Viewers in GeoNode use
the GeoExplorer base class, which builds on top of GXP’s Viewer to provide
some common functionality such as respecting site-wide settings for
background layers. Viewers can be used as components embedded in pages, or
they can be full-page JavaScript applications.

	
	Controls

	Controls are tools for use in OpenLayers maps (such as a freehand
control for drawing new geometries onto a map, or an identify control for
getting information about individual features on a map.) GeoExt provides
tools for using these controls as ExtJS “Actions” - operations that can be
invoked as buttons or menu options or associated with other events.

Components

architecture is based on a set of core tools and libraries that provide the building blocks on which the application is built. Having a basic understanding of each of these components is critical to your success as a developer working with GeoNode.

Lets look at each of these components and discuss how they are used within the GeoNode application.

Django

GeoNode is based on Django [https://www.djangoproject.com/] which is a high level Python web development framework that encourages rapid development and clean pragmatic design. Django is based on the Model View Controller (MVC [https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller]) architecture pattern, and as such, GeoNode models layers, maps and other modules with Django’s Model [https://docs.djangoproject.com/en/1.8/topics/db/models/] module and these models are used via Django’s ORM [https://en.wikipedia.org/wiki/Object-relational_mapping] in views which contain the business logic of the GeoNode application and are used to drive HTML templates to display the web pages within the application.

GeoServer

GeoServer [http://geoserver.org/display/GEOS/Welcome] is an open source software server written in Java that provides OGC compliant services which publish data from many spatial data sources. GeoServer is used as the core GIS component inside GeoNode and is used to render the layers in a GeoNode instance, create map tiles from the layers, provide for downloading those layers in various formats and to allow for transactional editing of those layers.

GeoExplorer

GeoExplorer [https://github.com/GeoNode/geoexplorer] is a web application, based on the GeoExt [http://geoext.org/] framework, for composing and publishing web maps with OGC and other web based GIS Services. GeoExplorer is used inside GeoNode to provide many of the GIS and cartography functions that are a core part of the application.

PostgreSQL and PostGIS

PostgreSQL [https://www.postgresql.org/] and PostGIS [http://postgis.net/] are the database components that store and manage spatial data and information for GeoNode and the Django modules that it is composed of, pycsw and GeoServer. All of these tables and data are stored within a geonode database in PostgreSQL. GeoServer uses PostGIS to store and manage spatial vector data for each layer which are stored as a separate table in the database.

pycsw

pycsw [http://pycsw.org] is an OGC CSW server implementation written in Python. GeoNode uses pycsw to provide an OGC compliant standards-based CSW metadata and catalogue component of spatial data infrastructures, supporting popular geospatial metadata standards such as Dublin Core, ISO 19115, FGDC and DIF.

Geospatial Python Libraries

GeoNode leverages several geospatial python libraries including gsconfig [https://github.com/boundlessgeo/gsconfig] and OWSLib [http://geopython.github.io/OWSLib/]. gsconfig is used to communicates with GeoServer’s REST Configuration API to configure GeoNode layers in GeoServer. OWSLib is used to communicate with GeoServer’s OGC services and can be used to communicate with other OGC services.

Django Pluggables

GeoNode uses a set of Django plugins which are usually referred to as pluggables. Each of these pluggables provides a particular set of functionality inside the application from things like Registration and Profiles to interactivity with external sites. Being based on Django enables GeoNode to take advantage of the large ecosystem of these pluggables out there, and while a specific set is included in GeoNode itself, many more are available for use in applications based on GeoNode.

jQuery

jQuery [http://jquery.com/] is a feature-rich Javascript library that is used within GeoNode to provide an interactive and responsive user interface as part of the application. GeoNode uses several jQuery plugins to provide specific pieces of functionality, and the GeoNode development team often adds new features to the interface by adding additional plugins.

Bootstrap

Bootstrap [http://getbootstrap.com/] is a front-end framework for laying out and styling the pages that make up the GeoNode application. It is designed to ensure that the pages render and look and behave the same across all browsers. GeoNode customizes bootstraps default style and its relatively easy for developers to customize their own GeoNode based site using existing Bootstrap themes or by customizing the styles directly.

Installation & Admin

Welcome to the GeoNode Training Installation & Admin documentation v2.8.

This module is more oriented to users having some System Administrator background.

At the end of this section you will be able to setup from scratch the whole GeoNode infrastructure and understand how to the different pieces are interconnected and which are their dependencies.

Prerequisites

Before proceeding with the reading, it is strongly recommended to be sure having clear the following concepts:

	GeoNode and Django framework basic concepts

	What is Python

	What is a DBMS

	What is a Java Virtual Machine and the JDK

	Basic TCP/IP and networking concepts

	Linux OS basic shell and maintenance commands

	Apache HTTPD Server and WSGI Python bindings

	Quick Installation Guide

	This section is a quick guide to get GeoNode up and running in most common operating systems. This is meant to be run on a fresh machine with no previously installed packages or GeoNode versions.

	Linux Admin Intro

	This section describes how to setup a Virtual Machine running Ubuntu.

	GeoNode (v2.8) on Docker

	This section describes how to setup GeoNode on Docker

	GeoNode (v2.8) installation on Ubuntu 16.04

	This section will guide the user through the steps necessary to install GeoNode on Ubuntu.

	GeoNode (v2.8) installation on CentOS 7

	This section will guide the user through the steps necessary to install GeoNode on CentOS.

Packaging for automatic installation are provided for Ubuntu, so, the only option for installing GeoNode on a CentOS platform is installing it from source.

	Windows Binary Installer

	Install GeoNode on Windows through the binary installer.

	Network configuration issues

	This section will guide the user through the steps necessary to understand and possibly solve any of the most common configuration issues on communication between Django and GeoServer.

	GeoNode (v2.8) update from older versions

	This section will guide the user through the steps necessary to update GeoNode from old versions.

Quick Installation Guide

The following is a quick guide to get GeoNode up and running in most common operating systems.
This is meant to be run on a fresh machine with no previously installed packages or GeoNode versions.

Recommended Minimum System Requirements

For deployment of GeoNode on a single server, the following are the bare minimum system requirements:

	6GB of RAM, including swap space.

	2.2GHz processor. (Additional processing power may be required for multiple concurrent styling renderings)

	1 GB software disk usage.

	Additional disk space for any data hosted with GeoNode and tiles cached with GeoWebCache.
For spatial data, cached tiles, and “scratch space” useful for administration, a decent baseline size for GeoNode deployments is 100GB.

	64-bit hardware recommended.

Linux

Ubuntu (standard deployment)

The easiest way to get the .deb is to install it using APT, the standard installation management tool for Ubuntu. The current release, 2.8 is available only for Ubuntu 16.04.

These instructions have been tested on a fresh install of Ubuntu 16.04 64 bit server edition. Please ensure the latest packages are installed with:

sudo apt-get update; sudo apt-get upgrade

Amongst other things, this will ensure that the software-properties-common package is installed, which is required to make the add-apt-repository command used below available.

The steps to install geonode and all dependencies in Ubuntu 16.04 are as follows:

	Set up the GeoNode PPA repository (you only need to do this once; the repository will still be available for upgrades later):

sudo add-apt-repository ppa:geonode/stable

Note

If you want to try latest unstable version of GeoNode, add the repository:

sudo add-apt-repository ppa:geonode/testing

	Install the geonode package and dependencies:

sudo apt-get update; sudo apt-get upgrade; sudo apt-get autoremove
sudo apt-get install geonode

	Set the correct IP address (NB: the first command below looks up the IP address automatically):

.. note:: If you want to run geonode on your local instance, just run::

sudo geonode-updateip -p localhost

IP_ADDRESS=$(ip route get 8.8.8.8 | awk ‘{print $NF; exit}’)
sudo geonode-updateip -p $IP_ADDRESS

Note

If geoserver and geonode are not on the same machine then add your local geonode address:

sudo geonode-updateip -p $IP_ADDRESS -l yourlocaladdress

NB: The IP address must be set to enable access from another machine, e.g. the host machine if geonode is installed in a virtual machine.

	Access geonode from your web browser, using the IP address from step 3 above. The neonode web applicaiton should be displayed and you can log in using the superuser details entered immediately above:

Note

If you want to access geonode on your local instance, just go to:

http://localhost/

http://[IP_ADDRESS]/

NB: With this installation method you use sudo geonode xxxx in place of any python manage.py xxx command referred to in documentation. For example, try:

sudo geonode help

For further information, read the Admin Docs at http://docs.geonode.org/en/master/#for-administrators.

Ubuntu (for development)

This option installs geonode in a virtual environment. This option is very useful in case you want to develop using Ubuntu (tested on Ubuntu 16.04 LTS):

Install Ubuntu dependencies
sudo apt-get update
sudo apt-get install python-virtualenv python-dev libxml2 libxml2-dev libxslt1-dev zlib1g-dev libjpeg-dev libpq-dev gdal libgdal-dev git default-jdk

Install Java 8 (needed by latest GeoServer 2.9)
sudo apt-add-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer

Create and activate the virtulenv
virtualenv --no-site-packages env
source env/bin/activate

git clone geonode
git clone https://github.com/GeoNode/geonode
cd geonode

Install pip dependencies
pip install -r requirements.txt --upgrade
pip install -e . --upgrade --no-cache

sudo add-apt-repository ppa:ubuntugis/ppa && sudo apt-get update
sudo apt-get install gdal-bin

install the correct PyGDAL version
gdal-config --version | cut -c 1-5 | xargs -I % pip install 'pygdal>=%.0,<=%.999'

if the command cannot install a suitable version, be sure to install at least the closer major one e.g. 2.1.2 -> 2.1.2.3
gdalinfo --version
pip install pygdal==`gdal-config --version`

You can now setup and start GeoNode:

Paver setup
paver setup
paver sync
paver start

In case you want to be involved in static files development:

The following lines must be run only the first time
sudo apt-get install -y nodejs, npm

Rebuild libraries through:

cd geonode/static

The following lines must be run only the first time
npm install --save-dev
npm install bower --save-dev
npm install grunt-cli --save-dev
npm install grunt-contrib-jshint --save-dev
npm install grunt-contrib-less --save-dev
npm install grunt-contrib-concat --save-dev
npm install grunt-contrib-copy --save-dev
npm install grunt-text-replace --save-dev
npm install grunt-contrib-uglify --save-dev
npm install grunt-contrib-cssmin --save-dev
npm install grunt-contrib-watch --save-dev
npm install -g grunt-cli

Later you can just do the following
bower cache clean
bower update
grunt production

Warning

If you get an error like /usr/bin/env: node: No such file or directory while running bower, try to execute the following command:

sudo ln -s /usr/bin/nodejs /usr/bin/node

On a production environment, remember to refresh also the “static_root” folder:

python manage.py collectstatic --clear -i site-packages* -i .components* -i node_modules* --noinput

Windows, OSX and others

Windows

It is now available an automatic installer for Windows systems which configures GeoNode with PostgreSQL DB and few sample layers on a few steps.
See detailed instructions and steps of the GeoNode Windows Installer at section Windows Binary Installer.

If you have different needs or just want to configure the GeoNode environment manually, please continue reading the guide below.

To install in Windows it is assumed you’re familiar with python development and virtualenv on Windows and that you’re familiar with the windows command prompt. You will need the follow prerequisites installed:

	Java JDK

	Python 2.7.9
* Earlier versions of python require you to install distutils (easy_install) - http://www.lfd.uci.edu/~gohlke/pythonlibs/#setuptools

	ant (bin directory must be on system PATH)

	maven2 (bin directory must be on system PATH)

	git

Install and configure from the windows command prompt, if you don’t already have python virtualenv installed, then do it now:

easy_install virtualenv

Create virtualenv and activate it:

cd <Directory to install the virtualenv & geonode into>
virtualenv <name of virtualenv folder>
virtualenv <name of virtualenv folder>\scripts\activate

Clone GeoNode:

git clone https://github.com/GeoNode/geonode.git

cd geonode

Install Python native dependencies, this command will look for and install binary distributions (pip install will attempt to build and fail):

pip install paver
paver win_install_deps

Install GeoNode in the local virtualenv:

pip install -e . --upgrade --no-cache

You have two options to set up the GEOS and GDAL libraries. Either create an environment variable
or add the variables to your local_settings.py file as below.

GEOS_LIBRARY_PATH=”C:/path/to/geos_c.dll”
GDAL_LIBRARY_PATH=”C:/path/to/gdal111.dll”

The GEOS and GDAL libraries can be found in your <virtualenv directory>Libsite-packagesGDAL-1.11.0-py2.7-win32.eggosgeofolder.

Setup GeoServer:

paver setup

Start the servers. You have the option to set the JAVA_HOME environment variable or use the –java_path.:

paver start --java_path="C:\path\to\java\java.exe"

or if you set your JAVA_HOME environment variables (e.g. JAVA_HOME=”C:Program FilesJavajdk1.7.0_75”):

paver start

Once the package is installed, please consult Custom Installation Guide to learn how to create an account for the admin user and tweak the settings to get more performance.

OSX

The recommended install method in these platforms is to use a virtualization solution, like `Virtual Box`_, install the latest Ubuntu Linux [https://www.ubuntu.com/download] and then proceed with the steps mentioned above. Some GeoNode developers prefer to use Vagrant [https://www.vagrantup.com/] - a VirtualBox wrapper, the steps for this are detailed below. The Vagrant quickstart guide shows how to get a Linux VM configured in most operating systems. However, if you would like to develop natively on Mac OS X please follow the following instructions.

You may need brew install various dependencies:

mkdir -p ~/pyenv
virtualenv ~/pyenv/geonode
source ~/pyenv/geonode/bin/activate
git clone https://github.com/GeoNode/geonode
cd geonode
pip install lxml
pip install pyproj
pip install nose
pip install httplib2
pip install shapely
pip install pillow
pip install paver

Node and tools required for static files development:

brew install node
npm install -g bower
npm install -g grunt-cli

Rebuild libraries through:

cd geonode/static
bower cache clean
bower update
grunt production

On a production environment, remember to refresh also the “static_root” folder:

python manage.py collectstatic --clear -i site-packages* -i .components* -i node_modules* --noinput

Install pip dependencies:

pip install -e . --upgrade --no-cache

Paver handles dependencies for Geonode, first setup (this will download and update your python dependencies - ensure you’re in a virtualenv):

paver setup
paver start

Optional: To generate document thumbnails for PDFs and other ghostscript file types, download ghostscript: https://www.macupdate.com/app/mac/9980/gpl-ghostscript:

sudo apt-get install imagemagick
brew install imagemagick
pip install Wand==0.3.5

Once fully started, you should see a message indicating the address of your geonode.
The default username and password are admin and admin:

Development GeoNode is running at http://localhost:8000/
The GeoNode is an unstoppable machine
Press CTRL-C to shut down

Before starting GeoNode (paver start), you could test your installation by running tests:

paver test
paver test_integration

In case you want to build yourself the documentation, you need to install Sphinx and the run ‘make html’ from within the docs directory:

pip install Sphinx
cd docs
make html

You can eventually generate a pdf containing the whole documentation set. For this purpose, if using Ubuntu 12.4 you will need to install the texlive-full package:

sudo apt-get install texlive-full
make latexpdf

Note

When running virtualenv venv the --system-site-packages option is
not required. If not enabled, the bootstrap script will sandbox your virtual
environment from any packages that are installed in the system, useful if
you have incompatible versions of libraries such as Django installed
system-wide. On the other hand, most of the times it is useful to use a version of
the Python Imaging Library provided by your operating system
vendor, or packaged other than on PyPI. When in doubt, however, just leave
this option out.

Vagrant

https://www.vagrantup.com/docs/getting-started/index.html

CentOS/RHEL and other *nix distros

We recommend you to download the latest release and modify the included install.sh and support/config.sh. GeoNode has been installed in CentOS/RHEL using this mechanism.

Once the package is installed, please consult the Custom Installation Guide to learn how to create the admin user and tweak the settings to get more performance.

Linux Admin Intro

This part of the documentation contains basic instruction on how to setup
and manages Virtual Machine.

	Ubuntu Basic Tutorial
	User Login

	User Interface Walkthrough

	Launch an application

	Install new software

	Launch the terminal emulator

	Basic commands

	CentOS Basic Tutorial

Ubuntu Basic Tutorial

Ubuntu [https://en.wikipedia.org/wiki/Ubuntu_(operating_system)] is one of the most
widespread Linux [https://en.wikipedia.org/wiki/Linux] Distributions [https://en.wikipedia.org/wiki/Linux_distribution]
.

In this section of the documentation you will learn how to do basic operations in
Ubuntu such as login and logout, launching applications and installing new software.

User Login

When you first start Ubuntu, at the end of the boot process you see the Ubuntu
login screen

[image: Ubuntu login screen]
Select the user you want to login as, enter the password and press Enter. In a
few second the user’s desktop will appear.

[image: Ubuntu Desktop]

User Interface Walkthrough

The panel on the left side of the screen contains shortcuts to frequently used
application. From dark grey bar at the top you can reach network settings
(the icon with two arrows pointing in opposite directions) system language (the icon
with En written inside it), audio volume, system date and time and power menu
(top right corner with an icon half way between a gear and power buttom).

From the power menu you can switch to a different user, logout, power off the system
or access system settings.

In `system setting ` menu you can set several different parameters for the system

[image: Ubuntu System settings]

Launch an application

You can launch the applications listed in the Favourites panel simply by clicking on them.

If the application you want to launch is not in the favourites panel, use the Ubuntu
Launcher. Click on the Ubuntu Launcher icon in the top left corner of the screen

[image: Ubuntu Launcher]
Write down the name of the application. A list of applications matching the name you
are searching will show up, for and press Enter or click on the icon of the
application.

Install new software

To install new software, open the Ubuntu software Center (you will find it in the
favourite applications panel).

Enter the name of the application you are looking for in the search bar

[image: Ubuntu Software Center]
A list of candidate applications will appear. Click on the one you want to install,
then click install to install it. You will be prompted for administrative password

[image: Ubuntu Software Center]
And your application will be installed in the system.

Launch the terminal emulator

Click on the Ubuntu Launcher icon in the top left corner of the screen, and type
gnome-terminal in the search box

[image: Ubuntu Software Center]
And launch the terminal emulator.

[image: Ubuntu Software Center]
Terminal emulator will open and will be ready for your commands.

Basic commands

Current working directory

$ pwd
/home/geo

The pwd command will show you your working directory, that is the directory
you are inside of and running your commands in.

Create a directory

$ mkdir test

To create a new directory inside your working directory use the mkdir command
followed by the folder name argument

Delete a directory

$ rmdir test

To delete an empty directory type rmdir followed by the folder name argument

Create an empty file

$ touch testfile

To create an empty file in your current working directory use the touch command
followed by the name of the file

Delete a file

$ rm filename

To delete a file use the rm command followed by the file name

Change working directory

$ cd /home

To change your current working directory use the cd command followed by the path
(location) you want to change to

List content of a folder

$ ls

The ls command will list the content of your current working directory. You can
optionally provide a path to a directory as argument, in that case ls will show
you the content of that directory

$ ls /home
geo geonode

Home folder

A user’s home folder is the folder where he or she will do most of the operations
in. Inside your home folder you can freely create or delete file and folders.

To switch to your home folder you can use the tilde ~ character as a shortcut

$ cd ~
$ pwd
/home/geo

For more information on Ubuntu refer to the Ubuntu user manual [http://ubuntu-manual.org/?lang=en]

For more terminal commands read the Using the terminal [https://help.ubuntu.com/community/UsingTheTerminal] guide

CentOS Basic Tutorial

This section is still under construction… please be patient!

Running Ansible scripts

Ansible [https://www.ansible.com/] is a free software platform used for configuring
and managing computers. It is written in Python [https://www.python.org/] and
allows users to manage nodes (computers) over SSH.

Configuration files are written in YAML [https://en.wikipedia.org/wiki/YAML],
a simple, human-readable, data serialization format.

Installing Ansible

Before you install Ansible make sure you have Python 2.6 or Python 2.7 on the
controlling machine, you will also need an SSH client. Most Linux distributions
come with an SSH client preinstalled.

If you encounter any problems during the installation, refer to the
official documentation [http://docs.ansible.com/ansible/intro_installation.html].

Windows

Windows is not supported as a controlling machine.

Ubuntu

Fist configure Ansible PPA [https://en.wikipedia.org/wiki/Personal_Package_Archive]:

sudo apt-get install software-properties-common
sudo apt-add-repository ppa:ansible/ansible

Then update your available software index and install Ansible:

sudo apt-get update
sudo apt-get install ansible

Running Ansible

To test your Ansible installation, run the following command

Note

you need a running SSH server on your machine for this to work:

ansible localhost -m ping

You should get the following output:

 localhost | success >> {
 "changed": false,
 "ping": "pong"
}

Ansible Hosts file

Ansible keeps information about the managed nodes in the inventory or hosts file.
Edit or create the hosts file:

vim /etc/ansible/hosts

This file contains a list of nodes for Ansible to manage. Nodes can be referred
either with IP or host name. The syntax is the following:

192.168.1.50
aserver.example.org
bserver.example.org

You can also arrange hosts in groups:

mail.example.com

[webservers]
foo.example.com
bar.example.com

[dbservers]
one.example.com
two.example.com
three.example.com

Public Key access

To avoid having to type your user’s password to connect to the nodes over and over, using
SSH keys is recommended.

To setup Public Key SSH access to the nodes. First create a key pair:

ssh-keygen

And follow the instructions on the screen. A new key pair will be generated and
placed inside the .ssh folder in your user’s home directory.

All you need to do now is copy the public key (id_rsa.pub) into the authorized_keys
file on the node you want to manage, inside the user’s home directory. For example
if you want to be able to connect to training.geonode1.com as user geo edit the
/home/geo/.ssh/authorized_keys file on the remote machine and add the content
of your public key inside the file.

For more information on how to setup SSH keys in Ubuntu
refer to this [https://help.ubuntu.com/community/SSH/OpenSSH/Keys] document.

Connect to managed nodes

Now that SSH access to the managed nodes is in place for all the nodes inside the Ansible
inventory (hosts file), we can run our first command:

ansible all -m ping -u geo

Note

change geo with the username to use for SSH login

The output will be similar to this::

ansible all -m ping -u geo
84.33.2.70 | success >> {
 "changed": false,
 "ping": "pong"
}

We asked Ansible to connect to all the machine in our Inventory as user geo
and run the module ping (modules are Ansible’s units of work, more on that later…).
As you can see by the output, Ansible successfully connected to the remote machine
and executed the module ping.

Ad hoc commands

An ad-hoc command is something that you might type in to do something really quick,
but don’t want to save for later.

Later you are going to write so called Playbooks with the commands to run on
the controlled node but for learning purposes ad-hoc commands can be used to do
quick things.

One example of an ad-hoc command is the ping command we just ran. We typed in the
command line and ran it interactively.

Another example:

ansible all -m shell -a "free" -u geo
84.33.2.70 | success | rc=0 >>
 total used free shared buffers cached
Mem: 4049236 3915596 133640 0 650560 2487416
-/+ buffers/cache: 777620 3271616
Swap: 4194300 730268 3464032

In this example we ran the free command on the remote hosts to get memory usage
stats. Note that we used the shell module (-m flag) with the command as the argument
(-a flag).

File Transfer

Another use case for the Ansible command is to transfer files over SCP:

ansible 84.33.2.70 -m copy -a "src=/home/geo/test dest=~/" -u geo
84.33.2.70 | success >> {
 "changed": true,
 "dest": "/home/geo/test",
 "gid": 1000,
 "group": "geo",
 "md5sum": "d41d8cd98f00b204e9800998ecf8427e",
 "mode": "0664",
 "owner": "geo",
 "size": 0,
 "src": "/home/geo/.ansible/tmp/ansible-tmp-1444051174.15-189094870931130/source",
 "state": "file",
 "uid": 1000

We used the ansible command to transfer the local file /home/geo/test to the remote
node in user’s home directory (‘~/’).

Managing Packages

Another use case is installing or upgrading packages on the remote nodes. You can use
the apt module to achieve this on Debian based systems or the yum module on
Red Hat based systems:

ansible 84.33.2.70 -m apt -a "name=apache2 state=present"

For example the previous command will install the Apache web server on the remote system
(if not present).

You can use the same module to make sure a package is at the latest version:

ansible 84.33.2.70 -m apt -a "name=apache2 state=latest"

Managing Services

Use the service module to ensure a given service is started on all web servers:

ansible webservers -m service -a "name=httpd state=started"

(where webserver is a group defined in Ansible Inventory)

Restart the service:

ansible webservers -m service -a "name=httpd state=restarted"

Or stop it:

ansible webservers -m service -a "name=httpd state=stopped"

For more information on ad-hoc command refer to the official documentation [https://docs.ansible.com/ansible/intro_adhoc.html].

These were just a few of the modules available for Ansible. See the
complete list [http://docs.ansible.com/ansible/list_of_all_modules.html] available
at the Ansible web site.

Ansible Playbooks

Playbooks are Ansible’s configuration, deployment and orchestration language.

Playbooks are a completely different way to use Ansible than in ad-hoc task execution
mode, and are particularly powerful.

Playbooks can declare configurations, but they can also orchestrate steps of any
manual ordered process.

While you might run the main /usr/bin/ansible program for ad-hoc tasks, playbooks
are more likely to be kept in source control and used to push out your configuration
or assure the configurations of your remote systems are in spec.

Playbooks language example

Playbooks are expressed in YAML [https://en.wikipedia.org/wiki/YAML] format

Here is an example of a Playbook:

- hosts: webservers
 vars:
 http_port: 80
 max_clients: 200
 remote_user: root
 tasks:
 - name: ensure apache is at the latest version
 yum: pkg=httpd state=latest
 - name: write the apache config file
 template: src=/srv/httpd.j2 dest=/etc/httpd.conf
 notify:
 - restart apache
 - name: ensure apache is running (and enable it at boot)
 service: name=httpd state=started enabled=yes
 handlers:
 - name: restart apache
 service: name=httpd state=restarted

Every Playbook begins with three dashes at the very top of the file to indicate
that this is a YAML file.

This example Playbook contains only one Play. The play is composed of three parts:

	hosts

	tasks

	handlers

The hosts part specifies to which hosts in the Inventory this playbook applies and
how to connect to them.

The tasks part describes the desired state or actions to perform on the hosts.

The handlers part describes the handlers for this playbook (more on handlers later).

In the example above there are three tasks. Each task has a name, a module and zero
or more arguments for the module.

The first task specifies that we want the latest version of Apache installed on
the system. This is accomplished by the yum module.

The second task specifies a configuration file for Apache using a template.
Template files are written in Jinja2 template language [http://jinja.pocoo.org/].

The third task make sure the Apache web server is running using the service module.

When you run a Playbook using the ansible-playbook command, Ansible will connect to
the hosts specified in the hosts section and run the tasks one by one, in order.

One or more tasks may have a notify section (just like the second task in our example).
The notify actions are triggered at the end of each block of tasks in a playbook,
and will only be triggered once even if notified by multiple different tasks.
When triggered, the corresponding handler will be executed.
In the example above the handler will restart Apache because we changed a config
file.

Run a Playbook

Now that we have created a sample Playbook, save it on the file system and execute it:

ansible-playbook test.yml -u geo

PLAY [84.33.2.70] ***

GATHERING FACTS ***
ok: [84.33.2.70]

TASK: [test] **
ok: [84.33.2.70]

PLAY RECAP **
84.33.2.70 : ok=2 changed=0 unreachable=0 failed=0

This concludes our brief tutorial on Ansible. For a more thorough introduction
refer the official documentation [https://docs.ansible.com/].

Also, take a look at the Ansible examples repository [https://github.com/ansible/ansible-examples]
or a set of Playbooks showing common techniques.

GeoNode (v2.8) on Docker

This part of the documentation describes the complete setup process for GeoNode
on Docker.

	Docker installation and setup
	Introducing main concepts

	Install Docker CE on Ubuntu

	Orchestrate GeoNode stack with Docker Compose
	Introducing main concepts

	Install Docker Compose on Ubuntu

	Running GeoNode stack on localhost

	Running GeoNode stack on docker ip address

	Scaling and deploy with Rancher
	Introducing main concepts

	Getting started with Rancher

	Deploy GeoNode as stack on Rancher

Docker installation and setup

Docker [https://www.docker.com/] is a free software platform used for packaging software into standardized units for development, shipment and deployment.

[image: ../../../_images/docker.png]

Note

credits to Docker

Introducing main concepts

A container image is a lightweight, stand-alone, executable package of a piece of software that includes everything needed to run it: code, runtime, system tools, system libraries, settings.

Docker containers running on a single machine share that machine’s operating system kernel; they start instantly and use less compute and RAM.

Containers can share a single kernel, and the only information that needs to be in a container image is the executable and its package dependencies, which never need to be installed on the host system.

Multiple containers can run on the same machine and share the OS kernel with other containers, each running as isolated processes in user space.

This tutorial will introduce the use of Docker community edition on Ubuntu 16.04. The same instructions can be applied to CentOS accordingly.

Install Docker CE on Ubuntu

Docker CE is supported on Ubuntu on x86_64 , armhf , s390x (IBM Z), and ppc64le (IBM Power) architectures.

Warning

Make sure to check the OS version as one among supported ones

Show your OS details running:

uname -a

Uninstall old docker versions

if old versions of Docker binary were installed then uninstall them:

sudo apt-get remove docker docker-engine docker.io

Install docker

The package of Docker CE is now called docker-ce. Before doing the installation steps please
make sure that the apt package index has been updated:

sudo apt-get update

Add packages to allow the use of secure http channel:

sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl \
 software-properties-common

Add the official GPG key from Docker:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

Run the following command to setup the stable repository:

sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"

Update the package index:

sudo apt-get update

Install the latest version of the binary or a specific version with the command:

sudo apt-get install docker-ce # latest
sudo apt-get install docker-ce=<VERSION> # specific

The docker daemon will start automatically.

Add your user to the docker group if you want to run docker command without sudo privileges:

sudo usermod -aG docker $USER
source $HOME/.bashrc

Verify the health of your installation by running the sample hello-world image:

docker run hello-world

The following message has to be displayed if everything is working properly:

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (amd64)
3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Orchestrate GeoNode stack with Docker Compose

Docker Compose [https://docs.docker.com/compose/] is a tool for defining and running multi-container Docker applications automatically.
This tool relies on Docker daemon so make sure you have completed successfully the section on _setup_docker.

Introducing main concepts

In a composed application, different pieces of the application are called services. A service runs just one image but it specifies how that image is executed, what ports have to be used, which containers are depending each other, which volumes and so on.

A stack is a group of interrelated services that share dependencies, and can be orchestrated and scaled together. A single stack is capable of defining and coordinating the functionality of an entire application like GeoNode.

Install Docker Compose on Ubuntu

Download the latest version of docker-compose binary:

sudo curl -L \
https://github.com/docker/compose/releases/download/1.19.0/docker-compose-`uname -s`-`uname -m` \
-o /usr/local/bin/docker-compose

Adjust executable permissions to the binary:

sudo chmod +x /usr/local/bin/docker-compose

Verify the installation:

docker-compose --version

Running GeoNode stack on localhost

Clone the repository:

git clone https://github.com/GeoNode/geonode.git

Launch the stack with the build of GeoNode so any changes you did will be immediately available:

docker-compose -f docker-compose.yml -f docker-compose.override.localhost.yml up --build

Note

docker-compose.override.localhost.yml containse environment variables to allow you run the instances on localhost. You can use this file as template in order to run on other public addresses.

Note

For Windows users: In case you’re using the native Docker for Windows (on Hyper-V) you will probably be affected by an error related to mounting the /var/run/docker.sock volume. It’s due to a problem with the current version of Docker Compose [https://github.com/docker/for-win/issues/1829] for Windows.
In this case you need to set the COMPOSE_CONVERT_WINDOWS_PATHS environmental variable:

set COMPOSE_CONVERT_WINDOWS_PATHS=1

before running docker-compose up

Running GeoNode stack on docker ip address

If you want to navigate the application from the address of the Docker socket than run simply:

docker-compose up --build

Note

For Windows users: In case you’re using the native Docker for Windows (on Hyper-V) you will probably be affected by an error related to mounting the /var/run/docker.sock volume. It’s due to a problem with the current version of Docker Compose [https://github.com/docker/for-win/issues/1829] for Windows.
In this case you need to set the COMPOSE_CONVERT_WINDOWS_PATHS environmental variable:

set COMPOSE_CONVERT_WINDOWS_PATHS=1

before running docker-compose up

GeoNode will be available at the ip address of the docker0 interface:

ifconfig -a

Scaling and deploy with Rancher

Rancher [http://rancher.com/] is an open source software platform that enables organizations to run and manage Docker and Kubernetes in production.

[image: ../../../_images/rancher_overview.png]

With Rancher, organizations no longer have to build a container services platform from scratch using a distinct set of open source technologies.
Rancher supplies the entire software stack needed to manage containers in production.

Introducing main concepts

Rancher takes in raw computing resources from any public or private cloud in the form of Linux hosts. Each Linux host can be a virtual machine or physical machine.

Rancher includes a distribution of all popular container orchestration and scheduling frameworks today, including Docker Swarm, Kubernetes, and Mesos.

Rancher users can deploy an entire multi-container clustered application from the application catalog or docker compose files with few clicks.

Getting started with Rancher

Install Rancher

To install the latest stable version run the following docker command:

docker run -d --restart=unless-stopped -p 8080:8080 rancher/server:stable

Setup Rancher

Verify that Rancher server is running on the port defined above (default is 8080):

docker ps -a

After opening the browser at that port:

[image: ../../../_images/rancher_home.png]

then the instance can be secured navigating the url Local authentication [http://rancher-server-ip:8080/admin/access/local] :

[image: ../../../_images/rancher_auth.png]

Choose a username and a passord and then enable the access control by clicking the button at the bottom.

Add new host to the infrastructure

From the Default menu follow the link add host [http://rancher-server-ip:8080/env/1a5/infra/hosts/add] :

[image: ../../../_images/rancher_url.png]

and click the button Save to confirm. The administrator will be landed to the following page:

[image: ../../../_images/rancher_host.png]

Several options will be shown to decide what kind of machine driver is going to be used. For a local bare metal or virtual machine choose the Custom option. After that follow the indicated steps to prepare the new host

	Start up a Linux machine somewhere and install a supported version [http://docs.rancher.com/rancher/v1.6/en/hosts/#supported-docker-versions] of Docker on it. Refer to the section on _setup_docker.

	Allow IPsec networking between hosts on UDP ports 500 and 4500.

	Add labels to be applied to the host. This is optional but it is required for GeoNode if you want all the containers of a stack deployed on a same host. In that case add for example Key:geonodehost and Value:<host label value> which will be translated to the label geonodehost=<host label value>.

	Specify the public IP <host-server-public-ip> that should be registered for the host. This is particularly import if the machine is behind a firewall/NAT.

	Copy, paste, and run the command below to register the host with Rancher. The value of registrationToken is provided by the system.

sudo docker run -e CATTLE_AGENT_IP=”<host-server-public-ip>” -e CATTLE_HOST_LABELS=’geonodehost=<host label value>’ –rm –privileged -v /var/run/docker.sock:/var/run/docker.sock -v /var/lib/rancher:/var/lib/rancher rancher/agent:v1.2.9 http://<rancher-server-ip>:8080/v1/scripts/<registrationToken>
sudo can be avoided if the user has been privileged

	Click on the Close button.

After some minutes the new host should be registered and available in the active status under the menu Infrastructure => Hosts.

[image: ../../../_images/rancher_host_active.png]

Since Rancher itself has containerized services, some of them which are managing the new host have to be available under the menu Stacks => All.

[image: ../../../_images/rancher_stacks_all.png]

Deploy GeoNode as stack on Rancher

Create a stack from a docker-compose file

This is the first option to deploy GeoNode stack from a template like this docker compose file.

Before going to create a new stack by loading it from the Rancher console the values of the placeholders <host label value> and <host-server-public-ip> have to be edited accordingly to your previous setup.

Once the docker-compose.yml is ready follow the menu Stacks => User:

[image: ../../../_images/rancher_add_stack.png]

Then click the Add Stack button:

[image: ../../../_images/rancher_new_stack.png]

From the property docker-compose.yml load the file previously edited, then click the Create button:

Warning

The first time the host has to provision all the images and can take a while

At the end of the provisioning job all the GeoNode services will be active and the stack available as deployed application:

[image: ../../../_images/rancher_geonode_stack.png]

GeoNode is now available at the public ip address defined into the GEONODE_LB_HOST_IP variable of your docker-compose file.

As usual the default credentials for the master administrator is admin/admin.

VM Setup with VirtualBox

In this section you will find instructions on how to setup an Ubuntu 14.04 VM in
VirtualBox [https://www.virtualbox.org/]

VirtualBox Setup

Download VirtualBox from official [https://www.virtualbox.org/wiki/Downloads] web site. Choose the installer matching your
operating system and architecture.

Installation process is straightforward, refer to VirtualBox official documentation [https://www.virtualbox.org/manual/ch01.html#intro-installing] if you encounter
any problem.

Windows

After you downloaded executable, double click on it to launch the installer.

[image: VirtualBox installation - Windows]
Customize VirtualBox features an paths if you need to or leave default ones

[image: VirtualBox installation - Windows]
And start the installation process

[image: VirtualBox installation - Windows]
[image: VirtualBox installation - Windows]
Click on “Finish”

[image: VirtualBox installation - Windows]
VirtualBox is now installed. And will automatically be launched

Ubuntu

After you downloaded the package, double click on it. The “Ubuntu Software Center”
will pop up, click on “Install” to start the installation process

[image: VirtualBox installation - Ubuntu]
You will be prompted for administrator password.

At the end of the installation process, launch VirtualBox.

[image: VirtualBox installation - Windows]

Download Ubuntu ISO

Navigate to Ubuntu official Download page [https://www.ubuntu.com/download/alternative-downloads]
and download the Ubuntu 14.04 .iso file for your architecture. The ISO image will be used to install
Ubuntu 14.04 inside the Virtual Machine

Virtual Machine Setup

Now that VirtualBox is installed on the system it is time to setup our Ubuntu VM.

Click the light blue New button in VirtualBox user interface.

Choose a name for the Virtual Machine and select the appropriate VM type and version

[image: Ubuntu VM setup]
Then select the amount of memory you want to assign to the VM,
Ubuntu recommends [https://help.ubuntu.com/community/Installation/SystemRequirements]
at least 512 MB of memory but we are going to need more than that to run GeoNode
refer to System Preparation & Prerequisites sections for details.

[image: Ubuntu VM setup]
Create a new virtual disk for the VM. Again, refer to System Preparation & Prerequisites
section for details about disk size, for testing purposes 30 GB will be enough.

Now edit the Virtual Machine settings

[image: Ubuntu VM setup]
Under “Storage” select the empty DVD drive, click on Live CD/DVD as shown below

[image: Ubuntu VM setup]
Click on the DVD icon next to the Optical Drive drop down menu and select the Ubuntu 14.04 .iso
file that you downloaded before

[image: Ubuntu VM setup]
Edit other VM setting if you need to, then click OK.

We are ready to start our Ubuntu VM for the first time. Select it from the main
menu and click on Start

[image: Ubuntu VM start]
Ubuntu will start the boot process

[image: Ubuntu VM boot]
At the end of the boot process you will be asked if you want to Try Ubuntu or Install Ubuntu.
Select the language in the left panel and click on Install Ubuntu

[image: Ubuntu VM install]
The installer will check your internet connection and available disk space. If you
are connected to the internet check the Download updates while installing checkbox.

[image: Ubuntu VM install]
Click on continue. In the page you will configure the partitioning of the disks.
If you recall we have created a new virtual disk during the VM configuration
process for Ubuntu. We are going to assign the entire disk to it. Select
Erase disk and install Ubuntu, then Install Now

[image: Ubuntu VM install]
You will be prompted for confirmation.

Now select the correct time zone for your location, then select the language for the VM
and enter the details for the administrator user.

[image: Ubuntu VM install]
[image: Ubuntu VM install]
[image: Ubuntu VM install]
The installation will continue automatically. At the end of the installation process
a pop up window will ask you to restart the system to start using Ubuntu.
Click on Restart Now

[image: Ubuntu VM install]

Running a VM with Vagrant

In this section you will find instructions on how to setup an Ubuntu 16.04 VM using
Vagrant [https://www.vagrantup.com/]

Vagrant Setup

Download Vagrant from the official [https://www.vagrantup.com/downloads.html] web site.
Choose the installer matching your operating system and architecture.

Installation process is straightforward, refer to Vagrant official documentation [https://www.vagrantup.com/docs/installation/index.html] if you encounter any problems.

At the end of the installation process log out your system and log back
in.

Vagrant is going to need a provider [https://www.vagrantup.com/docs/providers/]
in order to setup the Virtual Machines. VirtualBox is supported out of the box.
Just make sure you install one of the supported versions of VirtualBox [https://www.vagrantup.com/docs/virtualbox/]

Open a terminal and type vagrant version. A message containing the installed
version of Vagrant will be printed on the terminal

Installed Version: 2.0.2
Latest Version: 2.0.3
...

Virtual Machine Setup

Now that Vagrant is installed let’s create our Ubuntu Virtual Machine. Open the terminal
and create a new folder called vagrand. Within folder vagrand create a new file called Vagrantfile with following content.

Vagrant.configure(2) do |config|

 config.vm.box = "ubuntu/xenial64"

 # To automatically configure a private network uncomment following line.
 # config.vm.network "private_network", ip: "192.168.33.30"

 config.vm.provider "virtualbox" do |vb|
 # Customize the amount of memory on the VM:
 vb.memory = "4024"
 end

 # Port forwarding: If unneeded comment or remove following lines
 config.vm.network "forwarded_port", guest: 80, host: 8001
 config.vm.network "forwarded_port", guest: 8000, host: 8000
 config.vm.network "forwarded_port", guest: 8080, host: 8080

end

This Vagrantfile containing the settings for the virtual machine, notably the config.vm.box variable set to “ubuntu/xenial64” will tell Vagrant the specific VM we want to run (Ubuntu 16.04 “Xenial Xerus”, 64 bit version). Please take note of comments regarding private network setup, amount of memory and port forwarding within this file. Further visit official vagrant documentation [https://www.vagrantup.com/docs]
for more explanations on fine tuning your VM.

To finally start the VM, run

vagrant up

The first time you run the command it is going to take some time since you do not have a
locally available image of the Ubuntu 16.04 VM. Vagrant will download the VM from the Vagrant
Cloud [https://vagrantcloud.com/] to your local system.

Bringing machine 'default' up with 'virtualbox' provider...
==> default: Box 'ubuntu/xenial64' could not be found. Attempting to find and install...
default: Box Provider: virtualbox
default: Box Version: >= 0
==> default: Loading metadata for box 'ubuntu/xenial64'
default: URL: https://vagrantcloud.com/ubuntu/xenial64
==> default: Adding box 'ubuntu/xenial64' (v20180406.0.0) for provider: virtualbox
default: Downloading:
https://vagrantcloud.com/ubuntu/boxes/xenial64/versions/20180406.0.0/providers/virtualbox.box

At the end of the download process Vagrant will start the VM.

To access the Virtual machine, run

vagrant ssh

Note

You need an SSH client for the previous command to work. Most Linux distributions
come with an SSH installed. If you are using Windows as the guest operating system
install MinGW or Cygwin or Git to obtain a command line SSH client. More information
available here [http://docs-v1.vagrantup.com/v1/docs/getting-started/ssh.html]

You will be connected to the guest Virtual Machine over SSH as user vagrant. Vagrant provides all files next to your Vagrantfile in a folder called /vagrant at your VM.

GeoNode (v2.8) installation on Ubuntu 16.04

This part of the documentation describes the complete setup process for GeoNode
on an Ubuntu 16.04 machine.

	Install GeoNode Application
	Login

	Packages Installation

	GeoNode Setup

	Create GeoNode DB & Finalize GeoNode Setup
	Databases and Permissions

	Finalize GeoNode Setup

	Setup & Configure HTTPD
	Preliminary Steps & Checks

	Apache Configuration

	Postfix Configuration

	Finalize GeoNode Setup

	Finalize HTTPD Setup

	Install GeoServer Application
	Setup GeoServer

	Test GeoServer

	GeoNode authentication integration

	Finish installation
	Test the installation

Install GeoNode Application

In this section you are going to install all the basic packages and tools needed
for a complete GeoNode installation.

Login

When you first start the Virtual Machine at the end of the boot process
you will be prompted for the user password to login. Enter geo as user
password and press Enter.

[image: User Login]
You are now logged in as user ‘geo’. On the left side of the screen there
is a panel with shortcuts to common applications, launch a the terminal
emulator.

[image: Launch terminal emulator]

Packages Installation

First we are going to install all the software packages we are going to need
for the GeoNode setup. Among others Tomcat 8, PostgreSQL, PostGIS,
Apache HTTP server and Git. Run the following command to install all the
packages

$ sudo apt-get update

$ sudo apt-get install python-virtualenv python-dev libxml2 libxml2-dev libxslt1-dev zlib1g-dev libjpeg-dev libpq-dev git default-jdk
$ sudo apt-get install build-essential openssh-server gettext nano vim unzip zip patch git-core postfix

$ sudo apt-add-repository ppa:webupd8team/java
$ sudo apt-get update
$ sudo apt-get install oracle-java8-installer

$ sudo apt-add-repository ppa:ubuntugis && sudo apt-get update && sudo apt-get upgrade
$ sudo apt-add-repository ppa:ubuntugis/ppa && sudo apt-get update && sudo apt-get upgrade
$ sudo apt-get install gcc apache2 libapache2-mod-wsgi libgeos-dev libjpeg-dev libpng-dev libpq-dev libproj-dev libxml2-dev libxslt-dev
$ sudo apt-add-repository ppa:ubuntugis/ubuntugis-testing && sudo apt-get update && sudo apt-get upgrade
$ sudo apt-get install gdal-bin libgdal20 libgdal-dev
$ sudo apt-get install python-gdal python-pycurl python-imaging python-pastescript python-psycopg2 python-urlgrabber
$ sudo apt-get install postgresql postgis postgresql-9.5-postgis-scripts postgresql-contrib
$ sudo apt-get install tomcat8

$ sudo apt-get update && sudo apt-get upgrade && sudo apt-get autoremove && sudo apt-get autoclean && sudo apt-get purge && sudo apt-get clean

[image: Install Packages]

Note

If you will be prompted for geo user’s password (geo) and for confirmation twice

[image: Confirm Installation]

Warning

The installation process is going to take several minutes and it will need to download packages from Internet.

At this point we have all the packages we need on the system.

GeoNode Setup

First of all we need to prepare a new Python Virtual Environment:

$ sudo apt-get install python-pip
$ pip install --upgrade pip
$ pip install --user virtualenv
$ pip install --user virtualenvwrapper
The commands above will install the Python Venv packages

$ export WORKON_HOME=~/Envs
$ mkdir -p $WORKON_HOME
$ source $HOME/.local/bin/virtualenvwrapper.sh
$ printf '\n%s\n%s\n%s' '# virtualenv' 'export WORKON_HOME=~/Envs' 'source $HOME/.local/bin/virtualenvwrapper.sh' >> ~/.bashrc
$ source ~/.bashrc
We have now configured the user environment

$ mkvirtualenv --no-site-packages geonode
Through this command we have created a brand new geonode Virual Environment

$ sudo useradd -m geonode
$ sudo usermod -a -G geonode geo
$ sudo chmod -Rf 775 /home/geonode/
$ sudo su - geo
The commands above are needed only if geo and geonode users have not been already defined

Let’s activate the new geonode Python Virtual Environment:

$ workon geonode

Move into the geonode home folder

$ cd /home/geonode

We are going to install GeoNode as a dependency of a Customized DJango Project

Note

A custom project is a DJango application with ad hoc configuration and folders, which allows you to
extend the original GeoNode code without actually dealing or modifying the main source code.

This will allow you to easily customize your GeoNode instance, modify the theme, add new functionalities and so on,
and also being able to keep updated with the GeoNode latest source code.

For more deails please check https://github.com/GeoNode/geonode-project/tree/master

$ pip install Django==1.8.18
$ django-admin.py startproject --template=https://github.com/GeoNode/geonode-project/archive/2.8.0.zip -e py,rst,json,yml my_geonode

Let’s install the GeoNode dependencies and packages into the Python Virtual Environment:

$ cd my_geonode

Find the closest pygdal version.
Example: 2.2.1 ... 2.2.1.3, ...
$ gdal-config --version && pip install pygdal==

$ vim requirements.txt
Make sure requirements contains reference to geonode 2.8 branch
and correct gdal version (see above)
-e git://github.com/GeoNode/geonode.git@2.8.0#egg=geonode
pygdal==2.2.1.3

$ pip install -r requirements.txt --upgrade
$ pip install -e . --upgrade --no-cache

In the next section we are going to setup PostgreSQL Databases for GeoNode and finalize the setup

Create GeoNode DB & Finalize GeoNode Setup

In this section we are going to setup users and databases for GeoNode in PostgreSQL.

Warning

Be sure you have successfully completed the steps in the previous section.

Databases and Permissions

First create the geonode user. GeoNode is going to use this user to access the
database

$ sudo -u postgres createuser -P geonode

You will be prompted asked to set a password for the user. Enter geonode as password

Create geonode database with owner geonode

$ sudo -u postgres createdb -O geonode geonode

And database geonode_data with owner geonode

$ sudo -u postgres createdb -O geonode geonode_data

Switch to user postgres and create PostGIS extension

$ sudo -u postgres psql -d geonode_data -c 'CREATE EXTENSION postgis;'

Then adjust permissions

$ sudo -u postgres psql -d geonode_data -c 'GRANT ALL ON geometry_columns TO PUBLIC;'
$ sudo -u postgres psql -d geonode_data -c 'GRANT ALL ON spatial_ref_sys TO PUBLIC;'
$ sudo -u postgres psql -d geonode_data -c 'GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA public TO geonode;'

Now we are going to change user access policy for local connections in file pg_hba.conf

$ sudo vim /etc/postgresql/9.5/main/pg_hba.conf

Scroll down to the bottom of the document. We only need to edit one line. Change

"local" is for Unix domain socket connections only
local all all peer

Into

"local" is for Unix domain socket connections only
local all all trust

Note

If your PostgreSQL database resides on a separate machine, you have to allow
remote access to the databases in the pg_hba.conf for the geonode user and
tell PostgreSQL to accept non local connections in your postgresql.conf file

Then restart PostgreSQL to make the change effective

$ sudo service postgresql restart

PostgreSQL is now ready. To test the configuration try to connect to the geonode
database as geonode

$ psql -U geonode geonode

Finalize GeoNode Setup

Once the DB has been correctly configured, we can finalize the GeoNode setup.

If not already active let’s activate the new geonode Python Virtual Environment:

$ workon geonode

Move into the geonode home folder

$ cd /home/geonode

Move into the my_geonode custom project base folder

$ cd my_geonode

First of all we need to tweak a bit the my_geonode local_settings.
In order to do that, rename the my_geonode/local_settings.py.sample file to my_geonode/local_settings.py end edit it:

$ cp my_geonode/local_settings.py.sample my_geonode/local_settings.py
$ vim my_geonode/local_settings.py

Update the following sections at the accordingly to your server configuration

...
SITE_HOST_NAME = os.getenv('SITE_HOST_NAME', "localhost")
SITE_HOST_PORT = os.getenv('SITE_HOST_PORT', "8000")
SITEURL = os.getenv('SITEURL', "http://%s:%s/" % (SITE_HOST_NAME, SITE_HOST_PORT))

...

EMAIL_ENABLE = True

if EMAIL_ENABLE:
 EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
 EMAIL_HOST = 'localhost'
 EMAIL_PORT = 25
 EMAIL_HOST_USER = ''
 EMAIL_HOST_PASSWORD = ''
 EMAIL_USE_TLS = False
 DEFAULT_FROM_EMAIL = '{{ project_name }} <no-reply@{{ project_name }}>'

...

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'geonode',
 'USER': 'geonode',
 'PASSWORD': 'geonode',
 'CONN_TOUT': 900,
 },
 # vector datastore for uploads
 'datastore' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'ENGINE': '', # Empty ENGINE name disables
 'NAME': 'geonode_data',
 'USER' : 'geonode',
 'PASSWORD' : 'geonode',
 'HOST' : 'localhost',
 'PORT' : '5432',
 'CONN_TOUT': 900,
 }
}

...

OGC_SERVER_DEFAULT_USER = os.getenv(
 'GEOSERVER_ADMIN_USER', 'admin'
)

OGC_SERVER_DEFAULT_PASSWORD = os.getenv(
 'GEOSERVER_ADMIN_PASSWORD', 'geoserver'
)

...

You may also want to tweak some configuration on my_geonode settings.
This file inherits my_geonode local_settings and set some GeoNode default settings:

$ vim my_geonode/settings.py

Update the following sections at the accordingly to your server configuration

...
Make sure GeoNode recognizes your servers

ALLOWED_HOSTS = # Add here your hosts

...
Modify time zone accordingly

TIME_ZONE = os.getenv('TIME_ZONE', "America/Chicago")

...
Tweak GeoNode behavior with the following settings
(see GeoNode documentation for more details)

CLIENT_RESULTS_LIMIT = 20
API_LIMIT_PER_PAGE = 1000
FREETEXT_KEYWORDS_READONLY = False
RESOURCE_PUBLISHING = False
ADMIN_MODERATE_UPLOADS = False
GROUP_PRIVATE_RESOURCES = False
GROUP_MANDATORY_RESOURCES = True
MODIFY_TOPICCATEGORY = True
USER_MESSAGES_ALLOW_MULTIPLE_RECIPIENTS = True
DISPLAY_WMS_LINKS = True

prevent signing up by default
ACCOUNT_OPEN_SIGNUP = True
ACCOUNT_EMAIL_REQUIRED = True
ACCOUNT_EMAIL_VERIFICATION = 'optional'
ACCOUNT_EMAIL_CONFIRMATION_EMAIL = True
ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = True
ACCOUNT_CONFIRM_EMAIL_ON_GET = True
ACCOUNT_APPROVAL_REQUIRED = True

...
Modify your maps and backgrounds

default map projection
Note: If set to EPSG:4326, then only EPSG:4326 basemaps will work.
DEFAULT_MAP_CRS = "EPSG:3857"

Where should newly created maps be focused?
DEFAULT_MAP_CENTER = (0, 0)

How tightly zoomed should newly created maps be?
0 = entire world;
maximum zoom is between 12 and 15 (for Google Maps, coverage varies by area)
DEFAULT_MAP_ZOOM = 0

ALT_OSM_BASEMAPS = os.environ.get('ALT_OSM_BASEMAPS', False)
CARTODB_BASEMAPS = os.environ.get('CARTODB_BASEMAPS', False)
STAMEN_BASEMAPS = os.environ.get('STAMEN_BASEMAPS', False)
THUNDERFOREST_BASEMAPS = os.environ.get('THUNDERFOREST_BASEMAPS', False)
MAPBOX_ACCESS_TOKEN = os.environ.get('MAPBOX_ACCESS_TOKEN', '')
BING_API_KEY = os.environ.get('BING_API_KEY', None)

MAP_BASELAYERS = [{
...

Enable/Disable the notification system
(see GeoNode documentation for more details)

NOTIFICATION_ENABLED = True

...

Enable/Disable the integrated monitoring system
(see GeoNode documentation for more details)

MONITORING_ENABLED = False

Tweak the logging options

LOGGING = {
...
 "loggers": {
 "django": {
 "handlers": ["console"], "level": "INFO", },
 "geonode": {
 "handlers": ["console"], "level": "INFO", },
 "gsconfig.catalog": {
 "handlers": ["console"], "level": "INFO", },
 "owslib": {
 "handlers": ["console"], "level": "INFO", },
 "pycsw": {
 "handlers": ["console"], "level": "INFO", },
 "{{ project_name }}": {
 "handlers": ["console"], "level": "DEBUG", },
 },
}

Finalize GeoNode Setup & Test

The following Python commands will finalize the setup, configure and create DB tables and download GeoServer.

Warning

Before running the next commands be sure that:

	You have completed all the steps from the beginning of this chapter

	You are located into the my_geonode custom project base folder

	The geonode Python Virtual Environment is enabled

Stop all the services

$ sudo service apache2 stop
$ sudo service tomcat8 stop
Being sure other services are stopped

Cleanup old stuff

	Hard Reset

Warning

This will delete all data you created until now.

$ paver reset_hard
Cleanup folders and old DB Tables

	Hard Reset

Note

This will restore only GeoServer.

$ rm -Rf geoserver
$ rm -Rf downloaded/*.*

Revert to default site settings

You need to revert some customizations of the my_geonode local_settings.
In order to do that, edit the my_geonode/local_settings.py file:

$ vim my_geonode/local_settings.py

Comment the following pieces

...
SITEURL = 'http://localhost'
...
#GEOSERVER_LOCATION = os.getenv(
'GEOSERVER_LOCATION', '{}/geoserver/'.format(SITEURL)
#)

#GEOSERVER_PUBLIC_LOCATION = os.getenv(
'GEOSERVER_PUBLIC_LOCATION', '{}/geoserver/'.format(SITEURL)
#)
...

Being sure folders permissions are correctly set

$ sudo chown -Rf geonode: my_geonode/uploaded/
$ sudo chown -Rf geonode: my_geonode/static*

Setup and start the system in DEV mode

$ paver setup
This command downloads and extract the correct GeoServer version

$ paver sync
This command prepares the DB tables and loads initial data

$ paver start
This command allows you to start GeoNode in development mode

GeoNode and GeoServer in Development mode

The paver start command allows you to start the server in development (DEV) mode.
That means that you will be able to directly do changes to your code and see the results on the browser.

You need to be careful to the different ports of the services. In DEV mode the services will run on:

	GeoNode port 8000 -> http://localhost:8000/

	GeoServer port 8080 -> http://localhost:8080/geoserver

In order to test it, move to http://localhost:8000/

[image: GeoNode Dev Mode]

Setup & Configure HTTPD

In this section we are going to setup Apache HTTP to serve GeoNode.

Preliminary Steps & Checks

	Be sure development (DEV) mode has been stopped

If not already active let’s activate the new geonode Python Virtual Environment:

$ workon geonode

Move into the geonode home folder

$ cd /home/geonode

Move into the my_geonode custom project base folder

$ cd my_geonode

If paver start command is running you need to stop it

$ paver stop

	Restore site settings

You need to restore initial customizations of the my_geonode local_settings.
In order to do that, edit the my_geonode/local_settings.py file:

$ vim my_geonode/local_settings.py

Un-comment the following pieces

...
SITEURL = 'http://localhost'
...
GEOSERVER_LOCATION = os.getenv(
 'GEOSERVER_LOCATION', '{}/geoserver/'.format(SITEURL)
)

GEOSERVER_PUBLIC_LOCATION = os.getenv(
 'GEOSERVER_PUBLIC_LOCATION', '{}/geoserver/'.format(SITEURL)
)
...

Apache Configuration

Navigate to Apache configurations folder

$ cd /etc/apache2/sites-available

And create a new configuration file for GeoNode:

$ sudo vim geonode.conf

Place the following content inside the file

WSGIDaemonProcess geonode python-path=/home/geonode/my_geonode:/home/geo/Envs/geonode/lib/python2.7/site-packages user=www-data threads=15 processes=2

<VirtualHost *:80>
 ServerName http://localhost
 ServerAdmin webmaster@localhost
 DocumentRoot /home/geonode/my_geonode/my_geonode

 LimitRequestFieldSize 32760
 LimitRequestLine 32760

 ErrorLog /var/log/apache2/error.log
 LogLevel warn
 CustomLog /var/log/apache2/access.log combined

 WSGIProcessGroup geonode
 WSGIPassAuthorization On
 WSGIScriptAlias / /home/geonode/my_geonode/my_geonode/wsgi.py

 Alias /static/ /home/geonode/my_geonode/my_geonode/static_root/
 Alias /uploaded/ /home/geonode/my_geonode/my_geonode/uploaded/

 <Directory "/home/geonode/my_geonode/my_geonode/">
 <Files wsgi.py>
 Order deny,allow
 Allow from all
 Require all granted
 </Files>

 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 IndexOptions FancyIndexing
 </Directory>

 <Directory "/home/geonode/my_geonode/my_geonode/static_root/">
 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 Require all granted
 IndexOptions FancyIndexing
 </Directory>

 <Directory "/home/geonode/my_geonode/my_geonode/uploaded/thumbs/">
 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 Require all granted
 IndexOptions FancyIndexing
 </Directory>

 <Directory "/home/geonode/my_geonode/my_geonode/uploaded/avatars/">
 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 Require all granted
 IndexOptions FancyIndexing
 </Directory>

 <Directory "/home/geonode/my_geonode/my_geonode/uploaded/people_group/">
 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 Require all granted
 IndexOptions FancyIndexing
 </Directory>

 <Directory "/home/geonode/my_geonode/my_geonode/uploaded/group/">
 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 Require all granted
 IndexOptions FancyIndexing
 </Directory>

 <Directory "/home/geonode/my_geonode/my_geonode/uploaded/documents/">
 Order allow,deny
 Options Indexes FollowSymLinks
 Deny from all
 Require all granted
 IndexOptions FancyIndexing
 </Directory>

 <Directory "/home/geonode/my_geonode/my_geonode/uploaded/layers/">
 Order allow,deny
 Options Indexes FollowSymLinks
 Deny from all
 Require all granted
 IndexOptions FancyIndexing
 </Directory>

 <Proxy *>
 Order allow,deny
 Allow from all
 </Proxy>

 ProxyPreserveHost On
 ProxyPass /geoserver http://127.0.0.1:8080/geoserver
 ProxyPassReverse /geoserver http://127.0.0.1:8080/geoserver

</VirtualHost>

This sets up a VirtualHost in Apache HTTP server for GeoNode and a reverse proxy
for GeoServer.

Note

In the case that GeoServer is running on a separate machine change the ProxyPass
and ProxyPassReverse accordingly

Now load apache poxy module

$ sudo a2enmod proxy_http

And enable geonode configuration file

$ sudo a2ensite geonode

Postfix Configuration

Postfix is a service allowing the host to send e-mail and notificaions to the users.
In order to make GeoNode being able to send e-mails you will need to enable the service.

$ sudo ufw disable
This will be switch-off the

Edit the postfix configuration in order to allow the service act as a web service

$ sudo vim /etc/postfix/main.cf

Check that at the end of the file the following properties are configured as follows

$ sudo vim /etc/postfix/main.cf

 ...
 recipient_delimiter = +
 inet_interfaces = all
 inet_protocols = all

Finally restart the postfix service

$ sudo service postfix restart

Finalize GeoNode Setup

Once the Apache2 Virtual Host has been correctly configured, we can finalize the GeoNode setup.

If not already active let’s activate the new geonode Python Virtual Environment:

$ workon geonode

Move into the geonode home folder

$ cd /home/geonode

Move into the my_geonode custom project base folder

$ cd my_geonode

First of all we need to tweak a bit the my_geonode local_settings.
In order to do that, edit the my_geonode/local_settings.py file:

$ vim my_geonode/local_settings.py

Double check that exitsting properties match the following and add the missing ones

SITEURL = 'http://localhost'
...
account registration settings
ACCOUNT_OPEN_SIGNUP = True
ACCOUNT_APPROVAL_REQUIRED = False
ACCOUNT_EMAIL_CONFIRMATION_EMAIL = False
ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = False

notification settings
NOTIFICATION_ENABLED = False
NOTIFICATION_LANGUAGE_MODULE = "account.Account"

Queue non-blocking notifications.
NOTIFICATION_QUEUE_ALL = False

pinax.notifications
or notification
NOTIFICATIONS_MODULE = 'pinax.notifications'

if NOTIFICATION_ENABLED:
 INSTALLED_APPS += (NOTIFICATIONS_MODULE,)

#Define email service on GeoNode
EMAIL_ENABLE = False

if EMAIL_ENABLE:
 EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
 EMAIL_HOST = 'localhost'
 EMAIL_PORT = 25
 EMAIL_HOST_USER = ''
 EMAIL_HOST_PASSWORD = ''
 EMAIL_USE_TLS = False
 DEFAULT_FROM_EMAIL = 'My GeoNode <no-reply@geonode.org>'

set to true to have multiple recipients in /message/create/
USER_MESSAGES_ALLOW_MULTIPLE_RECIPIENTS = True

INSTALLED_APPS = INSTALLED_APPS + ('my_geonode',)
...
GEOSERVER_LOCATION = os.getenv(
 'GEOSERVER_LOCATION', '{}/geoserver/'.format(SITEURL)
)

GEOSERVER_PUBLIC_LOCATION = os.getenv(
 'GEOSERVER_PUBLIC_LOCATION', '{}/geoserver/'.format(SITEURL)
)
...
CATALOGUE = {
 'default': {
 # The underlying CSW implementation
 # default is pycsw in local mode (tied directly to GeoNode Django DB)
 'ENGINE': 'geonode.catalogue.backends.pycsw_local',
 # pycsw in non-local mode
 # 'ENGINE': 'geonode.catalogue.backends.pycsw_http',
 # GeoNetwork opensource
 # 'ENGINE': 'geonode.catalogue.backends.geonetwork',
 # deegree and others
 # 'ENGINE': 'geonode.catalogue.backends.generic',

 # The FULLY QUALIFIED base url to the CSW instance for this GeoNode
 'URL': '%s/catalogue/csw' % SITEURL,
 # 'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
 # 'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',

 # login credentials (for GeoNetwork)
 'USER': 'admin',
 'PASSWORD': 'admin',
 }
}
...

In the end the my_geonode/local_settings.py should be something like this

-*- coding: utf-8 -*-
###
#
Copyright (C) 2012 OpenPlans
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
###

Django settings for the GeoNode project.
import os
from geonode.settings import *
#
General Django development settings
#

SECRET_KEY = '************************'

SITEURL = 'http://localhost'
SITENAME = 'my_geonode'

Defines the directory that contains the settings file as the LOCAL_ROOT
It is used for relative settings elsewhere.
LOCAL_ROOT = os.path.abspath(os.path.dirname(__file__))

MEDIA_ROOT = os.getenv('MEDIA_ROOT', os.path.join(LOCAL_ROOT, "uploaded"))

STATIC_ROOT = os.getenv('STATIC_ROOT',
 os.path.join(LOCAL_ROOT, "static_root")
)

WSGI_APPLICATION = "my_geonode.wsgi.application"

Load more settings from a file called local_settings.py if it exists
try:
 from local_settings import *
except ImportError:
 pass

Additional directories which hold static files
STATICFILES_DIRS.append(
 os.path.join(LOCAL_ROOT, "static"),
)

Location of url mappings
ROOT_URLCONF = 'my_geonode.urls'

Location of locale files
LOCALE_PATHS = (
 os.path.join(LOCAL_ROOT, 'locale'),
) + LOCALE_PATHS

#
account registration settings
ACCOUNT_OPEN_SIGNUP = True
ACCOUNT_APPROVAL_REQUIRED = False
ACCOUNT_EMAIL_CONFIRMATION_EMAIL = False
ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = False

notification settings
NOTIFICATION_ENABLED = False
NOTIFICATION_LANGUAGE_MODULE = "account.Account"

Queue non-blocking notifications.
NOTIFICATION_QUEUE_ALL = False

pinax.notifications
or notification
NOTIFICATIONS_MODULE = 'pinax.notifications'

if NOTIFICATION_ENABLED:
 INSTALLED_APPS += (NOTIFICATIONS_MODULE,)

#Define email service on GeoNode
EMAIL_ENABLE = False

if EMAIL_ENABLE:
 EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
 EMAIL_HOST = 'localhost'
 EMAIL_PORT = 25
 EMAIL_HOST_USER = ''
 EMAIL_HOST_PASSWORD = ''
 EMAIL_USE_TLS = False
 DEFAULT_FROM_EMAIL = 'My GeoNode <no-reply@geonode.org>'

set to true to have multiple recipients in /message/create/
USER_MESSAGES_ALLOW_MULTIPLE_RECIPIENTS = True
#

INSTALLED_APPS = INSTALLED_APPS + ('my_geonode',)

TEMPLATES[0]['DIRS'].insert(0, os.path.join(LOCAL_ROOT, "templates"))

#
ALLOWED_HOSTS = ['127.0.0.1', 'localhost', '::1']
PROXY_ALLOWED_HOSTS = ("127.0.0.1", 'localhost', '::1')

POSTGIS_VERSION = (2, 0, 7)

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'geonode',
 'USER': 'geonode',
 'PASSWORD': 'geonode',
 },
 # vector datastore for uploads
 'datastore' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 #'ENGINE': '', # Empty ENGINE name disables
 'NAME': 'geonode_data',
 'USER' : 'geonode',
 'PASSWORD' : 'geonode',
 'HOST' : 'localhost',
 'PORT' : '5432',
 }
}

GEOSERVER_LOCATION = os.getenv(
 'GEOSERVER_LOCATION', '{}/geoserver/'.format(SITEURL)
)

GEOSERVER_PUBLIC_LOCATION = os.getenv(
 'GEOSERVER_PUBLIC_LOCATION', '{}/geoserver/'.format(SITEURL)
)

OGC_SERVER_DEFAULT_USER = os.getenv(
 'GEOSERVER_ADMIN_USER', 'admin'
)

OGC_SERVER_DEFAULT_PASSWORD = os.getenv(
 'GEOSERVER_ADMIN_PASSWORD', 'geoserver'
)

OGC (WMS/WFS/WCS) Server Settings
OGC_SERVER = {
 'default': {
 'BACKEND': 'geonode.geoserver',
 'LOCATION': GEOSERVER_LOCATION,
 'LOGIN_ENDPOINT': 'j_spring_oauth2_geonode_login',
 'LOGOUT_ENDPOINT': 'j_spring_oauth2_geonode_logout',
 # PUBLIC_LOCATION needs to be kept like this because in dev mode
 # the proxy won't work and the integration tests will fail
 # the entire block has to be overridden in the local_settings
 'PUBLIC_LOCATION': GEOSERVER_PUBLIC_LOCATION,
 'USER' : OGC_SERVER_DEFAULT_USER,
 'PASSWORD' : OGC_SERVER_DEFAULT_PASSWORD,
 'MAPFISH_PRINT_ENABLED' : True,
 'PRINT_NG_ENABLED' : True,
 'GEONODE_SECURITY_ENABLED' : True,
 'GEOGIG_ENABLED' : False,
 'WMST_ENABLED' : False,
 'BACKEND_WRITE_ENABLED': True,
 'WPS_ENABLED' : False,
 'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.path.abspath(os.path.join(PROJECT_ROOT, os.pardir)),
 # Set to dictionary identifier of database containing spatial data in DATABASES dictionary to enable
 'DATASTORE': 'datastore',
 }
}

CATALOGUE = {
 'default': {
 # The underlying CSW implementation
 # default is pycsw in local mode (tied directly to GeoNode Django DB)
 'ENGINE': 'geonode.catalogue.backends.pycsw_local',
 # pycsw in non-local mode
 # 'ENGINE': 'geonode.catalogue.backends.pycsw_http',
 # GeoNetwork opensource
 # 'ENGINE': 'geonode.catalogue.backends.geonetwork',
 # deegree and others
 # 'ENGINE': 'geonode.catalogue.backends.generic',

 # The FULLY QUALIFIED base url to the CSW instance for this GeoNode
 'URL': '%s/catalogue/csw' % SITEURL,
 # 'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
 # 'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',

 # login credentials (for GeoNetwork)
 'USER': 'admin',
 'PASSWORD': 'admin',
 }
}

ALT_OSM_BASEMAPS = os.environ.get('ALT_OSM_BASEMAPS', False)
CARTODB_BASEMAPS = os.environ.get('CARTODB_BASEMAPS', False)
STAMEN_BASEMAPS = os.environ.get('STAMEN_BASEMAPS', False)
THUNDERFOREST_BASEMAPS = os.environ.get('THUNDERFOREST_BASEMAPS', False)
MAPBOX_ACCESS_TOKEN = os.environ.get('MAPBOX_ACCESS_TOKEN', None)
BING_API_KEY = os.environ.get('BING_API_KEY', None)

MAP_BASELAYERS = [{
 "source": {"ptype": "gxp_olsource"},
 "type": "OpenLayers.Layer",
 "args": ["No background"],
 "name": "background",
 "visibility": False,
 "fixed": True,
 "group":"background"
},
{
"source": {"ptype": "gxp_olsource"},
"type": "OpenLayers.Layer.XYZ",
"title": "TEST TILE",
"args": ["TEST_TILE", "http://test_tiles/tiles/${z}/${x}/${y}.png"],
"name": "background",
"attribution": "© TEST TILE",
"visibility": False,
"fixed": True,
"group":"background"
},
{
 "source": {"ptype": "gxp_osmsource"},
 "type": "OpenLayers.Layer.OSM",
 "name": "mapnik",
 "visibility": True,
 "fixed": True,
 "group": "background"
}]

LOCAL_GEOSERVER = {
 "source": {
 "ptype": "gxp_wmscsource",
 "url": OGC_SERVER['default']['PUBLIC_LOCATION'] + "wms",
 "restUrl": "/gs/rest"
 }
}
baselayers = MAP_BASELAYERS
MAP_BASELAYERS = [LOCAL_GEOSERVER]
MAP_BASELAYERS.extend(baselayers)

LOGGING = {
 'version': 1,
 'disable_existing_loggers': True,
 'formatters': {
 'verbose': {
 'format': '%(levelname)s %(asctime)s %(module)s %(process)d '
 '%(thread)d %(message)s'
 },
 'simple': {
 'format': '%(message)s',
 },
 },
 'filters': {
 'require_debug_false': {
 '()': 'django.utils.log.RequireDebugFalse'
 }
 },
 'handlers': {
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 'formatter': 'simple'
 },
 'mail_admins': {
 'level': 'ERROR', 'filters': ['require_debug_false'],
 'class': 'django.utils.log.AdminEmailHandler',
 }
 },
 "loggers": {
 "django": {
 "handlers": ["console"], "level": "ERROR", },
 "geonode": {
 "handlers": ["console"], "level": "DEBUG", },
 "gsconfig.catalog": {
 "handlers": ["console"], "level": "DEBUG", },
 "owslib": {
 "handlers": ["console"], "level": "DEBUG", },
 "pycsw": {
 "handlers": ["console"], "level": "ERROR", },
 },
 }
#

Finalize HTTPD Setup

Warning

Those steps must be completed from folder /home/geonode/my_geonode and inside geonode Python Virtual Environment.

Dowload GeoNode data to be served by Apache. You will be prompted for confirmation

$ python manage.py migrate
$ python manage.py collectstatic

Add thumbs and layers folders

$ sudo mkdir -p /home/geonode/my_geonode/my_geonode/uploaded/thumbs
$ sudo mkdir -p /home/geonode/my_geonode/my_geonode/uploaded/layers

Change permissions on GeoNode files and folders to allow Apache to read and edit them

$ sudo chown -Rf geonode /home/geonode/my_geonode/
$ sudo chown -Rf geonode:www-data /home/geonode/my_geonode/my_geonode/static/
$ sudo chown -Rf geonode:www-data /home/geonode/my_geonode/my_geonode/uploaded/
$ chmod -Rf 777 /home/geonode/my_geonode/my_geonode/uploaded/thumbs
$ chmod -Rf 777 /home/geonode/my_geonode/my_geonode/uploaded/layers
$ sudo chown www-data:www-data /home/geonode/my_geonode/my_geonode/static_root/

Finally restart Apache to load the new configuration:

$ sudo service apache2 restart

Install GeoServer Application

In this section we are going to setup GeoServer for GeoNode. GeoServer will run inside
Tomcat sevrlet container.

Setup GeoServer

	You’ve already installed Tomcat 8 in the system in the first section of the training. Before you deploy GeoServer stop the running Tomcat instance

$ sudo service tomcat8 stop

	Now copy the downloaded GeoServer archive inside Tomcat’s webapps folder

$ sudo cp -Rf /home/geonode/my_geonode/geoserver/geoserver/ /var/lib/tomcat8/webapps/

	Move GEOSERVER_DATA_DIR on an external location

$ sudo mkdir -p /data/geoserver-data
$ sudo mkdir -p /data/geoserver-logs
$ sudo mkdir -p /data/gwc_cache_dir
$ sudo cp -Rf /home/geonode/my_geonode/geoserver/data/* /data/geoserver-data/
$ sudo chown -Rf tomcat8: /data/geoserver-data/
$ sudo chown -Rf tomcat8: /data/geoserver-logs/
$ sudo chown -Rf tomcat8: /data/gwc_cache_dir/

	Set default Java settings

You need to edit the /etc/default/tomcat8 file

$ sudo vim /etc/default/tomcat8

Make sure JAVA_OPTS are configured as follows

#JAVA_OPTS="-Djava.awt.headless=true -Xmx128m -XX:+UseConcMarkSweepGC"
GEOSERVER_DATA_DIR="/data/geoserver-data"
GEOSERVER_LOG_LOCATION="/data/geoserver-logs/geoserver.log"
GEOWEBCACHE_CACHE_DIR="/data/gwc_cache_dir"
GEOFENCE_DIR="$GEOSERVER_DATA_DIR/geofence"

JAVA_OPTS="-Djava.awt.headless=true -XX:MaxPermSize=512m -XX:PermSize=128m -Xms512m -Xmx2048m -Duser.timezone=GMT -Dorg.geotools.shapefile.datetime=true -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:ParallelGCThreads=4 -Dfile.encoding=UTF8 -Duser.timezone=GMT -Djavax.servlet.request.encoding=UTF-8 -Djavax.servlet.response.encoding=UTF-8 -DGEOSERVER_DATA_DIR=$GEOSERVER_DATA_DIR -Dgeofence.dir=$GEOFENCE_DIR -DGEOSERVER_LOG_LOCATION=$GEOSERVER_LOG_LOCATION -DGEOWEBCACHE_CACHE_DIR=$GEOWEBCACHE_CACHE_DIR"

Warning

Double check memory options -Xms512m -Xmx2048m are compatible with your VM available RAM

	Set default Catalina settings

You need to edit the /var/lib/tomcat8/conf/catalina.properties file

$ sudo vim /var/lib/tomcat8/conf/catalina.properties

Make sure bcprov*.jar is skipped at run-time

tomcat.util.scan.StandardJarScanFilter.jarsToSkip=\
...
xom-*.jar,\
bcprov*.jar

	Restart Tomcat 8 service

$ sudo service tomcat8 restart

You can follow the start-up logs by running the following shell command

$ sudo tail -F -n 300 /var/lib/tomcat8/logs/catalina.out

Test GeoServer

Now start Tomcat to deploy GeoServer:

sudo service tomcat8 start

Tomcat will extract GeoServer web archive and start GeoServer. This may take some time

Open a web browser (in this example Firefox) and navigate to http://localhost:8080/geoserver

[image: Connecto to GeoServer]
In a few seconds GeoServer web interface will show up:

[image: Connecto to GeoServer]

GeoNode authentication integration

All we need to do now is to integrate GeoNode authentication so that GeoNode
administrator will be able to access and administer GeoServer as well.

	Stop GeoServer

$ sudo service tomcat8 stop

	Edit /data/geoserver-data/security/filter/geonode-oauth2/config.xml with a text editor

$ sudo gedit /data/geoserver-data/security/filter/geonode-oauth2/config.xml

And make sure the following values are configured as follows:

<accessTokenUri>http://localhost/o/token/</accessTokenUri>
<userAuthorizationUri>http://localhost/o/authorize/</userAuthorizationUri>
<redirectUri>http://localhost/geoserver</redirectUri>
<checkTokenEndpointUrl>http://localhost/api/o/v4/tokeninfo/</checkTokenEndpointUrl>
<logoutUri>http://localhost/account/logout/</logoutUri>

	Edit /data/geoserver-data/security/role/geonode\ REST\ role\ service/config.xml with a text editor

$ sudo gedit /data/geoserver-data/security/role/geonode\ REST\ role\ service/config.xml

And make sure the following values are configured as follows:

<baseUrl>http://localhost</baseUrl>

	Edit /data/geoserver-data/global.xml with a text editor

$ sudo gedit /data/geoserver-data/global.xml

And make sure the following values are configured as follows:

<proxyBaseUrl>http://localhost/geoserver</proxyBaseUrl>

	Restart GeoServer to make the changes effective

$ sudo service tomcat8 restart

You can follow the start-up logs by running the following shell command

$ sudo tail -F -n 300 /var/lib/tomcat8/logs/catalina.out

Finish installation

In previous sections you’ ve setup all the applications we need to run GeoNode.

Test the installation

We are ready to restart GeoNode (Apache) and test the installation.
Restart Apache

$ sudo service apache2 restart

Open the browser and navigate to http://localhost/

GeoNode User interface will show up. Login with admin username and password you
just set.

[image: Test GeoNode 2]
[image: GeoNode admin signin]
Now open the main menu and click on GeoServer

[image: GeoServer admin login]
You will be redirected to GeoServer user interface. You will automatically be
logged in as administrator in GeoServer.

[image: GeoServer Admin]

GeoNode (v2.8) installation on CentOS 7

This part of the documentation describes the complete setup process for GeoNode
on a CentOS 7 machine.

	Installing the Operating System
	CentOS Setup

	Network configuration

	User access configuration

	Installing ntp

	Installing base packages

	Installing the Operating System
	CentOS Setup

	Network configuration

	Launch your CentOS box

	Install GeoNode on CentOS 7 (dev mode)
	Preparation

	Install pip

	Set up PostgreSQL

	Install Java

	Setup a virtual environment

	Install GeoNode

	Installing PostgreSQL and PostGIS
	Install PostgreSQL

	Setting PostgreSQL access

	Create GeoNode Users Databases

	Tomcat Installation
	Installing Java

	Installing Tomcat

	Install GeoNode application
	Install required libs

	Upgrade Python PIP version

	Create a geonode system user for the application

	Install GeoNode

	Apache HTTP Server Installation
	Install and setup base packages

	httpd configuration

Installing the Operating System

CentOS Setup

We are re going to install a minimal CentOS 7 distribution.
You can get a copy of the .iso the image used for the installation
here [http://isoredirect.centos.org/centos/7/isos/x86_64/CentOS-7-x86_64-Minimal-1611.iso].

Boot up the installation DVD and start the CentOS 7 Installation wizard.

	Under Select Date & Time an set appropriate Date and Time settings

	Under Keyboard and choose the keyboard layout

	Under Installation Destination select the hard disk where CentOS will
be installed.

Create a custom partitioning scheme as follows:

	Partition Label

	Partition Type

	Size

	Mount Point

	boot

	ext3

	700 MB

	/boot

	root

	ext4

	35 GB

	/

	swap

	swap

	4 GB

	

	Under Networking configure your network interface according to your infrastructure
you can either set it to DHCP to automatically get all the settings from
a local DHCP server or configure it by hand.

	Enable the network interface, then go back to Select Date & Time and enable
NTP synchronization periodically get date and time settings from CentOS servers

	Click on Begin Installation

	Now set the password for the root user. Also click on User Creation to
create the geo user.

	Wait for the installation process to finish, then reboot your machine

Network configuration

The network configuration should already be set, since it was set during CentOS
setup stage.

You may want to review the configuration files

/etc/sysconfig/network-scripts/ifcfg-DEVICE

You may also want to review the file /etc/resolv.conf
to check the name servers.

Check that the connection is up by pinging and external server:

ping 8.8.8.8

Check that the DNS are properly configuring by pinging a host by its name:

ping google.com

Warning

Please note that in CentOS only ssh incoming connections are allowed;
all other incoming connections are disabled by default.

In the paragraph related to the httpd service you can find details about
how to enable incoming traffic.

Note that after configuring the network, you may continue installing the system setup using a ssh connection.

User access configuration

Login as root'` user and give the ``geo user administrative privileges
by adding him to the wheel group:

usermod -aG wheel geo

SSH access

Allow SSH connections through the firewall

On CentOS 7 the firewall is enabled by default. To allow SSH clients to connect
to the machine allow incoming connections on port 22:

firewall-cmd --zone=public --add-port=22/tcp --permanent
firewall-cmd --zone=public --add-service=ssh --permanent
firewall-cmd --reload

Disable SSH login for the root user

Warning

Before you disable root login make sure you are able to login via SSH with
geo user account and you have the privileges to run sudo su to
switch to the root user account.

Edit file /etc/ssh/sshd_config to disable root login via SSH:

PermitRootLogin no

Public key authentication

Public key authentication is generally considered a safer way to authenticate
users for SSH access. Let’s set it up and disable password based authentication

First generate a public/private key pair using ssh-keygen:

ssh-keygen

Follow the procedure, you will end up with your newly generated key under ~/.ssh
Now copy your public (by default it is called id_rsa.pub) key over the CentOS
machine in /home/geo/.ssh/authorized_keys. There are several ways to do
it, we are going to use the ssh-copy-id tool:

ssh-copy-id -i ~/.ssh/id_rsa.pub geo@<server-ip-address>

You should now be able to login via SSH as geo without been asked for
the password:

ssh geo@<server-ip-address>

You can now disable password based login over SSH

Warning

Before disabling password authentication make sure you’ve installed your
public key on the server and you are able to login without password

Edit /etc/ssh/sshd_config as follows:

...
RSAAuthentication yes
...
PubkeyAuthentication yes
...
PasswordAuthentication no
...
UsePAM no
...

Installing ntp

Install the program for NTP server synchronization:

sudo yum install ntp

Edit /etc/ntp.conf and add the following line before the first server directive:

server tempo.ien.it # Galileo Ferraris

Replace tempo.ien.it with your nearest NTP server.

Sync with the server by issuing:

systemctl start ntpd

Set the time synchronization as an automatically started daemon:

systemctl enable ntpd

Installing base packages

Install common utility packages:

sudo yum install -y man vim openssh-clients zip unzip wget

Update the system with EPEL latest release:

sudo yum install -y epel-release
sudo yum update -y && sudo reboot

Install pip and necessary dependencies:

sudo yum install -y python-devel python-setuptools python-pip python-virtualenv
sudo pip install --upgrade pip

Installing the Operating System

Warning

In order to follow this section you must have Vagrant [https://www.vagrantup.com/] already installed into your machine. If not then you can follow the link and install properly in your computer.

CentOS Setup

Start a new base CentOS server from scratch is as easier as possible with this simple command:

vagrant init centos/7

A new configuration file called Vagrantfile is created in the same directory. That file will contain all the configuration of the box you are going to run.

Alternatively you can start a new specific version of a CentOS server from an ISO image like this CentOS-7-x86_64-Minimal-1611.iso. In order to have such a minimal box we can exploit Packer [http://www.packer.io/] in doing that. Therefore follow the previous link and install the toolkit. Ansible [http://docs.ansible.com/intro_installation.html] is required too.

As an example for achieving this goal you might follow the instructions on this [https://github.com/geerlingguy/packer-centos-7] GitHub repository. Fork it and simply let’s do:

packer build --only=virtualbox-iso centos7.json

The build artifact virtualbox-centos7.box will be in the directory builds and can be mounted as alternative Virtual Box image in the Vagrantfile.

If you, at any time, modify the configuration you can bring your changes by running:

vagrant reload

Network configuration

The configuration of your new CentOS machine can be customised at your need. You can choose to configure a private network which allows host-only access to the machine using a specific IP as well as a public one which generally matched to bridged network and the machine would appear as another physical device on your network. Initially you can opt also to have your internal port of GeoNode forwarded to a physical port on your host for navigating the application from the browser.
The simplest configuration can be:

config.vm.network "forwarded_port", guest: 80, host: 8001

Please note that in development mode this configuration can be a little bit different:

config.vm.network "forwarded_port", guest: 8000, host: 8001 # GeoNode port
config.vm.network "forwarded_port", guest: 8080, host: 8080 # GeoServer port

You can even choose to mapping on 80 but be carefully you need administrative privileges on your host machine. So it is recommended to begin with a port higher like in the previous example.

Launch your CentOS box

After editing the Vagrant configurations you should end up with a Vagrantfile like this basic sample.
From the same directory then run this command and launch your box:

vagrant up

Install GeoNode on CentOS 7 (dev mode)

Preparation

Make sure all the needed libraries are installed

sudo yum -y update
sudo yum groupinstall 'Development Tools'
sudo yum install -y libxml2-devel libxslt-devel libjpeg-turbo-devel postgresql postgresql-server postgresql-contrib postgresql-libs postgresql-devel postgis geos-python python python-tools python-devel python-pillow python-lxml openssh-clients zip unzip wget git gdal python-virtualenv gdal-python geos python-pip python-imaging python-devel gcc-c++ python-psycopg2 libxml2 libxml2-devel libxml2-python libxslt libxslt-devel libxslt-python

Install pip

Installation of Python pip:

sudo rpm -iUvh http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-9.noarch.rpm
sudo yum -y update
sudo yum -y install python-pip
sudo pip install --upgrade pip

Warning

Make sure to align the version of EPEL to the latest for your current CentOS version

Install Python Virtual Environment

sudo pip install virtualenvwrapper

Set up PostgreSQL

Enable the PostgreSQL service

systemctl enable postgresql

Change the Unix password for the postgres user

sudo passwd -u postgres -f
sudo passwd postgres

Initialize the PostgreSQL database with the default service name postgresql

sudo /usr/bin/postgresql-setup initdb

Start the PostgreSQL service

systemctl start postgresql.service

Create the database for GeoNode

su - postgres
pg_ctl status
pg_ctl start # if not running

createdb geonode

Create the needed role and privileges

psql
postgres=#
postgres=# \password postgres
postgres=# CREATE USER geonode WITH PASSWORD 'geonode';
postgres=# GRANT ALL PRIVILEGES ON DATABASE "geonode" to geonode;
postgres=# \q

Install Java

First come back to the normal user, then check if Java is already installed

java -version

In case, install Java

sudo yum install -y java-1.8.0-openjdk-devel

Setup a virtual environment

Assuming your username is geonode, you need to edit your .bashrc file

nano /home/geonode/.bashrc

Add the following lines (please replace geonode with your actual user name):

virtualenvwrapper
export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python
export WORKON_HOME=home/geonode/.venvs
source /usr/bin/virtualenvwrapper.sh
export PIP_DOWNLOAD_CACHE=$HOME/.pip-downloads

Save and exit. Then,

source /home/geonode/.bashrc

Install GeoNode

Setup a virtual environment for GeoNode and enter into it

mkvirtualenv geonode --system-site-packages
workon geonode

Make sure to have the most updated Python pip version

pip install --upgrade pip

Clone the current stable branch 2.6.x

git clone -b 2.6.x https://github.com/GeoNode/geonode

Install GeoNode and its dependencies

pip install -e geonode && pip install -r geonode/requirements.txt
pip Paver

Verify the installation

pip freeze | grep geonode

In case of successful installation, this should return several (50+) lines.

Install GeoServer

The installation of GeoServer in development mode can be started with this pavement command script

paver setup

This should return

GeoNode development environment successfully set up.If you have not set
up an administrative account, please do so now. Use "paver start" to start
up the server.

Run the Django server

Before starting the GeoNode server you have to complete the installation with several import pre-running steps. Let’s see them in their order.

Warning

Please note we have always to be in our virtual environment before running the following commands, while you don’t need the sudo privileges anymore!

Migrate the database

python manage.py migrate

Create an administrative account as know as superuser in Django. Please make sure you will create at least one superuser named admin which is required in development mode.

python manage.py createsuperuser

Create the required initial data and OAuth2 configurations

python manage.py loaddata geonode/base/fixtures/initial_data.json
python manage.py loaddata geonode/base/fixtures/default_oauth_apps.json

Finally we are able to start all the components

paver start_geoserver # start GeoServer
python manage.py runserver 0.0.0.0:8000 # start GeoNode

Warning

Note that the default IP address, 127.0.0.1, is not accessible from other machines on your network. In case you are using forwarded_port on a Vagrantfile please make sure to start runserver with the option :option:0.0.0.0:8000 which allows fundamentally to view your development server from other machines on the network, included your host machine in such a case. See more on Installing the Operating System.

Installing PostgreSQL and PostGIS

Install PostgreSQL

Install the package for configuring the PGDG repository:

sudo yum install http://yum.postgresql.org/9.5/redhat/rhel-7-x86_64/pgdg-centos95-9.5-3.noarch.rpm

Install PostgreSQL, PostGIS and related libs:

sudo yum update
sudo yum install -y postgis2_95 postgresql95 postgresql95-server postgresql95-libs postgresql95-contrib \
postgresql95-devel gdal gdal-python geos python-imaging gcc-c++ \
python-psycopg2 libxml2 libxml2-devel libxml2-python libxslt libxslt-devel libxslt-python

Initialize the DB:

sudo /usr/pgsql-9.5/bin/postgresql95-setup initdb

Enable start on boot:

sudo systemctl enable postgresql-9.5

Start the PostgreSQL service manually:

sudo systemctl start postgresql-9.5

To restart or reload the instance, you can use the following commands:

sudo systemctl restart postgresql-9.5
sudo systemctl reload postgresql-9.5

Setting PostgreSQL access

Now we are going to change user access policy for local connections in file pg_hba.conf:

sudo vim /var/lib/pgsql/9.5/data/pg_hba.conf

Scroll down to the bottom of the document. We only need to edit one line. Change:

"local" is for Unix domain socket connections only
local all all peer
IPv4 local connections:
host all all 127.0.0.1/32 ident

into:

"local" is for Unix domain socket connections only
local all all trust
IPv4 local connections:
host all all 127.0.0.1/32 md5

Note

If your PostgreSQL database resides on a separate machine, you have to allow
remote access to the databases in the pg_hba.conf for the geonode user and
tell PostgreSQL to accept non local connections in your postgresql.conf configuration.

Once the configuration file has been edited, restart PostgreSQL to make these changes
effective:

sudo systemctl restart postgresql-9.5

Create GeoNode Users Databases

Switch to the postgres user:

su - postgres

First create the geonode user. GeoNode is going to use this user to access the database:

createuser -P geonode

You will be prompted asked to set a password for the user. Enter geonode as password

Create geonode database with owner geonode:

createdb -O geonode geonode

And database geonode_data with owner geonode:

createdb -O geonode geonode_data

Create PostGIS extension on the database for spatial data:

psql -d geonode_data -c 'CREATE EXTENSION postgis;'

Then adjust permissions:

psql -d geonode_data -c 'GRANT ALL ON geometry_columns TO PUBLIC;'
psql -d geonode_data -c 'GRANT ALL ON spatial_ref_sys TO PUBLIC;'

We are setting the default encoding to UTF-8, which Django expects:

psql -d geonode -c 'ALTER ROLE geonode SET client_encoding TO 'utf8';'
psql -d geonode_data -c 'ALTER ROLE geonode SET client_encoding TO 'utf8';'

And exit postgres user:

exit

Tomcat Installation

Installing Java

We’ll need a JDK to run GeoServer. In particular the latest GeoServer from GeoNode needs the JDK version 1.8

You may already have the OpenJDK package (java-1.8.0-openjdk.x86_64) installed.
Check and see if Java 8 is already installed:

java -version
openjdk version "1.8.0_131"
OpenJDK Runtime Environment (build 1.8.0_131-b12)
OpenJDK 64-Bit Server VM (build 25.131-b12, mixed mode)

Otherwise install it by running:

sudo yum install java-1.8.0-openjdk.x86_64

Once done, the command java -version should return info about the installed version.

If java version does not match the one just installed, run the following command:

alternatives --set java /usr/lib/jvm/jre-1.8.0-openjdk/bin/java

Oracle JDK

Until recently, the Oracle JDK was a better performer than the OpenJDK,
so it was the preferred choice. This is no longer true, anyway in the following paragraph you can find
instruction about how to install the Oracle JDK.

You can download the Oracle JDK RPM from this page:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Programmatically you can then run:

curl -LO -H "Cookie: oraclelicense=accept-securebackup-cookie;" "http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.rpm"

Once you have the .rpm file, you can install it by:

sudo rpm -ivh jdk-8u131-linux-x64.rpm

Once installed, you still see that the default java and javac commands
are still the ones from OpenJDK.
In order to switch JDK version you have to set the proper system alternatives.

Issue the command:

alternatives --install /usr/bin/java java /usr/java/latest/bin/java 200000 \
--slave /usr/lib/jvm/jre jre /usr/java/latest/jre \
--slave /usr/lib/jvm-exports/jre jre_exports /usr/java/latest/jre/lib \
--slave /usr/bin/keytool keytool /usr/java/latest/jre/bin/keytool \
--slave /usr/bin/orbd orbd /usr/java/latest/jre/bin/orbd \
--slave /usr/bin/pack200 pack200 /usr/java/latest/jre/bin/pack200 \
--slave /usr/bin/rmid rmid /usr/java/latest/jre/bin/rmid \
--slave /usr/bin/rmiregistry rmiregistry /usr/java/latest/jre/bin/rmiregistry \
--slave /usr/bin/servertool servertool /usr/java/latest/jre/bin/servertool \
--slave /usr/bin/tnameserv tnameserv /usr/java/latest/jre/bin/tnameserv \
--slave /usr/bin/unpack200 unpack200 /usr/java/latest/jre/bin/unpack200 \
--slave /usr/share/man/man1/java.1 java.1 /usr/java/latest/man/man1/java.1 \
--slave /usr/share/man/man1/keytool.1 keytool.1 /usr/java/latest/man/man1/keytool.1 \
--slave /usr/share/man/man1/orbd.1 orbd.1 /usr/java/latest/man/man1/orbd.1 \
--slave /usr/share/man/man1/pack200.1 pack200.1 /usr/java/latest/man/man1/pack200.1 \
--slave /usr/share/man/man1/rmid.1.gz rmid.1 /usr/java/latest/man/man1/rmid.1 \
--slave /usr/share/man/man1/rmiregistry.1 rmiregistry.1 /usr/java/latest/man/man1/rmiregistry.1 \
--slave /usr/share/man/man1/servertool.1 servertool.1 /usr/java/latest/man/man1/servertool.1 \
--slave /usr/share/man/man1/tnameserv.1 tnameserv.1 /usr/java/latest/man/man1/tnameserv.1 \
--slave /usr/share/man/man1/unpack200.1 unpack200.1 /usr/java/latest/man/man1/unpack200.1

Then run:

alternatives --config java

and select the number related to /usr/java/latest/bin/java.

Now the default java version should be the Oracle one.
Verify the proper installation on the JDK:

java -version
java version "1.8.0_131"
Java(TM) SE Runtime Environment (build 1.8.0_131-b11)
Java HotSpot(TM) 64-Bit Server VM (build 25.131-b11, mixed mode)

Installing Tomcat

Tomcat

Let’s install Tomcat first:

sudo yum install -y tomcat

Then prepare a clean instance called base to be used as a template
for all tomcat instances:

sudo mkdir /var/lib/tomcats/base
sudo cp -a /usr/share/tomcat/* /var/lib/tomcats/base/

Then create GeoServer’s instance directory structure:

sudo mkdir /var/lib/tomcats/geoserver
sudo cp -a /usr/share/tomcat/* /var/lib/tomcats/geoserver/

Instance manager script

Copy the existing management script:

sudo cp /usr/lib/systemd/system/tomcat.service \
/usr/lib/systemd/system/tomcat\@geoserver.service

Edit the EnvironmentFile variable in service management file as follows:

sudo vim /usr/lib/systemd/system/tomcat\@geoserver.service

Systemd unit file for default tomcat
#
To create clones of this service:
DO NOTHING, use tomcat@.service instead.

[Unit]
Description=Apache Tomcat Web Application Container
After=syslog.target network.target

[Service]
Type=simple
EnvironmentFile=/etc/tomcat/tomcat.conf
Environment="NAME="
EnvironmentFile=-/etc/sysconfig/tomcat@geoserver
ExecStart=/usr/libexec/tomcat/server start
ExecStop=/usr/libexec/tomcat/server stop
SuccessExitStatus=143
User=tomcat
Group=tomcat

[Install]
WantedBy=multi-user.target

Create the associated configuration file from template:

sudo cp /etc/sysconfig/tomcat /etc/sysconfig/tomcat\@geoserver

Edit the configuration file and customize the CATALINA_HOME and CATALINA_BASE
variables:

...
CATALINA_BASE="/var/lib/tomcats/geoserver"
CATALINA_HOME="/usr/share/tomcat"
...

Now download and copy GeoServer web archive inside the webapps folder. Tomcat will extract the
war file and run GeoServer:

curl -LO https://build.geo-solutions.it/geonode/geoserver/latest//geoserver-2.9.x-oauth2.war && mv geoserver-2.9.x-oauth2.war geoserver.war
sudo mkdir -p /var/lib/tomcats/geoserver/webapps/
sudo cp geoserver.war /var/lib/tomcats/geoserver/webapps/

And fix the permissions on the files:

sudo chown -R tomcat:tomcat /var/lib/tomcats*

Finally start GeoServer:

sudo systemctl start tomcat@geoserver

And enable it to automatically start at boot time:

sudo systemctl enable tomcat@geoserver

Install GeoNode application

Install required libs

Make sure all the needed libraries are installed:

sudo yum install -y git gdal gdal-python geos python-pip python-imaging \
python-virtualenv python-devel gcc-c++ python-psycopg2 libxml2 \
libxml2-devel libxml2-python libxslt libxslt-devel libxslt-python

Upgrade Python PIP version

Upgrade pip utility:

sudo pip install --upgrade pip

Create a geonode system user for the application

Create the group:

sudo groupadd --system geonode

Create the user:

sudo useradd --system --gid geonode --shell /bin/bash --home /home/geonode --create-home geonode

Create project home somewhere:

sudo mkdir -p /opt/apps/geonode

Give the required permissions to the new user geonode:

sudo chown -R geonode:geonode /opt/apps/geonode/

Install GeoNode

As a user geonode install GeoNode sources from official repository:

curl -LO "https://github.com/GeoNode/geonode/archive/2.6.3.zip"
unzip 2.6.3.zip && mv geonode-2.6.3 geonode

Move the sources into project folder:

mv geonode /opt/apps/geonode/

Navigate to sources folder and install required packages:

cd /opt/apps/geonode/geonode
sudo pip install -e . --upgrade --no-cache

Edit settings

GeoNode Configuration

Now that all applications have been configured we are going to instruct GeoNode on
how to connect to PostgreSQL and GeoServer. Also we are going to instruct GeoNode
on who is allowed to connect to it.

First navigate to geonode configuration folder:

cd /opt/apps/geonode/geonode/geonode/

Copy the local_settings.py sample file called local_settings.py.sample:

cp local_settings.py.geoserver.sample local_settings.py

Then edit the configuration file:

vim local_settings.py

Add the ALLOWED_HOSTS and PROXY_ALLOWED_HOSTS variables at the top with the
following values::

ALLOWED_HOSTS = ['127.0.0.1', 'localhost', '::1']
PROXY_ALLOWED_HOSTS = ("127.0.0.1", 'localhost', '::1',)

Add the POSTGIS_VERSION variable matching your PostGIS version::

POSTGIS_VERSION = (2, 3, 0)

This will instruct GeoNode to listen on connections from your local machine.

Change the value of the SITEURL:

SITEURL = "http://localhost/"

Now configure database access:
Uncomment the ENGINE’: ‘django.contrib.gis.db.backends.postgis line
and comment the one with empty ENGINE variable. Also set the NAME variable to
geonode_data:

DATABASES = {
'default': {
...
},
'datastore' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 #'ENGINE': '', # Empty ENGINE name disables,
 'NAME': 'geonode_data',
 ...
}

Then configure GeoServer location:
Change the value of the LOCATION and PUBLIC_LOCATION variables as below:

GEOSERVER_LOCATION = os.getenv(
 'GEOSERVER_LOCATION', 'http://localhost/geoserver/'
)
GEOSERVER_PUBLIC_LOCATION = os.getenv(
 'GEOSERVER_PUBLIC_LOCATION', 'http://localhost/geoserver/'
)

Finally configure GeoServer datastore:
Change the value of the DATASTORE variable to the dictionary identifier of database for spatial data as below:

OGC_SERVER = {
 'default': {
 ...
 'DATASTORE': 'datastore',
}

The resulting configuration file should look like this::

import os

PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__))

ALLOWED_HOSTS = ['127.0.0.1', 'localhost', '::1']
PROXY_ALLOWED_HOSTS = ("127.0.0.1", 'localhost', '::1',)

POSTGIS_VERSION = (2, 3, 0)

SITEURL = "http://localhost/"

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'geonode',
 'USER': 'geonode',
 'PASSWORD': 'geonode',
 },
 # vector datastore for uploads
 'datastore' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 #'ENGINE': '', # Empty ENGINE name disables
 'NAME': 'geonode_data',
 'USER' : 'geonode',
 'PASSWORD' : 'geonode',
 'HOST' : 'localhost',
 'PORT' : '5432',
 }
}

GEOSERVER_LOCATION = os.getenv(
 'GEOSERVER_LOCATION', 'http://localhost/geoserver/'
)
GEOSERVER_PUBLIC_LOCATION = os.getenv(
 'GEOSERVER_PUBLIC_LOCATION', 'http://localhost:8001/geoserver/'
)

OGC (WMS/WFS/WCS) Server Settings
OGC_SERVER = {
 'default': {
 'BACKEND': 'geonode.geoserver',
 'LOCATION': GEOSERVER_LOCATION,
 'LOGIN_ENDPOINT': 'j_spring_oauth2_geonode_login',
 'LOGOUT_ENDPOINT': 'j_spring_oauth2_geonode_logout',
 # PUBLIC_LOCATION needs to be kept like this because in dev mode
 # the proxy won't work and the integration tests will fail
 # the entire block has to be overridden in the local_settings
 'PUBLIC_LOCATION': GEOSERVER_PUBLIC_LOCATION,
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 'MAPFISH_PRINT_ENABLED' : True,
 'PRINT_NG_ENABLED' : True,
 'GEONODE_SECURITY_ENABLED' : True,
 'GEOGIG_ENABLED' : False,
 'WMST_ENABLED' : False,
 'BACKEND_WRITE_ENABLED': True,
 'WPS_ENABLED' : False,
 'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.path.abspath(os.path.join(PROJECT_ROOT, os.pardir)),
 # Set to dictionary identifier of database containing spatial data in DATABASES dictionary to enable
 'DATASTORE': 'datastore', #'datastore',
 }
}

If you want to enable Mosaics use the following configuration
#UPLOADER = {
'BACKEND': 'geonode.rest',
'BACKEND': 'geonode.importer',
'OPTIONS': {
'TIME_ENABLED': True,
'MOSAIC_ENABLED': True,
'GEOGIG_ENABLED': False,
}
#}

CATALOGUE = {
 'default': {
 # The underlying CSW implementation
 # default is pycsw in local mode (tied directly to GeoNode Django DB)
 'ENGINE': 'geonode.catalogue.backends.pycsw_local',
 # pycsw in non-local mode
 # 'ENGINE': 'geonode.catalogue.backends.pycsw_http',
 # GeoNetwork opensource
 # 'ENGINE': 'geonode.catalogue.backends.geonetwork',
 # deegree and others
 # 'ENGINE': 'geonode.catalogue.backends.generic',

 # The FULLY QUALIFIED base url to the CSW instance for this GeoNode
 'URL': '%scatalogue/csw' % SITEURL,
 # 'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
 # 'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',

 # login credentials (for GeoNetwork)
 'USER': 'admin',
 'PASSWORD': 'admin',
 }
}

Default preview library
GEONODE_CLIENT_LAYER_PREVIEW_LIBRARY = 'geoext'

Initialize GeoNode

As user geonode, initialize the db, by creating the schema tables and populating the initial data::

cd /opt/apps/geonode/geonode/
python manage.py migrate
python manage.py loaddata geonode/base/fixtures/initial_data.json

Now create the admin user for GeoNode running the following:

python manage.py createsuperuser

You will be prompted for the username, email address and password for the user.

Warning

It is required to have at least one admin user called admin. If you want to break for security concerns this rule then you have to edit the default OAuth2 initial configuration geonode/base/fixtures/default_oauth_apps.json accordingly.

Finally create the default configuration for the OAuth2 application:

python manage.py loaddata geonode/base/fixtures/default_oauth_apps.json

In case your GeoNode will be exposed on a different port (i.e. 8001 in case of vagrant port forwarding) from the default 80 please make sure to do not forget to run the following commands:

Fix the site url from the local_settings file:

python manage.py fixsitename

Setting up OAuth2 configuration:

Set oauth keys
export GEOSERVER_DATA_DIR=/var/lib/tomcat/webapps/geoserver/data
export NEWIP=localhost:8001 # Case of proxied geonode for example
oauth_keys=$(python manage.py fixoauthuri 2>&1)
oauth_keys_cleaned=$(echo $oauth_keys | cut -d " " -f 15)
client_id=`echo $oauth_keys_cleaned | cut -d \, -f 1`
client_secret=`echo $oauth_keys_cleaned | cut -d \, -f 2`
oauth_config="$GEOSERVER_DATA_DIR/security/filter/geonode-oauth2/config.xml"
sudo sed -i "s|<cliendId>.*</cliendId>|<cliendId>$client_id</cliendId>|g" $oauth_config
sudo sed -i "s|<clientSecret>.*</clientSecret>|<clientSecret>$client_secret</clientSecret>|g" $oauth_config
sudo sed -i "s/localhost:8000/localhost/g" $oauth_config
sudo sed -i "s|<userAuthorizationUri>.*</userAuthorizationUri>|<userAuthorizationUri>http://$NEWIP/o/authorize/</userAuthorizationUri>|g" $oauth_config
sudo sed -i "s|<logoutUri>.*</logoutUri>|<logoutUri>http://$NEWIP/account/logout/</logoutUri>|g" $oauth_config
sudo sed -i "s|localhost:8080/geoserver|$NEWIP/geoserver/|g" $oauth_config
sudo sed -i "s|localhost:8000|localhost|g" "$GEOSERVER_DATA_DIR/security/role/geonode REST role service/config.xml"

Restart Tomcat to load new configuration settings:

sudo systemctl restart tomcat@geoserver

Run the command updatelayers:

python manage.py updatelayers

Run the command updatemaplayerip:

python manage.py updatemaplayerip

Download GeoNode data to be served by Apache. You will be prompted for confirmation:

python manage.py collectstatic

Create uploaded folder:

mkdir -p /opt/apps/geonode/geonode/geonode/uploaded/

Isolate GeoNode installation

In case you prefer to isolate the GeoNode installation from the rest of your OS the most used strategy is to rely on a virtual environment. You can also install all the dependencies with a totally separated version of the python binary as explained in the section install_venv_httpd.

Apache HTTP Server Installation

Install and setup base packages

Install Apache:

sudo yum install -y httpd

And additional modules:

sudo yum install -y mod_ssl mod_proxy_html mod_wsgi

Important

Please be aware that the WSGI module for Apache shipped by the CentOS repositories is pretty much old and obsolete. It is recommended to separately replace it with the latest binary from the official mod_wsgi [http://www.modwsgi.org/] project. Referer to install_venv_httpd_wsgi. Alternatively you can replace your HTTP web server with the combination of Nginx [https://nginx.org] and Gunicorn [http://gunicorn.org/] for publishing GeoServer and the Django application as explained in install_venv_nginx_gunicorn.

Firewall configuration

Allow requests on port 80 through the firewall:

sudo firewall-cmd --zone=public --add-service=http --permanent
sudo firewall-cmd --reload

Security issues

There are a couple of security issues to fix when dealing with GeoNode.

GeoNode will run inside httpd through WSGI. This means that httpd will try to perform external connection toward the DB.
This is usually blocked by default by strict security policies, so we need to relax them:

sudo setsebool -P httpd_can_network_connect_db 1

The other issue is about SELinux itself: it is not WSGI friendly, so we’ll have to disable it.
Edit the file /etc/sysconfig/selinux and change the line:

SELINUX=enforcing

into:

SELINUX=permissive

and reboot the machine.

httpd configuration

As root, create the file /etc/httpd/conf.d/geonode.conf
and insert into it this content.

Add thumbs and layers folders:

mkdir -p /opt/apps/geonode/geonode/geonode/static_root
mkdir -p /opt/apps/geonode/geonode/geonode/uploaded/thumbs
mkdir -p /opt/apps/geonode/geonode/geonode/uploaded/layers

Change permissions on GeoNode files and folders to allow Apache to read and edit them::

chmod +x /opt/apps/geonode/
sudo chown -R geonode /opt/apps/geonode/geonode
sudo chown geonode:apache /opt/apps/geonode/geonode/geonode/static/
sudo chown geonode:apache /opt/apps/geonode/geonode/geonode/uploaded/
sudo chown geonode:apache /opt/apps/geonode/geonode/geonode/static_root/
chmod -Rf 777 /opt/apps/geonode/geonode/geonode/uploaded/thumbs
chmod -Rf 777 /opt/apps/geonode/geonode/geonode/uploaded/layers

SSL configuration

If a secure HTTP communication is needed then you have to add a virtual host listening on a secure port::

Listen 443
<VirtualHost *:443>
 ServerName https://localhost
 SSLEngine on
 SSLCertificateFile "/path/to/demo.geonode.org.cert"
 SSLCertificateKeyFile "/path/to/demo.geonode.org.key"
</VirtualHost>

In some cases even the proxy pass has to challenge with a secured GeoServer instance listening in HTTPS. In this situation Apache has to verify the remote server certificate with the certificate of its own Certification Authority (CA). For this purpose the concatenation of the various PEM-encoded certificate files can be used accordingly with this directive::

SSLProxyCACertificateFile /usr/local/apache2/conf/ssl.crt/ca-bundle-geoserver-remote-server.crt

Alternatively the directive that sets the directory where you keep the certificates of Certification Authorities (CAs) whose remote servers you deal with can be used::

SSLProxyCACertificatePath /usr/local/apache2/conf/ssl.crt/

Note

If the verification of GeoServer certificate is not required then the SSL proxy has to be instructed with a directive which excludes the need of a valid certificate::

SSLProxyVerify none (instead of "require")

If a strong authentication with client certificates is needed then the secure virtual host has to contain at least these directives::

SSLVerifyClient require
SSLVerifyDepth 1
SSLCACertificateFile "conf/ssl.crt/geonode-ca.crt"

Note

This configuration above requires a client certificate which has to be directly signed by the GeoNode CA certificate in geonode-ca.crt. In certain cases you do not want the verification of GeoServer certificate as mandatory hence it is enough to apply the value none

Quick administration

If you change any directive then restart httpd to make it reload the new configurations::

sudo systemctl restart httpd

To automatically start Apache at boot, run::

sudo systemctl enable httpd

Network configuration issues

In this section you will find instructions how to understand any problem of connectivity when GeoNode is being exposed through a network different either from a local computer or a server.

GeoNode being proxied

A similar situations can be encountered in this scenarios:

	GeoNode behind a proxy server like HAProxy [http://www.haproxy.org/] or Squid [http://www.squid-cache.org/].

	GeoNode in a Vagrant machine with NAT mode and port forwarding

Development mode

Note

Please note that this section is relevant only if your development machine is a Vagrant box and the GeoNode application is being accessed from a browser and an IP address of your host machine, usually your computer.

Assuming the following port forwarding configuration:

+------------------------+------------+------------+

Component | Host port | Guest port |

+========================+============+============+
| Django | 8001 | 8000 |
+————————+————+————+
| GeoServer | 8080 | 8080 |
+————————+————+————+

Important

In such a situation it is mandatory to start your development server on all IPv4 addresses of your guest machine in order to be reachable from the host.

python manage.py runserver 0.0.0.0:8000

or with Paver

paver start_django -b 0.0.0.0:8000

You have to review and make sure the following configurations are applied in GeoServer for correct communications:

- Configuration of GeoNode REST role service with proper `baseUrl` in the :file:`config.xml` under the directory `$GEOSERVER_DATA_DIR/security/role/geonode\ REST\ role\ service/`

<baseUrl>http://localhost:8000/</baseUrl>
<!-- base url of geonode web server -->

	Configuration of GeoServer security for the oauth2 provider in the config.xml under the directory $GEOSERVER_DATA_DIR/security/filter/geonode-oauth2/

<!-- GeoNode accessTokenUri -->
<accessTokenUri>http://localhost:8000/o/token/</accessTokenUri>

<!-- GeoNode userAuthorizationUri -->
<userAuthorizationUri>http://localhost:8001/o/authorize/</userAuthorizationUri>

<!-- GeoServer Public URL -->
<redirectUri>http://localhost:8080/geoserver</redirectUri>

<!-- GeoNode checkTokenEndpointUrl -->
<checkTokenEndpointUrl>http://localhost:8000/api/o/v4/tokeninfo/</checkTokenEndpointUrl>

<!-- GeoNode logoutUri -->
<logoutUri>http://localhost:8001/account/logout/</logoutUri>

<proxyBaseUrl>http://localhost:80/geoserver</proxyBaseUrl>
<!-- proxy base url of geonode web server -->

GeoNode outbound connections

SELinux

Security-Enhanced Linux (SELinux) is a security mechanism implemented at kernel level. Generally when SELinux is enabled communication issues could arise.
First of all let’s see how to have a look at its status with this command:

.. code-block:: console

 sestatus

The possible values of SELinux status can be enabled or disabled while if it is enabled the Current mode can vary between enforcing and permissive.
If SELinux is enabled its policies will only allow services access to recognized ports associated with those services. For example if we wanted to allow Django server to listen on tcp port 800 then a new rule has to be added for such purpose. Simply by using the command semanage below:

.. code-block:: console

 sudo semanage port -a -t http_port_t -p tcp 8000

Verify if the rule has been achieved by running:

.. code-block:: console

 sudo semanage port -l

Windows Binary Installer

The GeoNode Windows Binary installer can be downloaded here [http://build.geonode.org/windows/].

Current Versions

	GeoNode-2.4.x.exe [http://build.geonode.org/windows/GeoNode-2.4.x.exe]; Old version of GeoNode, not fully mantained anymore.

	GeoNode-2.5.5.exe [http://build.geonode.org/windows/GeoNode-2.5.5.exe]; Maintenance version of GeoNode, still based on old security system.

	GeoNode-2.6.x.exe [http://build.geonode.org/windows/GeoNode-2.6.x.exe]; Stable version of GeoNode, based on new OAuth2 based security system.

	GeoNode-master.exe [http://build.geonode.org/windows/GeoNode-master.exe]; Development version of GeoNode, not stable.

The Installer

The Windows binary installer is an executable file which automatically sets up your system for GeoNode. It will install everything on the target folder, chosen by the user as a first step.

In particular the installer configures the following components:

	An instance of the Oracle JRE 32bits

	An instance of Python 2.7.10 32bit with GDAL 1.11 extensions

	PostgreSQL with PostGIS spatial extensions

	Apache Tomcat with GeoServer for GeoNode webapp

	Apache HTTPD Server 2.49 (WinLAMP version)

The source code of the installer, along with all the components needed to build a custom executable and instructions, can be found at https://github.com/GeoNode/geonode-win-installer

Warning

In order to install GeoNode using the binary installer, you will need Windows Administrator rights.

Step by step GeoNode Windows installation

	Execute the binary file [http://build.geonode.org/windows/] downloaded from GeoNode servers

[image: ../../../_images/win_install_01.jpg]

	The first time you could get a Windows warning about the unknown publisher. Click on “Run Anyway” button in order to proceed

[image: ../../../_images/win_install_02.jpg]

	Click “Next” at the welcome screen

[image: ../../../_images/win_install_03.jpg]

	Read and accept the licence agreement on the next screen

[image: ../../../_images/win_install_04.jpg]

	Choose the install location. This is the folder where all the pieces of the GeoNode environment will be placed. You can also keep the default one.

Note

It is highly recommended to avoid long names with spaces and strange character. Also avoid positions which are system protected. Even if the installer runs with Administrator rights, you may encounter issues customizing GeoNode in the future.

[image: ../../../_images/win_install_05.jpg]

	Choose the name of the Start Menu folder. This is the name of the folder which will be created into the “Windows App Toolbar”. You can also keep the default one.

[image: ../../../_images/win_install_06.jpg]

	Next step will install the JEW 1.7 32bit version on the installation folder.

[image: ../../../_images/win_install_07.jpg]

Warning

Before proceeding, please be sure you don’t have other JRE 1.7 32bit installation already present on your system. In order to do that please follow the instructions below:

Go to the “Control Panel”

[image: ../../../_images/win_install_08.jpg]

Click on “Unistall a Program”

[image: ../../../_images/win_install_09.jpg]

Check that the menu does not contain entries similar to the one shown in the following figure

[image: ../../../_images/win_install_10.jpg]

	Choose the location of the external GeoServer Data directory (where the physical geospatial files will be placed). It is recommended to keep the default value.

[image: ../../../_images/win_install_11.jpg]

	Select the minimum and maximum values for the memory to assign to the GeoServer JVM. This depends mainly from the RAM available on the target PC. The default values should work on most cases. Increase the Maximum Heap Memory if possible.

[image: ../../../_images/win_install_12.jpg]

	Choose the user and password for the GeoServer Administrator outside GeoNode authentication. The form presents the default ones.

[image: ../../../_images/win_install_13.jpg]

	Choose the TCP/IP port to run Apache Tomcat. The default value (8080) is widely used from a lot of installation. If your system is not fully clean, it is kindly suggested to choose another value between 1024 and 65535.

[image: ../../../_images/win_install_14.jpg]

	Proceed with the installation of Python 2.7.10 32bit.

[image: ../../../_images/win_install_15.jpg]

This will be placed into the target GeoNode installation folder along with GDAL 1.11 extensions

[image: ../../../_images/win_install_16.jpg]

	Proceed with the installation of PostgreSQL 8.4.22 and PostGIS 1.5.4.

Note

The installation proceeds silently and using the default values:

	PostgreSQL: TCP/IP Port 5454

	User/password: postgres/g30Nod3-P0stgr3s

[image: ../../../_images/win_install_17.jpg]

[image: ../../../_images/win_install_18.jpg]

[image: ../../../_images/win_install_19.jpg]

[image: ../../../_images/win_install_20.jpg]

	Ready to install. The page summarizes the user choices and asks to finish the installation process.

[image: ../../../_images/win_install_21.jpg]

	Click “Next” and proceed with the installation and automatic configuration of Apache Tomcat 7.0.65535

[image: ../../../_images/win_install_22.jpg]

	Confirm “Yes” in order to complete the GeoNode installation and configuration process.

[image: ../../../_images/win_install_23.jpg]

	Wait until the process finishes copying the files

[image: ../../../_images/win_install_24.jpg]

	At a certain point the process configures the database

[image: ../../../_images/win_install_25.jpg]

and asks to copy the GeoNode static resources.

[image: ../../../_images/win_install_26.jpg]

Warning

Enter “yes” and click “Enter”. The system will wait the user input!

[image: ../../../_images/win_install_27.jpg]

	As a final step, the process automatically creates 8 sample layers on GeoNode

[image: ../../../_images/win_install_28.jpg]

	You need to “Reboot” the system in order to make everything working fine

[image: ../../../_images/win_install_29.jpg]

	Once the reboot has done, if everything has worked, you should be able to access the GeoNode Home directory on your local computer directly from the Windows App Toolbar

[image: ../../../_images/win_install_30.jpg]

[image: ../../../_images/win_install_32.jpg]

Congratulations! The GeoNode setup has successfully completed.

How your system has been updated after the GeoNode Setup

	At the end of the installation, there will be 3 new Windows Services

Access the Windows local services from the “Control Panel”

[image: ../../../_images/win_install_33.jpg]

[image: ../../../_images/win_install_34.jpg]

The following services should be up & running at the end of the process and after a system reboot

[image: ../../../_images/win_install_35.jpg]

[image: ../../../_images/win_install_36.jpg]

[image: ../../../_images/win_install_37.jpg]

	At the end of the installation process, there will be few new Environment System Variables

Access the Environment variables from the System panel

[image: ../../../_images/win_install_38.jpg]

Access the System Properties and click on “Environment Variables”

[image: ../../../_images/win_install_39.jpg]

The new Environment Variables are:

	GDAL_HOME; pointing to the folder of GDAL 1.11

	GDAL_LIBRARY_PATH; pointing to the gdal111 dll

	GEOS_LIBRARY_PATH; pointing to the GEOS library dll

	JRE_HOME; pointing to the JRE 1.7 installed at the beginning of the process

[image: ../../../_images/win_install_40.jpg]

	GEONODE_PATHEXT; all the Python paths which will be added to the Windows default PATH

[image: ../../../_images/win_install_41.jpg]

GeoNode (v2.8) update from older versions

This part of the documentation describes the complete setup process for GeoNode
update from older versions.

	Guidelines
	Update from GeoNode 2.6.3 to GeoNode 2.7+

	Appendix A

Guidelines

Update from GeoNode 2.6.3 to GeoNode 2.7+

Warning

Before you proceed with the following steps, it is recommended that you perform a full backup of your current environment. At the end of this section thare’s a paragraph listing the steps required to perform a full / hard backup of the whole stack.

Upgrade Development Environment

Prerequisites

	You did backup of the old Environment

	You cloned GeoNode from GitHub (https://github.com/GeoNode/geonode/tree/2.6.x)

Steps

	From geonode git branch do

to refresh all git repos and commits
git pull

get the 2.7.x code: if you want to keep your local copy
WARNING: you will need to fix conflicts manually
git pull origin 2.7.x

if you want to switch to the new branch
git checkout 2.7.x
git pull

	Update the Python libraries

	Exit from the current workspace

deactivate

	Create a new workspace

mkvirtualenv geonode-2.7.x

	Update the requirements

pip install pip --upgrade
pip install -r requirements.txt --upgrade
pip install -e . --upgrade --no-cache

WARNING: your GDAL version might be different. Use the right one accordingly to gdal-config --version
pip install pygdal==2.2.1.3

Note

Starting from an old environment will require you to manually remove some old deps before runnin any kind of management command.

pip uninstall geonode-user-accounts -y
pip uninstall django-pagination -y
pip uninstall pinax-theme-bootstrap-account -y

	Update/tweak GeoNode local_settings (for GeoServer)

Left file: D:\work\code\python\geonode\geonode-2.7.x\geonode\local_settings.py.geoserver.sample
Right file: D:\work\code\python\geonode\geonode-2.6.x\geonode\local_settings.py.geoserver.sample
21 import os = 21 import os
--
22 from geonode.settings import * +-
--
23 = 22
24 PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__)) 23 PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__))
25 24
--
26 MEDIA_ROOT = os.getenv('MEDIA_ROOT', os.path.join(PROJECT_ROOT, "uploaded")) +-
--
27 =
--
28 STATIC_ROOT = os.getenv('STATIC_ROOT', +-
29 os.path.join(PROJECT_ROOT, "static_root")
30)
--
31 =
--
32 # SECRET_KEY = '************************' +-
--
33 =
--
34 SITEURL = "http://localhost:8000/" <> 25 SITEURL = "http://localhost:8000/"
--
35 = 26
--
36 ALLOWED_HOSTS = ['localhost', 'geonode.example.com'] +-
--
37 =
--
38 # TIME_ZONE = 'Europe/Paris' +-
--
39 =
40 DATABASES = { 27 DATABASES = {
41 'default': { 28 'default': {
42 'ENGINE': 'django.db.backends.postgresql_psycopg2', 29 'ENGINE': 'django.db.backends.postgresql_psycopg2',
43 'NAME': 'geonode', 30 'NAME': 'geonode',
44 'USER': 'geonode', 31 'USER': 'geonode',
45 'PASSWORD': 'geonode', 32 'PASSWORD': 'geonode',
--
46 'HOST' : 'localhost', +-
47 'PORT' : '5432',
--
48 }, = 33 },
49 # vector datastore for uploads 34 # vector datastore for uploads
50 'datastore': { 35 'datastore' : {
51 #'ENGINE': 'django.contrib.gis.db.backends.postgis', 36 #'ENGINE': 'django.contrib.gis.db.backends.postgis',
52 'ENGINE': '', # Empty ENGINE name disables 37 'ENGINE': '', # Empty ENGINE name disables
--
53 'NAME': 'geonode_data', <> 38 'NAME': 'geonode',
--
54 'USER' : 'geonode', = 39 'USER' : 'geonode',
55 'PASSWORD': 'geonode', 40 'PASSWORD' : 'geonode',
56 'HOST': 'localhost', 41 'HOST' : 'localhost',
57 'PORT': '5432', 42 'PORT' : '5432',
58 } 43 }
59 } 44 }
60 45
61 GEOSERVER_LOCATION = os.getenv(46 GEOSERVER_LOCATION = os.getenv(
62 'GEOSERVER_LOCATION', 'http://localhost:8080/geoserver/' 47 'GEOSERVER_LOCATION', 'http://localhost:8080/geoserver/'
63) 48)
64
65 GEOSERVER_PUBLIC_LOCATION = os.getenv(49 GEOSERVER_PUBLIC_LOCATION = os.getenv(
--
66 # 'GEOSERVER_PUBLIC_LOCATION', '{}geoserver/'.format(SITEURL) <>
67 'GEOSERVER_LOCATION', 'http://localhost:8080/geoserver/' 50 'GEOSERVER_PUBLIC_LOCATION', 'http://localhost:8080/geoserver/'
68)
--
69 =
--
70 OGC_SERVER_DEFAULT_USER = os.getenv(+-
71 'GEOSERVER_ADMIN_USER', 'admin'
72)
--
73 =
--
74 OGC_SERVER_DEFAULT_PASSWORD = os.getenv(+-
75 'GEOSERVER_ADMIN_PASSWORD', 'geoserver'
--
76) = 51)
77 52
78 # OGC (WMS/WFS/WCS) Server Settings 53 # OGC (WMS/WFS/WCS) Server Settings
79 OGC_SERVER = { 54 OGC_SERVER = {
80 'default': { 55 'default': {
81 'BACKEND': 'geonode.geoserver', 56 'BACKEND': 'geonode.geoserver',
--
--
83 'LOGIN_ENDPOINT': 'j_spring_oauth2_geonode_login', = 58 'LOGIN_ENDPOINT': 'j_spring_oauth2_geonode_login',
84 'LOGOUT_ENDPOINT': 'j_spring_oauth2_geonode_logout', 59 'LOGOUT_ENDPOINT': 'j_spring_oauth2_geonode_logout',
85 # PUBLIC_LOCATION needs to be kept like this because in dev mode 60 # PUBLIC_LOCATION needs to be kept like this because in dev mode
86 # the proxy won't work and the integration tests will fail 61 # the proxy won't work and the integration tests will fail
87 # the entire block has to be overridden in the local_settings 62 # the entire block has to be overridden in the local_settings
88 'PUBLIC_LOCATION': GEOSERVER_PUBLIC_LOCATION, 63 'PUBLIC_LOCATION': GEOSERVER_PUBLIC_LOCATION,
--
89 'USER' : OGC_SERVER_DEFAULT_USER, <> 64 'USER' : 'admin',
90 'PASSWORD' : OGC_SERVER_DEFAULT_PASSWORD, 65 'PASSWORD' : 'geoserver',
--
91 'MAPFISH_PRINT_ENABLED' : True, = 66 'MAPFISH_PRINT_ENABLED' : True,
92 'PRINT_NG_ENABLED' : True, 67 'PRINT_NG_ENABLED' : True,
93 'GEONODE_SECURITY_ENABLED' : True, 68 'GEONODE_SECURITY_ENABLED' : True,
--
94 'GEOFENCE_SECURITY_ENABLED' : True, +-
--
95 'GEOGIG_ENABLED' : False, = 69 'GEOGIG_ENABLED' : False,
96 'WMST_ENABLED' : False, 70 'WMST_ENABLED' : False,
97 'BACKEND_WRITE_ENABLED': True, 71 'BACKEND_WRITE_ENABLED': True,
98 'WPS_ENABLED': False, 72 'WPS_ENABLED' : False,
99 'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.path.abspath(os.path.join(PROJECT_ROOT, os.pardir)), 73 'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.path.abspath(os.path.join(PROJECT_ROOT, os.pardir)),
100 # Set to dictionary identifier of database containing spatial data in DATABASES dictionary to enable 74 # Set to dictionary identifier of database containing spatial data in DATABASES dictionary to enable
101 'DATASTORE': '', # 'datastore', 75 'DATASTORE': '', #'datastore',
--
102 'PG_GEOGIG': False, +-
103 'TIMEOUT': 10 # number of seconds to allow for HTTP requests
--
104 } = 76 }
105 } 77 }
106 78
107 # If you want to enable Mosaics use the following configuration 79 # If you want to enable Mosaics use the following configuration
--
108 UPLOADER = { <> 80 #UPLOADER = {
109 # 'BACKEND': 'geonode.rest', 81 ## 'BACKEND': 'geonode.rest',
110 'BACKEND': 'geonode.importer', 82 # 'BACKEND': 'geonode.importer',
111 'OPTIONS': { 83 # 'OPTIONS': {
112 'TIME_ENABLED': True, 84 # 'TIME_ENABLED': True,
113 'MOSAIC_ENABLED': False, 85 # 'MOSAIC_ENABLED': True,
114 'GEOGIG_ENABLED': False, 86 # 'GEOGIG_ENABLED': False,
115 }, 87 # }
116 'SUPPORTED_CRS': [
117 'EPSG:4326',
118 'EPSG:3785',
119 'EPSG:3857',
120 'EPSG:900913',
121 'EPSG:32647',
122 'EPSG:32736'
123],
124 'SUPPORTED_EXT': [
125 '.shp',
126 '.csv',
127 '.kml',
128 '.kmz',
129 '.json',
130 '.geojson',
131 '.tif',
132 '.tiff',
133 '.geotiff',
134 '.gml',
135 '.xml'
136] 88 #}
137 } 89
--
138 = 90
139 CATALOGUE = { 91 CATALOGUE = {
140 'default': { 92 'default': {
141 # The underlying CSW implementation 93 # The underlying CSW implementation
142 # default is pycsw in local mode (tied directly to GeoNode Django DB) 94 # default is pycsw in local mode (tied directly to GeoNode Django DB)
143 'ENGINE': 'geonode.catalogue.backends.pycsw_local', 95 'ENGINE': 'geonode.catalogue.backends.pycsw_local',
--
--
146 # GeoNetwork opensource = 98 # GeoNetwork opensource
147 # 'ENGINE': 'geonode.catalogue.backends.geonetwork', 99 # 'ENGINE': 'geonode.catalogue.backends.geonetwork',
148 # deegree and others 100 # deegree and others
149 # 'ENGINE': 'geonode.catalogue.backends.generic', 101 # 'ENGINE': 'geonode.catalogue.backends.generic',
150 102
151 # The FULLY QUALIFIED base url to the CSW instance for this GeoNode 103 # The FULLY QUALIFIED base url to the CSW instance for this GeoNode
--
152 'URL': '%scatalogue/csw' % SITEURL, <> 104 'URL': '%scatalogue/csw' % SITEURL,
--
153 # 'URL': 'http://localhost:8080/geonetwork/srv/en/csw', = 105 # 'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
154 # 'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services', 106 # 'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',
155 107
156 # login credentials (for GeoNetwork) 108 # login credentials (for GeoNetwork)
157 'USER': 'admin', 109 'USER': 'admin',
158 'PASSWORD': 'admin', 110 'PASSWORD': 'admin',
159 } 111 }
160 } 112 }
161 113
--
162 # pycsw settings +-
163 PYCSW = {
164 # pycsw configuration
165 'CONFIGURATION': {
166 # uncomment / adjust to override server config system defaults
167 # 'server': {
168 # 'maxrecords': '10',
169 # 'pretty_print': 'true',
170 # 'federatedcatalogues': 'http://catalog.data.gov/csw'
171 # },
172 'metadata:main': {
173 'identification_title': 'GeoNode Catalogue',
174 'identification_abstract': 'GeoNode is an open source platform' \
175 ' that facilitates the creation, sharing, and collaborative use' \
176 ' of geospatial data',
177 'identification_keywords': 'sdi, catalogue, discovery, metadata,' \
178 ' GeoNode',
179 'identification_keywords_type': 'theme',
180 'identification_fees': 'None',
181 'identification_accessconstraints': 'None',
182 'provider_name': 'Organization Name',
183 'provider_url': SITEURL,
184 'contact_name': 'Lastname, Firstname',
185 'contact_position': 'Position Title',
186 'contact_address': 'Mailing Address',
187 'contact_city': 'City',
188 'contact_stateorprovince': 'Administrative Area',
189 'contact_postalcode': 'Zip or Postal Code',
190 'contact_country': 'Country',
191 'contact_phone': '+xx-xxx-xxx-xxxx',
192 'contact_fax': '+xx-xxx-xxx-xxxx',
193 'contact_email': 'Email Address',
194 'contact_url': 'Contact URL',
195 'contact_hours': 'Hours of Service',
196 'contact_instructions': 'During hours of service. Off on ' \
197 'weekends.',
198 'contact_role': 'pointOfContact',
199 },
200 'metadata:inspire': {
201 'enabled': 'true',
202 'languages_supported': 'eng,gre',
203 'default_language': 'eng',
204 'date': 'YYYY-MM-DD',
205 'gemet_keywords': 'Utility and governmental services',
206 'conformity_service': 'notEvaluated',
207 'contact_name': 'Organization Name',
208 'contact_email': 'Email Address',
209 'temp_extent': 'YYYY-MM-DD/YYYY-MM-DD',
210 }
211 }
212 }
--
213 =
--
214 # GeoNode javascript client configuration +-
--
215 =
--
216 # default map projection +-
217 # Note: If set to EPSG:4326, then only EPSG:4326 basemaps will work.
218 DEFAULT_MAP_CRS = "EPSG:3857"
--
219 =
--
220 # Where should newly created maps be focused? +-
221 DEFAULT_MAP_CENTER = (0, 0)
--
222 =
--
223 # How tightly zoomed should newly created maps be? +-
224 # 0 = entire world;
225 # maximum zoom is between 12 and 15 (for Google Maps, coverage varies by area)
226 DEFAULT_MAP_ZOOM = 0
--
227 =
228 # Default preview library 114 # Default preview library
--
229 LAYER_PREVIEW_LIBRARY = 'geoext' <> 115 #LAYER_PREVIEW_LIBRARY = 'geoext'
230 #LAYER_PREVIEW_LIBRARY = 'leaflet'
231 #LEAFLET_CONFIG = {
232 # 'TILES': [
233 # # Find tiles at:
234 # # http://leaflet-extras.github.io/leaflet-providers/preview/
235 #
236 # # Map Quest
237 # ('Map Quest',
238 # 'http://otile4.mqcdn.com/tiles/1.0.0/osm/{z}/{x}/{y}.png',
239 # 'Tiles Courtesy of MapQuest '
240 # '— Map data © '
241 # 'OpenStreetMap'),
242 # # Stamen toner lite.
243 # # ('Watercolor',
244 # # 'http://{s}.tile.stamen.com/watercolor/{z}/{x}/{y}.png',
245 # # 'Map tiles by Stamen Design, \
246 # # CC BY 3.0 — Map data © \
247 # # OpenStreetMap contributors, \
248 # # CC-BY-SA'),
249 # # ('Toner Lite',
250 # # 'http://{s}.tile.stamen.com/toner-lite/{z}/{x}/{y}.png',
251 # # 'Map tiles by Stamen Design, \
252 # # CC BY 3.0 — Map data © \
253 # # OpenStreetMap contributors, \
254 # # CC-BY-SA'),
255 #],
256 # 'PLUGINS': {
257 # 'esri-leaflet': {
258 # 'js': 'lib/js/esri-leaflet.js',
259 # 'auto-include': True,
260 # },
261 # 'leaflet-fullscreen': {
262 # 'css': 'lib/css/leaflet.fullscreen.css',
263 # 'js': 'lib/js/Leaflet.fullscreen.min.js',
264 # 'auto-include': True,
265 # },
266 # },
267 # 'SRID': 3857,
268 # 'RESET_VIEW': False
269 #}
--
270 =
--
271 ALT_OSM_BASEMAPS = os.environ.get('ALT_OSM_BASEMAPS', False) +-
272 CARTODB_BASEMAPS = os.environ.get('CARTODB_BASEMAPS', False)
273 STAMEN_BASEMAPS = os.environ.get('STAMEN_BASEMAPS', False)
274 THUNDERFOREST_BASEMAPS = os.environ.get('THUNDERFOREST_BASEMAPS', False)
275 MAPBOX_ACCESS_TOKEN = os.environ.get('MAPBOX_ACCESS_TOKEN', None)
276 BING_API_KEY = os.environ.get('BING_API_KEY', None)
--
277 =
--
278 MAP_BASELAYERS = [{ +-
279 "source": {"ptype": "gxp_olsource"},
280 "type": "OpenLayers.Layer",
281 "args": ["No background"],
282 "name": "background",
283 "visibility": False,
284 "fixed": True,
285 "group":"background"
286 },
287 # {
288 # "source": {"ptype": "gxp_olsource"},
289 # "type": "OpenLayers.Layer.XYZ",
290 # "title": "TEST TILE",
291 # "args": ["TEST_TILE", "http://test_tiles/tiles/${z}/${x}/${y}.png"],
292 # "name": "background",
293 # "attribution": "© TEST TILE",
294 # "visibility": False,
295 # "fixed": True,
296 # "group":"background"
297 # },
298 {
299 "source": {"ptype": "gxp_osmsource"},
300 "type": "OpenLayers.Layer.OSM",
301 "name": "mapnik",
302 "visibility": True,
303 "fixed": True,
304 "group": "background"
305 }]
--
306 =
--
307 if 'geonode.geoserver' in INSTALLED_APPS: +-
308 LOCAL_GEOSERVER = {
309 "source": {
310 "ptype": "gxp_wmscsource",
311 "url": OGC_SERVER['default']['PUBLIC_LOCATION'] + "wms",
312 "restUrl": "/gs/rest"
313 }
314 }
315 baselayers = MAP_BASELAYERS
316 MAP_BASELAYERS = [LOCAL_GEOSERVER]
317 MAP_BASELAYERS.extend(baselayers)
--
318 =
--
319 # Use kombu broker by default +-
320 # REDIS_URL = 'redis://localhost:6379/1'
321 # BROKER_URL = REDIS_URL
322 # CELERY_RESULT_BACKEND = REDIS_URL
323 CELERYD_HIJACK_ROOT_LOGGER = True
324 CELERYD_CONCURENCY = 1
325 # Set this to False to run real async tasks
326 CELERY_ALWAYS_EAGER = True
327 CELERYD_LOG_FILE = None
328 CELERY_REDIRECT_STDOUTS = True
329 CELERYD_LOG_LEVEL = 1
--
330 =
--
331 # Haystack Search Backend Configuration. To enable, +-
332 # first install the following:
333 # - pip install django-haystack
334 # - pip install elasticsearch==2.4.0
335 # - pip install woosh
336 # - pip install pyelasticsearch
337 # Set HAYSTACK_SEARCH to True
338 # Run "python manage.py rebuild_index"
339 # HAYSTACK_SEARCH = False
340 # Avoid permissions prefiltering
341 SKIP_PERMS_FILTER = False
342 # Update facet counts from Haystack
343 HAYSTACK_FACET_COUNTS = True
344 HAYSTACK_CONNECTIONS = {
345 'default': {
346 'ENGINE': 'haystack.backends.elasticsearch2_backend.Elasticsearch2SearchEngine',
347 'URL': 'http://127.0.0.1:9200/',
348 'INDEX_NAME': 'haystack',
349 },
350 # 'db': {
351 # 'ENGINE': 'haystack.backends.simple_backend.SimpleEngine',
352 # 'EXCLUDED_INDEXES': ['thirdpartyapp.search_indexes.BarIndex'],
353 # }
354 }
355 HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor'
356 # HAYSTACK_SEARCH_RESULTS_PER_PAGE = 20
--
357 =
--
358 LOGGING = { +-
359 'version': 1,
360 'disable_existing_loggers': True,
361 'formatters': {
362 'verbose': {
363 'format': '%(levelname)s %(asctime)s %(module)s %(process)d '
364 '%(thread)d %(message)s'
365 },
366 'simple': {
367 'format': '%(message)s',
368 },
369 },
370 'filters': {
371 'require_debug_false': {
372 '()': 'django.utils.log.RequireDebugFalse'
373 }
374 },
375 'handlers': {
376 'null': {
377 'level': 'ERROR',
378 'class': 'django.utils.log.NullHandler',
379 },
380 'console': {
381 'level': 'DEBUG',
382 'class': 'logging.StreamHandler',
383 'formatter': 'simple'
384 },
385 'mail_admins': {
386 'level': 'ERROR', 'filters': ['require_debug_false'],
387 'class': 'django.utils.log.AdminEmailHandler',
388 }
389 },
390 "loggers": {
391 "django": {
392 "handlers": ["console"], "level": "ERROR", },
393 "geonode": {
394 "handlers": ["console"], "level": "DEBUG", },
395 "gsconfig.catalog": {
396 "handlers": ["console"], "level": "DEBUG", },
397 "owslib": {
398 "handlers": ["console"], "level": "DEBUG", },
399 "pycsw": {
400 "handlers": ["console"], "level": "ERROR", },
401 },
402 }
--
403 =
--
404 CORS_ORIGIN_ALLOW_ALL = True +-
--
405 =
--
406 GEOIP_PATH = "/usr/local/share/GeoIP" +-
--
407 =
--
408 MONITORING_ENABLED = True +-
409 # add following lines to your local settings to enable monitoring
410 if MONITORING_ENABLED:
411 INSTALLED_APPS += ('geonode.contrib.monitoring',)
412 MIDDLEWARE_CLASSES += ('geonode.contrib.monitoring.middleware.MonitoringMiddleware',)
413 MONITORING_CONFIG = None
414 MONITORING_SERVICE_NAME = 'local-geonode'
--

	Update the DB

DJANGO_SETTINGS_MODULE=geonode.local_settings paver sync

	Download the latest GeoServer WAR (https://build.geo-solutions.it/geonode/geoserver/latest//geoserver-2.12.2.war)

[image: ../../../../_images/gn_up_0004.png]

	Stop GeoServer

	Extract the WAR content and/or substitute the old one

move the old one
mv geoserver/ geoserver_old/

create an ampty folder for the new one
mkdir geoserver
cd geoserver

unzip the new GeoServer to the new folder
unzip /home/geosolutions/Downloads/geoserver-2.12.2.war

	Delete the notifier configuration by deleting the content of the GEOSERVER_DATA_DIR/notifier folder

	Delete the printing configuration by deleting the content of the GEOSERVER_DATA_DIR/printing folder

	Insert the content of the 2.12.2 data dir (https://build.geo-solutions.it/geonode/geoserver/latest//data-2.12.2.zip),
specifically:

	The content of data/notifier, into the GEOSERVER_DATA_DIR/notifier folder.

	The content of data/monitoring, into the GEOSERVER_DATA_DIR/monitoring folder.

	The content of data/styles, into the GEOSERVER_DATA_DIR/styles folder.

	The content of data/user_projections, into the GEOSERVER_DATA_DIR/user_projections folder.

	Update the GEOSERVER_DATA_DIR/geofence/geofence-server.properties as follows

Left file: D:\tmp\data-2.12.2\data\geofence\geofence-server.properties
Right file: D:\tmp\data-2.9.x-oauth2\data\geofence\geofence-server.properties
13 useRolesToFilter=false = 13 useRolesToFilter=false
14 acceptedRoles= 14 acceptedRoles=
15 15
16 16
17 ### Cache configuration 17 ### Cache configuration
18 18
--
19 cacheSize=500000 <> 19 cacheSize=50000
20 cacheRefresh=6000000 20 cacheRefresh=600000
21 cacheExpire=6000000 21 cacheExpire=600000
--
22 =
--
23 gwc.context.suffix=gwc +-
24 org.geoserver.rest.DefaultUserGroupServiceName=geonode REST role service
--

	Create/modify GEOSERVER_DATA_DIR/gwc/geowebcache-diskquota.xml as follows

File: D:\tmp\data-2.12.2\data\gwc\geowebcache-diskquota.xml
1 <gwcQuotaConfiguration> +-
2 <enabled>false</enabled>
3 <cacheCleanUpFrequency>10</cacheCleanUpFrequency>
4 <cacheCleanUpUnits>SECONDS</cacheCleanUpUnits>
5 <maxConcurrentCleanUps>2</maxConcurrentCleanUps>
6 <globalExpirationPolicyName>LRU</globalExpirationPolicyName>
7 <globalQuota>
8 <value>500</value>
9 <units>MiB</units>
10 </globalQuota>
11 <quotaStore>H2</quotaStore>
12 </gwcQuotaConfiguration>
--

	Create/modify GEOSERVER_DATA_DIR/logs/gwc-gs.xml as follows

Left file: D:\tmp\data-2.12.2\data\gwc-gs.xml
Right file: D:\tmp\data-2.9.x-oauth2\data\gwc-gs.xml
2 <version>1.1.0</version> = 2 <version>1.1.0</version>
3 <directWMSIntegrationEnabled>true</directWMSIntegrationEnabled> 3 <directWMSIntegrationEnabled>true</directWMSIntegrationEnabled>
4 <WMSCEnabled>true</WMSCEnabled> 4 <WMSCEnabled>true</WMSCEnabled>
5 <TMSEnabled>true</TMSEnabled> 5 <TMSEnabled>true</TMSEnabled>
6 <securityEnabled>false</securityEnabled> 6 <securityEnabled>false</securityEnabled>
7 <innerCachingEnabled>false</innerCachingEnabled> 7 <innerCachingEnabled>false</innerCachingEnabled>
--
8 <persistenceEnabled>true</persistenceEnabled> <> 8 <persistenceEnabled>false</persistenceEnabled>
--
9 <cacheProviderClass>class org.geowebcache.storage.blobstore.memory.guava.GuavaCacheProvider</cacheProviderClass> = 9 <cacheProviderClass>class org.geowebcache.storage.blobstore.memory.guava.GuavaCacheProvider</cacheProviderClass>
10 <cacheConfigurations> 10 <cacheConfigurations>
11 <entry> 11 <entry>
12 <string>class org.geowebcache.storage.blobstore.memory.guava.GuavaCacheProvider</string> 12 <string>class org.geowebcache.storage.blobstore.memory.guava.GuavaCacheProvider</string>
13 <InnerCacheConfiguration> 13 <InnerCacheConfiguration>
14 <hardMemoryLimit>16</hardMemoryLimit> 14 <hardMemoryLimit>16</hardMemoryLimit>
--
--
26 <defaultCachingGridSetIds> = 26 <defaultCachingGridSetIds>
27 <string>EPSG:4326</string> 27 <string>EPSG:4326</string>
28 <string>EPSG:900913</string> 28 <string>EPSG:900913</string>
29 </defaultCachingGridSetIds> 29 </defaultCachingGridSetIds>
30 <defaultCoverageCacheFormats> 30 <defaultCoverageCacheFormats>
31 <string>image/png</string> 31 <string>image/png</string>
--
32 <string>image/vnd.jpeg-png</string> +-
--
33 <string>image/jpeg</string> = 32 <string>image/jpeg</string>
34 <string>image/gif</string> 33 <string>image/gif</string>
35 <string>image/png8</string> 34 <string>image/png8</string>
36 </defaultCoverageCacheFormats> 35 </defaultCoverageCacheFormats>
37 <defaultVectorCacheFormats> 36 <defaultVectorCacheFormats>
--
38 <string>application/json;type=utfgrid</string> +-
--
39 <string>image/png</string> = 37 <string>image/png</string>
--
40 <string>image/vnd.jpeg-png</string> +-
--
41 <string>image/jpeg</string> = 38 <string>image/jpeg</string>
42 <string>image/gif</string> 39 <string>image/gif</string>
43 <string>image/png8</string> 40 <string>image/png8</string>
44 </defaultVectorCacheFormats> 41 </defaultVectorCacheFormats>
45 <defaultOtherCacheFormats> 42 <defaultOtherCacheFormats>
46 <string>image/png</string> 43 <string>image/png</string>
--
 -+ 44 <string>image/jpeg</string>
 45 <string>image/gif</string>
 46 <string>image/png8</string>
--
47 </defaultOtherCacheFormats> = 47 </defaultOtherCacheFormats>
48 </GeoServerGWCConfig> 48 </GeoServerGWCConfig>
--

	Create/modify GEOSERVER_DATA_DIR/logs/QUIET_LOGGING.properties as follows

This log4j configuration file needs to stay here, and is used as the default logging setup
during data_dir upgrades and in case the chosen logging config isn't available.
##
As GeoTools uses java.util.logging logging instead of log4j, GeoServer makes
the following mappings to adjust the log4j levels specified in this file to
the GeoTools logging system:
##
Log4J Level java.util.logging Level
--
ALL FINEST
TRACE FINER
DEBUG FINE (includes CONFIG)
INFO INFO
ERROR/ERROR ERRORING
ERROR SEVERE
OFF OFF

log4j.rootLogger=OFF, stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{dd MMM HH:mm:ss} %p [%c{2}] - %m%n

	Create/modify GEOSERVER_DATA_DIR/logs/TEST_LOGGING.properties as follows

This log4j configuration file needs to stay here, and is used as the default logging setup
during data_dir upgrades and in case the chosen logging config isn't available.
##
As GeoTools uses java.util.logging logging instead of log4j, GeoServer makes
the following mappings to adjust the log4j levels specified in this file to
the GeoTools logging system:
##
Log4J Level java.util.logging Level
--
ALL FINEST
TRACE FINER
DEBUG FINE (includes CONFIG)
INFO INFO
ERROR/ERROR ERRORING
ERROR SEVERE
OFF OFF

log4j.rootLogger=ERROR, stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{dd MMM HH:mm:ss} %p [%c{2}] - %m%n

GEOTOOLS_DEVELOPER_LOGGING.properties

log4j.category.org.geotools=ERROR
log4j.category.org.geotools.factory=ERROR
log4j.category.org.geoserver=ERROR
log4j.category.org.vfny.geoserver=ERROR

log4j.category.org.springframework=ERROR

wicket tester
log4j.category.org.apache.wicket.util.tester=INFO

	Delete old security configuration files, in particular delete the following folders:

- GEOSERVER_DATA_DIR/security/auth/geonodeAuthProvider
- GEOSERVER_DATA_DIR/security/filter/geonodeAnonymousFilter
- GEOSERVER_DATA_DIR/security/filter/geonodeCookieFilter

	Update/modify the GEOSERVER_DATA_DIR/security as follows

	./filter/geonode-oauth2/config.xml

Left file: D:\tmp\data-2.12.2\data\security\filter\geonode-oauth2\config.xml
Right file: D:\tmp\data-2.9.x-oauth2\data\security\filter\geonode-oauth2\config.xml
17 <!-- GeoServer Public URL --> 17 <!-- GeoServer Public URL -->
--
18 <redirectUri>http://localhost:8080/geoserver/index.html</redirectUri> <> 18 <redirectUri>http://localhost:8080/geoserver</redirectUri>
--

	./role/geonode REST role service/config.xml

Left file: D:\tmp\data-2.12.2\data\security\role\geonode REST role service\config.xml
Right file: D:\tmp\data-2.9.x-oauth2\data\security\role\geonode REST role service\config.xml
12 <adminRoleJSONPath>$.adminRole</adminRoleJSONPath> 13 <adminRoleJSONPath>$.adminRole</adminRoleJSONPath>
--
13 <usersJSONPath>$.users[?(@.username=='${username}')].groups</usersJSONPath> <> 14 <usersJSONPath>$.users[0].groups</usersJSONPath>
14 <cacheConcurrencyLevel>4</cacheConcurrencyLevel>
15 <cacheMaximumSize>60000</cacheMaximumSize>
16 <cacheExpirationTime>60000</cacheExpirationTime>
--
17 </authKeyRESTRoleService> = 15 </authKeyRESTRoleService>
--

	./config.xml

Left file: D:\tmp\data-2.12.2\data\security\config.xml
Right file: D:\tmp\data-2.9.x-oauth2\data\security\config.xml
 -+ 2 <roleServiceName>geonode REST role service</roleServiceName>
--
--
27 <filters name="gwc" class="org.geoserver.security.ServiceLoginFilterChain" interceptorName="restInterceptor" exceptionTranslationName="exception" path="/gwc/**" disabled="false" allowSessionCreation="false" ssl="false" matchHTTPMethod="false"> <> 28 <filters name="gwc" class="org.geoserver.security.ServiceLoginFilterChain" interceptorName="restInterceptor" exceptionTranslationName="exception" path="/gwc/rest/**" disabled="false" allowSessionCreation="false" ssl="false" matchHTTPMethod="false">
--
--
30 <filter>anonymous</filter> +-
31 </filters>
32 <filters name="geofence-rest" class="org.geoserver.security.ServiceLoginFilterChain" interceptorName="restInterceptor" exceptionTranslationName="exception" path="/geofence/rest/**" disabled="false" allowSessionCreation="false" ssl="false" matchHTTPMethod="false">
33 <filter>basic</filter>
34 <filter>geonode-oauth2</filter>
35 <filter>anonymous</filter>
36 </filters>
37 <filters name="geofence" class="org.geoserver.security.ServiceLoginFilterChain" interceptorName="interceptor" exceptionTranslationName="exception" path="/geofence/**" disabled="false" allowSessionCreation="false" ssl="false" matchHTTPMethod="false">
38 <filter>basic</filter>
39 <filter>geonode-oauth2</filter>
40 <filter>anonymous</filter>
--
--
52 <bruteForcePrevention> +-
53 <enabled>true</enabled>
54 <minDelaySeconds>1</minDelaySeconds>
55 <maxDelaySeconds>5</maxDelaySeconds>
56 <maxBlockedThreads>100</maxBlockedThreads>
57 <whitelistedMasks>
58 <string>127.0.0.1</string>
59 </whitelistedMasks>
60 </bruteForcePrevention>
--

	./rest.properties

Left file: D:\tmp\data-2.12.2\data\security\rest.properties
Right file: D:\tmp\data-2.9.x-oauth2\data\security\rest.properties
--
18 /rest/monitor/*;GET=ROLE_ADMINISTRATOR +-
19 /rest/security/*;GET,POST,DELETE,PUT=ROLE_ADMINISTRATOR
20 /rest/br/*;GET,POST,DELETE,PUT=ROLE_ADMINISTRATOR
21 /geofence/rest/*;GET,POST,DELETE,PUT=ROLE_ADMINISTRATOR
--
--
23 /**;POST,DELETE,PUT=ROLE_AUTHENTICATED <> 4 /**;POST,DELETE,PUT=ROLE_ADMINISTRATOR
--

Note

In case of dubts you can always try to do a “diff” between your old GEOSERVER_DATA_DIR and https://build.geo-solutions.it/geonode/geoserver/latest//data-2.12.2.zip

	Update/tweak GeoNode settings.py

	Add LOGIN_REDIRECT_URL

LOGIN_REDIRECT_URL = '/'

	Modify INSTALLED_APPS as follows

Left file: D:\work\code\python\geonode\geonode-2.7.x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.x\geonode\settings.py
281 # GeoServer Apps = 269 # GeoServer Apps
282 # Geoserver needs to come last because 270 # Geoserver needs to come last because
283 # it's signals may rely on other apps' signals. 271 # it's signals may rely on other apps' signals.
284 'geonode.geoserver', 272 'geonode.geoserver',
285 'geonode.upload', 273 'geonode.upload',
286 'geonode.tasks', 274 'geonode.tasks',
--
287 'geonode.messaging', +-
--
288 = 275
289) 276)
290 277
291 GEONODE_CONTRIB_APPS = (278 GEONODE_CONTRIB_APPS = (
292 # GeoNode Contrib Apps 279 # GeoNode Contrib Apps
--
293 # 'geonode.contrib.dynamic', <> 280 'geonode.contrib.dynamic',
294 # 'geonode.contrib.exif', 281 'geonode.contrib.exif',
295 # 'geonode.contrib.favorite', 282 'geonode.contrib.favorite',
296 # 'geonode.contrib.geogig', 283 'geonode.contrib.geogig',
297 # 'geonode.contrib.geosites', 284 'geonode.contrib.geosites',
298 # 'geonode.contrib.nlp', 285 'geonode.contrib.nlp',
299 # 'geonode.contrib.slack', 286 'geonode.contrib.slack',
--
300 # 'geonode.contrib.createlayer', =
301 # 'geonode.contrib.datastore_shards',
--
302 'geonode.contrib.metadataxsl', <> 287 'geonode.contrib.metadataxsl'
303 'geonode.contrib.api_basemaps',
304 'geonode.contrib.ows_api',
--
305) = 288)
306 289
307 # Uncomment the following line to enable contrib apps 290 # Uncomment the following line to enable contrib apps
--
308 GEONODE_APPS = GEONODE_CONTRIB_APPS + GEONODE_APPS <> 291 # GEONODE_APPS = GEONODE_APPS + GEONODE_CONTRIB_APPS
--
309 = 292
310 INSTALLED_APPS = (293 INSTALLED_APPS = (
311 294
312 'modeltranslation', 295 'modeltranslation',
313 296
314 # Boostrap admin theme 297 # Boostrap admin theme
--
--
334 'taggit', = 317 'taggit',
335 'treebeard', 318 'treebeard',
336 'friendlytagloader', 319 'friendlytagloader',
337 'geoexplorer', 320 'geoexplorer',
338 'leaflet', 321 'leaflet',
339 'django_extensions', 322 'django_extensions',
--
340 'django_basic_auth', <> 323 #'geonode-client',
--
341 # 'haystack', = 324 # 'haystack',
342 'autocomplete_light', 325 'autocomplete_light',
343 'mptt', 326 'mptt',
344 # 'modeltranslation', 327 # 'modeltranslation',
345 # 'djkombu', 328 # 'djkombu',
--
346 # 'djcelery', <> 329 'djcelery',
--
347 # 'kombu.transport.django', = 330 # 'kombu.transport.django',
348
349 'storages', 331 'storages',
--
350 'floppyforms', +-
--
351 = 332
352 # Theme 333 # Theme
--
 -+ 334 "pinax_theme_bootstrap_account",
--
353 "pinax_theme_bootstrap", = 335 "pinax_theme_bootstrap",
354 'django_forms_bootstrap', 336 'django_forms_bootstrap',
355 337
356 # Social 338 # Social
357 'account', 339 'account',
358 'avatar', 340 'avatar',
--
--
364 'actstream', = 345 'actstream',
365 'user_messages', 346 'user_messages',
366 'tastypie', 347 'tastypie',
367 'polymorphic', 348 'polymorphic',
368 'guardian', 349 'guardian',
369 'oauth2_provider', 350 'oauth2_provider',
--
370 'corsheaders', +-
--
371 = 351
--
372 'invitations', +-
--
373) + GEONODE_APPS = 352) + GEONODE_APPS
--

	Add MONITORING flags as follows

MONITORING_ENABLED = False

how long monitoring data should be stored
MONITORING_DATA_TTL = timedelta(days=7)

this will disable csrf check for notification config views,
use with caution - for dev purpose only
MONITORING_DISABLE_CSRF = False

	Update LOGGING handlers as follows

Left file: D:\work\code\python\geonode\geonode-2.7.x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.x\geonode\settings.py
396 'filters': { = 366 'filters': {
397 'require_debug_false': { 367 'require_debug_false': {
398 '()': 'django.utils.log.RequireDebugFalse' 368 '()': 'django.utils.log.RequireDebugFalse'
399 } 369 }
400 }, 370 },
401 'handlers': { 371 'handlers': {
--
 -+ 372 'null': {
 373 'level': 'ERROR',
 374 'class': 'django.utils.log.NullHandler',
 375 },
--
402 'console': { = 376 'console': {
403 'level': 'ERROR', 377 'level': 'ERROR',
404 'class': 'logging.StreamHandler', 378 'class': 'logging.StreamHandler',
405 'formatter': 'simple' 379 'formatter': 'simple'
406 }, 380 },
407 'mail_admins': { 381 'mail_admins': {
--
--
410 } = 384 }
411 }, 385 },
412 "loggers": { 386 "loggers": {
413 "django": { 387 "django": {
414 "handlers": ["console"], "level": "ERROR", }, 388 "handlers": ["console"], "level": "ERROR", },
415 "geonode": { 389 "geonode": {
--
416 "handlers": ["console"], "level": "ERROR", }, +-
417 "geonode.qgis_server": {
--
418 "handlers": ["console"], "level": "ERROR", }, = 390 "handlers": ["console"], "level": "ERROR", },
419 "gsconfig.catalog": { 391 "gsconfig.catalog": {
420 "handlers": ["console"], "level": "ERROR", }, 392 "handlers": ["console"], "level": "ERROR", },
421 "owslib": { 393 "owslib": {
422 "handlers": ["console"], "level": "ERROR", }, 394 "handlers": ["console"], "level": "ERROR", },
423 "pycsw": { 395 "pycsw": {
424 "handlers": ["console"], "level": "ERROR", }, 396 "handlers": ["console"], "level": "ERROR", },
425 }, 397 },
426 } 398 }
--

	Update MIDDLEWARE and SECURITY flags as follows

Left file: D:\work\code\python\geonode\geonode-2.7.x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.x\geonode\settings.py
458 MIDDLEWARE_CLASSES = (= 430 MIDDLEWARE_CLASSES = (
--
459 'corsheaders.middleware.CorsMiddleware', +-
--
460 'django.middleware.common.CommonMiddleware', = 431 'django.middleware.common.CommonMiddleware',
461 'django.contrib.sessions.middleware.SessionMiddleware', 432 'django.contrib.sessions.middleware.SessionMiddleware',
462 'django.contrib.messages.middleware.MessageMiddleware', 433 'django.contrib.messages.middleware.MessageMiddleware',
463 434
464 # The setting below makes it possible to serve different languages per 435 # The setting below makes it possible to serve different languages per
465 # user depending on things like headers in HTTP requests. 436 # user depending on things like headers in HTTP requests.
--
--
467 'pagination.middleware.PaginationMiddleware', = 438 'pagination.middleware.PaginationMiddleware',
468 'django.middleware.csrf.CsrfViewMiddleware', 439 'django.middleware.csrf.CsrfViewMiddleware',
469 'django.contrib.auth.middleware.AuthenticationMiddleware', 440 'django.contrib.auth.middleware.AuthenticationMiddleware',
470 'django.middleware.clickjacking.XFrameOptionsMiddleware', 441 'django.middleware.clickjacking.XFrameOptionsMiddleware',
471 442
472 # Security settings
--
473 'django.middleware.security.SecurityMiddleware', +-
--
474 =
475 # This middleware allows to print private layers for the users that have 443 # This middleware allows to print private layers for the users that have
476 # the permissions to view them. 444 # the permissions to view them.
477 # It sets temporary the involved layers as public before restoring the 445 # It sets temporary the involved layers as public before restoring the
478 # permissions. 446 # permissions.
479 # Beware that for few seconds the involved layers are public there could be 447 # Beware that for few seconds the involved layers are public there could be
--
--
485 # django-oauth-toolkit. =
486 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 453 'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
487 'oauth2_provider.middleware.OAuth2TokenMiddleware', 454 'oauth2_provider.middleware.OAuth2TokenMiddleware',
488) 455)
489 456
490 # Security stuff
--
491 MIDDLEWARE_CLASSES += ('django.middleware.security.SecurityMiddleware',) +-
492 SESSION_COOKIE_SECURE = False
493 CSRF_COOKIE_SECURE = False
494 CSRF_COOKIE_HTTPONLY = False
495 X_FRAME_OPTIONS = 'DENY'
496 SECURE_CONTENT_TYPE_NOSNIFF = True
497 SECURE_BROWSER_XSS_FILTER = True
498 SECURE_SSL_REDIRECT = False
499 SECURE_HSTS_SECONDS = 3600
500 SECURE_HSTS_INCLUDE_SUBDOMAINS = True
--
501 = 457
502 # Replacement of default authentication backend in order to support 458 # Replacement of default authentication backend in order to support
503 # permissions per object. 459 # permissions per object.
504 AUTHENTICATION_BACKENDS = (460 AUTHENTICATION_BACKENDS = (
505 'oauth2_provider.backends.OAuth2Backend', 461 'oauth2_provider.backends.OAuth2Backend',
506 'django.contrib.auth.backends.ModelBackend', 462 'django.contrib.auth.backends.ModelBackend',
--
--
529 # Whether the uplaoded resources should be public and downloadable by default = 485 # Whether the uplaoded resources should be public and downloadable by default
530 # or not 486 # or not
531 DEFAULT_ANONYMOUS_VIEW_PERMISSION = strtobool(487 DEFAULT_ANONYMOUS_VIEW_PERMISSION = strtobool(
532 os.getenv('DEFAULT_ANONYMOUS_VIEW_PERMISSION', 'True') 488 os.getenv('DEFAULT_ANONYMOUS_VIEW_PERMISSION', 'True')
533) 489)
534 DEFAULT_ANONYMOUS_DOWNLOAD_PERMISSION = strtobool(490 DEFAULT_ANONYMOUS_DOWNLOAD_PERMISSION = strtobool(
--
535 os.getenv('DEFAULT_ANONYMOUS_DOWNLOAD_PERMISSION', 'True') <> 491 os.getenv('DEFAULT_ANONYMOUS_VIEW_PERMISSION', 'True')
--
536) = 492)
537 493
538 # 494 #
539 # Settings for default search size 495 # Settings for default search size
540 # 496 #
541 DEFAULT_SEARCH_SIZE = int(os.getenv('DEFAULT_SEARCH_SIZE', '10')) 497 DEFAULT_SEARCH_SIZE = int(os.getenv('DEFAULT_SEARCH_SIZE', '10'))
--
--
565 'USE_JSONFIELD': True, = 521 'USE_JSONFIELD': True,
566 'GFK_FETCH_DEPTH': 1, 522 'GFK_FETCH_DEPTH': 1,
567 } 523 }
568 524
569
570 # prevent signing up by default 525 # Settings for Social Apps
--
571 ACCOUNT_OPEN_SIGNUP = True <> 526 REGISTRATION_OPEN = strtobool(os.getenv('REGISTRATION_OPEN', 'False'))
--
572 =
573 ACCOUNT_EMAIL_CONFIRMATION_EMAIL = strtobool(527 ACCOUNT_EMAIL_CONFIRMATION_EMAIL = strtobool(
574 os.getenv('ACCOUNT_EMAIL_CONFIRMATION_EMAIL', 'False') 528 os.getenv('ACCOUNT_EMAIL_CONFIRMATION_EMAIL', 'False')
575) 529)
576 ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = strtobool(530 ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = strtobool(
577 os.getenv('ACCOUNT_EMAIL_CONFIRMATION_REQUIRED', 'False') 531 os.getenv('ACCOUNT_EMAIL_CONFIRMATION_REQUIRED', 'False')
578) 532)
579 ACCOUNT_APPROVAL_REQUIRED = strtobool(533 ACCOUNT_APPROVAL_REQUIRED = strtobool(
580 os.getenv('ACCOUNT_APPROVAL_REQUIRED', 'False') 534 os.getenv('ACCOUNT_APPROVAL_REQUIRED', 'False')
581) 535)
--

	Update the Uploader Settings as follows

UPLOADER = {
 'BACKEND': 'geonode.rest',
 'OPTIONS': {
 'TIME_ENABLED': False,
 'MOSAIC_ENABLED': False,
 'GEOGIG_ENABLED': False,
 },
 'SUPPORTED_CRS': [
 'EPSG:4326',
 'EPSG:3785',
 'EPSG:3857',
 'EPSG:900913',
 'EPSG:32647',
 'EPSG:32736'
],
 'SUPPORTED_EXT': [
 '.shp',
 '.csv',
 '.kml',
 '.kmz',
 '.json',
 '.geojson',
 '.tif',
 '.tiff',
 '.geotiff',
 '.gml',
 '.xml'
]
}

	Update/modify NOTIFICATIONS settings as follows

Left file: D:\work\code\python\geonode\geonode-2.7.x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.x\geonode\settings.py
1099 # notification settings =
--
1100 NOTIFICATION_ENABLED = True or TEST +-
1101 PINAX_NOTIFICATIONS_LANGUAGE_MODEL = "account.Account"
--
1102 =
1103 # notifications backends
--
1104 _EMAIL_BACKEND = "pinax.notifications.backends.email.EmailBackend" +-
1105 PINAX_NOTIFICATIONS_BACKENDS = [
1106 ("email", _EMAIL_BACKEND),
1107]
--
1108 =
1109 # Queue non-blocking notifications. 969 # Queue non-blocking notifications.
--
1110 PINAX_NOTIFICATIONS_QUEUE_ALL = False <> 970 NOTIFICATION_QUEUE_ALL = False
1111 PINAX_NOTIFICATIONS_LOCK_WAIT_TIMEOUT = -1
--
1112 = 971
1113 # explicitly define NOTIFICATION_LOCK_LOCATION
1114 # NOTIFICATION_LOCK_LOCATION = <path>
1115
1116 # pinax.notifications
1117 # or notification 972 # notification settings
--
1118 NOTIFICATIONS_MODULE = 'pinax.notifications' <> 973 NOTIFICATION_LANGUAGE_MODULE = "account.Account"
--
1119 =
1120 # set to true to have multiple recipients in /message/create/
--
1121 USER_MESSAGES_ALLOW_MULTIPLE_RECIPIENTS = False +-
--
1122 =
--
1123 if NOTIFICATION_ENABLED: +-
1124 if NOTIFICATIONS_MODULE not in INSTALLED_APPS:
1125 INSTALLED_APPS += (NOTIFICATIONS_MODULE,)
--

	Update/modify CELERY settings as follows

Left file: D:\work\code\python\geonode\geonode-2.7.x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.x\geonode\settings.py
1127 # async signals can be the same as broker url =
1128 # but they should have separate setting anyway
1129 # use amqp:// for local rabbitmq server
--
1130 ASYNC_SIGNALS_BROKER_URL = 'memory://' +-
--
1131 =
--
1132 CELERY_BROKER_URL = os.getenv('BROKER_URL', "amqp://") <> 974 BROKER_URL = os.getenv('BROKER_URL', "django://")
 975 CELERY_ALWAYS_EAGER = True
 976 CELERY_EAGER_PROPAGATES_EXCEPTIONS = True
 977 CELERY_IGNORE_RESULT = True
 978 CELERY_SEND_EVENTS = False
--
1133 CELERY_RESULT_BACKEND = None = 979 CELERY_RESULT_BACKEND = None
--
1134 CELERY_TASK_ALWAYS_EAGER = True # set this to False in order to run async +-
1135 CELERY_TASK_IGNORE_RESULT = True
1136 CELERY_TASK_DEFAULT_QUEUE = "default"
1137 CELERY_TASK_DEFAULT_EXCHANGE = "default"
1138 CELERY_TASK_DEFAULT_EXCHANGE_TYPE = "direct"
1139 CELERY_TASK_DEFAULT_ROUTING_KEY = "default"
1140 CELERY_TASK_CREATE_MISSING_QUEUES = True
--
1141 CELERY_TASK_RESULT_EXPIRES = 1 = 980 CELERY_TASK_RESULT_EXPIRES = 1
--
1142 CELERY_WORKER_DISABLE_RATE_LIMITS = True <> 981 CELERY_DISABLE_RATE_LIMITS = True
 982 CELERY_DEFAULT_QUEUE = "default"
 983 CELERY_DEFAULT_EXCHANGE = "default"
 984 CELERY_DEFAULT_EXCHANGE_TYPE = "direct"
1143 CELERY_WORKER_SEND_TASK_EVENTS = False 985 CELERY_DEFAULT_ROUTING_KEY = "default"
1144 986 CELERY_CREATE_MISSING_QUEUES = True
1145 CELERY_QUEUES = [987 CELERY_IMPORTS = (
1146 Queue('default', routing_key='default'), 988 'geonode.tasks.deletion',
1147 Queue('cleanup', routing_key='cleanup'),
1148 Queue('update', routing_key='update'), 989 'geonode.tasks.update',
1149 Queue('email', routing_key='email'), 990 'geonode.tasks.email'
1150] 991)
--

1177 = 1018
1178 1019
--
1179 # djcelery.setup_loader() <> 1020 djcelery.setup_loader()
--
1180 = 1021
--

	Additional/new Geonode behavior settings

DISPLAY_SOCIAL = strtobool(os.getenv('DISPLAY_SOCIAL', 'True'))
DISPLAY_COMMENTS = strtobool(os.getenv('DISPLAY_COMMENTS', 'True'))
DISPLAY_RATINGS = strtobool(os.getenv('DISPLAY_RATINGS', 'True'))
DISPLAY_WMS_LINKS = strtobool(os.getenv('DISPLAY_WMS_LINKS', 'True'))

Number of results per page listed in the GeoNode search pages
CLIENT_RESULTS_LIMIT = int(os.getenv('CLIENT_RESULTS_LIMIT', '20'))

Number of items returned by the apis 0 equals no limit
API_LIMIT_PER_PAGE = int(os.getenv('API_LIMIT_PER_PAGE', '200'))
API_INCLUDE_REGIONS_COUNT = strtobool(
 os.getenv('API_INCLUDE_REGIONS_COUNT', 'False'))
Make Free-Text Kaywords writable from users or read-only
- if True only admins can edit free-text kwds from admin dashboard
FREETEXT_KEYWORDS_READONLY = False

Each uploaded Layer must be approved by an Admin before becoming visible
ADMIN_MODERATE_UPLOADS = False

add following lines to your local settings to enable monitoring
if MONITORING_ENABLED:
 if 'geonode.contrib.monitoring' not in INSTALLED_APPS:
 INSTALLED_APPS += ('geonode.contrib.monitoring',)
 if 'geonode.contrib.monitoring.middleware.MonitoringMiddleware' not in MIDDLEWARE_CLASSES:
 MIDDLEWARE_CLASSES += \
 ('geonode.contrib.monitoring.middleware.MonitoringMiddleware',)

GEOIP_PATH = os.path.join(PROJECT_ROOT, 'GeoIPCities.dat')
If this option is enabled, Resources belonging to a Group won't be
visible by others
GROUP_PRIVATE_RESOURCES = False

If this option is enabled, Groups will become strictly Mandatory on
Metadata Wizard
GROUP_MANDATORY_RESOURCES = False

A boolean which specifies wether to display the email in user's profile
SHOW_PROFILE_EMAIL = False

Enables cross origin requests for geonode-client
MAP_CLIENT_USE_CROSS_ORIGIN_CREDENTIALS = strtobool(os.getenv(
 'MAP_CLIENT_USE_CROSS_ORIGIN_CREDENTIALS',
 'False'
))

	Update/modify THUMBNAIL GENERATOR

Left file: D:\work\code\python\geonode\geonode-2.7.x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.x\geonode\settings.py
1284 =
1285 # Choose thumbnail generator -- this is the default generator 1077 # Choose thumbnail generator -- this is the default generator
--
1286 THUMBNAIL_GENERATOR = "geonode.layers.utils.create_gs_thumbnail_geonode" <> 1078 THUMBNAIL_GENERATOR = "geonode.geoserver.helpers.create_gs_thumbnail_geonode"
--

Final Steps

	Run paver setup in order to download the latest Jetty Runner

Warning

Don’t do this if your GEOSERVER_DATA_DIR is located under geonode/geoserver/data; it will be wiped out!!
In this case download Jetty Runner manually from http://repo2.maven.org/maven2/org/eclipse/jetty/jetty-runner/9.4.7.v20170914/jetty-runner-9.4.7.v20170914.jar
And put is under geonode/downloaded folder

DJANGO_SETTINGS_MODULE=geonode.local_settings paver setup

	Start the server

DJANGO_SETTINGS_MODULE=geonode.local_settings paver start

	Re-sync GeoFence Security Rules

DJANGO_SETTINGS_MODULE=geonode.local_settings paython manage.py sync_geofence

Appendix A

Warning

Before you proceed with the following steps, it is recommended that you perform a full backup of your current environment. In the next section thare’s a listing of the steps required to perform a full / hard backup of the whole stack.

Backup of the old Environment

Backup of the DataBase

	From “local_settings” or “settings” (vim geonode/local_settings.py) retrieve all the DB connection parameters

[image: ../../../../_images/gn_up_0001.png]

	Dump all the DBs

sudo su - postgres
pg_dump -d geonode -U geonode -f /tmp/geonode.dump
pg_dump -d geonode_data -U geonode -f /tmp/geonode_data.dump

Backup of GeoServer

	Backup the old GeoServer binaries

tar czvf /tmp/geoserver.tar.gz geoserver/

	Backup of the GeoServer Data Dir

	As an admin login into GeoServer gui (http://localhost:8080/geoserver/)

	Click on “Server Status” and note the “Data Directory” path

[image: ../../../../_images/gn_up_0002.png]
tar czvf /tmp/geoserver_data.tar.gz /home/geosolutions/geonode/geoserver/data/

	Backup of Uploaded/Media and Static files

DJANGO_SETTINGS_MODULE=geonode.local_settings python manage.py print_settings | grep MEDIA_ROOT

[image: ../../../../_images/gn_up_0003.png]
tar czvf /tmp/geonode_media.tar.gz /home/geosolutions/geonode/gonode/uploaded

	do the same for STATIC_ROOT, TEMPLATES (all folders listed), LOCALE (all folders listed)

	Backup of the original source code

	Make sure you have everything committed and pushed for your local Git branches

	In case you are working locally, make sure you saved everything before proceeding with the update

Users Workshop

Welcome to the GeoNode Training Users Workshop documentation v2.8.

This workshop will teach how to use the GeoNode [http://geonode.org/] going in depth into what we can do with software application.
At the end of this section you will master all the GeoNode sections and entities from a user perspective.

You will know how to:

	Manage users accounts and how to modify them.

	Use and manage the different GeoNode basic resources.

	Use the GeoNode searching tools to find your resources.

	Manage Layers and Maps, update the styles and publish them.

	Load datasets into GeoNode and keep them synchronized with GeoServer.

Prerequisites

Before proceeding with the reading, it is strongly recommended to be sure having clear the following concepts:

	GeoNode and Django framework basic concepts

	What is Python

	What is a geospatial server and a basic knowledge of the geospatial web services.

	What is a metadata and a catalog.

	What is a map and a legend.

	Accounts and users

	GeoNode is primarily a social platform, and thus a primary component of any GeoNode instance is the user account. This section will guide you through account registration, updating your account information, and viewing other user accounts.

	Document Types

	GeoNode welcome page shows a variety of information about the current GeoNode instance. At the top of the page is a toolbar showing quick links to document types: layers, maps and documents.

	Searching

	GeoNode advanced Search tool.

	Managing layers

	Create, delete, manage and share Layers on GeoNode.

	Edit Layer Style

	Beautify the Layer using the GeoNode Style editor.

	Managing maps

	Create, delete, manage and share Maps on GeoNode.

	Using GeoNode with other applications

	Your GeoNode project is based on core components which are interoperable and as such, it is straightforward for you to integrate with external applications and services. This section will walk you through how to connect to your GeoNode instance from other applications and how to integrate other services into your GeoNode project. When complete, you should have a good idea about the possibilities for integration, and have basic knowledge about how to accomplish it. You may find it necessary to dive deeper into how to do more complex integration in order to accomplish your goals, but you should feel comfortable with the basics, and feel confident reaching out to the wider GeoNode community for help.

Accounts and users

GeoNode is primarily a social platform, and thus a primary component of any GeoNode instance is the user account. This section will guide you through account registration, updating your account information, and viewing other user accounts.

	Creating a new account

	Managing your profile

	Setting notification preferences

	Viewing other user accounts

Creating a new account

Before you can save or edit any layers on a GeoNode instance, you need to create an account.

	From any page in the web interface, you will see a Register link. Click that link, and the register form will appear

Note

The registrations in GeoNode must be open, in case you don’t see the register link then it’s not possible to register unless the administrator of the site does that for you.

[image: ../../../_images/signin.png]
Sign in screen

	On the next page, fill out the form. Enter a user name and password in the fields. Also, enter your email address for verification.

[image: ../../../_images/signup.png]
Registering for a new account

	You will be returned to the welcome page. An email will be sent confirming that you have signed up. While you are now logged in, you will need to confirm your account. Navigate to the link that was sent in the email.

[image: ../../../_images/confirm.png]
Confirming your email address

	Click Confirm. You will be returned to the homepage.

Managing your profile

Your profile contains personal information.

	Click on your user name in the top right of the screen. A drop-down list will show. Click on Profile to enter the Profile settings page.

[image: ../../../_images/profilelink.png]
Link to your profile

	The next page shows your profile, which is currently empty.

[image: ../../../_images/profilepage.png]
Profile page

	Click the Edit profile information link.

[image: ../../../_images/editprofilelink.png]
Link to edit your profile

	On this page, your personal information can be set, including your avatar. Enter some details in the Profile box as well as your city and country info.

[image: ../../../_images/profileedit.png]
Editing your profile

	When finished, click Update profile.

[image: ../../../_images/updateprofilelink.png]
Link to save your profile updates

	You will be returned to the main profile page. Now click Account settings.

[image: ../../../_images/accountsettingslink.png]
Link to edit your account settings

	On this page you can change your email address, time zone, and language. Your email should be populated already, but set the timezone to your current location.

[image: ../../../_images/accountpage.png]
Editing your account

	When finished, click Save.

Setting notification preferences

By default GeoNode sends notifications to the users for events that the users
could be subscribed such as a new layer uploaded or a new rate added to a map.

	You can adjust your notification settings by clicking on your user name in the top right of the screen. A drop-down list will show. Click on Notifications to enter the Notifications Settings page.

[image: ../../../_images/notification_settings.png]

	Make sure to have a verified email address to which notices can be sent. If not, click on the proposed link to add one

	Now check/uncheck the notification types you wish to receive or not receive. It is possible to be notified for the following events:

	Layer Created

	Layer Updated

	Layer Deleted

	Rating for Layer

	Comment for Layer

	Map Created

	Map Updated

	Map Deleted

	Rating for Map

	Comment for Map

	Document Created

	Document Updated

	Document Deleted

	Rating for Document

	Comment for Document

	User following you

	Request to download a resource

Viewing other user accounts

Now that your account is created, you can view other accounts on the system. Note that on the main profile page there are options for following (and blocking) other users.

[image: ../../../_images/profilepage.png]
Profile page

	To see information about other users on the system, click the People link on the top toolbar. You will see a list of users registered on this system.

[image: ../../../_images/peoplepage.png]
List of users

	Click on the user name for a particular user. You will see the layers owned by this user.

[image: ../../../_images/adminlayers.png]
List of layers owned by a user

	You can also click Activities to see the activity feed.

[image: ../../../_images/adminactivities.png]
List of users

	If you are interested in keeping track of what this user does, go back to the previous page and click the Follow button.

	A confirmation page will display. Click Confirm.

[image: ../../../_images/followconfirm.png]
Confirming following a user

	You will now be following this user, and your profile page will note this.

[image: ../../../_images/followconfirm.png]
Success following a user

Document Types

GeoNode welcome page shows a variety of information about the current GeoNode instance. At the top of the page is a toolbar showing quick links to document types: layers, maps and documents.

[image: ../../../_images/welcome_toolbar.png]
Document types in GeoNode welcome page

Data management tools built into GeoNode allow for integrated creation of data, documents, link to external documents, and map visualizations.
Each dataset in the system can be shared publicly or restricted to allow access to only specific users.
Social features like user profiles and commenting and rating systems allow for the development of communities around each platform to facilitate the use, management, and quality control of the data the GeoNode instance contains.

Layers

Layers are a primary component of GeoNode.

Layers are publishable resources representing a raster or vector spatial data source. Layers also can be associated with metadata, ratings, and comments.

By clicking the Layers link you will get a list of all published layers. If logged in as an administrator, you will also see the unpublished layers in the same list.

[image: ../../../_images/welcome_documents_layers.png]
Layers in GeoNode toolbar

GeoNode allows the user to upload vector (currently only Shapefiles) and raster data in their original projections using a web form.

Vector data is uploaded in ESRI Shapefile format and satellite imagery and other kinds of raster data are uploaded as GeoTIFFs.

[image: ../../../_images/explore_layers.png]
Layers list in GeoNode

Maps

Maps are a primary component of GeoNode.

Maps are comprised of various layers and their styles. Layers can be both local layers in GeoNode as well as remote layers either served from other WMS servers or by web service layers such as Google or MapQuest.

GeoNode maps also contain other information such as map zoom and extent, layer ordering, and style.

By clicking the Map link you will get a list of all published maps.

[image: ../../../_images/welcome_documents_maps.png]
Maps in GeoNode toolbar

This toolbar allows you create a map based on the uploaded layers combine them with some existing layers and a remote web service layer, and then share the resulting map for public viewing.
Once the data has been uploaded, GeoNode lets the user search for it geographically or via keywords and create maps.
All the layers are automatically reprojected to web mercator for maps display, making it possible to use different popular base layers, like Open Street Map, Google Satellite or Bing layers.

Documents

As for the layers and maps GeoNode allows to publish tabular and text data manage metadata and associated documents.

By clicking the Documents link you will be brought to the Documents menu where a new subtoolbar can be seen.

[image: ../../../_images/welcome_documents_documents.png]
Documents in GeoNode toolbar

Through the document detailed page is possible to view, download and manage a document.

Searching

In GeoNode welcome page, click the Search button to bring up the Search page.

[image: ../../../_images/toolbar_search.png]
Search tool in GeoNode welcome page

This page contains a wealth of options for customizing a search for various information on GeoNode.
This search form allows for much more fine-tuned searches than the simple search box is available at the top of every page.

It is possible to search data by Text, Categories, Type, Keywords, Date, Regions or Extent.

[image: ../../../_images/searching_page1.png]
Search page

Managing layers

After user accounts, the next primary component of GeoNode is the layer. Layers are a published resource representing a raster or vector spatial data source. Layers also can be associated with metadata, ratings, and comments.

In this section, you will learn how to create a new layer by uploading a local data set, add layer info, change the style of the layer, and share the results.

	Uploading a layer

	Layer information
	Downloads

	Layer Detail Tabs

	Sharing layers
	Anonymous access

	Sharing with social media

	Adding more layers

	Creating empty layers

Uploading a layer

Now that we have taken a tour of GeoNode and viewed existing layers, the next
step is to upload our own.

In your data pack is a directory called data. Inside that directory is
a shapefile called san_andres_y_providencia_administrative.shp. This is
a data set containing administrative boundaries for the San Andres Province.
This will be the first layer that we will upload to GeoNode.

	Navigate to the GeoNode welcome page.

	Click the Layers link on the top toolbar. This will bring up the Layers menu.

[image: ../../../_images/toolbar.png]
Main toolbar for GeoNode

[image: ../../../_images/layers1.png]
Layers menu

	Click Upload Layers in the Layers toolbar. This will bring up the upload form

[image: ../../../_images/layerstoolbar.png]
Layers toolbar

[image: ../../../_images/uploadform.png]
Upload Layers form

	Fill out the form.

	Click on the Browse… button. This will bring up a local file dialog. Navigate to your data folder and select all of the four files composing the shapefile (san_andres_y_providencia_administrative.shp, san_andres_y_providencia_administrative.dbf, san_andres_y_providencia_administrative.shx, san_andres_y_providencia_administrative.prj). Alternatively you could drag and drop the four files in the Drop files here area.

	The upload form should appear like this now:

[image: ../../../_images/uploadformfilled.png]
Files ready for upload

	GeoNode has the ability to restrict who can view, edit, and manage layers. On the right side of the page, under Who can view and download this data?, select Any registered user. This will ensure that anonymous view access is disabled.

	In the same area, under Who can edit this data?, select the Only the following users or groups option and type your username. This will ensure that only you are able to edit the data in the layer.

[image: ../../../_images/uploadpermissions.png]
Permissions for new layer

	Click Upload to upload the data and create a layer. A dialog will display showing the progress of the upload.

[image: ../../../_images/uploading.png]
Upload in progress

	Your layer has been uploaded to GeoNode. Now you will be able to access to the its info page (clicking on the Layer Info button), access to its metadata edit form (clicking on the Edit Metadata button) or to manage the styles for it (clicking on the Manage Styles button).

[image: ../../../_images/afterupload.png]

Layer information

After upload, another form will displaying, containing metadata about the layer. Change any information as desired, and then click Update at the very bottom of the form.

[image: ../../../_images/layermetadata.png]
Layer metadata

After the update, the layer will display in a preview window.

[image: ../../../_images/layerpreview.png]
Layer preview

This page contains lots of options for managing this layer. Let’s look at a few of them:

Downloads

At the top of the page there are two buttons titled Download Layer and Download Metadata. These buttons provide access to the ability to extract geospatial data and metadata from within GeoNode. In this way, GeoNode allows for two way data and metadata access; one can import as well as export data.

Data

	Click the Download Layer button. You will see a list of options of the supported export formats.

[image: ../../../_images/downloadformats.png]
Available export formats

	Click the option for Zipped Shapefile.

	GeoNode will process the request and bring up a Save As dialog. Save this file to your computer, and note how it is the same content as was uploaded.

Metadata

	Click the Download Metadata button. You will see a list of options of the supported export formats.

[image: ../../../_images/metadataformats.png]
Available metadata export formats

	Click the option for DUBLIN CORE.

	GeoNode will process the request and display XML metadata. Try clicking various metadata formats, and note how it is the same metadata content in various formats compatible with metadata and GIS packages.

Layer Detail Tabs

	Scroll down the page toward the bottom. Five tabs are available: Info, Attributes, Share, Ratings, and Comments. The info tab is already highlighted, and presents basic information about the layer, of the kind that was seen on the layer list page.

[image: ../../../_images/infotab.png]
Layer Info tab

	Click the Attributes tab. This lists the attributes of the layer, including statistics (range, average, median and standard deviation). Layer attribute statistics are made available only for numeric attributes. As we can see, this layer’s attributes are not numeric, so no statistics are calculated.

[image: ../../../_images/layerattributes.png]
Attributes tab

	Click the Ratings tab. This tab allows you (and others viewing this page) to rate this layer. Ratings can be based on quality, accuracy, or any other metric. Click on the appropriate star to rate this layer.

[image: ../../../_images/layerrating.png]
Layer Ratings tab

	Click the Comments tab. This tab allows you to leave a comment for other viewing this layer.

[image: ../../../_images/layercomment.png]
Layer Comments tab

	Click the Add Comment button and enter a comment.

[image: ../../../_images/commentadd.png]
Adding a new comment

	When finished, click Submit Comments

[image: ../../../_images/commentadded.png]
New comment posted

Sharing layers

GeoNode has the ability to restrict or allow other users to access a layer and share on social media.

Anonymous access

	Go to the layer preview of the first layer uploaded, and copy the URL to that preview page.

Note

The URL should be something like: http://GEONODE/layers/geonode:san_andres_y_providencia_administrative

	Now log out of GeoNode by clicking on your profile name and selecting Log out.

[image: ../../../_images/logoutlink.png]
Log out

	When asked for confirmation, click the Log out button.

[image: ../../../_images/logoutconfirm.png]
Confirming log out

	Now paste the URL copied about into your browser address bar and navigate to that location.

	You will be redirected to the Log In form. This is because when this layer was first uploaded, we set the view properties to be any registered user. Once logged out, we are no longer a registered user and so are not able to see or interact with the layer, unless we log in GeoNode again.

[image: ../../../_images/forbidden.png]
Unable to view this protected layer

	To stop this process from happening, you need to ensure that your permissions are set so anyone can view the layer for others to see it on social networks.

[image: ../../../_images/map_permissions.png]

	This is done by selecting anyone in the layer permissions tab, be aware this now means your layer is public!

Sharing with social media

	On the taskbar below your username and profile picture there are three links to social media services, Twitter, Google Plus and Facebook.

[image: ../../../_images/socialmedia.png]

	Upon clicking on these icons you will be taken through the application’s process for posting to the social network. Ensure the permissions are set so anyone can view the layer if you want unauthenticated to be able to access it.

Adding more layers

We’ve uploaded one layer so far. There is one more layer in the data directory associated with this workshop called san_andres_y_providencia_poi.shp.

	Upload this layer, referring to the directions on uploading a layer. As a difference, leave the permissions set to their default values.

[image: ../../../_images/upload2.png]
Uploading the layer

[image: ../../../_images/layer2.png]
Finished upload

Creating empty layers

In GeoNode it is possible to create empty layers, that can be populated with features at a later stage using the mapping client editing tools.

This is possible using the createlayer application, which can be enabled if GeoNode is installed with PostGIS.

Once the application is enabled in GeoNode you will be able to create an empty layer by browsing to “Data > Create Layer”. You will see a form like this:

[image: ../../../_images/layer_create.png]

Fill the form as needed:

	give a layer name

	give a layer title

	assign a geometry for the layer (Points, Lines, Polygons)

	add as many attributes as needed. For each attribute provide a name and a type. Type can be string, integer, float and date

	assign permissions as needed

Now by clicking the “Create” button your new empty layer should be created.

Edit Layer Style

Editing a style can only be performed by users with the correct permissions.

	In the Explore Layer page, choose a Layer that you want to edit by clicking on the name of the layer or in the preview window.

	In the Edit Layers page, click the Edit Layer button.

	In the Edit Layer window, click the Edit button under Style icon. In this interface is it possible to change the style of layers. GeoNode allows editing of layer styles graphically, without the need to resort to programming or requiring a technical background.

In the following example, the layer has one style and one rule in that style. Click Edit in Styles menu, then change the Title and Abstract of the selected Style.

[image: ../../../_images/layer_styles.png]
Layer Styles window

[image: ../../../_images/layer_styles_userstyle.png]
User Styles window

Click the Rule (Untitled 1) to select it, and then click on Edit below it.
Edit the style by choosing the Basic tab to edit symbology of layers, the Labels tab to add and manage labels, and the Advanced tab to manage styles by scale and condition.
When done, click Save, then click on the word Layers to return to the layer list.

[image: ../../../_images/style_rule_basic.png]
Basic Style Rule window

[image: ../../../_images/style_rule_label.png]
Labels Style Rule window

[image: ../../../_images/style_rule_advanced.png]
Advanced Style Rule window

	In the Edit Layer window, click the Manage button under the Style icon. The Manage Styles function allows assigning an available style to selected layers.

[image: ../../../_images/manage_styles.png]
Manage Layer Styles

	If you import a Style created by other GIS software (or edited directly in GeoServer), make sure that your .sld file already has the <Title></Title> and <Abstract></Abstract> nodes under the <UserStyle> node. Otherwise the style will be shown as “None” in GeoNode.

Managing maps

The next primary component of GeoNode is the map. Maps are comprised of various layers and their styles. Layers can be both local layers in GeoNode as well as remote layers either served from other WMS servers or by web service layers such as Google or MapQuest.

GeoNode maps also contain other information such as map zoom and extent, layer ordering, and style.

In this section, we’ll create a map based on the layers uploaded in the previous section, combine them with some existing layers and a remote web service layer, and then share the resulting map for public viewing.

	Creating a map
	Adding layers

	Adding external layers

	Saving the map

	Styling layers

	Share your map

Creating a map

Adding layers

	Click the Maps link on the top toolbar. This will bring up the list of maps.

[image: ../../../_images/maps1.png]
Maps page

	Currently, there aren’t any maps here, so let’s add one. Click the Create a New Map button.

	A map composition interface will display.

[image: ../../../_images/createmap.png]
Create maps interface

In this interface there is a toolbar, layer list, and map window. The map window contains the MapQuest OpenStreetMap layer by default. There are other service layers available here as well: Blue Marble, Bing Aerial With Labels, MapQuest, and OpenStreetMap.

	Click on the New Layers button and select Add Layers.

[image: ../../../_images/addlayerslink.png]
Add layers link

	Select all of the San Andreas layers by clicking the top entry and Shift-clicking the bottom one. Click Add Layers to add them all to the map.

[image: ../../../_images/addlayersselect.png]
Selecting layers

Note

This selection includes not only the two layers uploaded in the previous section, but also the layers that were already hosted on GeoNode at the beginning of the workshop.

	The layers will be added to the map. Click Done (right next to Add Layers at the bottom) to return to the main layers list.

[image: ../../../_images/layersadded.png]
Layers added to the map

Adding external layers

	Once again, click on the New Layers button and select Add Layers.

[image: ../../../_images/addlayerslink.png]
Add layers link

	From the top dropdown list, select Add a New Server…

[image: ../../../_images/addnewserver.png]
Add a New Server

	Enter the URL of the server, and select the correct type of server from the dropdown (WMS, TMS, or ArcGIS). For example, enter http://e-atlas.org.au/geoserver/wms for the URL and select Web Map Service as the type. Then click the Add Server button.

[image: ../../../_images/serverurltype.png]
New Server URL and Type

	Note - for security purposes, the URL you enter must be on a list of pre-approved external services set up by the GeoNode administrator. Otherwise you will receive a 403 error when trying to add the server.

	A list of layers available from that server should appear momentarily. The layers must be available in the Web Mercator projection or they will not show up in the list. Select the layers you want to add to the map. Click Add Layers to add them all to the map.

[image: ../../../_images/externallayersadd.png]
Add layers

	The layers will be added to the map. Click Done (right next to Add Layers at the bottom) to return to the main layers list.

[image: ../../../_images/externallayersadded.png]
Layers added to the map

Saving the map

	While we still have some work to do on our map, let’s save it so that we can come back to it later. Click on the Map button in the toolbar, and select Save Map.

[image: ../../../_images/savemaplink.png]
Save map link

	Enter a title and abstract for your map.

[image: ../../../_images/savemapdialog.png]
Save map dialog

	Click Save. Notice that the link on the top right of the page changed to reflect the map’s name.

[image: ../../../_images/mapname.png]
Saved map name

This link contains a permalink to your map. If you open this link in a new window, your map will appear exactly as it was saved.

Styling layers

In this interface, we can pause in our map creation and change the style of one of our uploaded layers. GeoNode allows you to edit layer styles graphically, without the need to resort to programming or requiring a technical background.

We’ll be editing the san_andres_y_providencia_poi layer.

	In the layer list, uncheck all of the layers except the above, so that only this one is visible (not including the base layer).

[image: ../../../_images/layersunchecked.png]
Only one layer visible

	Zoom in closer using the toolbar or the mouse.

[image: ../../../_images/zoomedin.png]
Zoomed in to see the layer better

	In the layer list, click to select the remaining layer and then click the palette icon (Layer Styles). This will bring up the style manager.

[image: ../../../_images/styles.png]
Styles manager

	This layer has one style (named the same as the layer) and one rule in that style. Click the rule (Untitled 1) to select it, and then click on Edit below it.

[image: ../../../_images/editrulelink.png]
Edit style rule link

	Edit the style. You can choose from simple shapes, add labels, and even adjust the look of the points based on attribute values and scale.

[image: ../../../_images/editrulebasic.png]
Editing basic style rules

[image: ../../../_images/editrulelink.png]
Editing style labels

	When done, click Save, then click on the word Layers to return to the layer list.

[image: ../../../_images/styledlayer.png]
Styled layer

Share your map

Now let’s finish our map.

	Check the box next to the highway layer to activate it. If it is not below the POI layer in the list, click and drag it down.

[image: ../../../_images/mapcomposition.png]
Adjusting map composition

	Make any final adjustments to the map composition as desired, including zoom and pan settings.

	Click the Map button in the toolbar, and then click Publish Map.

[image: ../../../_images/publishmaplink.png]
Publish map link

	The title and abstract as previously created should still be there. Make any adjustments as necessary, and click Save.

	A new dialog will appear with instructions on how to embed this map in a webpage, including a code snippet. You can adjust the parameters as necessary.

[image: ../../../_images/publishmap.png]
Map publishing options

Your map can now be shared.

Using GeoNode with other applications

Your GeoNode project is based on core components which are interoperable and as such, it is straightforward for you to integrate with external applications and services. This section will walk you through how to connect to your GeoNode instance from other applications and how to integrate other services into your GeoNode project. When complete, you should have a good idea about the possibilities for integration, and have basic knowledge about how to accomplish it. You may find it necessary to dive deeper into how to do more complex integration in order to accomplish your goals, but you should feel comfortable with the basics, and feel confident reaching out to the wider GeoNode community for help.

OGC services

Since GeoNode is built on GeoServer which is heavily based on OGC services, the main path for integration with external services is via OGC Standards. A large number of systems, applications and services support adding WMS layers to them, but only a few key ones are covered below. WFS and WCS are also supported in a wide variety of clients and platforms and give you access to the actual data for use in geoprocessing or to manipulate it to meet your requirements. GeoServer also bundles GeoWebCache which produces map tiles that can be added as layers in many popular web mapping tools including Google Maps, Leaflet, OpenLayers and others. You should review the reference material included in the first chapter to learn more about OGC Services and when evaluating external systems make sure that they are also OGC Compliant in order to integrate as seamlessly as possible.

Use GeoNode with…

	ArcGIS

	QGIS

	Google Earth

ArcGIS

ArcGIS Desktop (ArcMap) supports adding WMS layers to your map project. The following set of steps will walk you through how to configure a WMS Layer from your GeoNode within ArcMap.

First, you can start with a new empty project or add these layers to your existing project.

[image: ../../../_images/arcmap_empty.png]

Next click the ArcCatalog button on the toolbar to bring up its interface.

[image: ../../../_images/arccatalog.png]

From there, double click the “Add WMS Server” item in the tree to bring up the dialog that lets you enter the details for your WMS.

[image: ../../../_images/arc_add_wms.png]

Next, enter the URL for your GeoNode’s WMS endpoint which is the base URL with /geoserver/wms appended to the end of the URL. You can also enter your credentials into the optional Account section of this dialog to gain access to non-public layers that your user may have access to.

[image: ../../../_images/arc_enter_wms_url.png]

Click the “Get Layers” button to ask ArcMap to query your WMS’s GetCapabilities document to get the list of available layers.

[image: ../../../_images/arcmap_wms_layers.png]

After you click the OK button, your GeoNode layers will appear in the ArcCatalog Interface.

[image: ../../../_images/arcmap_layers_catalog.png]

Once your server is configured in ArcMap, you can right click on one of the layers and investigate its properties.

[image: ../../../_images/arcmap_layer_properties.png]

In order to actually add the layer to your project, you can drag and drop it into the Table of Contents, or right click and select “Create Layer”. Your Layer will now be displayed in the map panel of your project.

[image: ../../../_images/arcmap_wms_layer_drag.png]

[image: ../../../_images/arcmap_wms_layer_map.png]

Once the layer is in your projects Table of Contents, you can right click on it and select the Layer Properties option and select the Styles Tab to choose from the available styles for that layer.

[image: ../../../_images/arcmap_wms_styles.png]

Now that we have seen how to add a WMS layer to our ArcMap project, lets walk through how to add the same layers as a WFS which retrieves the actual feature data from your GeoNode rather than a rendered map as you get with WMS. Adding layers as a WFS gives you more control over how the layers are styled within ArcMap and makes them available for you to use with other ArcGIS tools like the Geoprocessing toolbox.

Note

Adding WFS layers to ArcMap requires that you have the Data Interoperability Extension installed. This extension is not included in ArcMap by default and is licensed and installed separately.

Start by opening up the ArcCatalog Interface within ArcMap and make sure that you have the “Interoperability Connections” option listed in the list.

[image: ../../../_images/arcmap_interoperability.png]

Next select “Add Interoperability Connection” to bring up the dialog that lets you add the WFS endpoint from your GeoNode.

[image: ../../../_images/arcmap_interop_add.png]

Select “WFS (Web Feature Service)” in the Format dropdown and enter the URL to the WFS endpoint for your GeoNode in the Dataset field. The WFS endpoint is your base URL + /geoserver/wfs

[image: ../../../_images/arcmap_interop_wfs.png]

You will need to click the “Parameters” button to supply more connection information including your credentials which will give you the ability to use private layers that you have access to.

[image: ../../../_images/arcmap_wfs_params.png]

Select the Feature Types button to have ArcMap get a list of layers from the WFS Service of your GeoNode.

[image: ../../../_images/arcmap_wfs_layers.png]

Select the layers that you want to add and click OK and ArcMap will import the features from your GeoNode into the system.

[image: ../../../_images/arcmap_wfs_import.png]

Depending on the projection of your data, you may receive a warning about Alignment and Accuracy of data transformations. You can specify the transformation manually or simply hit close to ignore this dialog. If you don’t want to be warned again, use the checkboxes in this dialog to hide these warnings temporarily or permanently.

[image: ../../../_images/arcmap_wfs_transformations.png]

Your WFS Layer will be added to your map and you can view it in the Map Panel. If you need to, use the “Zoom to Layer Extent” or other zoom tools to zoom to the bounds of your layer.

[image: ../../../_images/arcmap_wfs_layer_view.png]

You can now use the identify tool to inspect a feature in your layer, or perform any other function that you can normally use to work with Vector Layers in ArcMap.

[image: ../../../_images/arcmap_wfs_identify.png]

Since your layer was imported as actual vector features, you can use normal ArcMap styling tools to style the layer to match how you want it to be displayed.

[image: ../../../_images/arcmap_wfs_style.png]

Now that you have added layers from your GeoNode as both WMS and WFS, you can explore the other options available to you with these layers within ArcMap.

QGIS

QGIS is an open source, cross platform desktop GIS app. It can also be used to add layers from your GeoNode instance as WMS or WFS. The process is very similar to how we add these same layers to ArcMap, and we will walk through the steps necessary in the following section.

First, select “Add WMS Layer” from the Layer menu.

[image: ../../../_images/qgis_add_wms_layer.jpg]

The Add WMS Layer Dialog will be displayed where you are able to specify the parameters to connect to your WMS server.

[image: ../../../_images/qgis_wms_add_1.jpg]

Next, you need to fill in the parameters to connect to your GeoNode instance. The URL for your GeoNode’s WMS is the base URL + /geoserver/wms

[image: ../../../_images/qgis_wms_add_2.jpg]

After clicking the OK button, your server will show up in the list of servers. Make sure its selected, then, click the connect button to have QGIS retrieve the list of layers from your GeoNode.

[image: ../../../_images/qgis_wms_add_7.jpg]

Select the layers you want to add to your QGIS project and click “Add”.

[image: ../../../_images/qgis_wms_add_6.jpg]

Your layer will be displayed in the map panel.

[image: ../../../_images/qgis_wms_layer.jpg]

You can then zoom into your features in the Map.

[image: ../../../_images/qgis_wms_layer_zoom.jpg]

From there, you can use the identify tool to inspect the attributes of one of the features on the map.

[image: ../../../_images/qgis_identify_wfs.jpg]

Or, you can look at the layer metadata by right clicking on the layer and selecting Layer Properties and selecting the metadata tab.

[image: ../../../_images/qgis_wms_metadata.jpg]

Adding WFS servers and layers to your QGIS project is very similar to adding WMS. Depending on your version of QGIS, you may need to add the WFS plugin. You can use the Plugin manager to add it.

[image: ../../../_images/qgis_wfs_installer.jpg]

Once the plugin is installed, you can select the “Add WFS Layer” option from the Layer menu.

[image: ../../../_images/qgis_add_wfs.jpg]

Step through the same process you did for WMS to create a new WFS connection. First specify server parameters and click OK.

[image: ../../../_images/qgis_wfs_add_2.jpg]

Then click Connect to retrieve the list of layers on the server and select the layers you want to add and click Apply.

[image: ../../../_images/qgis_wfs_add_3.jpg]

The layer(s) you selected will be displayed in the map panel.

[image: ../../../_images/qgis_wfs_layer.jpg]

You can use the same identify tool to inspect features in the map panel.

[image: ../../../_images/qgis_wfs_identify.jpg]

To look at more information about your layer, right click the layer in the Table of Contents and select Layer Properties. You can look at the list of fields.

[image: ../../../_images/qgis_wfs_fields.jpg]

… or set a style to match how you want your data to be displayed.

[image: ../../../_images/qgis_wfs_style.jpg]

You now know how to add layers from your GeoNode instance to a QGIS project. You can explore all of the other options available to you in QGIS by consulting its documentation.

Google Earth

GeoNode’s built in map interface lets you look at your layers and maps in the Google Earth plugin directly in your browser. You can switch to this 3D viewer directly in GeoNode by clicking the google earth icon in the map panel.

[image: ../../../_images/ge_layer.png]

GeoServer will render your layer as an image until you are zoomed in sufficiently, and then it will switch to rendering it as a vector overlay that you can click on to view the attributes for the feature you clicked on.

[image: ../../../_images/ge_feature_info.png]

You can also use this option in the GeoExplorer client by clicking the same button.

[image: ../../../_images/ge_geoexplorer.png]

Note

Some of the GeoExplorer options will not be available to you when you are in this mode, they will be grayed out an inaccessible.

If instead you want to use layers from your GeoNode in the Google Earth client itself, you have a few options available to you.

First, you can select the KML option from the Download Layer menu to download the entire layer in a single KML file. Depending on the size of the layer, your GeoNode could take several seconds or longer to generate this KML and return it to you.

[image: ../../../_images/download_kml.png]

When the layer is generated, it will be downloaded to your desktop machine and you can simply double click it to open it in Google Earth.

[image: ../../../_images/google_earth.png]

Alternatively, you can use the “View in Google Earth” option in the Layer Download menu to view the layer in Google Earth using the same methodology described above depending on the zoom level.

[image: ../../../_images/download_kmz.png]

This will download a small KMZ to your desktop that contains a reference to the layers on the server and you can double click it to open it in Google Earth.

[image: ../../../_images/kmz_ge.png]

Note

The basic difference between these two options is that the first downloads all of the data to your desktop at once and as such, the downloaded file can be used offline while the second is simply a Network Link to the layer on the server. Choose whichever method is best for your own needs and purposes.

Once you have added your layers to the Places panel in Google Earth, you can move them from the Temporary Places section into My Places if you wish to use them after your current Google Earth session is complete. You can arrange them in folders and use Google Earth functionality to save your project to disk. Consult Google Earths documentation for more information about how to do this.

Administrators Workshop

Welcome to the GeoNode Training Administrators Workshop documentation v2.8.

This workshop will teach how to install and manage a deployment of the GeoNode [http://geonode.org/] software application.
At the end of this section you will master all the GeoNode sections and entities from an administrator perspective.

You will know how to:

	Use the GeoNode’s Django Administration Panel.

	Use the console Management Commands for GeoNode.

	Configure and customize your GeoNode installation.

Prerequisites

Before proceeding with the reading, it is strongly recommended to be sure having clear the following concepts:

	GeoNode and Django framework concepts

	Good knowledge of Python

	Good knowledge of what is a geospatial server and geospatial web services.

	Good knowledge of what is metadata and catalog.

	Good knowledge of HTML and CSS.

	GeoNode and GeoServer Advanced Security

	GeoNode interacts with GeoServer through an advanced security mechanism based on OAuth2 Protocol and GeoFence. This section is a walk through of the configuration and setup of GeoNode and GeoServer Advanced Security.

	Usage of the GeoNode’s Django Administration Panel

	GeoNode has an administration panel based on the Django admin which can be used to do some database operations. Although most of the operations can and should be done through the normal GeoNode interface, the admin panel provides a quick overview and management tool over the database.

	Management Commands for GeoNode

	GeoNode comes with administrative commands to help with day to day tasks. This section shows the list of the ones that come from the GeoNode application.

	Configuring Alternate CSW Backends

	pycsw [http://pycsw.org/] is the default CSW server implementation provided with GeoNode. This section will explain how to configure GeoNode to operate against alternate CSW server implementations.

	LDAP configuration

	This module will allow you to add LDAP authentication to your GeoNode instance.

	Customize the look and feel

	You might want to change the look of GeoNode, editing the colors and the logo of the website and adjust the templates for your needs. To do so, you first have to set up your own geonode project from a template. If you’ve successfully done this, you can go further and start theming your geonode project.

	Debugging GeoNode Installations

	There are several mechanisms to debug GeoNode installations, the most common ones are discussed in this section.

	Changing the Default Language

	GeoNode’s default language is English, but GeoNode users can change the interface language with the pulldown menu at the top-right of most GeoNode pages. Once a user selects a language GeoNode remembers that language for subsequent pages.

	More on Security and Permissions

	This tutorial will guide you through the steps that can be done in order to restrict the access on your data uploaded to geonode.

First of all it will be shown how a user can be created and what permissions he can have. Secondly we will take a closer look on to layers, maps and documents and the different opportunities you have in order to ban certain users from viewing or editing your data.

	Loading Data into a GeoNode

	This module will walk you through the various options available to load data into your GeoNode from GeoServer, on the command-line or programmatically. You can choose from among these techniques depending on what kind of data you have and how you have your geonode setup.

	Implementing S3 Bucket for Static and Media Files

	This section will show you how to configure your GeoNode instance to utilize an Amazon S3 Bucket for your site’s static and media files.

	Backup & Restore GeoNode - Data Migration

	How to perform a full backup / restore of GeoNode and GeoServer catalogs and how to migrate data. Customization backup / restore fixtures and data manglers.

	GeoNode Monitoring

	How to set up and use internal monitoring application.

	Use datastore shards in GeoNode

	How to use the PostGIS datastore shards contrib application in order to have GeoServer stores containing a fewer number of layers. Useful for organizations with hundreds of layers.

	Asynchronous signals handling

	How to set up asynchronous signals handling.

	GeoNode Social Accounts

	How to set up and login trhgough LinkedIn and Facebook Social Accounts.

GeoNode and GeoServer Advanced Security

GeoNode interacts with GeoServer through an advanced security mechanism based on OAuth2 Protocol and GeoFence. This section is a walk through of the configuration and setup of GeoNode and GeoServer Advanced Security.

What we will see in this section is:

	Introduction

	GeoNode (Security Backend):

	DJango Authentication

	DJango OAuth Toolkit Setup and Configuration

	Details on settings.py Security Settings

	GeoServer (Security Backend):

	GeoServer Security Subsystem

	Introduction to the GeoServer OAuth2 Security Plugin

	Configuration of the GeoNode REST Role Service

	Configuration of the GeoNode OAuth2 Authentication Filter

	The GeoServer Authentication Filter Chains

	Introduction to GeoFence Plugin, the Advanced Security Framework for GeoServer

	Throubleshooting and Advanced Features:

	Common Issues and Fixes

	How to setup HTTPS secured endpoints

	GeoFence Advanced Features

Introduction

GeoServer, i.e. the geospatial backend server of GeoNode, is a sptial server which needs authenticated users in order to access protected resources or administration functions.

GeoServer supports several kind of Authentication and Authorization mechanisms. Those systems are pluggable and GeoServer can use them at the same time by the use of a Filter Chain.
Briefly this mechanism allows GeoServer to check for different A&A protocols one by one. The first one matching is used by GeoServer to authorize the users.

GeoNode Authentication is based by default on Django Security Subsystem. Django authentication allows GeoNode to manage its internal users, groups, roles and sessions.

GeoNode has some external components, like GeoServer or QGis Server, which are pluggable and stand-alone services, devoted to the management of geospatial data.
Those external services have theyr own authentication and authorization mechanisms which must be syncronized somehow with the GeoNode one. Also, those external services
maintain, in most of the cases and unless specific configuration does not disable this, alternative security access which for instance allow GeoNode to modify the geospatial catalog
under the hood, or a system administrator to have indipendent and priviliged access to the servers.

Before going deeply on how GeoServer/GeoNode A&A works and how it can be configured in order to work correctly with GeoNode, lets quickly clarify the difference between the Authentication and Authorization concepts.

Authentication

Authentication is the process of verifying the identity of someone through the use of some sort of credentials and an handshake protocol.
If the credentials are valid, the authorization process starts. Authentication process always proceeds to Authorization process (although they may often seem to be combined).
The two terms are often used synonymously but they are two different processes.

For more details and explanation about the authentication concepts, take a look here [http://searchsecurity.techtarget.com/definition/authentication].

Authorization

Authorization is the process of allowing authenticated users to access protected resources by checking its roles and rights against some sort of security rules mechanism or protocol.
In other words it allows to control access rights by granting or denying specific permissions to specific authorized users.

GeoNode Security Backend

DJango Authentication

The Django authentication system handles both authentication and authorization.

The auth system consists of:

	Users

	Permissions: Binary (yes/no) flags designating whether a user may perform a certain task.

	Groups: A generic way of applying labels and permissions to more than one user.

	A configurable password hashing system

	Forms and view tools for logging in users, or restricting content

	A pluggable backend system

The authentication system in Django aims to be very generic and doesn’t provide some features commonly found in web authentication systems. Solutions for some of these common problems have been implemented in third-party packages:

	Password strength checking

	Throttling of login attempts

	Authentication against third-parties (OAuth, for example)

Note

For more details on installation and configuration of Django authentication system, please refer to the official guide https://docs.djangoproject.com/en/1.10/topics/auth/.

GeoNode communicates with GeoServer through Basic Authentication under the hood, in order to configure the data and the GeoServer catalog.

In order to do this, you must be sure that GeoNode knows the internal admin user and password of GeoServer.

Warning

This must be an internal GeoServer user with admin rights, not a GeoNode one.

Make sure the credentials are correctly configured into the file settings.py

OGC_SERVER

Ensure that the OGC_SERVER settings are correctly configured.

Notice that the two properties LOGIN_ENDPOINT and LOGOUT_ENDPOINT must speficy the GeoServer OAuth2 Endpoints (see details below).
The default values 'j_spring_oauth2_geonode_login' and 'j_spring_oauth2_geonode_logout' work in most of the cases, unless you need some specific endpoints different from the latters.
In any case those values must be coherent with the GeoServer OAuth2 Plugin configuration.

If in doubt, please use the default values here below.

Default values are:

...
OGC (WMS/WFS/WCS) Server Settings
OGC (WMS/WFS/WCS) Server Settings
OGC_SERVER = {
 'default': {
 'BACKEND': 'geonode.geoserver',
 'LOCATION': GEOSERVER_LOCATION,
 'LOGIN_ENDPOINT': 'j_spring_oauth2_geonode_login',
 'LOGOUT_ENDPOINT': 'j_spring_oauth2_geonode_logout',
 # PUBLIC_LOCATION needs to be kept like this because in dev mode
 # the proxy won't work and the integration tests will fail
 # the entire block has to be overridden in the local_settings
 'PUBLIC_LOCATION': GEOSERVER_PUBLIC_LOCATION,
 'USER': 'admin',
 'PASSWORD': 'geoserver',
 'MAPFISH_PRINT_ENABLED': True,
 'PRINT_NG_ENABLED': True,
 'GEONODE_SECURITY_ENABLED': True,
 'GEOGIG_ENABLED': False,
 'WMST_ENABLED': False,
 'BACKEND_WRITE_ENABLED': True,
 'WPS_ENABLED': False,
 'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.path.abspath(os.path.join(PROJECT_ROOT, os.pardir)),
 # Set to name of database in DATABASES dictionary to enable
 'DATASTORE': '', # 'datastore',
 'PG_GEOGIG': False,
 'TIMEOUT': 10 # number of seconds to allow for HTTP requests
 }
}
...

GeoNode and GeoServer A&A Interaction

The GeoServer instance used by GeoNode, has a perticular setup that allows the two frameworks to correctly interact and exchange informations on users credentials and permissions.

In particular GeoServer is configured with a Filter Chain for Authorization that makes use of the two following protocols:

	
	Basic Authentication; this is the default GeoServer Authentication mechanism. This makes use of rfc2617 - Basic and Digest Access Authentication [https://tools.ietf.org/html/rfc2617] in order to check for user’s credentials.

	In other words, GeoServer takes a username and a password encoded Base64 [https://tools.ietf.org/html/rfc4648] on the HTTP Request Headers and compare them against its internal database (which by default is an encrypted XML file on the GeoServer Data Dir).
If the user’s credentials match, then GeoServer checks for Authorization through its Role Services (we will see those services in details on the GeoServer (Security Backend) section below).

Note

GeoServer ships by default with admin and geoserver as the default administrator user name and password. Before putting the GeoServer on-line it is imperative to change at least the administrator password.

	OAuth2 Authentication; this module allows GeoServer to authenticate against the OAuth2 Protocol [https://tools.ietf.org/html/rfc6749]. If the Basic Authentication fails, GeoServer falls back to this by using GeoNode as OAuth2 Provider by default.

Note

Further details can be found directly on the official GeoServer documentation at section “Authentication Chain [http://docs.geoserver.org/latest/en/user/security/auth/chain.html#security-auth-chain]”

From the GeoNode backend (server) side, the server will make use of Basic Authentication with administrator credentials to configure the GeoServer catalog. GeoServer must be reachable by GeoNode of course, and GeoNode must know the internal GeoServer admin credentials.

From the GeoNode frontend (browser and GUI) side, the Authentication goal is to allow GeoServer to recognize as valid a user which has been already logged into GeoNode, providing kind of an SSO [https://en.wikipedia.org/wiki/Single_sign-on] mechanism between the two applications.

GeoServer must know and must be able to access GeoNode via HTTP/HTTPS. In other words, an external user connected to GeoNode must be authenticated to GeoServer with same permissions. This is possible through the OAuth2 Authentication Protocol.

GeoNode / GeoServer Authentication Mechanism

GeoNode as OAuth2 Provider (OP)

OpenID Connect is an identity framework built on OAuth 2.0 protocol which extends the authorization of OAuth 2.0 processes to implement its authentication mechanism. OpenID Connect adds a discovery mechanism allowing users to use an external trusted authority as an identity provider. From another point of view, this can be seen as a single sign on (SSO) system.

OAuth 2.0 is an authorization framework which is capable of providing a way for clients to access a resource with restricted access on behalf of the resource owner. OpenID Connect allows clients to verify the users with an authorization server based authentication.

As an OP, GeoNode will be able to act as trusted identity provider, thus allowing the system working on an isolated environment and/or allow GeoNode to authenticate private users managed by the local DJango auth subsystem.

GeoServer as OAuth2 Relying Party (RP)

Thanks to the OAuth2 Authentication GeoServer is able to retrieve an end user’s identity directly from the OAuth2 Provider (OP).

With GeoNode acting as an OP, the mechanism will avoid the use of cookies relying, instead, on the OAuth2 secure protocol.

How the OAuth2 Protocol works:

[image: ../../../_images/oauth001.png]

	The relying party sends the request to the OAuth2 provider to authenticate the end user

	The OAuth2 provider authenticates the user

	The OAuth2 provider sends the ID token and access token to the relying party

	The relying party sends a request to the user info endpoint with the access token received from OAuth2 provider

	The user info endpoint returns the claims.

GeoNode / GeoServer Authorization Mechanism

Allowing GeoServer to make use of a OAuth2 in order to act as an OAuth2 RP, is not sufficient to map a user identity to its roles though.

On GeoServer side we will still need to a RoleService which would be able to talk to GeoNode and transform the tokens into a User Principal to be used within the GeoServer Security subsystem itself.

In other words after a successfull Authentication, GeoServer needs to Authorize the user in order to understand which resources he is enable to access or not.
A REST based RoleService on GeoNode side, allows GeoServer to talk to GeoNode via REST [https://en.wikipedia.org/wiki/Representational_state_transfer] to get the current user along with the list of its Roles.

Nevertheless knowning the Roles associated to a user is not sufficient. The complete GeoServer Authorization needs to catch a set of Access Rules, associdated to the Roles, in order to establish which resources and data are accessible by the user.

The GeoServer Authorization is based on Roles only, therefore for each authenticated user we need also to know:

	The Roles associated to a valid user session

	The access permissions associated to a GeoServer Resource

The Authentication mechanism above allows GeoServer to get information about the user and his Roles, which addresses point 1.

About point 2, GeoServer makes use of the GeoFence Embedded Server [http://docs.geoserver.org/latest/en/user/community/geofence-server/index.html] plugin.
GeoFence is a java web application that provides an advanced authentication / authorization engine for GeoServer using the interface described in here [https://github.com/geoserver/geofence/wiki/First-steps].
GeoFence has its own rules database for the management of Authorization rules, and overrides the standard GeoServer security management system by implementing a sophisticated Resource Access Manager.
Least but not last, GeoFence implements and exposes a REST API [https://github.com/geoserver/geofence/wiki/REST-API] allowing remote authorized clients to read / write / modify security rules.

The advantages using such plugin are multiple:

	The Authorizations rules have a fine granularity. The security rules are handled by GeoFence in a way similar to the iptables ones, and allow to define security constraints even on sub-regions and attributes of layers.

	GeoFence exposes a REST interface to its internal rule database, allowing external managers to update the security constraints programmatically

	GeoFence implements an internal caching mechanism which improves considerably the performances under load.

GeoNode interaction with GeoFence

GeoNode itself is able to push/manage Authorization rules to GeoServer through the GeoFence REST API [https://github.com/geoserver/geofence/wiki/REST-API], acting as an administrator for GeoServer.
GeoNode properly configures the GeoFence rules anytime it is needed, i.e. the permissions of a Resource / Layer are updated.

GeoServer must know and must be able to access GeoNode via HTTP/HTTPS. In other words, an external user connected to GeoNode must be authenticated to GeoServer with same permissions. This is possible through the GeoNodeCoockieProcessingFiler.

Summarizing we will have different ways to access GeoNode Layers:

	Through GeoNode via DJango Authentication and GeoNodeCoockieProcessingFiler; basically the users available in GeoNode are also valid for GeoServer or any other backend.

Warning

If a GeoNode user has “administrator” rights, he will be able to administer GeoServer too.

	Through GeoServer Security Subsystem; it will be always possible to access to GeoServer using its internal security system and users, unless explictly disabled (warning this is dangeruos, you must know what you are doing).

Lets now see in details how the single pieces are configured and how they can be configured.

DJango OAuth Toolkit Setup and Configuration

As stated above, GeoNode makes use of the OAuth2 protocol for all the frontend interactions with GeoServer. GeoNode must be conifgured as an OAuth2 Provider and provide a Client ID and a Client Sercret kayes to GeoServer.
This is possible by enabling and configuring the Django OAuth Toolkit Plugin [https://django-oauth-toolkit.readthedocs.io/en/latest/].

Warning

GeoNode and GeoServer won’t work at all if the follwing steps are not executed at the first installation.

Default settings.py Security Settings for OAuth2

Double check that the OAuth2 Provider and Security Plugin is enabled and that the settings below are correctly configured.

AUTH_IP_WHITELIST

AUTH_IP_WHITELIST property limits access to users/groups REST Role Service endpoints to the only whitelisted IP addresses. Empty list means ‘allow all’.
If you need to limit ‘api’ REST calls to only some specific IPs fill the list like this: AUTH_IP_WHITELIST = ['192.168.1.158', '192.168.1.159']

Default values are:

...
AUTH_IP_WHITELIST = []
...

INSTALLED_APPS

In order to allow GeoNode to act as an OAuth2 Provider, we need to enable the oauth2_provider DJango application provided by the “Django OAuth Toolkit”.

Default values are:

...
INSTALLED_APPS = (

 'modeltranslation',

 ...
 'guardian',
 'oauth2_provider',
 ...

) + GEONODE_APPS
...

MIDDLEWARE_CLASSES

Installing the oauth2_provider` DJango application is not sufficient to enable the full functionality. We need also GeoNode to include additional entities to its internal model.

Default values are:

...
MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',

 # The setting below makes it possible to serve different languages per
 # user depending on things like headers in HTTP requests.
 'django.middleware.locale.LocaleMiddleware',
 'pagination.middleware.PaginationMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',

 # This middleware allows to print private layers for the users that have
 # the permissions to view them.
 # It sets temporary the involved layers as public before restoring the permissions.
 # Beware that for few seconds the involved layers are public there could be risks.
 # 'geonode.middleware.PrintProxyMiddleware',

 # If you use SessionAuthenticationMiddleware, be sure it appears before OAuth2TokenMiddleware.
 # SessionAuthenticationMiddleware is NOT required for using django-oauth-toolkit.
 'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
 'oauth2_provider.middleware.OAuth2TokenMiddleware',
)
...

AUTHENTICATION_BACKENDS

In order to allow GeoNode to act as an OAuth2 Provider, we need to enable the oauth2_provider.backends.OAuth2Backend DJango backend provided by the “Django OAuth Toolkit”.
Also notice that we need to specify the OAuth2 Provider scopes and declare which generator to use in order to create OAuth2 Client IDs.

Default values are:

...
Replacement of default authentication backend in order to support
permissions per object.
AUTHENTICATION_BACKENDS = (
 'oauth2_provider.backends.OAuth2Backend',
 'django.contrib.auth.backends.ModelBackend',
 'guardian.backends.ObjectPermissionBackend',
)

OAUTH2_PROVIDER = {
 'SCOPES': {
 'read': 'Read scope',
 'write': 'Write scope',
 'groups': 'Access to your groups'
 },

 'CLIENT_ID_GENERATOR_CLASS': 'oauth2_provider.generators.ClientIdGenerator',
}
...

Django OAuth Toolkit Admin Setup

Once the settings.py and local_settings.py have been correctly configured for your system:

	Complete the GeoNode setup steps

	Prepare the model

python manage.py makemigrations
python manage.py migrate
python manage.py syncdb

	Prepare the static data

python manage.py collectstatic

	Make sure the database has been populated with initial default data

Warning

Deprecated this command will be replaced by migrations in the future, so be careful.

python manage.py loaddata initial_data.json

	Make sure there exists a superuser for your environment

Warning

Deprecated this command will be replaced by migrations in the future, so be careful.

python manage.py createsuperuser

Note

Read the base tutorials on GeoNode Developer documentation for details on the specific commands and how to use them.

	Start the application

Start GeoNode accordingly on how the setup has been done; run debug mode through paver, or proxied by an HTTP Server like Apache2 HTTPD, Nginx or others.

	Finalize the setup of the OAuth2 Provider

First of all you need to configure and create a new OAuth2 Application called GeoServer through the GeoNode Admin Dashboard

	Access the GeoNode Admin Dashboard

[image: ../../../_images/oauth002.png]

	Go to Django OAuth Toolkit > Applications

[image: ../../../_images/oauth003.png]

	Update or create the Application named GeoServer

Warning

The Application name must be GeoServer

[image: ../../../_images/oauth004.png]

	Client id; An alphanumeric code representing the OAuth2 Client Id. GeoServer OAuth2 Plugin will use this value.

Warning

In a production environment it is highly recommended to modify the default value provided with GeoNode installation.

	User; Search for the admin user. Its ID will be automatically updated into the form.

	Redirect uris; It is possible to specify many URIs here. Those must coincide with the GeoServer instances URIs.

	Client type; Choose Confidential

	Authorization grant type; Choose Authorization code

	Client secret; An alphanumeric code representing the OAuth2 Client Secret. GeoServer OAuth2 Plugin will use this value.

Warning

In a production environment it is highly recommended to modify the default value provided with GeoNode installation.

	Name; Must be GeoServer

GeoServer Security Backend

GeoServer Security Subsystem

GeoServer has a robust security subsystem, modeled on Spring Security. Most of the security features are available through the Web administration interface.

For more details on how this works and how to configure and modify it, please refer to the official GeoServer guide http://docs.geoserver.org/stable/en/user/security/webadmin/index.html

By using the GeoServer Data Dir provided with GeoNode build, the following configuration are already available. You will need just to update them accordingly to your environment (like IP addresses and Host names, OAuth2 Keys, and similar things).
However it is recommended to read carefully all the following passages in order to understand exactly how the different component are configured and easily identify any possible issue during the deployment.

The main topics of this section are:

	Connection to the GeoNode REST Role Service

	Setup of the GeoServer OAuth2 Authentication Filter

	Configuration of the GeoServer Filter Chains

	Setup and test of the GeoFence Server and Default Rules

Connection to the GeoNode REST Role Service

Preliminary checks

	GeoServer is up and running and you have admin rights

	GeoServer must reach the GeoNode instance via HTTP

	The GeoServer Host IP Address must be allowed to access the GeoNode Role Service APIs (see the section AUTH_IP_WHITELIST above)

Setup of the GeoNode REST Role Service

	Login as admin to the GeoServer GUI

Warning

In a production system remember to change the default admin credentials admin geoserver

[image: ../../../_images/oauth005.png]

	Access the Security > Users, Groups, Roles section

[image: ../../../_images/oauth006.png]

	If not yet configured the service geonode REST role service, click on Role Services > Add new

Note

This passage is not needed if the geonode REST role service has been already created. If so it will be displayed amond the Role Services list

[image: ../../../_images/oauth008.png]

[image: ../../../_images/oauth007.png]

	If not yet configured the service geonode REST role service, choose AuthKEY REST - Role service from REST endpoint

[image: ../../../_images/oauth009.png]

	Create / update the geonode REST role service accordingly

[image: ../../../_images/oauth010.png]

	Name; Must be geonode REST role service

	Base Server URL; Must point to the GeoNode instance base URL (e.g. http://<geonode_host_url>)

	Roles REST Endpoint; Enter /api/roles

	Admin Role REST Endpoint; Enter /api/adminRole

	Users REST Endpoint; Enter /api/users

	Roles JSON Path; Enter $.groups

	Admin Role JSON Path; Enter $.adminRole

	Users JSON Path; Enter $.users[0].groups

Once everything has been setup and it is working, choose the Administrator role and Group administrator role as ROLE_ADMIN

Allow GeoFence to validate rules with ROLES

Warning

The following instruction are different accordingly to the GeoServer version you are currently using.

GeoServer 2.9.x and 2.10.x

	Access the Security > Settings section

[image: ../../../_images/oauth011.png]

	Choose the geonode REST role service as Active role service

[image: ../../../_images/oauth012.png]

GeoServer 2.12.x and above

With the latest updates to GeoFence Plugin, the latter no more recognizes the Role Service from the default settings but from the geofence-server.properties file.

That said, it is important that the Security > Settings role service will be set to default, in order to allow GeoServer following the standard authorization chain.

On the other side, you will need to be sure that the geofence-server.properties file under the $GEOSERVER_DATA_DIR/geofence folder, contains the two following additional properties:

gwc.context.suffix=gwc
org.geoserver.rest.DefaultUserGroupServiceName=geonode REST role service

Setup of the GeoServer OAuth2 Authentication Filter

It is necessary now check that GeoServer can connect to OAuth2 Providers (specifically to GeoNode OP), and being able to Authenticate users through it.

Preliminary checks

	GeoServer is up and running and you have admin rights

	GeoServer must reach the GeoNode instance via HTTP

	OAuth2 Client ID and Client Secret have been generated on GeoNode and known

Setup of the GeoNode OAuth2 Security Filter

	Access the Security > Authentication section

[image: ../../../_images/oauth013.png]

	If not yet configured the Authentication Filter geonode-oauth2 - Authentication using a GeoNode OAuth2, click on Authentication Filters > Add new

Note

This passage is not needed if the geonode-oauth2 - Authentication using a GeoNode OAuth2 has been already created. If so it will be displayed amond the Authentication Filters list

[image: ../../../_images/oauth015.png]

[image: ../../../_images/oauth014.png]

	If not yet configured the Authentication Filter geonode-oauth2 - Authentication using a GeoNode OAuth2, choose GeoNode OAuth2 - Authenticates by looking up for a valid GeoNode OAuth2 access_token key sent as URL parameter

[image: ../../../_images/oauth016.png]

	Create / update the geonode-oauth2 - Authentication using a GeoNode OAuth2 accordingly

[image: ../../../_images/oauth017.png]

	Name; Must be geonode-oauth2

	Enable Redirect Authentication EntryPoint; It is recommended to put this to False, otherwise GeoServer won’t allow you to connect to its Admin GUI through the Form but only through GeoNode

	Login Authentication EndPoint; Unless you have specific needs, keep the default value /j_spring_oauth2_geonode_login

	Logout Authentication EndPoint; Unless you have specific needs, keep the default value /j_spring_oauth2_geonode_logout

	Force Access Token URI HTTPS Secured Protocol; This must be False unless you enabled a Secured Connection on GeoNode. In that case you will need to trust the GeoNode Certificate on the GeoServer JVM Kaystore. Please see details below

	Access Token URI; Set this to http://<geonode_host_base_url>/o/token/

	Force User Authorization URI HTTPS Secured Protocol; This must be False unless you enabled a Secured Connection on GeoNode. In that case you will need to trust the GeoNode Certificate on the GeoServer JVM Kaystore. Please see details below

	User Authorization URI; Set this to http://<geonode_host_base_url>/o/authorize/

	Redirect URI; Set this to http://<geoserver_host>/geoserver. This address must be presenet on the Reditect uris of GeoNode OAuth2 > Applications > GeoServer (see above)

	Check Token Endpoint URL; Set this to http://<geonode_host_base_url>/api/o/v4/tokeninfo/

	Logout URI; Set this to http://<geonode_host_base_url>/account/logout/

	Scopes; Unless you have specific needs, keep the default value read,write,groups

	Client ID; The Client id alphanumeric key generated by the GeoNode OAuth2 > Applications > GeoServer (see above)

	Client Secret; The Client secret alphanumeric key generated by the GeoNode OAuth2 > Applications > GeoServer (see above)

	Role source; In order to authorize the user against GeoNode, choose Role service > geonode REST role service

Configuration of the GeoServer Filter Chains

The following steps ensure GeoServer can adopt more Authentication methods. As stated above, it is possible to Authenticate to GeoServer using different protocols.

GeoServer scans the authentication filters chain associated to the specified path and tries them one by one sequentially.
The first one matching the protocol and able to grant access to the user, breaks the cycle by creating a User Principal and injecting it into the GeoServer SecurityContext.
The Authentication process, then, ends here and the control goes to the Authorization one, which will try to retrieve the authenticated user’s Roles through the available GeoServer Role Services associated to the Authentication Filter that granted the access.

Preliminary checks

	GeoServer is up and running and you have admin rights

	GeoServer must reach the GeoNode instance via HTTP

	The geonode-oauth2 - Authentication using a GeoNode OAuth2 Authentication Filter and the geonode REST role service have been correctly configured

Setup of the GeoServer Filter Chains

	Access the Security > Authentication section

[image: ../../../_images/oauth013.png]

	Identify the section Filter Chains

[image: ../../../_images/oauth018.png]

	Make sure the web Filter Chain is configured as shown below

[image: ../../../_images/oauth019.png]

Warning

Every time you modify a Filter Chain, don’t forget to save the Authentication settings. This must be done for each change.

[image: ../../../_images/oauth020.png]

	Make sure the rest Filter Chain is configured as shown below

[image: ../../../_images/oauth021.png]

Warning

Every time you modify a Filter Chain, don’t forget to save the Authentication settings. This must be done for each change.

[image: ../../../_images/oauth020.png]

	Make sure the gwc Filter Chain is configured as shown below

[image: ../../../_images/oauth022.png]

Warning

Every time you modify a Filter Chain, don’t forget to save the Authentication settings. This must be done for each change.

[image: ../../../_images/oauth020.png]

	Make sure the default Filter Chain is configured as shown below

[image: ../../../_images/oauth023.png]

Warning

Every time you modify a Filter Chain, don’t forget to save the Authentication settings. This must be done for each change.

[image: ../../../_images/oauth020.png]

	Add the GeoNode Login Endpoints to the comma-delimited list of the webLogin Filter Chain

[image: ../../../_images/oauth024.png]

Warning

Every time you modify a Filter Chain, don’t forget to save the Authentication settings. This must be done for each change.

[image: ../../../_images/oauth020.png]

	Add the GeoNode Logout Endpoints to the comma-delimited list of the webLogout Filter Chain

[image: ../../../_images/oauth025.png]

Warning

Every time you modify a Filter Chain, don’t forget to save the Authentication settings. This must be done for each change.

[image: ../../../_images/oauth020.png]

	Add the GeoNode Logout Endpoints to the comma-delimited list of the formLogoutChain XML node in <GEOSERVER_DATA_DIR>/security/filter/formLogout/config.xml

You will need a text editor to modify the file.

Note

If the <formLogoutChain> XML node does not exist at all, create a new one as specified below

<logoutFilter>
 ...
 <redirectURL>/web/</redirectURL>
 <formLogoutChain>/j_spring_security_logout,/j_spring_security_logout/,/j_spring_oauth2_geonode_logout,/j_spring_oauth2_geonode_logout/</formLogoutChain>
</logoutFilter>

Warning

The value j_spring_oauth2_geonode_logout must be the same specified as Logout Authentication EndPoint in the geonode-oauth2 - Authentication using a GeoNode OAuth2 above.

Setup and test of the GeoFence Server and Default Rules

In order to work correctly, GeoServer needs the GeoFence Embedded Server [http://docs.geoserver.org/latest/en/user/community/geofence-server/index.html] plugin to be installed and configured on the system.

The GeoServer configuration provided for GeoNode, has the plugin already installed with a default configuration. In that case double check that the plugin works correctly and the default rules have been setup by following the next steps.

Preliminary checks

	GeoServer is up and running and you have admin rights

	The GeoFence Embedded Server [http://docs.geoserver.org/latest/en/user/community/geofence-server/index.html] plugin has been installed on GeoServer

Setup of the GeoServer Filter Chains

	Access the Security > Authentication section

[image: ../../../_images/oauth013.png]

	Identify the section Authentication Providers and make sure the geofence Authentication Provider is present

[image: ../../../_images/oauth032.png]

	Make sure the Provider Chain is configured as shown below

[image: ../../../_images/oauth033.png]

Warning

Every time you modify a Authentication Providers, don’t forget to save the Authentication settings. This must be done for each change.

[image: ../../../_images/oauth020.png]

Setup of the GeoFence Server and Rules

	Make sure GeoFence server works and the default settings are correctly configured

	Access the Security > GeoFence section

[image: ../../../_images/oauth026.png]

	Make sure the Options are configured as follows and the server works well when performing a Test Connection

[image: ../../../_images/oauth027.png]

	Allow remote and inline layers in SLD; Set it to True

	Allow SLD and SLD_BODY parameters in requests; Set it to True

	Authenticated users can write; Set it to True

	Use GeoServer roles to get authorizations; Set it to False

	Check the GeoFence default Rules

	Access the Security > GeoFence Data Rules section

[image: ../../../_images/oauth028.png]

	Make sure the DENY ALL Rule is present by default, otherwise your data will be accessible to everyone

Note

This rule is always the last one

[image: ../../../_images/oauth029.png]

Warning

If that rule does not exists at the very bottom (this rule is always the last one), add it manually.

	Access the Security > GeoFence Admin Rules section

[image: ../../../_images/oauth030.png]

	No Rules needed here

[image: ../../../_images/oauth031.png]

Throubleshooting and Advanced Features

Common Issues and Fixes

	GeoServer/GeoNode OAuth2 does not authenticate as Administrator even using GeoNode admin users

Symptoms

When trying to authenticate with an admin user using OAuth2, the process correctly redirects to GeoServer page but I’m not a GeoServer Administrator.

Cause

That means that somehow GeoServer could not successfully complete the Authorization and Authentication process.

The possible causes of the problem may be the following ones:

	The OAuth2 Authentication fails on GeoServer side

This is usually due to an exception while trying to complete the Authentication process.

	A typical cause is that GeoServer tries to use HTTPS connections but the GeoNode certificate is not trusted;

In that case please refer to the section below. Also take a look at the logs (in particular the GeoServer one) as explained in Debugging GeoNode Installations.
The GeoServer logs should contain a detailed Exception explaining the cause of the problem.
If no exception is listed here (even after raised the log level to DEBUG), try to check for the GeoNode Role Service as explained below.

	Another possible issue is that somehow the OAuth2 handshake cannot complete successfully;

	Login into GeoServer as administrator through its WEB login form.

	Double check that all the geonode-oauth2 - Authentication using a GeoNode OAuth2 parameters are correct. If everything is ok, take a look at the logs (in particular the GeoServer one) as explained in Debugging GeoNode Installations.
The GeoServer logs should contain a detailed Exception explaining the cause of the problem. If no exception is listed here (even after raised the log level to DEBUG), try to check for the GeoNode Role Service as explained below.

	GeoServer is not able to retrieve the user Role from a Role Service

Always double check both HTTP Server and GeoServer log as specified in section Debugging GeoNode Installations. This might directly guide you to the cause of the problem.

	Check that the GeoServer host is granted to access GeoNode Role Service REST APIs in the AUTH_IP_WHITELIST of the settings.py

	Check that the geonode REST role service is the default Role service and that the GeoServer OAuth2 Plugin has been configured to use it by default

	Check that the GeoNode REST Role Service APIs are functional and produce correct JSON.

This is possible by using simple cUrl GET calls like

curl http://localhost/api/adminRole
$> {"adminRole": "admin"}

curl http://localhost/api/users
$> {"users": [{"username": "AnonymousUser", "groups": ["anonymous"]}, {"username": "afabiani", "groups": ["anonymous", "test"]}, {"username": "admin", "groups": ["anonymous", "test", "admin"]}]}

curl http://localhost/api/roles
$> {"groups": ["anonymous", "test", "admin"]}

curl http://localhost/api/users/admin
$> {"users": [{"username": "admin", "groups": ["anonymous", "test", "admin"]}]}

How to setup HTTPS secured endpoints

In a production system it is a good practice to encrypt the connection between GeoServer and GeoNode. That would be possible by enabling HTTPS Protocol on the GeoNode REST Role Service APIs and OAuth2 Endpoints.

Most of the times you will rely on a self-signed HTTPS connection using a generated certificate. That makes the connection untrasted and you will need to tell to the GeoServer Java Virtual Machine to trust it.

This can be done by following the steps below.

For any issue take a look at the logs (in particular the GeoServer one) as explained in Debugging GeoNode Installations. The GeoServer logs should contain a detailed Exception explaining the cause of the problem.

SSL Trusted Certificates

When using a custom Keystore or trying to access a non-trusted or self-signed SSL-protected OAuth2 Provider from a non-SSH connection, you will need to add the certificates to the JVM Keystore.

In order to do this you can follow the next steps:

In this example we are going to

	Retrieve SSL Certificate from GeoNode domain:

“Access Token URI” = https://<geonode_host_base_url>/o/token/ therefore we need to trust https://<geonode_host_base_url> or (<geonode_host_base_url>:443)

Note

You will need to get and trust certificates from every different HTTPS URL used on OAuth2 Endpoints.

	Store SSL Certificates on local hard-disk

	Add SSL Certificates to the Java Keystore

	Enable the JVM to check for SSL Certificates from the Keystore

	Retrieve the SSL Certificate from GeoNode domain

Use the openssl command in order to dump the certificate

For https://<geonode_host_base_url>

openssl s_client -connect <geonode_host_base_url>:443

[image: ../../../_images/google_ssl_001.png]

	Store SSL Certificate on local hard-disk

Copy-and-paste the section -BEGIN CERTIFICATE-, -END CERTIFICATE- and save it into a .cert file

Note

.cert file are plain text files containing the ASCII characters included on the -BEGIN CERTIFICATE-, -END CERTIFICATE- sections

geonode.cert (or whatever name you want with .cert extension)

[image: ../../../_images/google_ssl_003.png]

	Add SSL Certificates to the Java Keystore

You can use the Java command keytool like this

geonode.cert (or whatever name you want with .cert extension)

keytool -import -noprompt -trustcacerts -alias geonode -file geonode.cert -keystore ${KEYSTOREFILE} -storepass ${KEYSTOREPASS}

or, alternatively, you can use some graphic tool which helps you managing the SSL Certificates and Keystores, like Portecle [http://portecle.sourceforge.net/]

java -jar c:\apps\portecle-1.9\portecle.jar

[image: ../../../_images/google_ssl_005.png]

[image: ../../../_images/google_ssl_006.png]

[image: ../../../_images/google_ssl_007.png]

[image: ../../../_images/google_ssl_008.png]

[image: ../../../_images/google_ssl_009.png]

[image: ../../../_images/google_ssl_010.png]

[image: ../../../_images/google_ssl_011.png]

[image: ../../../_images/google_ssl_012.png]

[image: ../../../_images/google_ssl_013.png]

	Enable the JVM to check for SSL Certificates from the Keystore

In order to do this, you need to pass a JAVA_OPTION to your JVM:

-Djavax.net.ssl.trustStore=F:\tmp\keystore.key

	Restart your server

Note

Here below you can find a bash script which simplifies the Keystore SSL Certificates importing. Use it at your conveninece.

HOST=myhost.example.com
PORT=443
KEYSTOREFILE=dest_keystore
KEYSTOREPASS=changeme

get the SSL certificate
openssl s_client -connect ${HOST}:${PORT} </dev/null \
 | sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > ${HOST}.cert

create a keystore and import certificate
keytool -import -noprompt -trustcacerts \
 -alias ${HOST} -file ${HOST}.cert \
 -keystore ${KEYSTOREFILE} -storepass ${KEYSTOREPASS}

verify we've got it.
keytool -list -v -keystore ${KEYSTOREFILE} -storepass ${KEYSTOREPASS} -alias ${HOST}

GeoFence Advanced Features

GeoFence Rules Management and Tutorials

	This tutorial [http://docs.geoserver.org/latest/en/user/community/geofence-server/tutorial.html] shows how to install and configure the Geofence Internal Server plug-in. It shows how to create rules in two ways: using the GUI and REST methods.

	GeoFence Rules can be created / updated / deleted through a REST API, accessible only by a GeoServer Admin user. You can find more details on how the GeoFence REST API works here [https://github.com/geoserver/geofence/wiki/REST-API].

GeoFence Rules Storage Configuration

By default GeoFence is configured to use a filesystem based DB stored on the GeoServer Data Dir <GEOSERVER_DATA_DIR/geofence.

	It is possible also to configure GeoFence in order to use an external PostgreSQL / PostGIS Database. In order to do that please refer to the official GeoFence documentation here [https://github.com/geoserver/geofence/wiki/GeoFence-configuration].

Usage of the GeoNode’s Django Administration Panel

GeoNode has an administration panel based on the Django admin which
can be used to do some database operations.
Although most of the operations can and should be done through the normal GeoNode interface, the admin panel provides a quick overview and management tool over the
database.

It should be highlighted that the sections not covered in this guide are meant to be managed through GeoNode.

Accessing the admin panel

Only the staff users (including the superusers) can access the admin interface.

Note

User’s staff membership can be set by the admin panel itself, see how in the Manage users and groups through the admin panel section.

The link to access the admin interface can be found by clicking in the upper right corner on the user name, see figure

[image: ../../../_images/admin-login.png]

	Manage users and groups through the admin panel

	Users

	Groups

	Manage profiles using the admin panel

	Manage the metadata categories using the admin panel

	Manage layers using the admin panel

	Manage the maps using the admin panel

	Manage the documents using the admin panel

Manage users and groups through the admin panel

The admin section called Auth has the link to access the Groups while the section called People has the link to access the Users, see figure

[image: ../../../_images/admin-auth.png]

[image: ../../../_images/admin-people.png]

Users

Adding a user

By clicking on the “add” link on the right of the Users link is possible to add
a new user to the GeoNode site.
A simple form asking for username and password will be presented, see figure

[image: ../../../_images/admin-users-new.png]

Upon clicking “save” a new form will be presented asking for some personal information and the rights the user should have.

For a normal, not privileged user is enough to just fill the personal information and then confirm with “save”.

If the user has to access the admin panel or be a superuser it’s enough just to tick the “staff” and “superuser” checkboxes.

[image: ../../../_images/admin-users-new-2.png]

Changing a user

To modify an existing user click on “Users” then on a username in the list. The same form will be presented.

[image: ../../../_images/admin-users-list.png]

Groups

Although the “Groups” permissions system is not implemented yet in GeoNode is possible to create new groups with set of permissions which will be inherited by all the group members.

The creation and management of a Group is done in a very similar way that the user one.

Manage profiles using the admin panel

So far GeoNode implements two distinct roles, that can be assigned to resources such as layers, maps or documents:

	party who authored the resource

	party who can be contacted for acquiring knowledge about or acquisition of the resource

These two profiles can be set in the GeoNode interface by accessing the metadata page and setting the “Point of Contact” and “Metadata Author” fields respectively.

Is possible for an administrator to add new roles if needed, by clicking on the “Add Role” button in the “Base” -> “Contact Roles” section:

[image: ../../../_images/admin-roles-add.png]

Clicking on the “People” section (see figure) will open a web for with some personal information plus a section called “Users”.

[image: ../../../_images/admin-people.png]

Is important that this last section is not modified here unless the administrator is very confident in that operation.

[image: ../../../_images/admin-profiles-contactroles.png]

Manage the metadata categories using the admin panel

In the “Base” section of the admin panel there are the links to manage the metadata categories used in GeoNode

[image: ../../../_images/admin-base.png]

The metadata categories are:

	Regions

	Restriction Code Types

	Spatial Representation Types

	Topic Categories

The other links available should not be used.

Regions

The Regions can be updated, deleted and added on needs. Just after a GeoNode fresh installation the regions contain all of the world countries, identified by their ISO code.

[image: ../../../_images/admin-base-region-list.png]

Restriction Code Types

Being GeoNode strictly tied to the standards, the restrictions cannot be added/deleted or modified in their identifier. This behavior is necessary to keep the consistency in case of federation with the CSW catalogues.

The Restrictions GeoNode description field can in any case be modified if some kind of customisation is necessary, since it’s just the string that will appear on the layer metadata page. If some of the restrictions are not needed within the GeoNode instance, it is possible to hide them by unchecking the “Is choice” field.

[image: ../../../_images/admin-base-restriction-list.png]

Spatial Representation Types

For this section the same concepts of the Restriction Code Types applies.

[image: ../../../_images/admin-base-spatialrepresentation-list.png]

Topic Categories

Also for the Topic Categories the only part editable is the GeoNode description.
Being standard is assumed that every possible data type will fall under these category identifiers.
If some of the categories are not needed within the GeoNode instance, it is possible to hide them by unchecking the “Is choice” field.

[image: ../../../_images/admin-base-topiccategories-list.png]

Manage layers using the admin panel

Some of the layers information can be edited directly through the admin interface although the best place is in the layer -> metadata page in GeoNode.

[image: ../../../_images/admin-layers.png]

Is not recommended to modify the Attributes neither the Styles.

Clicking on the Layers link will present a list of layers. Metadata information can be changed for multiple layers at once with “Metadata batch edit” action.
By clicking one of the layers presents you with the page for modifing some of the information like metadata, keywords etc. It’s strongly recommended to limit the edits to the metadata and similar information.

[image: ../../../_images/admin-layers-batch.png]

Manage the maps using the admin panel

Currently the maps admin panel allows more metadata options that the GeoNode maps metadata page. Thus is a good place where to add some more detailed information.

[image: ../../../_images/admin-maps.png]

The “Map Layers” section should not be used.

By clicking on a map in the maps list the metadata web form will be presented.
Is possible to add or modify the information here. As for the layers, the more specific entries like the layers stack or the map coordinates should not be modified.
Just like for layers, you can edit metadata for multiple maps at once with “Metadata batch edit” action.

Manage the documents using the admin panel

As for the layers, most of the information related to the documents can and should be modified using the GeoNode’s document metadata page.

[image: ../../../_images/admin-documents.png]

Through the document detail page is possible to edit the metadata information.
The fields related to the bounding box or the file attached should not be edited directly.
Metadata information can be changed for multiple documents at once with “Metadata batch edit” action, just like for layers.

Management Commands for GeoNode

GeoNode comes with administrative commands to help with day to day tasks.

Below is the list of the ones that come from the GeoNode application, the full list can be obtained by doing:

python manage.py help

importlayers

Imports a file or folder with geospatial files to GeoNode.

It supports data in Shapefile and GeoTIFF format. It also picks up the styles if a .sld file is present.

Usage:

python manage.py importlayers <data_dir>

Additional options:

Usage: manage.py importlayers [options] path [path...]

Brings a data file or a directory full of data files into a GeoNode site. Layers are added to the Django database, the GeoServer configuration, and the GeoNetwork metadata index.

Options:
 -v VERBOSITY, --verbosity=VERBOSITY
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings=SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath=PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Raise on exception
 -u USER, --user=USER Name of the user account which should own the imported
 layers
 -i, --ignore-errors Stop after any errors are encountered.
 -o, --overwrite Overwrite existing layers if discovered (defaults
 False)
 -k KEYWORDS, --keywords=KEYWORDS
 The default keywords, separated by comma, for the
 imported layer(s). Will be the same for all imported
 layers if multiple imports are
 done in one command
 -c CATEGORY, --category=CATEGORY
 The category for the imported
 layer(s). Will be the same for all imported layers
 if multiple imports are done in one command
 -r REGIONS, --regions=REGIONS
 The default regions, separated by comma, for the
 imported layer(s). Will be the same for all imported
 layers if multiple imports are
 done in one command
 -t TITLE, --title=TITLE
 The title for the imported
 layer(s). Will be the same for all imported layers
 if multiple imports are done in one command
 -p, --private Make layer viewable only to owner
 --version show program's version number and exit
 -h, --help show this help message and exit

updatelayers

Update the GeoNode application with data from GeoServer.

This is useful to add data in formats that are not supported in GeoNode by default, and for example to link it it to ArcSDE datastores. The updatelayers command provides several options that can be used to control how layer information is read from GeoServer and updated in GeoNode. Refer to ‘Additional Options’.

Usage:

python manage.py updatelayers

Additional options:

Usage: manage.py updatelayers [options]

Update the GeoNode application with data from GeoServer

Options:
 -v VERBOSITY, --verbosity=VERBOSITY
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings=SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath=PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Raise on exception
 -i, --ignore-errors Stop after any errors are encountered.
 --skip-unadvertised Skip processing unadvertised layers from GeoSever.
 --skip-geonode-registered
 Just processing GeoServer layers still not registered
 in GeoNode.
 --remove-deleted Remove GeoNode layers that have been deleted from
 GeoSever.
 -u USER, --user=USER Name of the user account which should own the imported
 layers
 -f FILTER, --filter=FILTER
 Only update data the layers that match the given
 filter
 -s STORE, --store=STORE
 Only update data the layers for the given geoserver
 store name
 -w WORKSPACE, --workspace=WORKSPACE
 Only update data on specified workspace
 --version show program's version number and exit
 -h, --help show this help message and exit

createvectorlayer

Create an empty PostGIS vector layer in GeoNode.

Usage:

python manage.py createvectorlayer name [options]

Additional options:

manage.py createvectorlayer [-h] [--version] [-v {0,1,2,3}]
 [--settings SETTINGS]
 [--pythonpath PYTHONPATH] [--traceback]
 [--no-color] [--user USER]
 [--geometry GEOMETRY]
 [--attributes ATTRIBUTES] [--title TITLE]
 name

Create an empty PostGIS vector layer in GeoNode.

positional arguments:
 name

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -v {0,1,2,3}, --verbosity {0,1,2,3}
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Raise on CommandError exceptions
 --no-color Don't colorize the command output.
 --user USER Name of the user account which should own the created
 layer
 --geometry GEOMETRY Geometry type of the layer to be created. Can be
 Point, LineString or Polygon. Default is Point
 --attributes ATTRIBUTES
 A json representation of the attributes to create.
 Example: { "field_str": "string", "field_int":
 "integer", "field_date": "date", "field_float":
 "float"}
 --title TITLE Title for the layer to be created.

fixsitename

Uses SITENAME and SITEURL to set the values of the default site object.

This information is used in the page titles and when sending emails from GeoNode, for example, new registrations.

Usage:

python manage.py fixsitename

Additional options:

Usage: manage.py fixsitename [options]

Options:
 -v VERBOSITY, --verbosity=VERBOSITY
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings=SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath=PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Raise on exception
 --version show program's version number and exit
 -h, --help show this help message and exit

delete_orphaned_files

Deletes orphaned files of deleted documents.

Usage:

python manage.py delete_orphaned_files

delete_orphaned_thumbs

Deletes orphaned thumbnails of deleted GeoNode resources (Layers, Maps and Documents).

Usage:

python manage.py delete_orphaned_thumbs

fix_baselayers

Fix base layers for all of the GeoNode maps or for a given map.

Usage:

fix base layers for all of the GeoNode map
python manage.py fix_baselayers

fix base layers for a given map
python manage.py fix_baselayers map_id

sync_geofence

Synchronize GeoNode permissions in GeoFence. This can be useful when upgrading GeoNode.

Usage:

synchronize all layers
python manage.py sync_geofence

synchronize all layers which contain a given search string in their name
python manage.py sync_geofence --layername cambridge

find_geoserver_broken_layers

Find GeoNode layers with a missing GeoServer resource.

Usage:

search the whole catalog
python manage.py find_geoserver_broken_layers

search all layers which contain a given search string in their name and owned by a given user
python manage.py sync_geofence --layername cambridge --owner bob

remove layers which are broken
python manage.py find_geoserver_broken_layers --remove

Configuring Alternate CSW Backends

pycsw [http://pycsw.org/] is the default CSW server implementation provided with GeoNode. This section will explain how to configure GeoNode to operate against alternate CSW server implementations.

Supported CSW server implementations

GeoNode additionally supports the following CSW server implementations:

	GeoNetwork opensource [http://geonetwork-opensource.org/]

	deegree [http://www.deegree.org/]

Since GeoNode communicates with alternate CSW configurations via HTTP, the CSW server can be installed and deployed independent of GeoNode if desired.

Installing the CSW

GeoNetwork opensource Installation

	Deploy GeoNetwork opensource by downloading geonetwork.war (see http://geonetwork-opensource.org/downloads.html) and deploying into your servlet container

	Follow the instructions at http://geonetwork-opensource.org/manuals/3.0.5/eng/users/user-guide/quick-start/index.html to complete the installation

	test the server with a GetCapabilities request (http://localhost:8080/geonetwork/srv/en/csw?service=CSW&version=2.0.2&request=GetCapabilities)

See http://geonetwork-opensource.org/docs.html for further documentation.

deegree Installation

	Deploy deegree by downloading the deegree3 cswDemo .war (see http://wiki.deegree.org/deegreeWiki/DownloadPage) and deploying into your servlet container

	Create a PostGIS-enabled PostgreSQL database

	Follow the instructions at http://wiki.deegree.org/deegreeWiki/deegree3/CatalogueService#Run_your_own_installation to complete the installation

	test the server with a GetCapabilities request (http://localhost:8080/deegree-csw-demo-3.0.4/services?service=CSW&version=2.0.2&request=GetCapabilities)

See http://wiki.deegree.org/deegreeWiki/deegree3/CatalogueService for further documentation.

Customizing GeoNode CSW configuration

At this point, the CSW alternate backend is ready for GeoNode integration. GeoNode’s CSW configuration (in geonode/settings.py) must be updated to point to the correct CSW. The example below exemplifies GeoNetwork as an alternate CSW backend:

CSW settings
CATALOGUE = {
 'default': {
 # The underlying CSW implementation
 # default is pycsw in local mode (tied directly to GeoNode Django DB)
 #'ENGINE': 'geonode.catalogue.backends.pycsw_local',
 # pycsw in non-local mode
 #'ENGINE': 'geonode.catalogue.backends.pycsw',
 # GeoNetwork opensource
 'ENGINE': 'geonode.catalogue.backends.geonetwork',
 # deegree and others
 #'ENGINE': 'geonode.catalogue.backends.generic',

 # The FULLY QUALIFIED base url to the CSW instance for this GeoNode
 #'URL': '%scatalogue/csw' % SITEURL,
 'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
 #'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',

 # login credentials (for GeoNetwork)
 'USER': 'admin',
 'PASSWORD': 'admin',
 }
}

LDAP configuration

Library Dependencies

LDAP support requires LDAP development libraries

Centos/RHEL

$sudo yum install -y openldap-devel

Ubuntu

$sudo apt-get install -y libldap2-dev

Install

$pip install python-ldap django-auth-ldap

Configure

Add the following to your local_settings.py

Note: Example only - more details can be found here [https://pythonhosted.org/django-auth-ldap/authentication.html]

import ldap
from django_auth_ldap.config import LDAPSearch

AUTHENTICATION_BACKENDS = (
 'django_auth_ldap.backend.LDAPBackend',
 'django.contrib.auth.backends.ModelBackend',
 'guardian.backends.ObjectPermissionBackend',
)
AUTH_LDAP_SERVER_URI = 'ldap://ldap.example.com'
LDAP_SEARCH_DN = 'ou=users,dc=example,dc=com'
AUTH_LDAP_USER = '(uid=%(user)s)'
AUTH_LDAP_BIND_DN = '{ADD_BIND_DN_IF_REQUIRED}'
AUTH_LDAP_BIND_PASSWORD = '{ADD_BIND_PASSWORD_IF_REQUIRED}'
AUTH_LDAP_USER_ATTR_MAP = {
 'first_name': 'givenName', 'last_name': 'sn', 'email': 'mail',
}
AUTH_LDAP_USER_SEARCH = LDAPSearch(LDAP_SEARCH_DN,
 ldap.SCOPE_SUBTREE, AUTH_LDAP_USER)

Customize the look and feel

Warning

These instructions are only valid if you’ve installed GeoNode following the guide at Setup & Configure HTTPD !!

Since version 2.8.1, it is possible to do change some elements of look and feel (such as colors, logo, etc.) using the Geonode Theme application from the administration. For more advanced changes, you first have to set up your own geonode project from a template. If you’ve successfully done this, you can go further and start theming your geonode project.

	Setup steps

	Setup your own geonode project

	Theming your GeoNode project

	Theme your geonode project

Setup steps

Warning

These instructions are only valid if you’ve installed GeoNode following the guide at Setup & Configure HTTPD !!

If you are working remotely, you should first connect to the machine that has your GeoNode installation. You will need to perform the following steps in a directory where you intend to keep your newly created project.

	1
2
3
4
5

	$ apt-get install python-django
$ django-admin startproject my_geonode --template=https://github.com/GeoNode/geonode-project/archive/master.zip -epy,rst
$ cd my_geonode
$ sudo pip install -e . --upgrade --no-cache
$ python manage.py migrate

Note

You should NOT use the name geonode for your project as it will conflict with your default geonode package name.

These commands create a new template based on the geonode example project.

Make sure that the directories are reachable and have the correct rights for the users geonode and www-data:

	1
2

	$ sudo chown -Rf geonode: *
$ sudo chmod -Rf 775 my_geonode

If you have a brand new installation of GeoNode, rename the /home/geonode/geonode/local_settings.py.sample to local_settings.py and edit it’s content by setting the SITEURL and SITENAME. This file will be your main settings file for your project. It inherits all the settings from the original one plus you can override the ones that you need.

Note

You can also decide to copy the /home/geonode/geonode/local_settings.py.sample to /path/to/my_geonode/my_geonode/local_settings.py in order to keep all the custom settings confined into the new project.

Warning

In order for the edits to the local_settings.py file to take effect, you have to restart apache.

Edit the file /etc/apache2/sites-available/geonode.conf and change the following directive from:

WSGIScriptAlias / /home/geonode/geonode/wsgi/geonode.wsgi

to:

WSGIScriptAlias / /path/to/my_geonode/my_geonode/wsgi.py

Edit the file /path/to/my_geonode/my_geonode/wsgi.py and add the following lines at the beginning:

	1

	from django.core.wsgi import get_wsgi_application

Edit the file /etc/apache2/sites-available/geonode.conf and modify the DocumentRoot as follows:

Note

It’s a good practice to make copies and backups of the configuration files before modifying or updating them in order to revert the configuration at the previous state if something goes wrong.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	<VirtualHost *:80>
 ServerName http://localhost
 ServerAdmin webmaster@localhost
 DocumentRoot /home/geonode/my_geonode/my_geonode

 ErrorLog /var/log/apache2/error.log
 LogLevel warn
 CustomLog /var/log/apache2/access.log combined

 WSGIProcessGroup geonode
 WSGIPassAuthorization On
 WSGIScriptAlias / /home/geonode/my_geonode/my_geonode/wsgi.py

 <Directory "/home/geonode/my_geonode/my_geonode/">
 <Files wsgi.py>
 Order deny,allow
 Allow from all
 Require all granted
 </Files>

 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 IndexOptions FancyIndexing
 </Directory>

 ...

Then regenerate the static JavaScript and CSS files from /path/to/my_geonode/ and restart apache

	1
2

	$ python manage.py collectstatic
$ sudo service apache2 restart

Customize the Look & Feel

Now you can edit the templates in my_geonode/templates, the CSS and images to match your needs like shown in customize.theme_admin!

Note

After going through the theming guide you’ll have to return to this site to execute one more command in order to finish the theming!

When you’ve done the changes, run the following command in the my_geonode folder:

	1
2

	$ cd /home/geonode/my_geonode
$ python manage.py collectstatic

And now you should see all the changes you’ve made to your GeoNode.

Source code revision control

It is recommended that you immediately put your new project under source code revision control. The GeoNode development team uses Git and GitHub and recommends that you do the same. If you do not already have a GitHub account, you can easily set one up. A full review of Git and distributed source code revision control systems is beyond the scope of this tutorial, but you may find the Git Book [https://git-scm.com/book] useful if you are not already familiar with these concepts.

	Create a new repository in GitHub. You should use the GitHub user interface to create a new repository for your new project.

[image: ../../../../_images/github_home.jpg]
Creating a new GitHub Repository From GitHub’s Homepage

[image: ../../../../_images/create_repo.jpg]
Specifying new GitHub Repository Parameters

[image: ../../../../_images/new_repo.jpg]
Your new Empty GitHub Repository

	Initialize your own repository in the my_geonode folder:

	1

	$ sudo git init

	Add the remote repository reference to your local git configuration:

	1

	$ sudo git remote add origin <https url of your custom repo>

	Add your project files to the repository:

	1

	$ sudo git add .

	Commit your changes:

	1
2
3
4
5

	 # Those two command must be issued ONLY once
$ sudo git config --global user.email "my@email"
$ sudo git config --global user.name "myuser"

$ sudo git commit -am "Initial commit"

	Push to the remote repository:

	1

	$ sudo git push origin master

Further Reading

	If you want more information on how to GitHub works and how to contribute to GeoNode project, go to the section “Contributing to GeoNode”

	If you want to customize the Logo and Style of my_geonode, go to the section “Theming your GeoNode project”

Here below you can find some more details about the custom project structure and info on some of the most important Python files you may want to edit.

The following section is mostly oriented to advanced users and developers.

Project structure

Your GeoNode project will now be structured as depicted below:

|-- README.rst
|-- manage.py
|-- my_geonode
| |-- __init__.py
| |-- settings.py
| |-- local_settings.py
| |-- static
| | |-- README
| | |-- css
| | | |-- site_base.css
| | |-- img
| | | |-- README
| | |-- js
| | |-- README
| |-- templates
| | |-- site_base.html
| | |-- site_index.html
| |-- urls.py
| |-- wsgi.py
|-- setup.py

You can also view your project on GitHub.

[image: ../../../../_images/github_project.png]
Viewing your project on GitHub

Each of the key files in your project are described below.

manage.py

manage.py is the main entry point for managing your project during
development. It allows running all the management commands from each app in your
project. When run with no arguments, it will list all of the management commands.

settings.py

settings.py is the primary settings file for your project. It imports the settings from the system geonode and adds the local paths. It is quite
common to put all sensible defaults here and keep deployment specific configuration
in the local_settings.py file. All of the possible settings values and
their meanings are detailed in the Django documentation.

A common paradigm for handing ‘local settings’ (and in other areas where some
python module may not be available) is:

	try:

	from local_settings import *

	except:

	pass

This is not required and there are many other solutions to handling varying
deployment configuration requirements.

urls.py

urls.py is where your application specific URL routes go. Additionally,
any overrides can be placed here, too.

wsgi.py

This is a generated file to make deploying your project to a WSGI server easier.
Unless there is very specific configuration you need, wsgi.py can be
left alone.

setup.py

There are several packaging options in python but a common approach is to place
your project metadata (version, author, etc.) and dependencies in setup.py.

This is a large topic and not necessary to understand while getting started with
GeoNode development but will be important for larger projects and to make
development easier for other developers.

More: https://docs.python.org/2/distutils/setupscript.html

static

The static directory will contain your fixed resources: CSS, HTML,
images, etc. Everything in this directory will be copied to the final media
directory (along with the static resources from other apps in your project).

templates

All of your projects templates go in the templates directory. While
no organization is required for your project specific templates, when overriding
or replacing a template from another app, the path must be the same as the template
to be replaced.

Staying in sync with mainline GeoNode

Warning

These instructions are only valid if you’ve installed GeoNode using apt-get !!

One of the primary reasons to set up your own GeoNode project using this method is so that you can stay in sync with the mainline GeoNode as the core development team makes new releases. Your own project should not be adversely affected by these changes, but you will receive bug fixes and other improvements by staying in sync.

Upgrade GeoNode:

$ apt-get update
$ apt-get install geonode

Verify that your new project works with the upgraded GeoNode:

$ python manage.py runserver

Navigate to http://localhost:8000.

Warning

These instructions are only valid if you’ve installed GeoNode following the guide at Setup & Configure HTTPD !!

Upgrading from source code repo:

Upgrade GeoNode:

$ cd /home/geonode/geonode
$ git pull origin master

Verify that your new project works with the upgraded GeoNode:

$ python manage.py runserver

Navigate to http://localhost:8000.

Theming your GeoNode project

There are a range of options available to you if you want to change the default look and feel of your GeoNode project. Since GeoNode’s style is based on Bootstrap [http://getbootstrap.com/] you will be able to make use of all that Bootstrap has to offer in terms of theme customization. You should consult Bootstrap’s documentation as your primary guide once you are familiar with how GeoNode implements Bootstrap and how you can override GeoNode’s theme and templates in your own project.

Logos and graphics

GeoNode intentionally does not include a large number of graphics files in its interface. This keeps page loading time to a minimum and makes for a more responsive interface. That said, you are free to customize your GeoNode’s interface by simply changing the default logo, or by adding your own images and graphics to deliver a GeoNode experience the way you envision int.

Your GeoNode project has a directory already set up for storing your own images at <my_geonode>/static/img. You should place any image files that you intend to use for your project in this directory.

Let’s walk through an example of the steps necessary to change the default logo.

	Change to the img directory:

$ cd <my_geonode>/static/img

	If you haven’t already, obtain your logo image. The URL below is just an example, so you will need to change this URL to match the location of your file or copy it to this location:

$ sudo wget http://www2.sta.uwi.edu/~anikov/UWI-logo.JPG
$ sudo chown -Rf geonode: .

	Change to the css directory:

$ cd ../../..

	Override the CSS that displays the logo by editing <my_geonode>/static/css/site_base.css with your favorite editor and adding the following lines, making sure to update the width, height, and URL to match the specifications of your image.

$ sudo vi site_base.css

.navbar-brand {
 width: 373px;
 height: 79px;
 background: transparent url("../img/UWI-logo.JPG") no-repeat scroll 15px 0px;
}

	Restart your GeoNode project and look at the page in your browser:

$ cd /home/geonode
$ sudo rm -Rf geonode/geonode/static_root/*
$ cd my_geonode
$ python manage.py collectstatic
$ sudo service apache2 restart

Note

It is a good practice to cleanup the static_folder and the Browser Cache before reloading in order to be sure that the changes have been correctly taken and displayed on the screen.

Visit your site at http://localhost/ or the remote URL for your site.

[image: ../../../../_images/logo_override.png]
Custom logo

You can see that the header has been expanded to fit your graphic. In the following sections you will learn how to customize this header to make it look and function the way you want.

Note

You should commit these changes to your repository as you progress through this section, and get in the habit of committing early and often so that you and others can track your project on GitHub. Making many atomic commits and staying in sync with a remote repository makes it easier to collaborate with others on your project.

Cascading Style Sheets

In the last section you already learned how to override GeoNode’s default CSS rules to include your own logo. You are able to customize any aspect of GeoNode’s appearance this way. In the last screenshot, you saw that the main area in the homepage is covered up by the expanded header.

First, we’ll walk through the steps necessary to displace it downward so it is no longer hidden, then change the background color of the header to match the color in our logo graphic.

	Reopen <my_geonode>/static/css/site_base.css in your editor and add the following rule after the one added in the previous step:

$ cd /home/geonode/my_geonode/my_geonode/static/css
$ sudo vi site_base.css

#wrap {
 margin: 75px 75px;
}

	Add a rule to change the background color of the header to match the logo graphic we used:

.navbar-inverse {
 background: #0e60c3;
}

	Your project CSS file should now look like this:

.navbar-brand {
 width: 373px;
 height: 79px;
 background: url(../img/UWI-logo.JPG) no-repeat;
}

#wrap {
 margin: 75px 75px;
}

.navbar-inverse {
 background: #0e60c3;
}

	Restart the development server and reload the page:

$ python manage.py collectstatic
$ sudo service apache2 restart

[image: ../../../../_images/css_overrides.png]
CSS overrides

Note

You can continue adding rules to this file to override the styles that are in the GeoNode base CSS file which is built from base.less [https://github.com/GeoNode/geonode/blob/master/geonode/static/geonode/less/base.less]. You may find it helpful to use your browser’s development tools to inspect elements of your site that you want to override to determine which rules are already applied. See the screenshot below. Another section of this workshop covers this topic in much more detail.

[image: ../../../../_images/inspect_element.png]
Screenshot of using Chrome’s debugger to inspect the CSS overrides

Templates and static pages

Now that we have changed the default logo and adjusted our main content area to fit the expanded header, the next step is to update the content of the homepage itself. Your GeoNode project includes two basic templates that you will use to change the content of your pages.

The file site_base.html (in <my_geonode>/templates/) is the basic template that all other templates inherit from and you will use it to update things like the header, navbar, site-wide announcement, footer, and also to include your own JavaScript or other static content included in every page in your site. It’s worth taking a look at GeoNode’s base file on GitHub [https://github.com/GeoNode/geonode/blob/master/geonode/templates/base.html]. You have several blocks available to you to for overriding, but since we will be revisiting this file in future sections of this workshop, let’s just look at it for now and leave it unmodified.

Open <my_geonode>/templates/site_base.html in your editor:

 $ cd /home/geonode/my_geonode/my_geonode/templates
 $ sudo vi site_base.html

.. code-block:: html

 {% extends "base.html" %}
 {% block extra_head %}
 <link href="{{ STATIC_URL }}css/site_base.css" rel="stylesheet"/>
 {% endblock %}

You will see that it extends from base.html, which is the GeoNode template referenced above and it currently only overrides the extra_head block to include our project’s site_base.css which we modified in the previous section. You can see on line 22 of the GeoNode base.html template [https://github.com/GeoNode/geonode/blob/master/geonode/templates/base.html#L22] that this block is included in an empty state and is set up specifically for you to include extra CSS files as your project is already set up to do.

Now that we have looked at site_base.html, let’s actually override a different template.

The file site_index.html is the template used to define your GeoNode project’s homepage. It extends GeoNode’s default index.html template and gives you the option to override specific areas of the homepage like the hero area, but also allows you leave area like the “Latest Layers” and “Maps” and the “Contribute” section as they are. You are of course free to override these sections if you choose and this section shows you the steps necessary to do that below.

	Open <my_geonode>/templates/site_index.html in your editor.

	Edit the <h1> element on line 9 to say something other than “Welcome”:

<h1>{% trans "UWI GeoNode" %}</h1>

	Edit the introductory paragraph to include something specific about your GeoNode project:

<p>
 {% blocktrans %}
 UWI's GeoNode is setup for students and faculty to collaboratively
 create and share maps for their class projects. It is maintained by the
 UWI Geographical Society.
 {% endblocktrans %}
</p>

	Change the Getting Started link to point to another website:

 For more information about the UWI Geographical society,
 visit our website

	Add a graphic to the hero area above the paragraph replaced in step 3:

	Your edited site_index.html file should now look like this:

{% extends 'index.html' %}
{% load i18n %}
{% comment %}
This is where you can override the hero area block. You can simply modify the content below or replace it wholesale to meet your own needs.
{% endcomment %}
 {% block hero %}
 <div class="jumbotron">
 <div class="container">
 <h1>{% trans "UWI GeoNode" %}</h1>
 <div class="hero-unit-content"/>
 <div class="intro">

 </div>
 <p>
 {% blocktrans %}
 UWI's GeoNode is setup for students and faculty to collaboratively
 create and share maps for their class projects. It is maintained by the
 UWI Geographical Society.
 {% endblocktrans %}
 </p>

 For more information about the UWI Geographical society,
 visit our website

 </div>
 </div>
 {% endblock %}

	Refresh your GeoNode project and view the changes in your browser at http://localhost/ or the remote URL for your site:

$ python manage.py collectstatic
$ sudo service apache2 restart

[image: ../../../../_images/homepage.png]

From here you can continue to customize your site_index.html template to suit your needs. This workshop will also cover how you can add new pages to your GeoNode project site.

Other theming options

You are able to change any specific piece of your GeoNode project’s style by adding CSS rules to site_base.css, but since GeoNode is based on Bootstrap, there are many pre-defined themes that you can simply drop into your project to get a whole new look. This is very similar to WordPress [http://wordpress.com] themes and is a powerful and easy way to change the look of your site without much effort.

Bootswatch

Bootswatch [http://bootswatch.com] is a site where you can download ready-to-use themes for your GeoNode project site. The following steps will show you how to use a theme from Bootswatch in your own GeoNode site.

	Visit http://bootswatch.com and select a theme (we will use Sandstone for this example). Select the download bootstrap.css option in the menu:

[image: ../../../../_images/bootswatch.png]

	Put this file into <my_geonode>/static/css.

$ cd /home/geonode/my_geonode/my_geonode/static/css

	Update the site_base.html template to include this file. It should now look like this:

$ cd /home/geonode/my_geonode/my_geonode/templates
$ sudo vi site_base.html

{% extends "base.html" %}
{% block extra_head %}
 <link href="{{ STATIC_URL }}css/site_base.css" rel="stylesheet"/>
 <link href="{{ STATIC_URL }}css/bootstrap.css" rel="stylesheet"/>
{% endblock %}

	Refresh the development server and visit your site:

$ python manage.py collectstatic
$ sudo service apache2 restart

[image: ../../../../_images/bootswatch_geonode.png]

Your GeoNode project site is now using the Sandstone theme in addition to the changes you have made.

Debugging GeoNode Installations

There are several mechanisms to debug GeoNode installations, the most common ones are discussed in the following sections.

Viewing the logs

There are many kinds of logs in GeoNode, most of them are located in /var/log/geonode/ and will be explained below in order of relevance:

	GeoNode main log: This is the output of the Django application generated by Apache, it may contain detailed information about uploads and high level problems.

The default location is /var/log/geonode/apache.log or /var/log/apache2/error.log.

It is set to a very low level (not very much information is logged) by default, but it’s output can be increased by setting the logging level to DEBUG in /etc/geonode/local_settings.py.

	GeoServer log: It contains most of the information related to problems with data, rendering and styling errors.

This one can be accessed at GEOSERVER_DATA_DIR/logs/geoserver.log, which is usually /var/lib/tomcat7/webapps/geoserver/data/logs/geoserver.log or /var/lib/geoserver/geonode-data/logs/geoserver.log.

It may also be symlinked in /var/log/geonode/geoserver.log.

	Tomcat logs: Tomcat logs could indicate problems loading GeoServer.

They can be found at /var/lib/tomcat7/logs/catalina.out or /var/lib/tomcat/geoserver/logs/catalina.out.

	PostgreSQL logs: PostgreSQL is accessed by GeoServer and Django, therefore information about errors which are very hard to debug may be found by looking at PostgreSQL’s logs.

They are located at /var/log/postgresql/postgresql-$(psql_version)-main.log where $(psql_version) depends on your local installation.

Enabling DEBUG mode

Django can be set to return nicely formatted exceptions which are useful for debugging instead of generic 500 errors.

This is enabled by setting DEBUG=True in /home/geonode/geonode/geonode/local_settings.py (or /etc/geonode/local_settings.py if GeoNode has been installed using apt-get).

After enabling DEBUG, the Apache server has to be restarted for the changes to be picked up. In Ubuntu:

service apache2 restart

Other tips and tricks

Modifying GeoServer’s output strategy

Up to version 1.1, GeoNode used by default the SPEED output strategy of GeoServer, this meant that proper error messages were being sacrificed for performance.
Unfortunately, this caused many errors to be masked as XML parsing errors when layers were not properly configured.

It is recommended to verify the output strategy is set at least to PARTIAL_BUFFER2 (or a safer one, e.g. ``FILE``) with a high value for the buffer size.
More information about the different strategies and the performance vs correctness trade off is available at GeoServer’s web.xml file.

The typical location of the file that needs to be modified is /var/lib/tomcat7/webapps/geoserver/WEB-INF/web.xml as shown below:

<context-param>
 <param-name>serviceStrategy</param-name>
 <param-value>FILE</param-value>
</context-param>

Add the Django Debug Toolbar

Warning

The Debug Toolbar module must be disabled whe running the server in production (with Apache2 HTTPD Server WSGI)

The Django Debug Toolbar offers a lot of information on about how the page you
are seeing is created and used. From the database hits to the views involved.
It is a configurable set of panels that display various debug information
about the current request/response and when clicked, display more details
about the panel’s content.

To install it:

$ pip install django-debug-toolbar

	Then edit your settings /home/geonode/geonode/geonode/settings.py (or /etc/geonode/settings.py if GeoNode has been installed using apt-get) and add the following to the bottom of the file:

#debug_toolbar settings
if DEBUG:
 INTERNAL_IPS = ('127.0.0.1',)
 MIDDLEWARE_CLASSES += (
 'debug_toolbar.middleware.DebugToolbarMiddleware',
)

 INSTALLED_APPS += (
 'debug_toolbar',
)

 DEBUG_TOOLBAR_PANELS = [
 'debug_toolbar.panels.versions.VersionsPanel',
 'debug_toolbar.panels.timer.TimerPanel',
 'debug_toolbar.panels.settings.SettingsPanel',
 'debug_toolbar.panels.headers.HeadersPanel',
 'debug_toolbar.panels.request.RequestPanel',
 'debug_toolbar.panels.sql.SQLPanel',
 'debug_toolbar.panels.staticfiles.StaticFilesPanel',
 'debug_toolbar.panels.templates.TemplatesPanel',
 'debug_toolbar.panels.cache.CachePanel',
 'debug_toolbar.panels.signals.SignalsPanel',
 'debug_toolbar.panels.logging.LoggingPanel',
 'debug_toolbar.panels.redirects.RedirectsPanel',
]

 DEBUG_TOOLBAR_CONFIG = {
 'INTERCEPT_REDIRECTS': False,
 }

	Stop Apache and start the server in Development Mode:

$ service apache2 stop
$ python manage.py runserver

	Redirect the browser to http://localhost:8000. You should be able to see the Debug Panel on the right of the screen.

[image: ../../../_images/django_debug_toolbar.png]
DJango Debug Toolbar Enabled In Devel Mode

	More:

	For more set up and customize the panels read the official docs here

http://django-debug-toolbar.readthedocs.io/en/latest/

Changing the Default Language

GeoNode’s default language is English, but GeoNode users can change the interface language with the pulldown menu at the top-right of most GeoNode pages. Once a user selects a language GeoNode remembers that language for subsequent pages.

GeoNode Configuration

As root edit the geonode config file /home/geonode/geonode/geonode/settings.py (or /etc/geonode/settings.py if GeoNode has been installed using apt-get) and change LANGUAGE_CODE to the desired default language.

Note

A list of language codes can be found in the global django config file /usr/local/lib/python2.7/dist-packages/django/conf/global_settings.py (or /var/lib/geonode/lib/python2.7/site-packages/django/conf/global_settings.py if GeoNode has been installed using apt-get).

For example, to make French the default language use:

LANGUAGE_CODE = 'fr'

Unfortunately Django overrides this setting, giving the language setting of a user’s browser priority. For example, if LANGUAGE_CODE is set to French, but the user has configured their operating system for Spanish they may see the Spanish version when they first visit GeoNode.

Additional Steps

If this is not the desired behaviour, and all users should initially see the default LANGUAGE_CODE, regardless of their browser’s settings, do the following steps to ensure Django ignores the browser language settings. (Users can always use the pulldown language menu to change the language at any time.)

As root create a new directory within GeoNode’s site packages:

mkdir /usr/lib/python2.7/dist-packages/setmydefaultlanguage

	or::

	mkdir /var/lib/geonode/lib/python2.7/site-packages/setmydefaultlanguage

if GeoNode has been installed using apt-get.

As root create and edit a new file /usr/lib/python2.7/dist-packages/setmydefaultlanguage/__init__.py and add the following lines:

class ForceDefaultLanguageMiddleware(object):
 """
 Ignore Accept-Language HTTP headers

 This will force the I18N machinery to always choose settings.LANGUAGE_CODE
 as the default initial language, unless another one is set via sessions or cookies

 Should be installed *before* any middleware that checks request.META['HTTP_ACCEPT_LANGUAGE'],
 namely django.middleware.locale.LocaleMiddleware
 """
 def process_request(self, request):
 if request.META.has_key('HTTP_ACCEPT_LANGUAGE'):
 del request.META['HTTP_ACCEPT_LANGUAGE']

At the end of the GeoNode configuration file /home/geonode/geonode/geonode/settings.py (or /etc/geonode/settings.py if GeoNode has been installed using apt-get) add the following lines to ensure the above class is executed:

MIDDLEWARE_CLASSES += (
 'setmydefaultlanguage.ForceDefaultLanguageMiddleware',
)

Restart

Finally restart Apache as root with:

service apache2 restart

Please refer to Translating GeoNode for information on editing GeoNode pages in different languages and create new GeoNode Translations.

More on Security and Permissions

	Security and Permissions
	Users

	Layers

	Maps

	Documents

Security and Permissions

This tutorial will guide you through the steps that can be done in order to restrict the access on your data uploaded to geonode.

First of all it will be shown how a user can be created and what permissions he can have. Secondly we will take a closer look
on to layers, maps and documents and the different opportunities you have in order to ban certain users from viewing or editing your
data.

Users

Your first step will be to create a user. There are three options to do so, depending on which kind of user you want to create you may
choose a different option. We will start with creating a superuser, because this user is the most important. A superuser
has all the permissions without explicitly assigning them.

The easiest way to create a superuser (in linux) is to open your terminal and type:

$ python manage.py createsuperuser

You will be asked a username (in this tutorial we will call the superuser you now create your_superuser), an email address and a password.

Now you’ve created a superuser you should become familiar with the Django Admin Interface. As a superuser you are having
access to this interface, where you can manage users, layers, permission and more. To learn more detailed about this interface
check this LINK. For now it will be enough to just follow the steps. To attend the Django Admin Interface, go to your geonode website and sign in with your_superuser. Once you’ve logged in, the name of your user will appear on the top right. Click on it and the following menu
will show up:

[image: ../../../_images/menu_admin.png]

Clicking on Admin causes the interface to show up.

[image: ../../../_images/admin_interface.png]

Go to Auth -> Users and you will see all the users that exist at the moment. In your case it will only be your_superuser. Click on it, and you will see a section on Personal Info, one on Permissions and one on Important dates. For the moment, the section on Permissions is the most important.

[image: ../../../_images/permissions_django_admin.png]

As you can see, there are three boxes that can be checked and unchecked. Because you’ve created a superuser, all three boxes
are checked as default. If only the box active would have been checked, the user would not be a superuser and would not be able to
access the Django Admin Interface (which is only available for users with the staff status). Therefore keep the following
two things in mind:

	a superuser is able to access the Django Admin Interface and he has all permissions on the data uploaded to GeoNode.

	an ordinary user (created from the GeoNode interface) only has active permissions by default. The user will not have the ability to access the Django Admin Interface and certain permissions have to be added for him.

Until now we’ve only created superusers. So how do you create an ordinary user? You have two options:

	Django Admin Interface

First we will create a user via the Django Admin Interface because we’ve still got it open. Therefore go back to Auth -> Users and you should find a button on the right that says Add user.

[image: ../../../_images/add_user.png]

Click on it and a form to fill out will appear. Name the new user test_user, choose a password and click save at the right bottom of the site.

[image: ../../../_images/add_test_user.png]

Now you should be directed to the site where you could
change the permissions on the user test_user. As default only active is checked. If you want this user also to be able to attend this admin interface
you could also check staff status. But for now we leave the settings as they are!

To test whether the new user was successfully created, go back to the GeoNode web page and try to sign in.

	GeoNode website

	To create an ordinary user you could also just use the GeoNode website. If you installed GeoNode using a release, you should

	see a Register button on the top, beside the Sign in button (you might have to log out before).

[image: ../../../_images/register.png]

Hit the button and again a form will appear for you to fill out. This user will be named geonode_user

[image: ../../../_images/sign_up_test_user.png]

By hitting Sign up the user will be signed up, as default only with the status active.

As mentioned before, this status can be changed as well. To do so, sign in with your_superuser again and attend the admin interface. Go again to Auth -> Users, where now three users
should appear:

We now want to change the permission of the geonode_user so that he will be able to attend the admin interface as well.
Click on to geonode_user and you will automatically be moved to the site where you can change the permissions. Check the box staff status and hit save to store the changes.

To sum it up, we have now created three users with different kind of permissions.

	your_superuser: This user is allowed to attend the admin interface and has all available permissions on layers, maps etc.

	geonode_user: This user is permitted to attend the admin interface, but permissions on layers, maps etc. have to be assigned.

	test_user: This user is not able to attend the admin interface, permissions on layers, maps etc. have also to be assigned.

You should know have an overview over the different kinds of users and how to create and edit them. You’ve also learned about the permissions a certain user has and how to change them using the Django Admin Interface.

Note

If you’ve installed GeoNode in developing mode, the Register button won’t be seen from the beginning. To add this button to the website, you have to change the REGISTRATION_OPEN = False in the settings.py to REGISTRATION_OPEN = True. Then reload GeoNode and you should also be able to see the Register button.

Layers

Now that we’ve already created some users, we will take a closer look on the security of layers, how you can protect your data not to be viewed or edited by unwanted users.

Hint

As already mentioned before it is important to know that a superuser does have unrestricted access to all your uploaded data. That means you cannot ban a superuser from viewing, downloading or editing a layer!

The permissions on a certain layer can already be set when uploading your files. When the upload form appears (Layers -> Upload Layer) you will see the permission section on the right side:

[image: ../../../_images/upload_layer.png]

As it can be seen here, the access on your layer is split up into three groups:

	view and download data

	edit data

	manage and edit data

The difference between manage and edit layer and edit layer is that a user assigned to edit layer is not able to change
the permissions on the layer whereas a user assigned to manage and edit layer can change the permissions.
You can now choose whether you want your layer to be viewed and downloaded by

	anyone

	any registered user

	a certain user (or group)

We will now upload our test layer like shown HERE. If you want your layer only be viewed by certain users or a group, you have to choose Only users who can edit in the part Who can view and download this data.
In the section Who can edit this data you write down the names of the users you want to have admission on this data. For this first layer we will choose the settings like shown in the following image:

If you now log out, your layer can still be seen, but the unregistered users won’t be able to edit your layer. Now sign in as geonode_user and click on the test layer. Above the layer you can see this:

[image: ../../../_images/edit_and_download_layer.png]

The geonode_user is able to edit the test_layer. But before going deeper into this, we have to first take a look on another case. As an administrator you might also upload your layers to GeoServer and then make them available on GeoNode using updatelayers. Or you even add the layers via the terminal using importlayers (LINK TUTORIAL). To set the permissions on this layer, click on the test layer (you’ve uploaded via updatelayers) and you will see the same menu as shown in the image above. Click Edit layer and the menu will appear.

[image: ../../../_images/edit_and_manage.png]

Choose edit permissions and a window with the permission settings will appear. This window can also be opened by scrolling down the website. On the right-hand side of the page you should be able to see a button like this.

Click on it and you will see the same window as before.

Now set the permissions of this layer using the following settings:

When you assign a user to be able to edit your data, this user is allowed to execute all of the following actions:

	edit metadata

	edit styles

	manage styles

	replace layer

	remove layer

So be aware that each user assigned to edit this layer can even remove it! In our case, only the user test_user and your_superuser do have the rights to do so. Geonode_user is neither able to view nor to download or edit this layer.

Now you are logged in as the user test_user. Below the test_layer you can see the following:

By clicking Edit Layer and Edit Metadata on top of the layer, you can change this information. The test_user is able to change all the metadata of this layer. We now want to change to point of contact, therefore scroll down until you see this:

[image: ../../../_images/point_of_contact.png]

Change the point of contact from _who_ever_created_this to test_user. Save your changes and you will now be able to see the following:

Warning

If you allow a user to view and download a layer, this user will also be able to edit the styles, even if he is not assigned to edit the layer! Keep this in mind!

To learn how you can edit metadata or change the styles go to this section LINK.

Maps

The permission on maps are basically the same as on layers, just that there are fewer options on how to edit the map. Let’s create a map (or already TUTORIAL?). Click on test_map and scroll down till you see this:

[image: ../../../_images/change_map_permissions.png]

Here you can set the same permissions as known from the layer permissions! Set the permissions of this map as seen here:

Save your changes and then log out and log in as test_user. You should now be able to view the test_map and click on to Edit map.

[image: ../../../_images/edit_map.png]

As you may recognize, this user is not able to change the permissions on this map. If you log in as the user geonode_user you should be able to see the button change map permissions when you scroll down the page.

Documents

All the same is also valid for your uploaded documents.

Loading Data into a GeoNode

This module will walk you through the various options available to load data into your GeoNode from GeoServer, on the command-line or programmatically. You can choose from among these techniques depending on what kind of data you have and how you have your geonode setup.

Warning

Some parts of this section have been taken from the GeoServer [http://geoserver.org] project and training documentation.

	Using importlayers to import Data into GeoNode

	GeoServer Data Configuration

	Using GDAL and OGR to convert your Data for use in GeoNode
	OGR (Vector Data)

	GDAL (Raster Data)

Using importlayers to import Data into GeoNode

The geonode.layers app includes 2 management commands that you can use to load or configure data in your GeoNode. Both of these are invoked by using the manage.py script. This section will walk you through how to use the importlayers management command and the subsequent section will lead you through the process of using updatelayers.

The first thing to do is to use the –help option to the importlayers command to investigate the options to this management command. You can display this help by executing the following command:

$ python manage.py importlayers --help

This will produce output that looks like the following:

Usage: manage.py importlayers [options] path [path...]

Brings a data file or a directory full of data files into aGeoNode site. Layers are added to the Django database, theGeoServer configuration, and the GeoNetwork metadata index.

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -v VERBOSITY, --verbosity=VERBOSITY
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings=SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath=PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Print traceback on exception
 --no-color Don't colorize the command output.
 -u USER, --user=USER Name of the user account which should own the imported
 layers
 -i, --ignore-errors Stop after any errors are encountered.
 -o, --overwrite Overwrite existing layers if discovered (defaults
 False)
 -k KEYWORDS, --keywords=KEYWORDS
 The default keywords for the imported layer(s). Will
 be the same for all imported layers if multiple
 imports are done in one command
 -l LICENSE, --license=LICENSE
 The license for the imported layer(s). Will be the
 same for all imported layers if multiple imports are
 done in one command
 -c CATEGORY, --category=CATEGORY
 The category for the imported layer(s). Will be the
 same for all imported layers if multiple imports are
 done in one command
 -r REGIONS, --regions=REGIONS
 The default regions, separated by comma, for the
 imported layer(s). Will be the same for all imported
 layers if multiple imports are done in one command
 -n LAYERNAME, --name=LAYERNAME
 The name for the imported layer(s). Can not be used
 with multiple imports
 -t TITLE, --title=TITLE
 The title for the imported layer(s). Will be the same
 for all imported layers if multiple imports are done
 in one command
 -a ABSTRACT, --abstract=ABSTRACT
 The abstract for the imported layer(s). Will be the
 same forall imported layers if multiple imports are
 donein one command
 -d DATE, --date=DATE The date and time for the imported layer(s). Will be
 the same for all imported layers if multiple imports
 are done in one command. Use quotes to specify both
 the date and time in the format 'YYYY-MM-DD HH:MM:SS'.
 -p, --private Make layer viewable only to owner
 -m, --metadata_uploaded_preserve
 Force metadata XML to be preserved
 -C CHARSET, --charset=CHARSET
 Specify the charset of the data

While the description of most of the options should be self explanatory, its worth reviewing some of the key options in a bit more detail.

	The -i option will force the command to stop when it first encounters an error. Without this option specified, the process will skip over errors that have layers and continue loading the other layers.

	The -o option specifies that layers with the same name as the base name will be loaded and overwrite the existing layer.

	The -u option specifies which will be the user that owns the imported layers. The same user will be the point of contact and the metadata author as well for that layer

	The -k option is used to add keywords for all of the layers imported.

	The -C option specifies the character encoding of the data.

The import layers management command is invoked by specifying options as described above and specifying the path to a single layer file or to a directory that contains multiple files. For purposes of this exercise, lets use the default set of testing layers that ship with geonode. You can replace this path with the directory to your own shapefiles:

$ python manage.py importlayers -v 3 /var/lib/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/

This command will produce the following output to your terminal:

Verifying that GeoNode is running ...
Found 8 potential layers.
No handlers could be found for logger "pycsw"
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_administrative.shp' (1/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_coastline.shp' (2/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_highway.shp' (3/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_location.shp' (4/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_natural.shp' (5/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_poi.shp' (6/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_water.shp' (7/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/single_point.shp' (8/8)

Detailed report of failures:

Finished processing 8 layers in 30.0 seconds.

8 Created layers
0 Updated layers
0 Skipped layers
0 Failed layers
3.750000 seconds per layer

If you encounter errors while running this command, you can use the -v option to increase the verbosity of the output so you can debug the problem. The verbosity level can be set from 0-3 with 0 being the default. An example of what the output looks like when an error is encountered and the verbosity is set to 3 is shown below:

Verifying that GeoNode is running ...
Found 8 potential layers.
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_administrative.shp' (1/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_coastline.shp' (2/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_highway.shp' (3/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_location.shp' (4/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_natural.shp' (5/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_poi.shp' (6/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_water.shp' (7/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/single_point.shp' (8/8)

Detailed report of failures:

/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_administrative.shp
================
Traceback (most recent call last):
 File "/Users/jjohnson/projects/geonode/geonode/layers/utils.py", line 682, in upload
 keywords=keywords,
 File "/Users/jjohnson/projects/geonode/geonode/layers/utils.py", line 602, in file_upload
 keywords=keywords, title=title)
 File "/Users/jjohnson/projects/geonode/geonode/layers/utils.py", line 305, in save
 store = cat.get_store(name)
 File "/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/geoserver/catalog.py", line 176, in get_store
 for ws in self.get_workspaces():
 File "/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/geoserver/catalog.py", line 489, in get_workspaces
 description = self.get_xml("%s/workspaces.xml" % self.service_url)
 File "/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/geoserver/catalog.py", line 136, in get_xml
 response, content = self.http.request(rest_url)
 File "/Library/Python/2.7/site-packages/httplib2/__init__.py", line 1445, in request
 (response, content) = self._request(conn, authority, uri, request_uri, method, body, headers, redirections, cachekey)
 File "/Library/Python/2.7/site-packages/httplib2/__init__.py", line 1197, in _request
 (response, content) = self._conn_request(conn, request_uri, method, body, headers)
 File "/Library/Python/2.7/site-packages/httplib2/__init__.py", line 1133, in _conn_request
 conn.connect()
 File "/Library/Python/2.7/site-packages/httplib2/__init__.py", line 799, in connect
 raise socket.error, msg
error: [Errno 61] Connection refused

Note

This last section of output will be repeated for all layers, and only the first one is show above.

This error indicates that GeoNode was unable to connect to GeoServer to load the layers. To solve this, you should make sure GeoServer is running and re-run the command.

If you encounter errors with this command that you cannot solve, you should bring them up on the geonode users mailing list.

You should now have the knowledge necessary to import layers into your GeoNode project from a directory on the servers filesystem and can use this to load many layers into your GeoNode at once.

Note

If you do not use the -u command option, the ownership of the imported layers will be assigned to the primary superuser in your system. You can use GeoNodes Django Admin interface to modify this after the fact if you want them to be owned by another user.

GeoServer Data Configuration

While it is possible to import layers directly from your servers filesystem into your GeoNode, you may have an existing GeoServer that already has data in it, or you may want to configure data from a GeoServer which is not directly supported by uploading data.

GeoServer supports a wide range of data formats and connections to database, and while many of them are not supported as GeoNode upload formats, if they can be configured in GeoServer, you can add them to your GeoNode by following the procedure described below.

GeoServer supports 3 types of data: Raster, Vector and Databases. For a list of the supported formats for each type of data, consult the following pages:

	http://docs.geoserver.org/latest/en/user/data/vector/index.html#data-vector

	http://docs.geoserver.org/latest/en/user/data/raster/index.html

	http://docs.geoserver.org/latest/en/user/data/database/index.html

Note

Some of these raster or vector formats or database types require that you install specific plugins in your GeoServer in order to use the. Please consult the GeoServer documentation for more information.

Lets walk through an example of configuring a new PostGIS database in GeoServer and then configuring those layers in your GeoNode.

First visit the GeoServer administration interface on your server. This is usually on port 8080 and is available at http://localhost:8080/geoserver/web/

You should login with the superuser credentials you setup when you first configured your GeoNode instance.

Once you are logged in to the GeoServer Admin interface, you should see the following.

[image: ../../../_images/geoserver_admin.png]

Note

The number of stores, layers and workspaces may be different depending on what you already have configured in your GeoServer.

Next you want to select the “Stores” option in the left hand menu, and then the “Add new Store” option. The following screen will be displayed.

[image: ../../../_images/geoserver_new_store.png]

In this case, we want to select the PostGIS store type to create a connection to our existing database. On the next screen you will need to enter the parameters to connect to your PostGIS database (alter as necessary for your own database).

[image: ../../../_images/geoserver_postgis_params.png]

Note

If you are unsure about any of the settings, leave them as the default.

The next screen lets you configure the layers in your database. This will of course be different depending on the layers in your database.

[image: ../../../_images/geoserver_publish_layers.png]

Select the “Publish” button for one of the layers and the next screen will be displayed where you can enter metadata for this layer. Since we will be managing this metadata in GeoNode, we can leave these alone for now.

[image: ../../../_images/geoserver_layer_params.png]

The things that must be specified are the Declared SRS and you must select the “Compute from Data” and “Compute from native bounds” links after the SRS is specified.

[image: ../../../_images/geoserver_srs.png]

Click save and this layer will now be configured for use in your GeoServer.

[image: ../../../_images/geoserver_layers.png]

The next step is to configure these layers in GeoNode. The updatelayers management command is used for this purpose. As with importlayers, its useful to look at the command line options for this command by passing the –help option:

$ python manage.py updatelayers --help

This help option displays the following:

Usage: manage.py updatelayers [options]

Update the GeoNode application with data from GeoServer

Options:
 -v VERBOSITY, --verbosity=VERBOSITY
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings=SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath=PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Print traceback on exception
 -i, --ignore-errors Stop after any errors are encountered.
 -u USER, --user=USER Name of the user account which should own the imported
 layers
 -w WORKSPACE, --workspace=WORKSPACE
 Only update data on specified workspace
 --version show program's version number and exit
 -h, --help show this help message and exit

For this sample, we can use the default options. So enter the following command to configure the layers from our GeoServer into our GeoNode:

$ python manage.py updatelayers

The output will look something like the following:

[created] Layer Adult_Day_Care (1/11)
[created] Layer casinos (2/11)
[updated] Layer san_andres_y_providencia_administrative (3/11)
[updated] Layer san_andres_y_providencia_coastline (4/11)
[updated] Layer san_andres_y_providencia_highway (5/11)
[updated] Layer san_andres_y_providencia_location (6/11)
[updated] Layer san_andres_y_providencia_natural (7/11)
[updated] Layer san_andres_y_providencia_poi (8/11)
[updated] Layer san_andres_y_providencia_water (9/11)
[updated] Layer single_point (10/11)
[created] Layer ontdrainage (11/11)

Finished processing 11 layers in 45.0 seconds.

3 Created layers
8 Updated layers
0 Failed layers
4.090909 seconds per layer

Note

This example picked up 2 additional layers that were already in our GeoServer, but were not already in our GeoNode.

For layers that already exist in your GeoNode, they will be updated and the configuration synchronized between GeoServer and GeoNode.

You can now view and use these layers in your GeoNode.

Using GDAL and OGR to convert your Data for use in GeoNode

GeoNode supports uploading data in shapefiles, GeoTIFF, CSV and KML formats (for the last two formats only if you are using the geonode.importer backend in the UPLOAD variable in settings.py). If your data is in other formats, you will need to convert it into one of these formats for use in GeoNode. This section will walk you through the steps necessary to convert your data into formats suitable for uploading into GeoNode.

You will need to make sure that you have the GDAL library installed on your system. On Ubuntu you can install this package with the following command:

$ sudo apt-get install gdal-bin

OGR (Vector Data)

OGR is used to manipulate vector data. In this example, we will use MapInfo .tab files and convert them to shapefiles with the ogr2ogr command. We will use sample MapInfo files from the website linked below.

http://services.land.vic.gov.au/landchannel/content/help?name=sampledata

You can download the Admin;(Postcode) layer by issuing the following command:

$ wget http://services.land.vic.gov.au/sampledata/mif/admin_postcode_vm.zip

You will need to unzip this dataset by issuing the following command:

$ unzip admin_postcode_vm.zip

This will leave you with the following files in the directory where you executed the above commands:

|-- ANZVI0803003025.htm
|-- DSE_Data_Access_Licence.pdf
|-- VMADMIN.POSTCODE_POLYGON.xml
|-- admin_postcode_vm.zip
--- vicgrid94
 --- mif
 --- lga_polygon
 --- macedon\ ranges
 |-- EXTRACT_POLYGON.mid
 |-- EXTRACT_POLYGON.mif
 --- VMADMIN
 |-- POSTCODE_POLYGON.mid
 --- POSTCODE_POLYGON.mif

First, lets inspect this file set using the following command:

$ ogrinfo -so vicgrid94/mif/lga_polygon/macedon\ ranges/VMADMIN/POSTCODE_POLYGON.mid POSTCODE_POLYGON

The output will look like the following:

Had to open data source read-only.
INFO: Open of `vicgrid94/mif/lga_polygon/macedon ranges/VMADMIN/POSTCODE_POLYGON.mid'
 using driver `MapInfo File' successful.

Layer name: POSTCODE_POLYGON
Geometry: 3D Unknown (any)
Feature Count: 26
Extent: (2413931.249367, 2400162.366186) - (2508952.174431, 2512183.046927)
Layer SRS WKT:
PROJCS["unnamed",
 GEOGCS["unnamed",
 DATUM["GDA94",
 SPHEROID["GRS 80",6378137,298.257222101],
 TOWGS84[0,0,0,-0,-0,-0,0]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433]],
 PROJECTION["Lambert_Conformal_Conic_2SP"],
 PARAMETER["standard_parallel_1",-36],
 PARAMETER["standard_parallel_2",-38],
 PARAMETER["latitude_of_origin",-37],
 PARAMETER["central_meridian",145],
 PARAMETER["false_easting",2500000],
 PARAMETER["false_northing",2500000],
 UNIT["Meter",1]]
PFI: String (10.0)
POSTCODE: String (4.0)
FEATURE_TYPE: String (6.0)
FEATURE_QUALITY_ID: String (20.0)
PFI_CREATED: Date (10.0)
UFI: Real (12.0)
UFI_CREATED: Date (10.0)
UFI_OLD: Real (12.0)

This gives you information about the number of features, the extent, the projection and the attributes of this layer.

Next, lets go ahead and convert this layer into a shapefile by issuing the following command:

$ ogr2ogr -t_srs EPSG:4326 postcode_polygon.shp vicgrid94/mif/lga_polygon/macedon\ ranges/VMADMIN/POSTCODE_POLYGON.mid POSTCODE_POLYGON

Note that we have also reprojected the layer to the WGS84 spatial reference system with the -t_srs ogr2ogr option.

The output of this command will look like the following:

Warning 6: Normalized/laundered field name: 'FEATURE_TYPE' to 'FEATURE_TY'
Warning 6: Normalized/laundered field name: 'FEATURE_QUALITY_ID' to 'FEATURE_QU'
Warning 6: Normalized/laundered field name: 'PFI_CREATED' to 'PFI_CREATE'
Warning 6: Normalized/laundered field name: 'UFI_CREATED' to 'UFI_CREATE'

This output indicates that some of the field names were truncated to fit into the constraint that attributes in shapefiles are only 10 characters long.

You will now have a set of files that make up the postcode_polygon.shp shapefile set. We can inspect them by issuing the following command:

$ ogrinfo -so postcode_polygon.shp postcode_polygon

The output will look similar to the output we saw above when we inspected the MapInfo file we converted from:

INFO: Open of `postcode_polygon.shp'
 using driver `ESRI Shapefile' successful.

Layer name: postcode_polygon
Geometry: Polygon
Feature Count: 26
Extent: (144.030296, -37.898156) - (145.101137, -36.888878)
Layer SRS WKT:
GEOGCS["GCS_WGS_1984",
 DATUM["WGS_1984",
 SPHEROID["WGS_84",6378137,298.257223563]],
 PRIMEM["Greenwich",0],
 UNIT["Degree",0.017453292519943295]]
PFI: String (10.0)
POSTCODE: String (4.0)
FEATURE_TY: String (6.0)
FEATURE_QU: String (20.0)
PFI_CREATE: Date (10.0)
UFI: Real (12.0)
UFI_CREATE: Date (10.0)
UFI_OLD: Real (12.0)

These files can now be loaded into your GeoNode instance via the normal uploader.

Visit the upload page in your GeoNode, drag and drop the files that composes the shapefile that you have generated using the GDAL ogr2ogr command (postcode_polygon.dbf, postcode_polygon.prj, postcode_polygon.shp, postcode_polygon.shx). Give the permissions as needed and then click the “Upload files” button.

[image: ../../../_images/upload_shapefile.png]

As soon as the import process completes, you will have the possibility to go straight to the layer info page (“Layer Info” button), or to edit the metadata for that layer (“Edit Metadata” button), or to manage the styles for that layer (“Manage Styles”).

[image: ../../../_images/layer_info_vector.png]

GDAL (Raster Data)

Now that we have seen how to convert vector layers into shapefiles using ogr2ogr, we will walk through the steps necessary to perform the same operation with Raster layers. For this example, we will work with Arc/Info Binary and ASCII Grid data and convert it into GeoTIFF format for use in GeoNode.

First, you need to download the sample data to work with it. You can do this by executing the following command:

$ wget http://84.33.2.26/geonode/sample_asc.tar

You will need to uncompress this file by executing this command:

$ tar -xvf sample_asc.tar

You will be left with the following files on your filesystem:

|-- batemans_ele
| |-- dblbnd.adf
| |-- hdr.adf
| |-- metadata.xml
| |-- prj.adf
| |-- sta.adf
| |-- w001001.adf
| |-- w001001x.adf
|-- batemans_elevation.asc

The file batemans_elevation.asc is an Arc/Info ASCII Grid file and the files in the batemans_ele directory are an Arc/Info Binary Grid file.

You can use the gdalinfo command to inspect both of these files by executing the following command:

$ gdalinfo batemans_elevation.asc

The output should look like the following:

Driver: AAIGrid/Arc/Info ASCII Grid
Files: batemans_elevation.asc
Size is 155, 142
Coordinate System is `'
Origin = (239681.000000000000000,6050551.000000000000000)
Pixel Size = (100.000000000000000,-100.000000000000000)
Corner Coordinates:
Upper Left (239681.000, 6050551.000)
Lower Left (239681.000, 6036351.000)
Upper Right (255181.000, 6050551.000)
Lower Right (255181.000, 6036351.000)
Center (247431.000, 6043451.000)
Band 1 Block=155x1 Type=Float32, ColorInterp=Undefined
 NoData Value=-9999

You can then inspect the batemans_ele files by executing the following command:

$ gdalinfo batemans_ele

And this should be the corresponding output:

Driver: AIG/Arc/Info Binary Grid
Files: batemans_ele
 batemans_ele/dblbnd.adf
 batemans_ele/hdr.adf
 batemans_ele/metadata.xml
 batemans_ele/prj.adf
 batemans_ele/sta.adf
 batemans_ele/w001001.adf
 batemans_ele/w001001x.adf
Size is 155, 142
Coordinate System is:
PROJCS["unnamed",
 GEOGCS["GDA94",
 DATUM["Geocentric_Datum_of_Australia_1994",
 SPHEROID["GRS 1980",6378137,298.257222101,
 AUTHORITY["EPSG","7019"]],
 TOWGS84[0,0,0,0,0,0,0],
 AUTHORITY["EPSG","6283"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4283"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",153],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",500000],
 PARAMETER["false_northing",10000000],
 UNIT["METERS",1]]
Origin = (239681.000000000000000,6050551.000000000000000)
Pixel Size = (100.000000000000000,-100.000000000000000)
Corner Coordinates:
Upper Left (239681.000, 6050551.000) (150d 7'28.35"E, 35d39'16.56"S)
Lower Left (239681.000, 6036351.000) (150d 7'11.78"E, 35d46'56.89"S)
Upper Right (255181.000, 6050551.000) (150d17'44.07"E, 35d39'30.83"S)
Lower Right (255181.000, 6036351.000) (150d17'28.49"E, 35d47'11.23"S)
Center (247431.000, 6043451.000) (150d12'28.17"E, 35d43'13.99"S)
Band 1 Block=256x4 Type=Float32, ColorInterp=Undefined
 Min=-62.102 Max=142.917
NoData Value=-3.4028234663852886e+38

You will notice that the batemans_elevation.asc file does not contain projection information while the batemans_ele file does. Because of this, lets use the batemans_ele files for this exercise and convert them to a GeoTiff for use in GeoNode. We will also reproject this file into WGS84 in the process. This can be accomplished with the following command.

$ gdalwarp -t_srs EPSG:4326 batemans_ele batemans_ele.tif

The output will show you the progress of the conversion and when it is complete, you will be left with a batemans_ele.tif file that you can upload to your GeoNode.

You can inspect this file with the gdalinfo command:

$ gdalinfo batemans_ele.tif

Which will produce the following output:

Driver: GTiff/GeoTIFF
Files: batemans_ele.tif
Size is 174, 130
Coordinate System is:
GEOGCS["WGS 84",
 DATUM["WGS_1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],
 AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4326"]]
Origin = (150.119938943722502,-35.654598806259330)
Pixel Size = (0.001011114155919,-0.001011114155919)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (150.1199389, -35.6545988) (150d 7'11.78"E, 35d39'16.56"S)
Lower Left (150.1199389, -35.7860436) (150d 7'11.78"E, 35d47' 9.76"S)
Upper Right (150.2958728, -35.6545988) (150d17'45.14"E, 35d39'16.56"S)
Lower Right (150.2958728, -35.7860436) (150d17'45.14"E, 35d47' 9.76"S)
Center (150.2079059, -35.7203212) (150d12'28.46"E, 35d43'13.16"S)
Band 1 Block=174x11 Type=Float32, ColorInterp=Gray

You can then follow the same steps we used above to upload the GeoTIFF file we created into the GeoNode, and you will see your layer displayed in the Layer Info page.

[image: ../../../_images/batemans_tif.png]

Now that you have seen how to convert layers with both OGR and GDAL, you can use these techniques to work with your own data and get it prepared for inclusion in your own GeoNode.

Implementing S3 Bucket for Static and Media Files

If you have access to an Amazon S3 bucket, using this resource for your site’s static and media files can improve your site’s performance. We’ll assume you have an account and can create new users and S3 buckets already. This tutorial will walk you through implementing your GeoNode instance to use an S3 bucket for static and media files.

Configuring S3 Bucket

Before proceeding, preserving the security and manageability of the system should be considered. Therefore, we’re going to suggest creating a new user account to have access to this S3 bucket. With the new username and password only being related to this one bucket, any compromise to the system will only affect this bucket. Additionally, creating a new user account just for the site will allow you to pass on the information to a new maintainer in the future.

Instructions

Creating Resources

	Create the S3 bucket [http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html]

	Create a new user: Go to AWS IAM [https://console.aws.amazon.com/iam/home?#users]. Select “Create new users” and follow the instructions, making sure you leave “Generate an access key for each User” selected.

	Download the user’s access keys (access key and secret access key). Go to the new user’s Security Credentials and click “Manage access keys”. Download the credentials for the access key that was created and put the information somewhere safe. You will not be able to download this information again.

	Retrieve the new user’s ARN (Amazon Resource Name). Go to the user’s Summary tab to get the information. For example: arn:aws:iam::123456789012:user/username

Adding Bucket Policy

Next, the bucket policy needs to be set. In the S3 management console [https://console.aws.amazon.com/s3/home] head to the bucket properties and add a new bucket policy with the information below. Use the name of the bucket you created for S3_BUCKET_NAME and the user’s ARN retrieved in the previous step for USER_ARN.

{
 "Statement": [
 {
 "Sid":"PublicReadForGetBucketObjects",
 "Effect":"Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action":["s3:GetObject"],
 "Resource":["arn:aws:s3:::S3_BUCKET_NAME/*"
]
 },
 {
 "Action": "s3:*",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::S3_BUCKET_NAME",
 "arn:aws:s3:::S3_BUCKET_NAME/*"
],
 "Principal": {
 "AWS": [
 "USER_ARN"
]
 }
 }
]
}

Applying CORS

Since assets are going to be served on the site from an external domain now (the S3 bucket), it needs to be configured with CORS. To do so, go to the S3 bucket’s Properties > Permissions > Add CORS Configuration and paste this in:

<CORSConfiguration>
 <CORSRule>
 <AllowedOrigin>*</AllowedOrigin>
 <AllowedMethod>GET</AllowedMethod>
 <MaxAgeSeconds>3000</MaxAgeSeconds>
 <AllowedHeader>Authorization</AllowedHeader>
 </CORSRule>
</CORSConfiguration>

Additional Users

If you wish to configure more users, just follow all the steps after creating the S3 bucket with additional users. Add the following to the S3 bucket policy in the Statement:

{
 "Action": "s3:ListBucket",
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::S3_BUCKET_NAME",
 "Principal": {
 "AWS": [
 "USER_ARN"
]
 }
}

Setting Environment Variables

GeoNode already has settings ready to be configured with the created S3 bucket. Simply set the following environment variables with the appropriate information gained from the steps above:

	S3_BUCKET_NAME, the name of what the bucket created in the first step.

	AWS_ACCESS_KEY_ID, the access key id downloaded earlier, e.g. AKIAIOSFODNN7EXAMPLE

	AWS_SECRET_ACCESS_KEY, the secret access key downloaded earlier, e.g. wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Static Files

In order to serve your static files through the S3 bucket, you’ll additionally need to set the environment variable S3_STATIC_ENABLED to True.

Media Files

In order to serve your media files through the S3 bucket, you’ll additionally need to set the environment variable S3_MEDIA_ENABLED to True.

Migrating an Existing Site’s Data

If you already have a GeoNode site running and want to change it so your data is served through an S3 bucket instead, you will need to move your previously existing data into the bucket. Moving your data is beyond the scope of this tutorial, but Amazon provides helpful tools for managing your bucket such as the AWS CLI tools.

Backup & Restore GeoNode - Data Migration

The admin command to backup and restore GeoNode, allows to extract consistently the GeoNode and GeoServer data models in a serializable meta-format which is being interpreted later by the restore procedure in order to exactly rebuild the whole structure,
according to the current instance version (which may also be different from the starting one).

In particular the tool helps developers and admins to correctly extract and serialize the following resources are on the storage and deserialize on the target GeoNode/GeoServer instance:

	GeoNode (Resource Base Model):

	Layers (both raster and vectors)

	Maps

	Documents

	People with Credentials

	Permissions

	Associated Styles

	Static data and templates

	GeoServer (Catalog):

	OWS Services configuration and limits

	Security model along with auth filters configuration, users and credentials

	Workspaces

	Stores (both DataStores and CoverageStores)

	Layers

	Styles

The tool exposes two GeoNode Management Commands, ‘backup’ and ‘restore’.

The commands allow to:

	Fully backup GeoNode data and fixtures on a zip archive

	Fully backup GeoServer configuration (physical datasets - tables, shapefiles, geotiffs)

	Fully restore GeoNode and GeoServer fixtures and catalog from the zip archive

	Migrate fixtures from old GeoNode models to the new one

The usage of those commands is quite easy and straight. It is possible to run the backup and restore commands from the GeoNode Admin panel also.

The first step is to ensure that everything is correctly configured and the requisites respected in order to successfully perform a backup and restore of GeoNode.

Warning

It is worth notice that this functionality requires the latest GeoServer Extension [https://build.geo-solutions.it/geonode/geoserver/latest//] (2.9.x or greater) for GeoNode in order to correctly work.

Note

GeoServer full documentation is also available here GeoServer Docs [http://docs.geoserver.org/latest/en/user/community/backuprestore/index.html]

Requisites and Setup

Before running a GeoNode backup / restore, it is necessary to ensure everything is correctly configured and setup.

Settings

Accordingly to the admin needs, the file settings.ini must be tuned up a bit before running a backup / restore.

It can be found at geonode/base/management/commands/settings.ini and by default it contains the following properties:

[database]
pgdump = pg_dump
pgrestore = pg_restore

[geoserver]
datadir = /opt/gs_data_dir
dumpvectordata = yes
dumprasterdata = yes

[fixtures]
#NOTE: Order is important
apps = people,account,avatar.avatar,base.backup,base.license,base.topiccategory,base.region,base.resourcebase,base.contactrole,base.link,base.restrictioncodetype,base.spatialrepresentationtype,guardian.userobjectpermission,guardian.groupobjectpermission,layers.uploadsession,layers.style,layers.layer,layers.attribute,layers.layerfile,maps.map,maps.maplayer,maps.mapsnapshot,documents.document,taggit

dumps = people,accounts,avatars,backups,licenses,topiccategories,regions,resourcebases,contactroles,links,restrictioncodetypes,spatialrepresentationtypes,useropermissions,groupopermissions,uploadsessions,styles,layers,attributes,layerfiles,maps,maplayers,mapsnapshots,documents,tags

Migrate from GN 2.0 to GN 2.4
#migrations = base.resourcebase,layers.layer,layers.attribute,maps.map,maps.maplayer
#manglers = gn20_to_24.ResourceBaseMangler,gn20_to_24.LayerMangler,gn20_to_24.LayerAttributesMangler,gn20_to_24.MapMangler,gn20_to_24.MapLayersMangler

Migrate from GN 2.4 to GN 2.4
migrations = base.resourcebase,layers.layer,layers.attribute,maps.map,maps.maplayer
manglers = gn24_to_24.ResourceBaseMangler,gn24_to_24.LayerMangler,gn24_to_24.LayerAttributesMangler,gn24_to_24.DefaultMangler,gn24_to_24.MapLayersMangler

The settings.ini has few different sections that must carefully checked before running a backup / restore command.

Settings: [database] Section

[database]
pgdump = pg_dump
pgrestore = pg_restore

This section is quite simple. It contains only two (2) properties:

	pgdump; the path of the pg_dump local command.

	pgrestore; the path of the pg_restore local command.

Warning

Those properties are ignored in case GeoNode is not configured to use a DataBase as backend (see settings.py and local_settings.py sections)

Note

Database connection settings (both for GeoNode and GeoServer) will be taken from settings.py and local_settings.py configuration files. Be sure they are correctly configured (on the target GeoNode instance too) and the DataBase server is accessible while executing a backup / restore command.

Settings: [geoserver] Section

[geoserver]
datadir = /opt/gs_data_dir
dumpvectordata = yes
dumprasterdata = yes

This section allows to enable / disable a full data backup / restore of GeoServer.

	datadir; the full path of GeoServer Data Dir, by default /opt/gs_data_dir. The path must be accessible and fully writable by the geonode and / or httpd server users when executing a backup / restore command.

	dumpvectordata; a boolean allowing to disable dump of vectorial data from GeoServer (shapefiles or DB tables). If false (or no) vectorial data won’t be stored / re-stored.

	dumprasterdata; a boolean allowing to disable dump of raster data from GeoServer (geotiffs). If false (or no) raster data won’t be stored / re-stored.

Warning

Enabling those options requires that the GeoServer Data Dir is accessible and fully writable by the geonode and / or httpd server users when executing a backup / restore command.

Settings: [fixtures] Section

[fixtures]
#NOTE: Order is important
apps = people,account,avatar.avatar,base.backup,base.license,base.topiccategory,base.region,base.resourcebase,base.contactrole,base.link,base.restrictioncodetype,base.spatialrepresentationtype,guardian.userobjectpermission,guardian.groupobjectpermission,layers.uploadsession,layers.style,layers.layer,layers.attribute,layers.layerfile,maps.map,maps.maplayer,maps.mapsnapshot,documents.document,taggit

dumps = people,accounts,avatars,backups,licenses,topiccategories,regions,resourcebases,contactroles,links,restrictioncodetypes,spatialrepresentationtypes,useropermissions,groupopermissions,uploadsessions,styles,layers,attributes,layerfiles,maps,maplayers,mapsnapshots,documents,tags

Migrate from GN 2.0 to GN 2.4
#migrations = base.resourcebase,layers.layer,layers.attribute,maps.map,maps.maplayer
#manglers = gn20_to_24.ResourceBaseMangler,gn20_to_24.LayerMangler,gn20_to_24.LayerAttributesMangler,gn20_to_24.MapMangler,gn20_to_24.MapLayersMangler

Migrate from GN 2.4 to GN 2.4
migrations = base.resourcebase,layers.layer,layers.attribute,maps.map,maps.maplayer
manglers = gn24_to_24.ResourceBaseMangler,gn24_to_24.LayerMangler,gn24_to_24.LayerAttributesMangler,gn24_to_24.DefaultMangler,gn24_to_24.MapLayersMangler

This section is the most complex one. Usually you don’t need to modify it. Only an expert user who knows Python and GeoNode model structure should modify this section.

What its properties mean:

	apps; this is an ordered list of GeoNode Object Models (or DJango apps). The backup / restore procedure will dump / restore the fixtures in a portable format.

	dumps; this is the list of files associated to the Django apps. The order must be the same of the property above. Each name represents the file name where to dump / read the single app fixture.

	migrations; some fixtures must be enriched or updated before restored on the target model. This section allows to associate specific manglers to the fixtures. Manglers are simple Python classes which simply converts some attributes to other formats.

	manglers; the Python mangler class to execute accordingly to the fixture indicated by the migrations property. Manglers classes must be located into he geonode/base/management/commands/lib` folder.

Note

Manglers must be used when migrating from a GeoNode version to another one, i.e. where the original model differs from the target one. With the default distribution are provided manglers to convert from GeoNode 2.0 to GeoNode 2.4. Other versions may require other manglers or updates to the default ones.

Mangler Example

As specified on the section above, manglers are Python classes allowing developers to enrich / modify a fixture in order to fit the target GeoNode model.

The structure of a mangler is quite simple. Lets examine the ResourceBaseMangler of the gn_20_to_24 library, a mangler used to convert a GeoNode 2.0 Resource Base to a GeoNode 2.4 one.

class ResourceBaseMangler(DefaultMangler):

 def default(self, obj):
 # Let the base class default method raise the TypeError
 return json.JSONEncoder.default(self, obj)

 def decode(self, json_string):
 """
 json_string is basically a string that you give to json.loads method
 """
 default_obj = super(ResourceBaseMangler, self).decode(json_string)

 # manipulate your object any way you want
 #
 upload_sessions = []
 for obj in default_obj:
 obj['pk'] = obj['pk'] + self.basepk

 obj['fields']['featured'] = False
 obj['fields']['rating'] = 0
 obj['fields']['popular_count'] = 0
 obj['fields']['share_count'] = 0
 obj['fields']['is_published'] = True
 obj['fields']['thumbnail_url'] = ''

 if 'distribution_url' in obj['fields']:
 if not obj['fields']['distribution_url'] is None and 'layers' in obj['fields']['distribution_url']:

 obj['fields']['polymorphic_ctype'] = ["layers", "layer"]

 try:
 p = '(?P<protocol>http.*://)?(?P<host>[^:/]+).?(?P<port>[0-9]*)(?P<details_url>.*)'
 m = re.search(p, obj['fields']['distribution_url'])
 if 'http' in m.group('protocol'):
 obj['fields']['detail_url'] = self.siteurl + m.group('details_url')
 else:
 obj['fields']['detail_url'] = self.siteurl + obj['fields']['distribution_url']
 except:
 obj['fields']['detail_url'] = obj['fields']['distribution_url']

 else:
 obj['fields']['polymorphic_ctype'] = ["maps", "map"]

 try:
 obj['fields'].pop("distribution_description", None)
 except:
 pass

 try:
 obj['fields'].pop("distribution_url", None)
 except:
 pass

 try:
 obj['fields'].pop("thumbnail", None)
 except:
 pass

 upload_sessions.append(self.add_upload_session(obj['pk'], obj['fields']['owner']))

 default_obj.extend(upload_sessions)

 return default_obj

 def add_upload_session(self, pk, owner):
 obj = dict()

 obj['pk'] = pk
 obj['model'] = 'layers.uploadsession'

 obj['fields'] = dict()
 obj['fields']['user'] = owner
 obj['fields']['traceback'] = None
 obj['fields']['context'] = None
 obj['fields']['error'] = None
 obj['fields']['processed'] = True
 obj['fields']['date'] = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")

 return obj

	It extends the DefaultMangler.

The DefaultMangler is a basic class implementing a JSONDecoder

class DefaultMangler(json.JSONDecoder):

 def __init__(self, *args, **kwargs):

 self.basepk = kwargs.get('basepk', -1)
 self.owner = kwargs.get('owner', 'admin')
 self.datastore = kwargs.get('datastore', '')
 self.siteurl = kwargs.get('siteurl', '')

 super(DefaultMangler, self).__init__(*args)

 def default(self, obj):
 # Let the base class default method raise the TypeError
 return json.JSONEncoder.default(self, obj)

 def decode(self, json_string):
 """
 json_string is basicly string that you give to json.loads method
 """
 default_obj = super(DefaultMangler, self).decode(json_string)

 # manipulate your object any way you want
 #

 return default_obj

By default this mangler unmarshalls GeoNode Object Model from JSON and returns it to the management command.

The GeoNode Object Model can be modified while decoding by extending the def decode(self, json_string) method.

	json_string; actual parameter contains the JSON representation of the fixture.

	default_obj; is the Python object decoded from the JSON representation of the fixture.

	It overrides the def decode(self, json_string) method.

The decoded Python object can be enriched / modified before returning it to the management command.

From Command Line

The following sections shows instructions on how to perform backup / restore from the command line by using the Admin Management Commands.

In order to obtain a basic user guide for the management command from the command line, just run

python manage.py backup --help

python manage.py restore --help

--help will provide the list of available command line options with a brief description.

It is worth notice that both commands allows the following option

python manage.py restore

-f, --force # Forces the execution without asking for confirmation
-c CONFIG, --config=CONFIG # Use custom settings.ini configuration file
--geoserver-data-dir=GS_DATA_DIR # Geoserver data directory
--dump-geoserver-vector-data # Dump geoserver vector data
--no-geoserver-vector-data # Don't dump geoserver vector data
--dump-geoserver-raster-data # Dump geoserver raster data
--no-geoserver-raster-data # Don't dump geoserver raster data
--skip-geoserver # Skips geoserver backup
--backup-file=BACKUP_FILE # Backup archive containing GeoNode data to restore.
--backup-dir=BACKUP_DIR # Backup directory containing GeoNode data to restore.

python manage.py backup

-f, --force # Forces the execution without asking for confirmation
-c CONFIG, --config=CONFIG # Use custom settings.ini configuration file
--geoserver-data-dir=GS_DATA_DIR # Geoserver data directory
--dump-geoserver-vector-data # Dump geoserver vector data
--no-geoserver-vector-data # Don't dump geoserver vector data
--dump-geoserver-raster-data # Dump geoserver raster data
--no-geoserver-raster-data # Don't dump geoserver raster data
--skip-geoserver # Skips geoserver backup
--backup-dir=BACKUP_DIR # Destination folder where to store the backup archive.
 # It must be writable.

Which will instruct the management command to not ask for confirmation from the user. It enables basically a non-interactive mode.

Backup

In order to perform a backup just run the command:

python manage.py backup --backup-dir=<target_bk_folder_path>

The management command will automatically generate a .zip archive file on the target folder in case of success.

Restore

In order to perform a restore just run the command:

python manage.py restore --backup-file=<target_restore_file_path>

Restore requires the path of one .zip archive containing the backup fixtures.

Warning

The Restore will overwrite the whole target GeoNode / GeoServer users, catalog and database, so be very careful.

From GeoNode Admin GUI

	Login as admin and click on Admin menu option

[image: ../../../_images/backup001.png]

	Look for Backups on Base section

[image: ../../../_images/backup002.png]

	Add a new backup

[image: ../../../_images/backup003.png]

	Insert a Name and a Description; also you must provide the Base folder where the backups will be stored

[image: ../../../_images/backup004.png]

Warning

the Base folder must be fully writable from both geonode and httpd server system users.

	Click on save and go back to the Backups list main section

[image: ../../../_images/backup005.png]

	The new Backup is not ready until you perform the Run Backup action; in order to do that select the backup to run and from the Action menu select Run the Backup

[image: ../../../_images/backup006.png]

Note

A Backup is not ready until the Location attribute is filled

[image: ../../../_images/backup007.png]

	Click on Yes, I'msure on the next section in order to perform the Backup

[image: ../../../_images/backup008.png]

Note

The server page will wait for the Backup to finish (or fail).

	The server page will wait for the Backup to finish (or fail); at the end of the Backup you will be redirected to the main list page.

[image: ../../../_images/backup009.png]

Note

At a successfull run, the Location attribute is filled with the full path of the backup archive

[image: ../../../_images/backup010.png]

Warning

A Backup can always being updated later and / or executed again. The Location attribute will be updated accorndingly.

	Execute as many Backups as you want; they can all point to the same Base Folder, the new backups will generate new unique archive files any time.

[image: ../../../_images/backup011.png]

	In order to Restore a zip archive, just select the instance to restore from the list and from the Action menu lunch the Run the Restore option.

[image: ../../../_images/backup012.png]

	Click on Yes, I'msure on the next section in order to perform the Backup

[image: ../../../_images/backup008.png]

Note

The server page will wait for the Backup to finish (or fail).

Warning

The following target GeoNode folders must be fully writable from both geonode and httpd server system users

	geoserver_data_dir/data

	geonode / settings.MEDIA_ROOT

	geonode / settings.STATIC_ROOT

	geonode / settings.STATICFILES_DIRS

	geonode / settings.TEMPLATE_DIRS

	geonode / settings.LOCALE_PATHS

Warning

The Restore will overwrite the whole target GeoNode / GeoServer users, catalog and database, so be very careful.

GeoNode Monitoring

Contents

	GeoNode Monitoring

	Internal Monitoring Application (geonode.contrib.monitoring)

	Base concepts and objects

	Installation

	Enable the collect_metrics cron

	cront job

	supervisor

	Configuration

	Usage

	Dashboard

	Top bar and indicators

	Software Performance

	Hartware Performance

	Errors

	Alerts

	Integration with GeoHealthCheck

Internal Monitoring Application (geonode.contrib.monitoring)

Note

This application requires MaxMind’s GeoIP database file.

Base concepts and objects

GeoNode monitoring is a configurable monitoring application, that allows internal resources and hardware resources monitoring for GeoNode installations, including GeoServer deployments.

Monitoring application is configurable, so different deployment scenarios could be handled - from GeoNode and GeoServer running on single host, through distributed installations, where GeoServer is deployed to several hosts.

Monitoring application uses three base entity classes to describe elements of reality: Host, Service Type and Service.

	Host is an object describing physical (or virtual) instance of operating system on which GN or GS is running. This object exists only for grouping and is not used directly by monitoring.

	Service Type is a description of kind of Service. Depending on service type, different metrics are stored, and different data collection mechanisms are used. Additionally, for system monitoring, it’s not conducted directly, but with GeoNode or GeoServer as monitoring agent. That means, no additional software installation is needed to monitor system, but also, hosts that don’t have GeoNode or GeoServer installed, won’t be monitored. There are four service types:

	hostgeonode, hostgeoserver - those types describe system monitoring probes that are running with GeoNode or GeoServer respectively,

	geonode, geoserver - application-level probes that monitor one specific GeoNode or GeoServer instance.

	Service describes one specific instance of probe, either host-level or application-level. Service references Host and Service Type. Each service must be named, and name should be system-wide unique.

As mentioned above, each Service Type keeps a set of metrics, specific for that type. A metric is a description of measured value, for example: number of requests, response size or time, cpu usage, free memory etc. Each Service Type has it’s own metrics set. Metric value may be either value counter (like country of user), numeric counter (like number of requests) or rate (like bytes in/out on network interface).

Besides metric data, monitoring will also store exception information for exceptions that were captured during request handling.

Data are collected periodically (at most every 1 minute), aggregated and stored in aggregated form. User can see data from predefined relative periods (last minute, last 10 minutes, last hour, last day, last week).

User can enable and configure automated checks, which will be run after each collection/aggregation cycle, and will emit notifications if metric values in that run exceed configured thresholds.

Installation

Warning

This plugin requires a Potgresql DB backend enabled

	ensure UTC Timezone to your DB

psql -c 'set timezone=UTC;'

	enable MONITORING_ENABLED flag and ensure that following code is in your settings:

CORS_ORIGIN_ALLOW_ALL = True

MONITORING_ENABLED = True
add following lines to your local settings to enable monitoring
if MONITORING_ENABLED:
 INSTALLED_APPS += ('geonode.contrib.monitoring',)
 MIDDLEWARE_CLASSES += ('geonode.contrib.monitoring.middleware.MonitoringMiddleware',)
 MONITORING_CONFIG = None
 MONITORING_HOST_NAME = 'localhost'
 MONITORING_SERVICE_NAME = 'local-geonode'
 MONITORING_HOST_NAME = SITE_HOST_NAME

INSTALLED_APPS += ('geonode.contrib.ows_api',)

GEOIP_PATH = os.path.join(os.path.dirname(__file__), '..', 'GeoLiteCity.dat')

	run DJANGO_SETTINGS_MODULE=<project_name>.settings python manage.py migrate monitoring to apply db schema changes and insert initial data

	run DJANGO_SETTINGS_MODULE=<project_name>.settings python manage.py updategeoip to fetch MaxMind’s GeoIP database file. It will be written to path specified by GEOIP_PATH setting.

	run DJANGO_SETTINGS_MODULE=<project_name>.settings python manage.py collect_metrics -n -t xml -f --since='<yyyy-mm-dd HH:mm:ss>' to create first metrics.

Warning

Replace <yyyy-mm-dd HH:mm:ss> with a real date time to start with.

	update Sites from admin; make sure it contains a correct host name

	do not forget to enable notifications and configure them from user profile

Enable the collect_metrics cron

Warning

Here below you will find instructions for a Ubuntu 16.04 based machine, but the procedure is similar for other OSs. The basic concept is that you must allow the system to run the command DJANGO_SETTINGS_MODULE=<project_name>.settings python manage.py collect_metrics -n -t xml (without -f and since) every minute.

cront job

sudo crontab -e

Add the following line at the bottom; this will run the supervisor command every minute
* * * * * supervisorctl start geonode-monitoring

supervisor

sudo apt install supervisor
sudo service supervisor restart
sudo update-rc.d supervisor enable

sudo vim /etc/supervisor/conf.d/geonode-monitoring.conf

[program:geonode-monitoring]
command=<path_to_virtualenv>/geonode/bin/python -W ignore <path_to_your_project>/geonode/manage.py collect_metrics -n -t xml
directory = <path_to_your_project>
environment=DJANGO_SETTINGS_MODULE="<your_project>.settings"
user=<your_user>
numproc=1
stdout_logfile=/var/log/geonode-celery.log
stderr_logfile=/var/log/geonode-celery.log
autostart = true
autorestart = true
startsecs = 10
stopwaitsecs = 600
priority = 998

sudo service supervisor restart
sudo supervisorctl start geonode-monitoring
sudo supervisorctl status geonode-monitoring

sudo vim /etc/hosts

127.0.0.1 localhost
<public_ip> <your_host.your_domain> <your_host>

The following lines are desirable for IPv6 capable hosts

Configuration

	In order to have working monitoring, at least Service should be configured. Let’s assume following deployment scenario:

	
	there’s one machine, geo01

	geo01 hosts both GeoNode and GeoServer (including PostgreSQL).

	applications are served with nginx+uwsgi, on port 80, but they are reachable on localhost address.

	GeoServer is served from /geoserver/ path

	GeoNode is served from / path

Here’s step-by-step instruction how to create monitoring setup for deployment scenario:

	Log in as admin, and go to admin section:

[image: go to admin section]

	Go to monitoring section (or type /admin/monitoring/ as a path in URL):

[image: go to admin/monitoring section]

	Go to Hosts:

[image: go to admin/monitoring/hosts section]

	Click on Add host +:

[image: add host]

	Enter following information:
* host: localhost
* ip: 127.0.0.1
Note, that host value is arbitrary. You can enter other name if you like.
Don’t forget to save.

[image: added host]

	Go to Services:

[image: go to admin/monitoring/services section]

	Click on Add service +:

[image: add service]

	Enter following information:

	name: local-geonode

	host: localhost

	service type: geonode

[image: add geonode service]

	Add another Service Enter following information:

	name: local-system-geonode

	host: localhost

	service type: hostgeonode

	url: http://localhost/ (should point to GeoNode home page)

[image: add hostgeonode service]

	Add another Service and enter following information:

	name: local-geoserver

	host: localhost

	service type: geoserver

	url: http://localhost/geoserver/ (should point to GeoServer home page)

[image: add geoserver service]
To summarize, following entries should be created in admin/monitoring:

	Host: localhost, with ip: 127.0.0.1

	
	Service: local-geonode:

	
	host localhost

	type geonode

	
	Service: local-geoserver:

	
	url http://localhost/geoserver/

	host localhost

	type geoserver

	
	Service: local-system-geonode

	
	url http://localhost/

	host localhost

	type hostgeonode

Usage

Monitoring interface is available for superusers only. It’s available in profile menu:

[image: monitoring link]

Dashboard

Main view offers overview of recent situation in GeoNode deployment.

[image: monitoring dashboard]

Top bar and indicators

[image: indicators in ok state]

With top bar buttons User can:

	go back from nested interface elements (charts, alerts, errors)

	select time window from which data will be aggregated and shown (last 10 minutes, last 1 hour, last day or last week from now)

	see what’s currently used time window

	enable/disable autorefresh

Below there are four main health indicators:

	
	aggregated Health Check information.

	This element will be:

	green if there is no alerts nor errors

	yellow if there are alerts

	red if there are errors

	Uptime that shows GeoNode’s system uptime.

	Alerts shows number of notifications from defined checks. When clicked, Alerts box will show detailed information . See Notifications description for details.

	Errors - shows how many errors were captured during request processing. When clicked, Errors box will show detailed list of captured errors. See Errros description for details.

[image: indicators in ok state]

Indicators in error state

Software Performance

Software Performance view shows GeoServer web service statistics, for all requests monitored and detailed, OWS-specific, per service type (WMS, WFS, OCS etc).

[image: ../../../_images/dashboard-sw-performance.png]
Clicking on

[image: ../../../_images/dashboard-sw-performance-charts-button.png]
will show charts with data history for overall performance and per-OWS performance:

[image: ../../../_images/dashboard-sw-performance-chart.png]

Hartware Performance

Hardware performance box shows hardware usage statistics for selected host (monitored with any of hostgeonode or hostgeoserver type Service): % of CPU usage and average memory consumption. User can select from which host data will be presented.

[image: ../../../_images/dashboard-hw-performance.png]
Clicking on

[image: ../../../_images/dashboard-hw-performance-charts-button.png]
will show charts with data history for selected host and time period

[image: ../../../_images/dashboard-hw-performance-charts.png]

Errors

Errors view will show list of captured errors in GeoNode and GeoServer. List contents is displayed for selected time window.

[image: ../../../_images/dashboard-errors-list.png]

	For each error, details are available:

	
	error class, message and stack trace

	basic request context (IP, path, user agent)

[image: ../../../_images/dashboard-error-details.png]

Alerts

An alert is a descriptive information on situation when observed metric contains values outside allowed range (for example, response time is above 30 seconds, or no requests were served within last 30 minutes). Alerts are generated by notifications mechanism described below.

Alerts view will show list of alerts for current moment (alerts that were generated in past are not displayed here):

[image: ../../../_images/monitoring-alerts.png]
Each alert contains more descriptive information what is wrong:

[image: ../../../_images/monitoring-alerts-unfolded.png]

Notifications

Notification mechanism (not to be confused with notifications application in GeoNode) is a way to inform selected users about situations, where collected metric data would indicate a problem with deployment. Notifications are accessible from Alerts view:

[image: ../../../_images/monitoring-alerts-notification-link.png]
There can be several notification configurations available.

[image: ../../../_images/dashboard-notifications-list.png]
Each notification configuration contains two main elements:

	list of email addressess which should be notified when alert is generated

	list of checks (at least one check must be in invalid state to generate alert)

[image: ../../../_images/dashboard-notifications-config.png]
User can add arbitrary number of emails. Email address doesn’t need to point to user registered in GeoNode instance. If email provided doesn’t belong to any of users, alert will be send as a regular email. If email provided can be associated with specific user, notifications application (and thus, notification settings for that user) will be used to send alert.

Integration with GeoHealthCheck

GeoNode can also be easily monitored with external tools, like GeoHealthCheck [http://geohealthcheck.org/]. See Documentation on adding resources [http://docs.geohealthcheck.org/en/latest/admin.html#adding-resources] for details.

Use datastore shards in GeoNode

Many organizations have hundreds of layers uploaded to GeoNode. In such a case
using the default GeoNode configuration, with just one PostGIS database and one
GeoServer PostGIS store for all of the layers has several limitations, such as:

	
	Layer upload and creation time become very large

	Layer upload and creation time tends to become very large when the PostGIS
database starts containing many layers. We have seen cases where even 4/5
minutes were needed for uploading a small sized shapefile).
This issue is caused by the actual implementation of the PostgreSQL JDBC driver and
has been reported in details in GeoServer bug GEOS-7533:
https://osgeo-org.atlassian.net/browse/GEOS-7533

	
	Large backups

	When data are not edited in GeoNode, it is easier to backup smaller
PostgreSQL databases rather than a big one, where only a few tables have
been changed since the last backup. When using a single database for all
of the uploads this is not possible

These problems can be tackled using the Datastore Shards GeoNode contrib module,
which automatically creates new shards when some defined conditions changes.

How to use the datastore_shards module

As a first thing, add the module in the INSTALLED_APPS section of the settings
file:

INSTALLED_APPS = (
 ...,
 'geonode.contrib.datastore_shards',
 ...
)

Here is a typical extract of the settings that must be used for GeoNode to use
the datatabase shards module:

SHARD DATABASES SETTINGS
SHARD_STRATEGY may be yearly, monthly, layercount
SHARD_STRATEGY = 'layercount'
SHARD_LAYER_COUNT = 100
SHARD_PREFIX = 'wm_'
SHARD_SUFFIX = ''
DATASTORE_URL = 'postgis://user:password@localhost:5432/data'

Now syncronize the module models with the database:

python manage.py migrate datastore_shards

Now you are set and datastore shards will be used as soon as GeoNode is restarted.
The datastore_shards application will automatically create a new shard whenever it
is needed.

Note

The PostrgreSQL ROLE which is used (user in DATASTORE_URL) must have CREATEDB option assigned in order to be able to create the PostgreSQL shards.

Database shards settings

SHARD_STRATEGY

This setting can currently be set to ‘yearly’, ‘monthly’, ‘layercount’:

	
	yearly

	a database shard is created and used each year.
PostgreSQL database and GeoServer
store name is in the form: prefix_YYYY_suffix

	
	monthly

	a database shard is created and used each month.
PostgreSQL database and GeoServer
store name is in the form: prefix_YYYYMM_suffix

	
	layercount

	a database shard is created when previous shard reaches a certain number
of layers (which is set by the SHARD_LAYER_COUNT setting).
PostgreSQL database and GeoServer store name is in the form:
prefix_01234_suffix. 01234 is a progressive number starting from 0.

SHARD_PREFIX and SHARD_SUFFIX

When these settings are used, a prefix and a suffix is appended to the name of the
shard.

For example, if SHARD_PREFIX = ‘foo’ and SHARD_SUFFIX = ‘bar’, when using
a SHARD_STRATEGY set to ‘yearly’, the shard for 2017 will be named
foo_2017_bar.

SHARD_LAYER_COUNT

This setting is used when SHARD_STRATEGY is set to “layercount”, and it represents
the maximum number a shard can contain before next shard is created and used.

Here is how it looks GeoServer when using a SHARD_STRATEGY set to “layercount”
and SHARD_LAYER_COUNT set to 3:

[image: ../../../_images/shards_001.png]

As you can easily see a GeoServer PostGIS store is created every
time the store contains three layers. Each store links to a different PostGIS
database.

Asynchronous signals handling

Asynchronous signals handling is a part of GeoNode scalabilty architecture. It allows to offload post-processing tasks from main web application process, also to integrate closely with GeoServer.

In this setup GeoNode produces events (small messages with serialized configuration) that are queued by external broker (AMQP broker, prefferably RabbitMQ), and later, are consumed (processed) by separate worker process. Additionally, GeoServer can be attached and used as producer as well, so two-way data synchronization between GeoNode and GeoServer can be established.

Note

Default configuration (in-memory queue) doesn’t require AMQP broker, and will process signals synchronously. Also, default configuration won’t allow two-way synchronization with GeoServer, even if GS is configured to work with external broker.

Async signals handling components

GeoNode

GeoNode can be switched to asynchronous signals processing by specifying ASYNC_SIGNALS_BROKER_URL setting in settings. See GeoNode settings. This setting is consumed by kombu library [http://kombu.readthedocs.io/]. You can set type of transport with connection details (credentials, host), for example: amqp://localhost/ will connect to AMQP broker (RabbitMQ) running locally, without any authentication.

Note

while this is easiest to use asynchronous signals handling, it is not recommended setup due to security issues.

GeoServer (optional)

See GeoServer documentation for Notification module [http://docs.geoserver.org/stable/en/user/community/notification/index.html].

RabbitMQ (AMQP broker)

Asynchronous signals infrastructure can be used with different protocols (supported by Kombu library), but AMQP with RabbitMQ broker is recommended.

Install and run RabbitMQ instance:

sudo apt-get install rabbitmq-server
sudo service rabbitmq-server start

Additional information about RabbitMQ configuration is available in Documentation [https://www.rabbitmq.com/configure.html].

Consumer process

To handle events produced by GeoNode and GeoServer, a receiver, consumer process is needed. GeoNode provides runmessaging django command. This will start long-running process, which will handle incoming messages. For production deployments, it should be configured with process managers like supervisord or runit.

Following is sample configuration for supervisord:

[program:geonode-runmessaging]
command=/bin/bash -c "(source /path/to/virtualenv/bin/activate && django-admin.py runmessaging --autoscale 2,1 --loglevel DEBUG)"
directory = # /path/to/rundir
environment=DJANGO_SETTINGS_MODULE="geonode.local_settings"
user=geonode
numproc=1
stdout_logfile=/path/to/log/output.log
stderr_logfile=/path/to/log/output.log
autostart = true
autorestart = true
startsecs = 10
stopwaitsecs = 600
priority = 998

This file is also available in scripts/misc/runmessaging.supervisord.conf file in GeoNode repository.

To use it, you should have supervisord installed and configured:

sudo apt-get install supervisor
sudo supervisor start
vi /etc/supervisor/conf.d/runmessaging.supervisord.conf # adjust paths and variables.
sudo supervisorctl reload

Notes

Technical details and motivation is described in GNIP [https://github.com/GeoNode/geonode/issues/2889].

GeoNode Social Accounts

Contents

	GeoNode Social Accounts

	Allow GeoNode to Login throguh Social Accounts (Facebook and Linkedin)

	Base concepts and objects

	Installation

	Configuration

	Usage

	LinkedIn Application

	Facebook Application

	Login by using Existing Accounts on GeoNode

Allow GeoNode to Login throguh Social Accounts (Facebook and Linkedin)

Base concepts and objects

In order to harmonize the various authentication flows between local accounts and remote social accounts, the whole user registration and authentication codebase has been refactored.

Major changes:

	geonode-user-accounts [https://github.com/GeoNode/geonode-user-accounts] has been retired and is not used anymore. This app was only capable of managing local accounts;

	django-allauth [https://github.com/pennersr/django-allauth] has been integrated as a dependency of geonode. It provides a solution for managing both local and remote user accounts. It is now used for dealing with most user registration and auth flows;

	django-invitations [https://github.com/bee-keeper/django-invitations] has also been integrated as a dependency of geonode and is used for managing invitations to new users. This functionality was previously provided by geonode-user-accounts;

	django-allauth [http://django-allauth.readthedocs.io/en/latest/] has been extended in order to provide the following additional features:

	Automatically registering an e-mail with a user when the e-mail is used to connect to a social account;

	Automatically extract information from the user’s social account and use that to enhance the user’s profile fields on geonode. This was implemented in a pluggable way, allowing custom installs to configure it for other providers;

	Allow approval of new registrations by staff members before allowing new users to login. This functionality was previously provided by geonode-user-accounts.

	There are now extra sections on the user’s profile to manage connected social accounts and e-mail accounts

[image: ../../../_images/001_screenshot.png]

	When properly configured, the login and register pages now display the possibility to login with social accounts

[image: ../../../_images/002_screenshot.png]

Installation

	Install the new allauth plugin and remove any of the old dependencies

pip install -r requirements.txt --upgrade
pip install -e . --upgrade --no-cache
pip uninstall geonode-user-accounts -y
pip uninstall django-user-accounts -y

	ensure sure the DJango model is updated and the templates updated to the static folder

DJANGO_SETTINGS_MODULE=geonode.local_settings python -W ignore manage.py makemigrations
DJANGO_SETTINGS_MODULE=geonode.local_settings python -W ignore manage.py migrate
DJANGO_SETTINGS_MODULE=geonode.local_settings python -W ignore manage.py collectstatic --noinput

	ensure that Social Providers are enabled in your settings:

prevent signing up by default
ACCOUNT_OPEN_SIGNUP = True
ACCOUNT_EMAIL_REQUIRED = True
ACCOUNT_EMAIL_VERIFICATION = 'optional'
ACCOUNT_EMAIL_CONFIRMATION_EMAIL = True
ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = True
ACCOUNT_CONFIRM_EMAIL_ON_GET = True
ACCOUNT_APPROVAL_REQUIRED = True

SOCIALACCOUNT_ADAPTER = 'geonode.people.adapters.SocialAccountAdapter'

SOCIALACCOUNT_AUTO_SIGNUP = False

INSTALLED_APPS += (
 'allauth.socialaccount.providers.linkedin_oauth2',
 'allauth.socialaccount.providers.facebook',
)

SOCIALACCOUNT_PROVIDERS = {
 'linkedin_oauth2': {
 'SCOPE': [
 'r_emailaddress',
 'r_basicprofile',
],
 'PROFILE_FIELDS': [
 'emailAddress',
 'firstName',
 'headline',
 'id',
 'industry',
 'lastName',
 'pictureUrl',
 'positions',
 'publicProfileUrl',
 'location',
 'specialties',
 'summary',
]
 },
 'facebook': {
 'METHOD': 'oauth2',
 'SCOPE': [
 'email',
 'public_profile',
],
 'FIELDS': [
 'id',
 'email',
 'name',
 'first_name',
 'last_name',
 'verified',
 'locale',
 'timezone',
 'link',
 'gender',
]
 },
}

Comment out this in case you wont to diable Social login
SOCIALACCOUNT_PROFILE_EXTRACTORS = {
 "facebook": "geonode.people.profileextractors.FacebookExtractor",
 "linkedin_oauth2": "geonode.people.profileextractors.LinkedInExtractor",
}

Configuration

	Go to GeoNode/Django Admin Dashboard and add the Social Apps you want to configure:

admin/socialaccount/socialapp/

[image: go to admin section]

	Linkedin

[image: Linkedin]

	Facebook

[image: Facebook]

Warning

Make sure to add the sites you want to enable.

Usage

You need first to create and configure OAuth2 Applications on your Social Providers.

This will require a persoanl or business account, which can access to the developers sections of LinkedIn and Facebook and create and configure new Applications.

That account won’t be visibile to the GeoNode users. This is needed only to generate OAuth2 Client ID and Client Secret Authorization Keys.

In the following sections we will see in details how to configure them for both LinkedIn and Facebook.

LinkedIn Application

(ref.: http://django-allauth.readthedocs.io/en/latest/providers.html)

	Go to https://www.linkedin.com/developer/apps and select Create Application

[image: Linkedin Dev]

	Create a new Company

[image: ../../../_images/005_socialaouth.png]

	Fill the informations

Note

The logo must have precise square dimensions

[image: ../../../_images/006_socialaouth.png]

	Select the following Default Application Permissions

Warning

Be sure to select the r_basicprofile and r_emailaddress application permissions.

[image: ../../../_images/007_socialaouth.png]

	Add OAuth 2.0 Authorized Redirect URLs:

http://geonode.geo-solutions.it/account/linkedin_oauth2/login/callback/
http://geonode.geo-solutions.it/account/linkedin/login/callback/

[image: ../../../_images/008_socialaouth.png]

	Save

[image: ../../../_images/009_socialaouth.png]

	Take note of the Authentication Keys

[image: ../../../_images/010_socialaouth.png]

	Go to GeoNode/Django admin, Social Applications and select the LinkedIn one

(/admin/socialaccount/socialapp/)

[image: ../../../_images/011_socialaouth.png]

	Cut and Paste the Client ID and Client Secret on the related fields

[image: ../../../_images/012_socialaouth.png]

	Save

Facebook Application

(ref.: http://django-allauth.readthedocs.io/en/latest/providers.html)
(ref.: https://www.webforefront.com/django/setupdjangosocialauthentication.html)

	Go to https://developers.facebook.com/apps and Add a New Application

[image: ../../../_images/013_socialaouth.png]

	Create the App ID and go to the Dashboard

[image: ../../../_images/014_socialaouth.png]
[image: ../../../_images/015_socialaouth.png]

	Take note of the Authentication Keys

[image: ../../../_images/016_socialaouth.png]

	Go to GeoNode/Django admin, Social Applications and select the LinkedIn one

(/admin/socialaccount/socialapp/)

[image: ../../../_images/017_socialaouth.png]

	Cut and Paste the App ID and Secret Key on the related fields

ClientID <--> App Id
Client Secret <--> Secret Key

[image: ../../../_images/018_socialaouth.png]

	Save

	Go back to the Facebook Application Dashboard and select Settings

[image: ../../../_images/019_socialaouth.png]

	Add your App Domain

[image: ../../../_images/020_socialaouth.png]

	Click on Add Platform

[image: ../../../_images/021_socialaouth.png]

	Select Web Site

[image: ../../../_images/022_socialaouth.png]

	Add the URL

[image: ../../../_images/023_socialaouth.png]

	And Save

[image: ../../../_images/024_socialaouth.png]

	Go to Add Product

[image: ../../../_images/025_socialaouth.png]

	Select Facebook Login

[image: ../../../_images/026_socialaouth.png]

	Select Web

[image: ../../../_images/027_socialaouth.png]

	Go to Settings

[image: ../../../_images/028_socialaouth.png]

	Make sure Allow client OAuth and Access via OAuth Web are enabled

[image: ../../../_images/029_socialaouth.png]

	Add the valid redirect URIs:

http://geonode.geo-solutions.it/account/facebook/login/callback/
http://geondoe.geo-solutions.it/account/login/

[image: ../../../_images/030_socialaouth.png]

	Save

[image: ../../../_images/031_socialaouth.png]

Login by using Existing Accounts on GeoNode

If you want to enable an already existing user account to login through social apps, you need to associate it to social accounts.

Usually this could be done only by the current user, since this operation requires authentication on its social accounts.

In order to do that you need to go to the User Profile Settings

[image: ../../../_images/032_socialaouth.png]
Click on “Connected social accounts”

[image: ../../../_images/033_socialaouth.png]
And actually connect them

[image: ../../../_images/034_socialaouth.png]
[image: ../../../_images/035_socialaouth.png]

Developers Workshop

Welcome to the GeoNode Training Developers Workshop documentation v2.8.

This workshop will teach how to develop with and for the GeoNode [http://geonode.org] software application.
This module will introduce you to the components that GeoNode is built with, the standards that it supports and the services it provides based on those standards, and an overview its architecture.

	Prerequisites

	GeoNode is a web based GIS tool, and as such, in order to do development on GeoNode itself or to integrate it into your own application, you should be familiar with basic web development concepts as well as with general GIS concepts.

	Introduction to GeoNode development

	This module will introduce you to the components that GeoNode is built with, the standards that it supports and the services it provides based on those standards, and an overview its architecture.

	Pavement.py and Paver

	Here’s a list of Pavement tasks maintained by the GeoNode development team.

	Django Overview

	This section introduces some basic concepts of Django, the Python based web framework on top of which GeoNode has been developed.

Django’s primary goal is to ease the creation of complex, database-driven websites. Django emphasizes reusability and “pluggability” of components,
rapid development, and the principle of don’t repeat yourself.
Python is used throughout, even for settings, files, and data models.

Django also provides an optional administrative create, read, update and delete interface that is generated dynamically through introspection and configured via admin models.

	Development Prerequisites and Core Modules

	This module will introduce you to the basic tools and skills required to start actively developing GeoNode.

	Install GeoNode for Development

	This module shows a step-by-step guide for the setup of a GeoNode Development Environment on an Ubuntu system.

For other Linux distributions the commands are similar, the difference is mainly on the packages names.

Note

For Windows: (Windows Binary Installer)

	GeoNode debugging techniques

	GeoNode can be difficult to debug as there are several different components involved. This module shows some techniques to debug the different parts of GeoNode.

	GeoNode APIs

	This module provides an overview of the core modules and libraries used by GeoNode and teach to the user how to use them through some guided examples.

	Testing in GeoNode

	This section explain how to run the tests on GeoNode.

	Introduction to GeoNode Projects

	GeoNode enables you to set up a complete site simply by installing the packages and adding your data.

If you want to create your own project based on GeoNode, there are a several options available that enable you to customize the look and feel of your GeoNode site.

You can add additional modules that are necessary for your own use case and to integrate your GeoNode project with other external sites and services.

	Make a GeoNode release

	Making a GeoNode release.

Introduction to GeoNode development

This module will introduce you to the components that GeoNode is built with, the standards that it supports and the services it provides based on those standards, and an overview its architecture.

GeoNode is a web based GIS tool, and as such, in order to do development on GeoNode itself or to integrate it into your own application, you should be familiar with basic web development concepts as well as with general GIS concepts.

A set of reference links on these topics is included at the end of this module.

	Standards
	Open Geospatial Consortium (OGC) Standards

	Web Standards

	Exercises
	Components and Services

	OGC Standards

Development References

Basic Web based GIS Concepts and Background

	OGC Services

	http://www.opengeospatial.org/

	https://en.wikipedia.org/wiki/Open_Geospatial_Consortium

	Web Application Architecture

	https://en.wikipedia.org/wiki/Web_application

	http://www.w3.org/2001/tag/2010/05/WebApps.html

	http://www.amazon.com/Web-Application-Architecture-Principles-Protocols/dp/047051860X

	AJAX and REST

	https://en.wikipedia.org/wiki/Ajax_(programming)

	https://en.wikipedia.org/wiki/Representational_state_transfer

	OpenGeo Suite

	http://workshops.boundlessgeo.com/suiteintro/

	http://suite.opengeo.org/opengeo-docs/

	GeoServer Administration

	http://suite.opengeo.org/opengeo-docs/geoserver/

	http://suite.opengeo.org/docs/sysadmin/index.html#sysadmin

	PostgreSQL and PostGIS Administration
- http://workshops.boundlessgeo.com/postgis-intro/
- http://workshops.boundlessgeo.com/postgis-spatialdbtips/

Core development tools and libraries

	Python

	https://docs.python.org/2/tutorial/

	http://www.learnpython.org/

	https://learnpythonthehardway.org/book/

	http://www.guru99.com/python-tutorials.html

	Django

	https://docs.djangoproject.com/en/dev/intro/tutorial01/

	https://code.djangoproject.com/wiki/Tutorials

	Javascript

	http://www.crockford.com/javascript/inheritance.html

	http://geoext.org/v1/tutorials/quickstart.html

	jQuery

	http://www.w3schools.com/jquery/default.asp

	http://learn.jquery.com/using-jquery-core/

	http://www.jquery-tutorial.net/

	Bootstrap

	http://getbootstrap.com/

	http://www.w3resource.com/twitter-bootstrap/tutorial.php

	GeoTools/GeoScript/GeoServer

	http://docs.geotools.org/stable/tutorials/feature/csv2shp.html

	http://geoscript.org/tutorials/index.html

	http://docs.geotools.org/stable/tutorials/

	https://github.com/boundlessgeo/gsconfig/blob/master/README.rst

	geopython

	http://pycsw.org/docs/

	http://geopython.github.io/OWSLib/

	https://github.com/toblerity/shapely

	https://github.com/sgillies/Fiona

	https://pypi.python.org/pypi/pyproj

	GDAL/OGR

	http://www.gdal.org/gdal_utilities.html

	http://www.gdal.org/ogr_utilities.html

Standards

GeoNode is based on a set of Open Geospatial Consortium (OGC) standards. These standards enable GeoNode installations to be interoperable with a wide variety of tools that support these OGC standards and enable federation with other OGC compliant services and infrastructure. Reference links about these standards are also included at the end of this module.

GeoNode is also based on Web Standards …

Open Geospatial Consortium (OGC) Standards

Web Map Service (WMS)

The Web Map Service (WMS) specification defines an interface for requesting rendered map images across the web. It is used within GeoNode to display maps in the pages of the site and in the GeoExplorer application to display rendered layers based on default or custom styles.

Web Feature Service (WFS)

The Web Feature Service (WFS) specification defines an interface for reading and writing geographic features across the web. It is used within GeoNode to enable downloading of vector layers in various formats and within GeoExplorer to enable editing of Vector Layers that are stored in a GeoNode.

Web Coverage Service (WCS)

The Web Coverage Service (WCS) specification defines an interface for reading and writing geospatial raster data as “coverages” across the web. It is used within GeoNode to enable downloading of raster layers in various formats.

Catalogue Service for Web (CSW)

The Catalogue Service for Web (CSW) specification defines an interface for exposing a catalogue of geospatial metadata across the web. It is used within GeoNode to enable any application to search GeoNode’s catalogue or to provide federated search that includes a set of GeoNode layers within another application.

Tile Mapping Service (TMS/WMTS)

The Tile Mapping Service (TMS) specification defines and interface for retrieving rendered map tiles over the web. It is used within geonode to enable serving of a cache of rendered layers to be included in GeoNode’s web pages or within the GeoExplorer mapping application. Its purpose is to improve performance on the client vs asking the WMS for rendered images directly.

Web Standards

HTML

HyperText Markup Language, commonly referred to as HTML, is the
standard markup language used to create web pages. 1 Web
browsers can read HTML files and render them into visible or audible
web pages. HTML describes the structure of a website semantically
along with cues for presentation, making it a markup language, rather
than a programming language.

HTML elements form the building blocks of all websites. HTML allows
images and objects to be embedded and can be used to create
interactive forms. It provides a means to create structured
documents by denoting structural semantics for text such as headings,
paragraphs, lists, links, quotes and other items.

The language is written in the form of HTML elements consisting of
tags enclosed in angle brackets (like < >). Browsers do not display
the HTML tags and scripts, but use them to interpret the content of the
page.

HTML can embed scripts written in languages such as JavaScript
which affect the behavior of HTML web pages. Web browsers can also refer
to Cascading Style Sheets (CSS) to define the look and layout of text
and other material. The World Wide Web Consortium (W3C), maintainer
of both the HTML and the CSS standards, has encouraged the use of CSS
over explicit presentational HTML since 1997.

CSS

Cascading Style Sheets (CSS) is a style sheet language used
for describing the presentation of a document written in a markup
language. 2 Although most often used to set the visual style of
web pages and user interfaces written in HTML and XHTML, the
language can be applied to any XML document, including plain XML,
SVG and XUL, and is applicable to rendering in speech, or on
other media. Along with HTML and JavaScript, CSS is a cornerstone
technology used by most websites to create visually engaging webpages,
user interfaces for web applications, and user interfaces for many
mobile applications. 3

CSS is designed primarily to enable the separation of document content
from document presentation, including aspects such as the layout,
colors, and fonts. 4 This separation can improve content
accessibility, provide more flexibility and control in the
specification of presentation characteristics, enable multiple HTML
pages to share formatting by specifying the relevant CSS in a separate
.css file, and reduce complexity and repetition in the structural
content, such as semantically insignificant tables that were widely
used to format pages before consistent CSS rendering was available in
all major browsers. CSS makes it possible to separate presentation
instructions from the HTML content in a separate file or style section
of the HTML file. For each matching HTML element, it provides a list
of formatting instructions. For example, a CSS rule might specify that
“all heading 1 elements should be bold”, leaving pure semantic HTML
markup that asserts “this text is a level 1 heading” without formatting
code such as a <bold> tag indicating how such text should be
displayed.

This separation of formatting and content makes it possible to present
the same markup page in different styles for different rendering
methods, such as on-screen, in print, by voice (when read out by a
speech-based browser or screen reader) and on Braille-based,
tactile devices. It can also be used to display the web page differently
depending on the screen size or device on which it is being viewed.
Although

REST

In computing, Representational State Transfer (REST) is the
software architectural style of the World Wide Web. 5 6 7
REST gives a coordinated set of constraints to the design of components
in a distributed hypermedia system that can lead to a higher
performing and more maintainable architecture.

To the extent that systems conform to the constraints of REST they can
be called RESTful. RESTful systems typically, but not always,
communicate over the Hypertext Transfer Protocol with the same HTTP
verbs (GET, POST, PUT, DELETE, etc.) which web browsers use to
retrieve web pages and to send data to remote servers. 8 REST
interfaces usually involve collections of resources with
identifiers, for example /people/tom, which can be operated upon
using standard verbs, such as DELETE /people/tom.

	1

	Hypertext Markup Language | Definition of hypertext markup language by Merriam-Webster [http://www.merriam-webster.com/dictionary/hypertext%20markup%20language]

	2

	“CSS developer guide” [https://developer.mozilla.org/en-US/docs/Web/Guide/CSS]. Mozilla Developer Network. Retrieved 2015-09-24

	3

	“Web-based Mobile Apps of the Future Using HTML 5, CSS and JavaScript” [http://www.htmlgoodies.com/beyond/article.php/3893911/Web-based-Mobile-Apps-of-the-Future-Using-HTML-5-CSS-and-JavaScript.htm]. HTMLGoodies. Retrieved October 2014.

	4

	“What is CSS?” [http://www.w3.org/standards/webdesign/htmlcss#whatcss]. World Wide Web Consortium. Retrieved December 2010.

	5

	Fielding, R. T.; Taylor, R. N. (2000). “Principled design of the modern Web architecture”. pp. 407–416. doi:10.1145/337180.337228 [http://dl.acm.org/citation.cfm?doid=337180.337228].

	6

	Richardson, Leonard; Sam Ruby (2007), RESTful web service [http://books.google.com/books?id=XUaErakHsoAC], O’Reilly Media, ISBN 978-0-596-52926-0 [https://en.wikipedia.org/wiki/Special:BookSources/978-0-596-52926-0], retrieved 18 January 2011, The main topic of this book is the web service architectures which can be considered RESTful: those which get a good score when judged on the criteria set forth in Roy Fielding’s dissertation.”

	7

	Richardson, Leonard; Mike Amundsen (2013), RESTful web APIs [http://www.amazon.com/RESTful-Web-APIs-Leonard-Richardson/dp/1449358063/ref=sr_1_1?ie=UTF8&qid=1442372039&sr=8-1&keywords=restful+web+apis], O’Reilly Media, ISBN 978-1-449-35806-8 [https://en.wikipedia.org/wiki/Special:BookSources/978-1-449-35806-8], retrieved 15 September 2015, The Fielding disertation explains the decisions behind the design of the Web.”

	8

	Fielding, Roy Thomas (2000). “Chapter 5: Representational State Transfer (REST)” [http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm]. Architectural Styles and the Design of Network-based Software Architectures (Ph.D.). University of California, Irvine. This chapter introduced the Representational State Transfer (REST) architectural style for distributed hypermedia systems. REST provides a set of architectural constraints that, when applied as a whole, emphasizes scalability of component interactions, generality of interfaces, independent deployment of components, and intermediary components to reduce interaction latency, enforce security, and encapsulate legacy systems.”

Exercises

Components and Services

Note

Hint, if bash-completion is installed, try <TAB><TAB> to get completions.

	
	Start/stop services

	$ sudo service apache2
$ sudo service apache2 reload
$ sudo service tomcat7
$ sudo service postgresql

	
	Basic psql interactions

	$ sudo su - postgres
$ psql
=> help # get help
=> \? # psql specific commands
=> \l # list databases
=> \c geonode # switch database
=> \ds # list tables
=> \dS layers_layer # describe table

OGC Standards

WMS

	Use the layer preview functionality in GeoServer to bring up a web map.

	Copy the URL for the image in the map.

	Alter URL parameters for the request.

	Use curl to get the capabilities document

$ curl 'http://localhost/geoserver/wms?request=getcapabilities'

More: http://docs.geoserver.org/stable/en/user/services/wms/index.html

WFS

	Describe a feature type using curl (replace ws:name with your layer)

$ curl 'http://localhost/geoserver/wfs?request=describefeaturetype&name=ws:name

More: http://docs.geoserver.org/stable/en/user/services/wfs/reference.html

Django Overview

This section introduces some basic concepts of Django, the Python based web framework on top of which GeoNode has been developed.

The main objective of Django is to facilitate the creation of complex sites oriented databases. Django emphasizes reusability and “pluggability” of components, rapid development, and the principle of not repeating yourself. Python is used everywhere, even for settings, files, and data models.

Django also provides an administrative interface to create, read, update and delete models that is dynamically generated by introspection and configured through the Administrative Templates.

Warning

Some parts of this section have been taken from the DJango [https://www.djangoproject.com] project and training documentation.

	Getting Started With Django
	Object-relational mapper

	URLs and views

	Templates

	Forms

	Authentication

	Admin

	Internationalization

	Security

Getting Started With Django

Object-relational mapper

Data models can be defined entirely in Python. Django makes available a rich, dynamic database-access API for free, but it is still possible to write SQL if needed.

Hint

The following documentation is based on official documentation [https://docs.djangoproject.com/en/1.8] of the project Django.

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	class Band(models.Model):
 """A model of a rock band."""
 name = models.CharField(max_length=200)
 can_rock = models.BooleanField(default=True)

class Member(models.Model):
 """A model of a rock band member."""
 name = models.CharField("Member's name", max_length=200)
 instrument = models.CharField(choices=(
 ('g', "Guitar"),
 ('b', "Bass"),
 ('d', "Drums"),
),
 max_length=1
)
 band = models.ForeignKey("Band")

Models

A model is a Python class containing the essential fields and behaviors of the data stored on the DB. Generally, each model maps to a single database table.

	Each model is a Python class that subclasses django.db.models.Model.

	Each attribute of the model represents a database field.

	A model is an automatically-generated database-access API; see Making queries.

Quick example

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

This example model defines a Person, which has a first_name and last_name:

	1
2
3
4
5

	from django.db import models

class Person(models.Model):
 first_name = models.CharField(max_length=30)
 last_name = models.CharField(max_length=30)

first_name and last_name are fields of the model. Each field is specified as a class attribute, and each attribute maps to a database column.

The above Person model would create a database table like this:

	1
2
3
4
5

	CREATE TABLE myapp_person (
 "id" serial NOT NULL PRIMARY KEY,
 "first_name" varchar(30) NOT NULL,
 "last_name" varchar(30) NOT NULL
);

Some technical notes:

	The name of the table, myapp_person, is automatically derived from some model metadata but can be overridden.

	An id field is added automatically, but this behavior can be overridden.

	The CREATE TABLE SQL in this example is formatted using PostgreSQL syntax, but it’s worth noting Django uses SQL tailored to the database backend specified in the settings file.

Using models

Once models have been defined, Django must be instructed on how to use those models.
This is possible by editing the Django settings file and changing the INSTALLED_APPS setting to add the name of the module that contains the model class.

For example, if the models for the application is defined in the module myapp.models, INSTALLED_APPS should read, in part:

	1
2
3
4
5

	INSTALLED_APPS = (
 #...
 'myapp',
 #...
)

Warning

When you add new apps to INSTALLED_APPS, be sure to run manage.py migrate, optionally making migrations for them first with manage.py makemigrations.

Note

GeoNode uses the specific command manage.py migrate to perform the models update and migration.

Fields

The list of DB fields is reflected (and specified) by the model class attributes.

Warning

Be careful not to choose field names that conflict with the models API like clean, save, or delete.

Example:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from django.db import models

class Musician(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)
 instrument = models.CharField(max_length=100)

class Album(models.Model):
 artist = models.ForeignKey(Musician)
 name = models.CharField(max_length=100)
 release_date = models.DateField()
 num_stars = models.IntegerField()

More: Field Types [https://docs.djangoproject.com/en/1.8/topics/db/models/#field-types]

Model methods

Custom methods on a model can be used to add custom “row-level” functionality to an object.
This is a valuable technique for keeping business logic in one place.

For example, the following model has a few custom methods:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	from django.db import models

class Person(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)
 birth_date = models.DateField()

 def baby_boomer_status(self):
 "Returns the person's baby-boomer status."
 import datetime
 if self.birth_date < datetime.date(1945, 8, 1):
 return "Pre-boomer"
 elif self.birth_date < datetime.date(1965, 1, 1):
 return "Baby boomer"
 else:
 return "Post-boomer"

 def _get_full_name(self):
 "Returns the person's full name."
 return '%s %s' % (self.first_name, self.last_name)
 full_name = property(_get_full_name)

The last method in this example is a property [https://docs.djangoproject.com/en/1.8/glossary/#term-property].

The model instance reference [https://docs.djangoproject.com/en/1.8/ref/models/instances/] has a complete list of methods automatically given to each model [https://docs.djangoproject.com/en/1.8/ref/models/instances/#model-instance-methods].
It is possible to override most of these; see overriding predefined model methods [https://docs.djangoproject.com/en/1.8/topics/db/models/#overriding-predefined-model-methods]

More: Models Methods [https://docs.djangoproject.com/en/1.8/topics/db/models/#model-methods]

Making queries [https://docs.djangoproject.com/en/1.8/topics/db/queries/#making-queries]

Django automatically gives a database-abstraction API that allows to create, retrieve, update and delete objects.

As an example:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	from django.db import models

class Blog(models.Model):
 name = models.CharField(max_length=100)
 tagline = models.TextField()

 def __str__(self): # __unicode__ on Python 2
 return self.name

class Author(models.Model):
 name = models.CharField(max_length=50)
 email = models.EmailField()

 def __str__(self): # __unicode__ on Python 2
 return self.name

class Entry(models.Model):
 blog = models.ForeignKey(Blog)
 headline = models.CharField(max_length=255)
 body_text = models.TextField()
 pub_date = models.DateField()
 mod_date = models.DateField()
 authors = models.ManyToManyField(Author)
 n_comments = models.IntegerField()
 n_pingbacks = models.IntegerField()
 rating = models.IntegerField()

 def __str__(self): # __unicode__ on Python 2
 return self.headline

Creating objects

As already said before, a model class represents a database table, and an instance of that class represents a particular record in the database table.

To create an object, instantiate it using keyword arguments to the model class, then call save() to save it to the database.

Assuming models live in a file mysite/blog/models.py, here’s an example:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1
2
3

	>>> from blog.models import Blog
>>> b = Blog(name='Beatles Blog', tagline='All the latest Beatles news.')
>>> b.save()

This performs an INSERT SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call save().
The save() method has no return value.

	1
2

	>>> b5.name = 'New name'
>>> b5.save()

This performs an UPDATE SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call save().

Retrieving objects

Retrieving objects from the database can be done by constructing a QuerySet via a Manager on the model class.

A QuerySet represents a collection of objects from the database.
It can have zero, one or many filters. Filters narrow down the query results based on the given parameters.
In SQL terms, a QuerySet equates to a SELECT statement, and a filter is a limiting clause such as WHERE or LIMIT.

Each model has at least one Manager, and it’s called objects by default.

It can be accessed directly via the model class, like so:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1
2
3
4
5
6
7
8

	>>> Blog.objects
<django.db.models.manager.Manager object at ...>
>>> b = Blog(name='Foo', tagline='Bar')
>>> b.objects
Traceback:
 ...
AttributeError: "Manager isn't accessible via Blog instances."
Note

Managers are accessible only via model classes, rather than from model instances, to enforce a separation between “table-level” operations and “record-level” operations.
The Manager is the main source of QuerySets for a model. For example, Blog.objects.all() returns a QuerySet that contains all Blog objects in the database.

The simplest way to retrieve objects from a table is to get all of them. To do this, use the all() method on a Manager:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1

	>>> all_entries = Entry.objects.all()

The all() method returns a QuerySet of all the objects in the database.
The QuerySet returned by all() describes all objects in the database table.
To select only a subset of the complete set of objects, it must be refined by adding filter conditions.

The two most common ways to refine a QuerySet are:

filter(**kwargs)

Returns a new QuerySet containing objects that match the given lookup parameters.

exclude(**kwargs)

Returns a new QuerySet containing objects that do not match the given lookup parameters.
The lookup parameters (**kwargs in the above function definitions) should be in the format described in Field lookups below.

For example, to get a QuerySet of blog entries from the year 2006, use filter() like so:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1

	Entry.objects.filter(pub_date__year=2006)

With the default manager class, it is the same as:

	1

	Entry.objects.all().filter(pub_date__year=2006)

The result of refining a QuerySet is itself a QuerySet, so it’s possible to chain refinements together.

For example:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1
2
3
4
5
6
7

	>>> Entry.objects.filter(
... headline__startswith='What'
...).exclude(
... pub_date__gte=datetime.date.today()
...).filter(
... pub_date__gte=datetime(2005, 1, 30)
...)

This takes the initial QuerySet of all entries in the database, adds a filter, then an exclusion, then another filter.
The final result is a QuerySet containing all entries with a headline that starts with “What”, that were published between January 30, 2005, and the current day.

More: Making queries [https://docs.djangoproject.com/en/1.8/topics/db/queries/#making-queries]

URLs and views

A clean elegant URL scheme is an important detail in a high-quality Web application.
Django encourages beautiful URL design and does not put junk in URLs, like .php or .asp.

In Django, a Python module called urls.py is like a table of contents for the application.
It contains a simple mapping between URL patterns and views.

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1
2
3
4
5
6
7
8

	from django.conf.urls import url
from . import views

urlpatterns = [
 url(r'^bands/$', views.band_listing, name='band-list'),
 url(r'^bands/(\d+)/$', views.band_detail, name='band-detail'),
 url(r'^bands/search/$', views.band_search, name='band-search'),
]

	1
2
3
4
5
6

	from django.shortcuts import render

def band_listing(request):
 """A view of all bands."""
 bands = models.Band.objects.all()
 return render(request, 'bands/band_listing.html', {'bands': bands})

More: URL dispatcher [https://docs.djangoproject.com/en/1.8/topics/http/urls/]

Templates

Django’s template language allows developers to put logic into the HTML:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	<html>
 <head>
 <title>Band Listing</title>
 </head>
 <body>
 <h1>All Bands</h1>

 {% for band in bands %}

 <h2>{{ band.name }}</h2>
 {% if band.can_rock %}<p>This band can rock!</p>{% endif %}

 {% endfor %}

 </body>
</html>

More: Templates [https://docs.djangoproject.com/en/1.8/topics/templates/]

Forms

Django provides a library that handles rendering HTML forms, validation of data submitted by users, and converting the data to native Python types.
Django also provides a way to generate forms from your existing models and to use these forms to create and update data.

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1
2
3
4
5
6
7

	from django import forms

class BandContactForm(forms.Form):
 subject = forms.CharField(max_length=100)
 message = forms.CharField()
 sender = forms.EmailField()
 cc_myself = forms.BooleanField(required=False)

GET and POST

GET and POST are the only HTTP methods to use when dealing with forms.

Django’s login form is returned using the POST method, in which the browser bundles up the form data, encodes it for transmission, sends it to the server, and then receives back its response.

GET, by contrast, bundles the submitted data into a string, and uses this to compose a URL. The URL contains the address where the data must be sent, as well as the data keys and values.
You can see this in action if you do a search in the Django documentation, which will produce a URL of the form https://docs.djangoproject.com/search/?q=forms&release=1.

GET and POST are typically used for different purposes.

Any request that could be used to change the state of the system - for example, a request that makes changes in the database - should use POST. GET should be used only for requests that do not affect the state of the system.

GET would also be unsuitable for a password form, because the password would appear in the URL, and thus, also in browser history and server logs, all in plain text. Neither would it be suitable for large quantities of data, or for binary data, such as an image. A Web application that uses GET requests for admin forms is a security risk: it can be easy for an attacker to mimic a form’s request to gain access to sensitive parts of the system. POST, coupled with other protections like Django’s CSRF protection offers more control over access.

On the other hand, GET is suitable for things like a web search form, because the URLs that represent a GET request can easily be bookmarked, shared, or resubmitted.

More: Working With Forms [https://docs.djangoproject.com/en/1.8/topics/forms/#working-with-forms]

Authentication

Django supports a full-featured and secure authentication system. It handles user accounts, groups, permissions and cookie-based user sessions.

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1
2
3
4
5
6
7

	from django.contrib.auth.decorators import login_required
from django.shortcuts import render

@login_required
def my_protected_view(request):
 """A view that can only be accessed by logged-in users"""
 return render(request, 'protected.html', {'current_user': request.user})

More: User authentication in Django [https://docs.djangoproject.com/en/1.8/topics/auth/]

Admin

One of the most powerful parts of Django is its automatic admin interface.
It reads metadata from models in order to provide a powerful and ready-to-use GUI for CRUD operations against the model.

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from django.contrib import admin
from bands.models import Band, Member

class MemberAdmin(admin.ModelAdmin):
 """Customize the look of the auto-generated admin for the Member model"""
 list_display = ('name', 'instrument')
 list_filter = ('band',)

admin.site.register(Band) # Use the default options
admin.site.register(Member, MemberAdmin) # Use the customized options

Note

The advanced workshop for Developers will provide more details on GeoNode specific models and admin interface

More: The Django admin site [https://docs.djangoproject.com/en/1.8/ref/contrib/admin/]

Internationalization

Django offers full support for translating text into different languages, plus locale-specific formatting of dates, times, numbers and time zones.
It lets developers and template authors specify which parts of their apps should be translated or formatted for local languages and cultures,
and it uses these hooks to localize Web applications for particular users according to their preferences.

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from django.shortcuts import render
from django.utils.translation import ugettext

def homepage(request):
 """
 Shows the homepage with a welcome message that is translated in the
 user's language.
 """
 message = ugettext('Welcome to our site!')
 return render(request, 'homepage.html', {'message': message})

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	{% load i18n %}
<html>
 <head>
 <title>{% trans 'Homepage - Hall of Fame' %}</title>
 </head>
 <body>
 {# Translated in the view: #}
 <h1>{{ message }}</h1>
 <p>
 {% blocktrans count member_count=bands.count %}
 Here is the only band in the hall of fame:
 {% plural %}
 Here are all the {{ member_count }} bands in the hall of fame:
 {% endblocktrans %}
 </p>

 {% for band in bands %}

 <h2>{{ band.name }}</h2>
 {% if band.can_rock %}<p>{% trans 'This band can rock!' %}</p>{% endif %}

 {% endfor %}

 </body>
</html>

Note

The advanced workshop for Developers will provide more details on how to create languages and translations on GeoNode using Transifex [https://www.transifex.com/]

More: Internationalization and localization [https://docs.djangoproject.com/en/1.8/topics/i18n/]

Security

Django provides multiple protections against:

	
	Clickjacking

	Clickjacking is a type of attack where a malicious site wraps another site in a frame. This attack can result in an unsuspecting user being tricked into performing unintended actions on the target site.

The X-Frame-Options middleware contained in a form allow a supporting browser to prevent a site from being rendered inside a frame

	
	Cross site scripting (XSS)

	XSS attacks allow a user to inject client side scripts into the browsers of other users. This is usually achieved by storing the malicious scripts in the database where it will be retrieved and displayed to other users, or by getting users to click a link which will cause the attacker’s JavaScript to be executed by the user’s browser. However, XSS attacks can originate from any untrusted source of data, such as cookies or Web services, whenever the data is not sufficiently sanitized before including in a page.

	
	Cross site request forgery (CSRF)

	CSRF attacks allow a malicious user to execute actions using the credentials of another user without that user’s knowledge or consent.

CSRF protection works by checking for a nonce in each POST request. This ensures that a malicious user cannot simply “replay” a form POST to your Web site and have another logged in user unwittingly submit that form. The malicious user would have to know the nonce, which is user specific (using a cookie).

	
	SQL injection

	SQL injection is a type of attack where a malicious user is able to execute arbitrary SQL code on a database. This can result in records being deleted or data leakage.

	
	Host header validation

	Django uses the Host header provided by the client to construct URLs in certain cases.
While these values are sanitized to prevent Cross Site Scripting attacks, a fake Host value can be used for Cross-Site Request Forgery, cache poisoning attacks, and poisoning links in emails.

Because even seemingly-secure web server configurations are susceptible to fake Host headers, Django validates Host headers against the ALLOWED_HOSTS setting in the django.http.HttpRequest.get_host() method.

This validation only applies via get_host(); if your code accesses the Host header directly from request.META you are bypassing this security protection.

	
	SSL/HTTPS

	It is always better for security, though not always practical in all cases, to deploy your site behind HTTPS. Without this, it is possible for malicious network users to sniff authentication credentials or any other information transferred between client and server, and in some cases – active network attackers – to alter data that is sent in either direction.

Django provides some settings to secure your site under SSL/HTTPS.

Warning

While Django provides good security protection out of the box, it is still important to properly deploy your application and take advantage of the security protection of the Web server, operating system and other components.

	Make sure that your Python code is outside of the Web server’s root. This will ensure that your Python code is not accidentally served as plain text (or accidentally executed).

	Take care with any user uploaded files.

	Django does not throttle requests to authenticate users. To protect against brute-force attacks against the authentication system, you may consider deploying a Django plugin or Web server module to throttle these requests.

	Keep your SECRET_KEY a secret.

	It is a good idea to limit the accessibility of your caching system and database using a firewall.

More: Security in Django [https://docs.djangoproject.com/en/1.8/topics/security/]

Development Prerequisites and Core Modules

This module will introduce you to the basic tools and skills required to start actively developing GeoNode.

	GeoNode’s Development Prerequisites
	Basic Shell Tools

	Python Development Tools

	Django

	GeoNode’s Core Modules
	geonode.layers

	geonode.maps

	geonode.security

	geonode.search

	geonode.catalogue

	geonode.geoserver

	geonode.people

	geoexplorer

	Static Site

	Exercises
	Shell and Utilities

	Python

GeoNode’s Development Prerequisites

Basic Shell Tools

ssh and sudo

SSH and sudo are very basic terminal skills which you will need to deploy, maintain and develop with GeoNode. If you are not already familiar with their usage, you should review the basic descriptions below and follow the external links to learn more about how to use them effectively as part of your development workflow.

ssh is the network protocol used to connect to a remote server where you run your GeoNode instance whether on your own network or on the cloud. You will need to know how to use the ssh command from the terminal on your Unix machine or how to use a ssh client like putty or WinSCP on windows. You may need to use PKI certificates to connect to your remove server, and should be familiar with the steps and options necessary to connect this way. More information about ssh can be found in the links below.

	http://winscp.net/eng/docs/ssh

sudo is the command used to execute a terminal command as the superuser when you are logged in with a normal user. You will to use sudo in order to start, stop and restart key services on your GeoNode instance. If you are not able to grant yourself these privileges on the machine you are using for your GeoNode instance, you may need to consult with your network administrator to arrange for your user to be granted sudo permissions. More information about sudo can be found in the links below.

	https://en.wikipedia.org/wiki/Sudo

bash

Bash is the most common Unix shell which will usually be the default on servers where you will be deploying your GeoNode instance. You should be familiar with the most common bash commands in order to be able to deploy, maintain and modify a geonode instance. More information about Bash and common bash commands can be found in the links below.

	https://en.wikipedia.org/wiki/Bash_(Unix_shell)

apt

apt is the packaging tool that is used to install GeoNode on ubuntu and other Debian based systems. You will need to be familiar with adding Personal Package Archives to your list of install sources, and will need to be familiar with basic apt commands. More information about apt can be found in the links below.

	https://en.wikipedia.org/wiki/Advanced_Packaging_Tool

Python Development Tools

The GeoNode development process relies on several widely used python development tools in order to make things easier for developers and other users of the systems that GeoNode developers work on or where GeoNodes are deployed. They are considered best practices for modern python development, and you should become familiar with these basic tools and be comfortable using them on your own projects and systems.

virtualenv

virtualenv is a tool used to create isolated python development environments such that the versions of project dependencies are sandboxed from the system-wide python packages. This eliminates the commonly encountered problem of different projects on the same system using different versions of the same library. You should be familiar with how to create and activate virtual environments for the projects you work on. More information about virtualenv can be found in the links below.

	https://virtualenv.pypa.io/en/stable/

	https://pypi.python.org/pypi/virtualenv

virtualenvwrapper is a wrapper around the virtualenv package that makes it easier to create and switch between virtual environments as you do development. Using it will make your life much easier, so its recommended that you install and configure it and use its commands as part of your virtualenv workflow. More info about virtualenvwrapper can be found in the links below.

	https://bitbucket.org/dhellmann/virtualenvwrapper

pip

pip is a tool for installing and managing python packages. Specifically it is used to install and upgrade packages found in the Python Package Index (PyPI). GeoNode uses pip to install itself, and to manage all of the python dependencies that are needed as part of a GeoNode instance. As you learn to add new modules to your geonode, you will need to become familiar with the use of pip and about basic python packaging usage. More information about pip can be found in the links below.

	https://pip.pypa.io/en/latest/

	https://pypi.python.org/pypi/pip

	https://en.wikipedia.org/wiki/Pip_(package_manager)

miscellaneous

ipython is a set of tools to make your python development and debugging experience easier. The primary tool you want to use is an interactive shell that adds introspection, integrated help and command completion and more. While not strictly required to do GeoNode development, learning how to use ipython will make your development more productive and pleasant. More information about ipython can be found in the links below.

	http://ipython.org/

	https://pypi.python.org/pypi/ipython

	https://github.com/ipython/ipython

	https://en.wikipedia.org/wiki/IPython

pdb is a standard python module that is used to interactively debug your python code. It supports setting conditional breakpoints so you can step through the code line by line and inspect your variables and perform arbitrary execution of statements. Learning how to effectively use pdb will make the process of debugging your application code significantly easier. More information about pdb can be found in the links below.

	https://docs.python.org/2/library/pdb.html

Django

GeoNode is built on top of the Django web framework, and as such, you will need to become generally familiar with Django itself in order to become a productive GeoNode developer. Django has excellent documentation, and you should familiarize yourself with Django by following the Django workshop and reading through its documentation as required.

Model Template View

Django is based on the Model Template View paradigm (more commonly called Model View Controller). Models are used to define objects that you use in your application and Django’s ORM is used to map these models to a database. Views are used to implement the business logic of your application and provide objects and other context for the templates. Templates are used to render the context from views into a page for display to the user. You should become familiar with this common paradigm used in most modern web frameworks, and how it is specifically implemented and used in Django. The Django tutorial itself is a great place to start. More information about MTV in Django can be found in the links below.

	https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

	https://blog.codinghorror.com/understanding-model-view-controller/

	https://docs.djangoproject.com/en/1.8/

HTTP Request Response

Django and all other web frameworks are based on the HTTP Request Response cycle. Requests come in to the server from remote clients which are primarily web browsers, but also can be API clients, and the server returns with a Response. You should be familiar with these very basic HTTP principles and become familiar with the way that Django implements them. More information about HTTP, Requests and Responses and Django’s implementation in the links below.

	https://www.jmarshall.com/easy/http/

	https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

	https://docs.djangoproject.com/en/dev/ref/request-response/

Management Commands

Django projects have access to a set of management commands that are used to manage your project. Django itself provides a set of these commands, and Django apps (including GeoNode) can provide their own. Management commands are used to do things like synchronize your models with your database, load data from fixtures or back up your database with fixtures, start the development server, initiate the debugger and many other things. GeoNode provides management commands for synchronizing with a GeoServer or updating the layers already in your GeoNode. You should become familiar with the basic management commands that come with Django, and specifically with the commands that are part of GeoNode. The GeoNode specific commands are covered in section. More information about management commands can be found in the links below.

	https://docs.djangoproject.com/en/dev/ref/django-admin/

Django Admin Interface

Django provides a build-in management console that administrators and developers can use to look at the data in the database that is part of the installed applications. Administrators can use this console to perform many common administration tasks that are a necessary part of running a GeoNode instance, and as a developer, you will use this interface during your development process to inspect the database and the data stored in your models. More information about the Django admin interface can be found in the links below.

	https://docs.djangoproject.com/en/dev/ref/contrib/admin/

Template Tags

Django templates make use of a set of tags to inject, file and format content into a rendered HTML page. Django itself includes a set of built-in template tags and filters that you will use in your own templates, and GeoNode provides a geonode specific set of tags that are used in the GeoNode templates. You should become familiar with the built-in tag set and with GeoNode’s specific tags as you work on developing your own templates or extending from GeoNode’s. More information about Django template tags can be found in the links below.

	https://docs.djangoproject.com/en/dev/ref/templates/builtins/

GeoNode’s Core Modules

GeoNode is made up of a set of core Django pluggable modules (known as apps in Django) that provide the functionality of the application. Together they make up the key components of a GeoNode site. While your own use case and implementation may not require that you work directly on these models, it is important that you become familiar with their layout, structure and the functionality that they provide. You may need to import these apps into your own apps, and as such, becoming familiar with them is an important step in becoming a proficient GeoNode developer.

geonode.layers

geonode.layers is the most key GeoNode module. It is used to represent layers of data stored in a GeoNode’s paired GeoServer. The layer model class inherits fields from the ResourceBase class which provides all of the fields necessary for the metadata catalogue, and adds fields that map the object to its corresponding layer in GeoServer. When your users upload a layer via the user interface, the layer is imported to GeoServer and a record is added to GeoNode’s database to represent that GeoServer layer within GeoNode itself.

The Layer model class provides a set of helper methods that are used to perform operations on a Layer object, and also to return things such as the list of Download or Metadata links for that layer. Additional classes are used to model the layers Attributes, Styles, Contacts and Links. The Django signals framework is used to invoke specific functions to synchronize with GeoServer before and after the layer is saved.

The views in the layers app are used to perform functions such as uploading, replacing, removing or changing the points of contact for a layer, and views are also used to update layer styles, download layers in bulk or change a layers permissions.

The forms module in the layer app is used to drive the user interface forms necessary for performing the business logic that the views provide.

The Layers app also includes a set of templates that are paired with views and used to drive the user interface. A small set of layer template tags is also used to help drive the layer explore and search pages.

Some helper modules such as geonode.layers.metadata and geonode.layers.ows are used by the layer views to perform specific functions and help keep the main views module more concise and legible.

Additionally, the GeoNode specific management commands are a part of the geonode.layers app.

You should spend some time to review the layers app through GitHub’s code browsing interface.

https://github.com/GeoNode/geonode/tree/master/geonode/layers

geonode.maps

The geonode.maps app is used to group together GeoNode’s multi layer map functionality. The Map and MapLayer objects are used to model and implement maps created with the GeoExplorer application. The Map object also extends from the ResourceBase class which provides the ability to manage a full set of metadata fields for a Map.

The views in the maps app perform many of the same functions as the views in the layers app such as adding, changing, replacing or removing a map and also provide the endpoints for returning the map configuration from the database that is used to initialize the GeoExplorer app.

The maps app also includes a set of forms, customization of the Django admin, some utility functions and a set of templates and template tags.

You can familiarize yourself with the maps app on GitHub.

https://github.com/GeoNode/geonode/tree/master/geonode/maps

geonode.security

The geonode.security app is used to provide object level permissions within the GeoNode Django application. It is a custom Django authentication backend and is used to assign Generic, User and Group Permissions to Layers, Maps and other objects in the GeoNode system. Generic permissions are used to enable public anonymous or authenticated viewing and/or editing of your data layers and maps, and User and Group specific permissions are used to allow specific users or groups to access and edit your layers.

geonode.search

The geonode.search module provides the search API that is used to drive the GeoNode search pages. It is configured to index layers, maps, documents and profiles, but is extensible to allow you to use it to index your own model classes. This module is currently based on the Django ORM and as such has a limited set of search features, but the GeoNode development team is actively working on making it possible to use this module with more feature-rich search engines.

geonode.catalogue

The geonode.catalogue app provides a key set of metadata catalogue functions within GeoNode itself. GeoNode is configured to use an integrated version of the pycsw library to perform these functions, but can also be configured to use any OGC compliant CS-W implementation such as GeoNetwork or Deegree. The metadata app allows users to import and/or edit metadata for their layers, maps and documents, and it provides an OGC compliant search interface for use in federating with other systems.

geonode.geoserver

The geonode.geoserver module is used to interact with GeoServer from within GeoNode’s python code. It relies heavily on the gsconfig library which addresses GeoServer’s REST configuration API. Additionally, the geonode.geoserver.uploader module is used to interact with GeoServer’s Importer API for uploading and configuring layers.

geonode.people

The geonode.people module is used to model and store information about both GeoNode users and people outside of the system who are listed as Points of Contact for particular layers. It is the foundational module for GeoNode’s social features. It provides a set of forms for users to edit and manage their own profiles as well as to view and interact with the profiles of other users.

geoexplorer

GeoNode’s core GIS client functions are performed by GeoExplorer. The GeoExplorer app is in turn based on GeoExt, OpenLayers and ExtJS. It provides functionality for constructing maps, styling layers and connecting to remote services. GeoExplorer is the reference implementation of the OpenGeo Suite SDK which is based on GXP. GeoNode treats GeoExplorer as an external module that is used out of the box in GeoNode, but it is possible for you to create your own Suite SDK app and integrate it with GeoNode.

Static Site

The front end of GeoNode is composed of a set of core templates, specific templates for each module, cascading style sheets to style those pages and a set of Javascript modules that provide the interactive functionality in the site.

Templates

GeoNode includes a basic set of core templates that use Django’s template inheritance system to provide a modular system for constructing the web pages in GeoNode’s interface. These core templates drive the overall page layout and things like the home page. You will start the process of customizing your GeoNode instance by overriding these templates, so you should familiarize yourself with their
structure and how they inherit from each other to drive the pages.

Additionally, most of the apps described above have their own set of templates that are used to drive the pages for each module. You may also want to override these templates for your own purposes and as such should familiarize yourself with a few of the key ones.

CSS

GeoNode’s CSS is based on Twitter’s Bootstrap Library which uses the lessc dynamic stylesheet language. GeoNode extends from the basic Bootstrap style and you are able to create your own bootstrap based style to customize the look and feel of your own GeoNode instance. Sites like bootswatch.com also provide ready made styles that you can simply drop in to your project to change the style.

Javascript

The interactive functionality in GeoNode pages is provided by the jQuery Javascript framework and a set of jQuery plugins. The core set of GeoNode Javascript modules closely aligns with the apps described above, and there are also a few pieces of functionality provided as Javascript modules that are used through out all of the apps. You are able to add your own jQuery code and/or plugins to perform interactive functionality in your own application.

Exercises

Shell and Utilities

	ssh into your virtual machine or other instance

	sudo to modify the sshd_config settings to verify disabling of DNS resolution (UseDNS=no)

	Install a command line helper

$ sudo apt-get install bash-completion

	Exercise command completion

$ apt-get install <TAB><TAB>

	Activate/deactivate the virtualenv on your instance

$ source /var/lib/geonode/bin/activate
$ deactivate

	Set the DJANGO_SETTINGS_MODULE environment variable

$ export DJANGO_SETTINGS_MODULE=geonode.settings

	Install the httpie utility via pip

$ pip install httpie
$ http http://localhost/geoserver/rest
$ http -a admin http://localhost/geoserver/rest
<type in password - geoserver>

Python

	Launch ipython and experiment

> x = "some text"
> x.<TAB><TAB>
> x.split.__doc__
> ?

	Execute a script with ipython and open the REPL

$ echo "twos = [x*2 for x in range(5)]" > test.py
$ ipython -i test.py
> twos

Install GeoNode for Development

In order to install Geonode 2.4 in development mode on Ubuntu 14.04 the following steps are required:

For Windows: (Install GeoNode for Development (Windows))

For CentOS 7: (Install GeoNode on CentOS 7 (dev mode))

Summary of the installation steps

	Retrieve latest apt-get list

	Install build tools and libraries

	Install dependencies (Python, Postgresql and Java) and supporting tools

	Add Node.js PPA and other tools required for static development

	Set up a virtual environment (virtualenv)

	Clone geonode from GitHub and install it in the virtual environment

	Run paver to get install GeoServer and start the development servers

	Compile and Start the server

	Start Geonode instance

	To stop the server

	Next create a Django superuser for your GeoNode

Note

The following steps have to be executed in your terminal. The steps have to be done as a root user, therefore don´t forget to type sudo in front!

Warning

Don’t forget to stop the GeoNode Production services if enabled

service apache2 stop
service tomcat7 stop

	If possible log as root user, open a terminal and cd /home/geonode/dev

	Retrieve latest apt-get list

$ sudo apt-get update

	Install build tools and libraries

$ sudo apt-get install -y build-essential libxml2-dev libxslt1-dev libpq-dev zlib1g-dev

	Install dependencies

Python native dependencies

$ sudo apt-get install -y python-dev python-imaging python-lxml python-pyproj python-shapely python-nose python-httplib2 python-pip python-software-properties

Install Python Virtual Environment

$ sudo pip install virtualenvwrapper

PostgreSQL & PostGIS

Note

The following steps must be executed only if you don’t have PostgreSQL and PostGIS already installed on your system (see Install GeoNode Application)

$ sudo apt-get install -y postgresql-9.3-postgis-2.1 postgresql-9.3-postgis-scripts

Change postgres UNIX password

 $ sudo passwd -u postgres # change password expiry infromation

 $ sudo passwd postgres # change unix password for postgres

Create GeoNode role and database

 .. code-block:: console

 $ su postgres
 $ createdb geonode_dev
 $ createdb geonode_dev-imports
 $ psql
 postgres=#
 postgres=# \password postgres
 postgres=# CREATE USER geonode_dev WITH PASSWORD 'geonode_dev'; # should be same as password in setting.py
 postgres=# GRANT ALL PRIVILEGES ON DATABASE "geonode_dev" to geonode_dev;
 postgres=# GRANT ALL PRIVILEGES ON DATABASE "geonode_dev-imports" to geonode_dev;
 postgres=# \q

 $ psql -d geonode_dev-imports -c 'CREATE EXTENSION postgis;'
 $ psql -d geonode_dev-imports -c 'GRANT ALL ON geometry_columns TO PUBLIC;'
 $ psql -d geonode_dev-imports -c 'GRANT ALL ON spatial_ref_sys TO PUBLIC;'

 $ exit

Edit PostgreSQL configuration file

sudo gedit /etc/postgresql/9.3/main/pg_hba.conf

Scroll to the bottom of the file and edit this line

"local" is for Unix domain socket connections only
local all all peer

As follows

"local" is for Unix domain socket connections only
local all all trust

Restart PostgreSQL to make the changes effective

sudo service postgresql restart

Java dependencies

Note

The following steps must be executed only if you don’t have a Java JDK or JRE already installed on your system (see Install GeoNode Application)

$ sudo apt-get install -y openjdk-7-jdk –no-install-recommends

Supporting tools

$ sudo apt-get install -y git gettext libjpeg62 libjpeg62-dev

	Set up a virtual environment

This is the local environment where Geonode will later be running.

Add the virtualenvwrapper to your new environment.

$ cd /home/geonode/dev

$ export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python
$ export WORKON_HOME=/home/geonode/dev/.venvs
$ source /usr/local/bin/virtualenvwrapper.sh
$ export PIP_DOWNLOAD_CACHE=$HOME/.pip-downloads

On Ubuntu, you can add the above settings to your .bashrc file and reload the settings running

$ echo export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python >> ~/.bashrc
$ echo export WORKON_HOME=/home/geonode/dev/.venvs >> ~/.bashrc
$ echo source /usr/local/bin/virtualenvwrapper.sh >> ~/.bashrc
$ echo export PIP_DOWNLOAD_CACHE=$HOME/.pip-downloads >> ~/.bashrc

$ source ~/.bashrc

Set up the local virtual environment for Geonode

$ mkvirtualenv geonode
$ workon geonode # or $ source /home/geonode/dev/.venvs/geonode/bin/activate

This creates a new directory where you want your project to be and creates a new virtualenvironment

	Get the GeoNode source code

To download the latest GeoNode version from GitHub, the command clone is used

Note

If you are following the GeoNode training, skip the following command.
You can find the cloned repository in /home/geonode/dev

$ git clone https://github.com/GeoNode/geonode.git

	Add Node.js PPA and other tools required for static development

This is required for static development

Note

If you are following GeoNode’s training, nodejs is already installed in the
Virtual Machine skip the first three command and jump to cd geonode/geonode/static

$ sudo add-apt-repository -y ppa:chris-lea/node.js
$ sudo apt-get update
$ sudo apt-get install -y nodejs
$ cd geonode/geonode/static
$ npm install --save-dev

If the last command does not work, you can run it manually like this:

$ npm install bower --save-dev
$ npm install grunt-cli --save-dev
$ npm install grunt-contrib-jshint --save-dev
$ npm install grunt-contrib-less --save-dev
$ npm install grunt-contrib-concat --save-dev
$ npm install grunt-contrib-copy --save-dev
$ npm install grunt-text-replace --save-dev
$ npm install grunt-contrib-uglify --save-dev
$ npm install grunt-contrib-cssmin --save-dev
$ npm install grunt-contrib-watch --save-dev

Note

Every time you want to update the static files after making changes to the sources, go to geonode/static and run ‘grunt production’.

	Install GeoNode in the new active local virtualenv

$ cd /home/geonode/dev
$ pip install pip --upgrade
$ pip install -e geonode --use-mirrors

$ cd geonode

If the install fails because of an error related to pyproj not being verified (happens on pip 1.5), use the following:

$ pip install -e geonode --use-mirrors --allow-external pyproj --allow-unverified pyproj

	Create local_settings.py

Add the local_settings.py to your GeoNode installation

$ cd /home/geonode/dev/geonode
$ cp geonode/local_settings.py.sample geonode/local_settings.py
$ gedit geonode/local_settings.py

Add the following lines to the local_settings.py

...

SITEURL = "http://localhost:8000/"

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'geonode_dev',
 'USER': 'geonode_dev',
 'PASSWORD': 'geonode_dev',
 },
 # vector datastore for uploads
 'datastore' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 #'ENGINE': '', # Empty ENGINE name disables
 'NAME': 'geonode_dev-imports',
 'USER' : 'geonode_dev',
 'PASSWORD' : 'geonode_dev',
 'HOST' : 'localhost',
 'PORT' : '5432',
 }
}

OGC (WMS/WFS/WCS) Server Settings
OGC_SERVER = {
 'default' : {
 'BACKEND' : 'geonode.geoserver',
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'PUBLIC_LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 'MAPFISH_PRINT_ENABLED' : True,
 'PRINT_NG_ENABLED' : True,
 'GEONODE_SECURITY_ENABLED' : True,
 'GEOGIG_ENABLED' : False,
 'WMST_ENABLED' : False,
 'BACKEND_WRITE_ENABLED': True,
 'WPS_ENABLED' : False,
 'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.path.abspath(os.path.join(PROJECT_ROOT, os.pardir)),
 # Set to name of database in DATABASES dictionary to enable
 'DATASTORE': 'datastore',
 }
}

CATALOGUE = {
 'default': {
 # The underlying CSW implementation
 # default is pycsw in local mode (tied directly to GeoNode Django DB)
 'ENGINE': 'geonode.catalogue.backends.pycsw_local',
 # pycsw in non-local mode
 # 'ENGINE': 'geonode.catalogue.backends.pycsw_http',
 # GeoNetwork opensource
 # 'ENGINE': 'geonode.catalogue.backends.geonetwork',
 # deegree and others
 # 'ENGINE': 'geonode.catalogue.backends.generic',

 # The FULLY QUALIFIED base url to the CSW instance for this GeoNode
 'URL': '%scatalogue/csw' % SITEURL,
 # 'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
 # 'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',

 # login credentials (for GeoNetwork)
 'USER': 'admin',
 'PASSWORD': 'admin',
 }
}

...

	Compile and Start the server for the first time

Align the database structure

$ cd /home/geonode/dev/geonode
$ python manage.py migrate

Warning

If the start fails because of an import error related to osgeo, then please consult the Install GDAL for Development.

The last step is to compile GeoServer and setup, then initialize the database

$ paver setup
$ paver sync

	Now we can start our GeoNode instance

Warning

Don’t forget to stop the GeoNode Production services if enabled

service apache2 stop
service tomcat7 stop

$ paver start

Visit the GeoNode site by typing http://localhost:8000 into your browser window.

If you are using a different IP address (e.g 1.1.1.1), then start paver using the command below.

$ paver start -b 1.1.1.1:8000

Warning

If the start fails because of an import error related to osgeo, then please consult the Install GDAL for Development.

	To stop the server

Press Ctrl-C on your keyboard to stop the server.

then type:

$ paver stop # to stop all django, geoserver services

	Create a Django superuser for your GeoNode

Create a superuser so you can log on to your local GeoNode installation at http://localhost:8000

$ python manage.py createsuperuser

Start working on Geonode the next day after install

With every restart of your machine, you have to restart GeoNode as well. That means, you will not be able to open http://localhost:8000 directly after starting your machine new. In order to be able to use GeoNode now, you have to activate your virtualenv and to start the development servers.

Note

username is the name of your machine and personal folder!

	Activate virtualenv

To activate your virtualenv you just need to type

$ workon geonode

or

$ source /home/geonode/dev/.venvs/geonode/bin/activate

Note

Be careful with the path, it might not be the same for you!

	Start the server

Warning

Don’t forget to stop the GeoNode Production services if enabled

service apache2 stop
service tomcat7 stop

$ cd geonode
$ paver start_geoserver
$ paver start_django

Now you are able to access http://localhost:8000 again.

Note

Remember that you have to do these steps each time you restart your machine!!

Hint

Now you’ve followed these installation instructions, GeoNode is running in development mode. This also means that you are using all the default settings of GeoNode. If you want to change them, e.g use Tomcat instead of Jetty, or Postgresql instead of sqlite3, you may follow the steps from the section Configure Manually in Custom Installation Guide.

GeoNode debugging techniques

GeoNode can be difficult to debug as there are several different components
involved:

	Browser - includes HTML/CSS issues, JavaScript, etc.

	Django - GeoNode HTML views and web APIs

	GeoServer - Core Wxx services and Platform REST APIs

When attempting to diagnose a specific problem, often the order of investigation
mirrors the order above - that is, start with the client: Is this a bug in code
running on the browser. If not, step to the next level: the Django responses to
client requests. Often this is possible via the browser using the correct tools.
Many requests require Django communications with GeoServer. This is the next
stage of investigation if a specific bug does not appear to originate in Django
or the client.

The following section covers techniques to help diagnose and debug errors.

	Debugging GeoNode in the Browser
	Net Tab

	DOM Tab

	Script Tab

	HTML Tab

	Debugging GeoExplorer

	Debugging GeoNode’s Python Components
	Logging

	PDB

	Debugging GeoServer
	Logging

	Advanced Troubleshooting

	Using Django to Help Debug

Debugging GeoNode in the Browser

This section covers some techniques for debugging browser and Django related
response bugs using the Firefox web browser extension named Firebug. The concepts
covered apply to other browser’s tools but may vary in terminology.

Another Firefox extension worth noting is ‘JSONView’. This extension supports
formatted viewing of JSON responses and integrates well with Firebug.

References:

	https://getfirebug.com/faq/

	https://jsonview.com/

Net Tab

The net tab allows viewing all of the network traffic from the browser. The subtabs (like the selected “Images” tab) allow filtering by the type of traffic.

[image: ../../../_images/firebug-net.png]
Firebug Net Tab

In this screen-shot, the mouse hover displays the image content and the full URL requested. One can right-click to copy-paste the URL or view in a separate tab. This is useful for obtaining test URLs. The grayed out entries show that the resource was cached via conditional-get (the 304 not modified). Other very useful advanced information includes the size of the response and the loading indicator graphics on the right. At the bottom, note the total size and timing information.

Net Tab Exercises

	Go to layers/maps/search pages and look at the various requests. Note
the XHR subtab. Look at the various request specific tabs: headers,
params, etc.

	Use the ‘disable browser cache’ option and see how it affects page
loads. Discuss advantages/challenges of caching.

DOM Tab

The DOM tab displays all of the top-level window objects. By drilling down, this can be a useful way to find out what’s going on in a page.

[image: ../../../_images/firebug-dom.png]
Firebug DOM Tab

In this example, the mouse is hovering over the app object. Note the high level view of objects and their fields. The console tab allows interacting with the objects.

DOM Tab Exercises

	Drill down in the DOM tab.

	Use the console to interactively exercise jQuery.

	Use the console to interact with the app/map or other page objects

Script Tab

The script tab allows viewing scripts and debugging.

[image: ../../../_images/firebug-debug.png]

The screen-shot displays a breakpoint set at line 3, the current code is stopped at line 8 and the mouse hover is displaying the value of the variable ‘class_list’. On the right, the ‘Watch’ tab displays the various variables and scopes and offers a drill down view similar to the DOM view. The stack tab displays the execution stack context outside the current frame.

Script Tab Exercises

	Step through some code

	Look at various features: variables, scopes, DOM drill-down

HTML Tab

The HTML tag allows viewing and drilling down into the DOM. This is an incredibly useful feature when doing CSS or HTML work.

[image: ../../../_images/firebug-html.png]

The screen-shot displays a search result ‘article’ element highlighted with padding and margin in yellow and purple. The DOM structure is displayed on the left and the right panel displays the specific style rules while the computed tab displays the effective style rules. The layout tab displays rulers and property values while the DOM tab displays a debug/DOM-like view of the actual object’s properties.

HTML Tab Exercises

	Identify elements by looking at the tabs on the right.

	Change styles, adding new rules and styles.

	Edit existing HTML elements via the raw view and the tree view.

Debugging GeoExplorer

In case you want to debug the GeoExplorer behaviour in your browser with
Firebug of Chromium Developer toolbar, you may do the following:

Install Boundless Suite:

$ git clone git://github.com/GeoNode/suite.git
$ cd suite
$ git submodule update --init --recursive

Run GeoExplorer in debug mode:

$ cd geoexplorer
$ ant debug

Check if GeoExplorer is running at this URL: http://localhost:9080

Edit the layers/templates/layers/layer_geoext_map.html file and replace this
line:

{% include "geoext/geo_header.html" %}

with this one:

{% include "geoext/geo_header_debug.html" %}

Debugging GeoNode’s Python Components

Logging

References:

	https://docs.python.org/2/library/logging.html

	https://docs.djangoproject.com/en/1.8/topics/logging/

Logging is controlled by the contents of the logging data structure defined in
the settings.py. The default settings distributed with GeoNode are
configured to only log errors. During development, it’s a good idea to override
the logging data structure with something a bit more verbose.

Output

In production, logging output will go into the Apache error log. This is located
in /var/log/apache2/error.log. During development, logging output will,
by default, go to standard error.

Configuring

	Ensure the ‘console’ handler is at the appropriate level. It will ignore log
messages below the set level.

	Ensure the specific logger you’d like to use is set at the correct level.

	If attempting to log SQL, ensure DEBUG=True in your local_settings.py.

Debugging SQL

	To trace all SQL in Django, configure the django.db.backends logger to
DEBUG

	To examine a specific query object, you can use the query field:
str(Layer.objects.all().query)

	You can gather more information by using django.db.connection.queries. When
DEBUG is enabled, query SQL and timing information is stored in this list.

Hints

	Don’t use print statements. They are easy to use in development mode but in
production they will cause failure.

	Take advantage of python. Instead of:

logging.info('some var ' + x + ' is not = ' + y)

Use:

logging.info('some var %s is not = %s', x, y)

Excercises:

	Enable logging of all SQL statements. Visit some pages and view the logging output.

	Using the python shell, use the queries object to demonstrate the results of specific queries.

PDB

Reference:

	https://docs.python.org/2/library/pdb.html

For the adventurous, pdb allows for an interactive debugging session. This
is only possible when running in a shell via manage.py runserver or
paver runserver.

To set a breakpoint, insert the following code before the code to debug.

import pdb; pdb.set_strace()

When execution reaches this statement, the debugger will activate. The commands
are noted in the link above. In addition to those debugger specific commands,
general python statements are supported. For example, typing the name of a
variable in scope will yield the value via string coercion. Typing “n” will execute the next line, “c” will continue the execution of the program, “q” will quit.

Debugging GeoServer

Resources:

	http://docs.geoserver.org/latest/en/user/production/troubleshooting.html

	http://docs.geoserver.org/latest/en/user/production/troubleshooting.html

This section does not attempt to cover developer-level debugging in GeoServer as
this is a much larger topic involving many more tools. The goal here is to
provide ‘black-box’ techniques to help resolve and report problems.

Logging

GeoServer logging, while sometimes containing too much information, is the best
way to start diagnosing an issue in GeoNode once the other. To create a proper
error report for use in requesting support, providing any contextual logging
information is critical.

When using a standard GeoServer installation, the GeoServer logs are located at
/usr/share/geoserver/data/logs/geoserver.log. The properties files that
control the varying rules are also located here.

Exercises

	Switch logging levels for various loggers.

	Look at the different logging profiles and discuss the loggers and levels.

	Learn how to read stack traces, nested or otherwise.

Advanced Troubleshooting

JVM diagnostics and advanced troubleshooting techniques are covered in the
GeoServer documents linked to above. When providing information for a bug
report, these can be helpful but in-depth Java knowledge is required to fully
comprehend the output from some of these tools.

Exercises

	Look at jstack output

Using Django to Help Debug

The gsconfig library provides a rich interface to interacting with GeoServer’s
REST API. This allows high-level functions as well as viewing raw REST responses.

cat = Layer.objects.gs_catalog
cat.get_layers() # list of gsconfig layer objects
OR, for a specific layer
lyr = Layer.objects.get(id=1)
lyr.resource # specific gsconfig layer object
lyr.resource.fetch() # get the XML from REST
lyr.resource.dom # reference to the parsed XML
from xml.etree.ElementTree import tostring
tostring(lyr.resource.dom)

GeoNode APIs

	GeoServer REST interface
	Introduction to REST concepts

	Using REST module

	REST configuration examples
	cURL

	PHP

	Python

	Java

	Ruby

	GeoServer Importer
	Installing the Importer extension

	Using the Importer extension

	Importer interface reference
	Data sources page

	Layer listing page

	Advanced import settings page

	Supported data formats

	REST API
	Importer concepts

	REST API Reference

	Importer REST API examples
	Mass configuring a directory of shapefiles

	Configuring a shapefile with no projection information

	Uploading a CSV file to PostGIS while transforming it

	Uploading and optimizing a GeoTiff with ground control points

	Adding a new granule into an existing mosaic

	Asynchronously fetching and importing data from a remote server

	GeoNode’s Ad-Hoc API
	gsconfig
	Installing

	Getting Help

	Sample Layer Creation Code

	Running Tests

	More Examples - Updated for GeoServer 2.4+

	gsimporter
	Installing

	Getting Help

	Running Tests

GeoServer REST interface

This module is a walkthrough the GeoServer REST capabilities and APIs. Here also will be presented and deeply inspected several methods and frameworks to handle with REST APIs and functions.

What you will learn

In this section you will learn:

	Introduction to REST concepts

	Using REST module

	REST configuration examples
	cURL

	PHP

	Python

	Java

	Ruby

Introducing REST concepts

REST (REpresentational State Transfer) is a simple approach to web services strongly based on the basic
HTTP infrastructure, such as URLs, HTTP methods and HTTP response codes.

The basic elements of a REST service are:

	Resource: each business entity is linked to a unique URL that represents it,
and allows for its retrieval and eventual modification. In GeoServer such resources are layers, stores,
styles and so on

	Connectedness: the various resources are linked to one another following significant relationships.
For example, in GeoServer a store contains a list of feature types or coverages, a layer is linked to a
style and a feature type/coverage, and so on (in other terms, the set of resources is supposed to
be crawable just like a web site).

	Representation: each resource can be represented in one or more way. For example in GeoServer resources
are normally represented as HTML, XML and JSON.

	Stateless-ness: each communication with the server is atomic and not related to the communications
happened before or after it. Whatever state needs to be managed needs to be stored as a publicly accessible
resource.

	HTTP methods reuse: each resource is manipulated via the common HTTP methods each having a common meaning,
summarized by the following table

	Method

	Description

	GET

	Retrieves the resource in the specified representation. Query parameters are often used to filter the contents of the returned resource, and sometimes to specify the desired representation format.

	HEAD

	Similar to GET, but instead of returning the full response it returns only the HTTP headers, which might contain information such as the last modification date of the resource

	PUT

	Stores the representation of a resource at a given URL. Used when the client already knows what the final URL of the resource will be

	POST

	Creates a new resource by either getting its contents in the request, or having some parameters to compute it. The main different is that the final URL of the created resource is not known to the client, and is returned by the server after creation via a redirect. It is also used to have the server perform certain actions that cannot be encoded as another method, for example, have it send a SMS (assuming creating a resource representing the SMS is not desirable)

	DELETE

	Destroys the specified resource.

The above results in a web services protocols that is easy to understand, implement and connect to from various
languages, and with good scalability characteristics.

The GeoServer rest interface is located at http://localhost:8083/geoserver/rest, by default a browser will show resources in HTML format allowing for a simple browsable interface to the GeoServer configuration.

http://localhost:8083/geoserver/rest

[image: ../../../../_images/rest_browser_1.png]
Browsing the REST interface with HTML format

Follow the links into workspaces and then geosolutions and switch the format from .html to xml to see the XML representation:

http://localhost:8083/geoserver/rest/workspaces/geosolutions.xml

[image: ../../../../_images/rest_browser_2.png]
The GeoSolutions workspace represented as XML

Using REST module

This section contains a number of examples which illustrate various uses of the REST data configuration API.

The GeoServer REST configuration module uses the REST principles to expose services allowing to edit the catalog, in particular to manage workspaces, stores, layers, styles and groups.

Note

The REST configuration extension has normally to be installed separately, it is not come out of the box.

The examples in this section use the cURL [https://curl.haxx.se/] utility, which is a handy command line tool for executing HTTP requests and transferring files.

	Open the Terminal and enter the following command:

curl -u admin:geoserver -v -XPOST -H "Content-type: text/xml" -d "<workspace><name>myworkspace</name></workspace>" http://localhost:8083/geoserver/rest/workspaces

The response should contain the following:

[image: ../../../../_images/workspace1.png]
Create a new workspace via REST

	Go to the Workspaces section via Web interface to show the new workspace created

[image: ../../../../_images/workspace2.png]
GET request to abtain new workspace details

	Get the new created workspace details entering the following:

curl -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost:8083/geoserver/rest/workspaces/myworkspace

[image: ../../../../_images/workspace3.png]
GET request to obtain new workspace details

	Publish the shapefile pointlands using the myworkspace workspace entering the following

	Linux:

curl -u admin:geoserver -H "Content-type: application/zip" -T /.../pointlands.zip http://localhost:8083/geoserver/rest/workspaces/myworkspace/datastores/pointlands/file.shp

	Windows:

curl -u admin:geoserver -H "Content-type: application/zip" -T /.../pointlands.zip http://localhost:8083/geoserver/rest/workspaces/myworkspace/datastores/pointlands/file.shp

	Go to the Layer Preview to show the layers in a OpenLayers Map.

[image: ../../../../_images/shape1.png]
Showing the new layer created

[image: ../../../../_images/shape2.png]
The new layers created

Note

If you previously followed the security portion of the workshop the layer won’t be accessible because the administrator does not have the required roles. Go back in the service security section and remove the rule limiting the GetMap requests.

	Retrieves the created data store as XML entering the following:

curl -u admin:geoserver -XGET http://localhost:8083/geoserver/rest/workspaces/myworkspace/datastores/pointlands.xml

<dataStore>
 <name>pointlands</name>
 <type>Shapefile</type>
 <enabled>true</enabled>
 <workspace>
 <name>myworkspace</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8083/geoserver/rest/workspaces/myworkspace.xml" type="application/xml"/>
 </workspace>
 <connectionParameters>
 <entry key="url">file:${TRAINING_ROOT}/geoserver_data/data/myworkspace/pointlands/</entry>
 <entry key="namespace">http://myworkspace</entry>
 </connectionParameters>
 <__default>false</__default>
 <featureTypes>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8083/geoserver/rest/workspaces/myworkspace/datastores/pointlands/featuretypes.xml" type="application/xml"/>
 </featureTypes>
</dataStore>

Note

By default when a shapefile is uploaded a feature type resource and the associated layer are automatically created.

	Retrieve the layer as XML entering the following:

curl -u admin:geoserver -XGET http://localhost:8083/geoserver/rest/layers/myworkspace:pointlands.xml

<layer>
 <name>pointlands</name>
 <type>VECTOR</type>
 <defaultStyle>
 <name>point</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8083/geoserver/rest/styles/point.xml" type="application/xml"/>
 </defaultStyle>
 <resource class="featureType">
 <name>pointlands</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8083/geoserver/rest/workspaces/myworkspace/datastores/pointlands/featuretypes/pointlands.xml" type="application/xml"/>
 </resource>
 <attribution>
 <logoWidth>0</logoWidth>
 <logoHeight>0</logoHeight>
 </attribution>
</layer>

Note

When the layer is created a default style named point is assigned to it.

	Create a new style named landmarks with the following SLD (using the GeoServer Admin UI):

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
 xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"
 xmlns="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <!-- a Named Layer is the basic building block of an SLD document -->
 <NamedLayer>
 <Name>default_point</Name>
 <UserStyle>
 <!-- Styles can have names, titles and abstracts -->
 <Title>Default Point</Title>
 <Abstract>A sample style that draws a point</Abstract>
 <!-- FeatureTypeStyles describe how to render different features -->
 <!-- A FeatureTypeStyle for rendering points -->
 <FeatureTypeStyle>
 <Rule>
 <Name>rule1</Name>
 <Title>Red Square</Title>
 <Abstract>A 6 pixel square with a red fill and no stroke</Abstract>
 <PointSymbolizer>
 <Graphic>
 <Mark>
 <WellKnownName>triangle</WellKnownName>
 <Stroke>
 <CssParameter name="stroke">#66FF66</CssParameter>
 </Stroke>
 <Fill>
 <CssParameter name="fill">#66FF66</CssParameter>
 </Fill>
 </Mark>
 <Size>10</Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

	Apply the existing landmarks style to the layer created myworkspace:pointlands (this operation does not overwrite the entire layer definition, updates it instead):

curl -u admin:geoserver -XPUT -H "Content-type: text/xml" -d "<layer><defaultStyle><name>landmarks</name></defaultStyle><enabled>true</enabled></layer>" http://localhost:8083/geoserver/rest/layers/myworkspace:pointlands

	Go to the Layer Preview to show the layers with the new landmarks style.

[image: ../../../../_images/shpchanging2.png]
Viewing the layers with the new created style landmarks

REST configuration examples

This section contains a number of examples which illustrate various uses of the
REST configuration API. The examples are grouped by the language or environment used.

	cURL

	PHP

	Python

	Java

	Ruby

cURL

The examples in this section use cURL [https://curl.haxx.se/], a command line tool for executing HTTP requests and transferring files, to generate requests to GeoServer’s REST interface. Although the examples are based on cURL, they could be adapted for any HTTP-capable tool or library.
Please be aware that cURL doesn’t act exactly the same as a web browser. In contrast to Mozilla Firefox or Google Chrome, cURL will not escape special characters in your request string automatically. To make sure, that your requests can be processed correctly, make sure, that characters like parenthesis, commas and the like are escaped before sending them via cURL.
If you use libcurl in PHP 5.5 or newer you can prepare the URL-string using the function curl_escape. In older versions of PHP htmlspecialchars should do the job also.

Adding a new workspace

The following creates a new workspace named “acme” with a POST request:

Note

Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "<workspace><name>acme</name></workspace>" http://localhost/geoserver/rest/workspaces

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created
...
< Location: http://localhost/geoserver/rest/workspaces/acme

Note the Location response header, which specifies the location (URI) of the newly created workspace.

The workspace information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/geoserver/rest/workspaces/acme

The response should look like this:

<workspace>
 <name>acme</name>
 <dataStores>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/workspaces/acme/datastores.xml"
 type="application/xml"/>
 </dataStores>
 <coverageStores>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/workspaces/acme/coveragestores.xml"
 type="application/xml"/>
 </coverageStores>
 <wmsStores>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/workspaces/acme/wmsstores.xml"
 type="application/xml"/>
 </wmsStores>
</workspace>

This shows that the workspace can contain “dataStores” (for vector data), “coverageStores” (for raster data), and “wmsStores” (for cascaded WMS servers).

Note

The Accept header is optional. The following request omits the Accept header, but will return the same response as above.

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme.xml

Uploading a shapefile

In this example, a new store will be created by uploading a shapefile.

The following request uploads a zipped shapefile named roads.zip and creates a new store named roads.

Note

Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPUT -H "Content-type: application/zip" --data-binary @roads.zip http://localhost/geoserver/rest/workspaces/acme/datastores/roads/file.shp

The roads identifier in the URI refers to the name of the store to be created. To create a store named somethingelse, the URI would be http://localhost/geoserver/rest/workspaces/acme/datastores/somethingelse/file.shp

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

The store information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme/datastores/roads.xml

The response should look like this:

<dataStore>
 <name>roads</name>
 <type>Shapefile</type>
 <enabled>true</enabled>
 <workspace>
 <name>acme</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/workspaces/acme.xml" type="application/xml"/>
 </workspace>
 <connectionParameters>
 <entry key="url">file:/C:/path/to/data_dir/data/acme/roads/</entry>
 <entry key="namespace">http://acme</entry>
 </connectionParameters>
 <__default>false</__default>
 <featureTypes>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/workspaces/acme/datastores/roads/featuretypes.xml"
 type="application/xml"/>
 </featureTypes>
</dataStore>

By default when a shapefile is uploaded, a feature type is automatically created. The feature type information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme/datastores/roads/featuretypes/tiger_roads.xml

If executed correctly, the response will be:

<featureType>
 <name>roads</name>
 <nativeName>roads</nativeName>
 <namespace>
 <name>acme</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/namespaces/acme.xml" type="application/xml"/>
 </namespace>
 ...
</featureType>

The remainder of the response consists of layer metadata and configuration information.

Note

Notice that the name of the Layer (and of the FeatureType) corresponds to the physical name of the ShapeFile contained into the archive.

Adding an existing shapefile

In the previous example a shapefile was uploaded directly to GeoServer by sending a zip file in the body of a PUT request. This example shows how to publish a shapefile that already exists on the server.

Consider a directory on the server /data/shapefiles that contains the shapefile rivers.shp. The following adds a new store for the shapefile:

Note

In order to execute the exercise, create a folder shapefiles somewhere on the server and extract there the shapefiles.zip.

curl -v -u admin:geoserver -XPUT -H "Content-type: text/plain" -d "file:///home/geonode/data/shapefiles/rivers.shp" http://localhost/geoserver/rest/workspaces/acme/datastores/rivers/external.shp

The external.shp part of the request URI indicates that the file is coming from outside the catalog.

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

The shapefile will be added to the existing store and published as a layer.

To verify the contents of the store, execute a GET request. Since the XML response only provides details about the store itself without showing its contents, execute a GET request for HTML:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme/datastores/rivers.html

Adding a directory of existing shapefiles

This example shows how to load and create a store that contains a number of shapefiles, all with a single operation. This example is very similar to the example above of adding a single shapefile.

Consider a directory on the server /data/shapefiles that contains multiple shapefiles. The following adds a new store for the directory.

Note

In order to execute the exercise, create a folder shapefiles somewhere on the server and extract there the shapefiles.zip.

curl -v -u admin:geoserver -XPUT -H "Content-type: text/plain" -d "file:///home/geonode/data/shapefiles/" "http://localhost/geoserver/rest/workspaces/acme/datastores/shapefiles/external.shp?configure=all"

Note the configure=all query string parameter, which sets each shapefile in the directory to be loaded and published.

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

To verify the contents of the store, execute a GET request. Since the XML response only provides details about the store itself without showing its contents, execute a GET request for HTML:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme/datastores/shapefiles.html

Creating a layer style

This example will create a new style on the server and populate it the contents of a local SLD file.

The following creates a new style named roads_style:

Note

Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "<style><name>roads_style</name><filename>roads.sld</filename></style>" http://localhost/geoserver/rest/styles

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

This request uploads a file called roads.sld file and populates the roads_style with its contents:

curl -v -u admin:geoserver -XPUT -H "Content-type: application/vnd.ogc.sld+xml" -d @roads.sld http://localhost/geoserver/rest/styles/roads_style

If executed correctly, the response should contain the following:

< HTTP/1.1 200 OK

The SLD itself can be downloaded through a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/styles/roads_style.sld

Changing a layer style

This example will alter a layer style. Prior to making any changes, it is helpful to view the existing configuration for a given layer.

Note

Each code block below contains a single command that may be extended over multiple lines.

The following retrieves the “acme:roads” layer information as XML:

curl -v -u admin:geoserver -XGET "http://localhost/geoserver/rest/layers/acme:tiger_roads.xml"

The response in this case would be:

<layer>
 <name>tiger_roads</name>
 <type>VECTOR</type>
 <defaultStyle>
 <name>line</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost/geoserver/rest/styles/line.xml" type="application/xml"/>
 </defaultStyle>
 <resource class="featureType">
 <name>tiger_roads</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost/geoserver/rest/workspaces/acme/datastores/roads/featuretypes/tiger_roads.xml" type="application/xml"/>
 </resource>
 <attribution>
 <logoWidth>0</logoWidth>
 <logoHeight>0</logoHeight>
 </attribution>
</layer>

When the layer is created, GeoServer assigns a default style to the layer that matches the geometry of the layer. In this case a style named line is assigned to the layer. This style can viewed with a WMS request:

http://localhost/geoserver/wms/reflect?layers=acme:tiger_roads

In this next example a new style will be created called roads_style and assigned to the “acme:roads” layer:

curl -v -u admin:geoserver -XPUT -H "Content-type: text/xml" -d "<layer><defaultStyle><name>roads_style</name></defaultStyle></layer>" http://localhost/geoserver/rest/layers/acme:tiger_roads

If executed correctly, the response should contain the following:

< HTTP/1.1 200 OK

The new style can be viewed with the same WMS request as above:

http://localhost/geoserver/wms/reflect?layers=acme:tiger_roads

Note that if you want to upload the style in a workspace (ie, not making it a global style),
and then assign this style to a layer in that workspace, you need first to create the style in the given workspace:

curl -u admin:geoserver -XPOST -H 'Content-type: text/xml' -d '<style><name>roads_style</name><filename>roads.sld</filename></style>' http://localhost/geoserver/rest/workspaces/acme/styles

Upload the file within the workspace:

curl -u admin:geoserver -XPUT -H 'Content-type: application/vnd.ogc.sld+xml' -d @roads.sld http://localhost/geoserver/rest/workspaces/acme/styles/roads_style

And finally apply that style to the layer. Note the use of the <workspace> tag in the XML:

curl -u admin:geoserver -XPUT -H 'Content-type: text/xml' -d '<layer><defaultStyle><name>roads_style</name><workspace>acme</workspace></defaultStyle></layer>' http://localhost/geoserver/rest/layers/acme:tiger_roads

Adding a PostGIS database

In this example, a PostGIS database named nyc will be added as a new store.

Warning

This section assumes that a PostGIS database named nyc is present on the local system and is accessible by the user bob.

Note

In order to create and setup the database locally, follow the instructions at Create and Prepare the nyc Example DataBase

Create a new text file and add the following content to it. This will represent the new store. Save the file as nycDataStore.xml.

<dataStore>
 <name>nyc</name>
 <connectionParameters>
 <host>localhost</host>
 <port>5432</port>
 <database>nyc</database>
 <user>bob</user>
 <passwd>postgres</passwd>
 <dbtype>postgis</dbtype>
 </connectionParameters>
</dataStore>

The following will add the new PostGIS store to the GeoServer catalog:

Note

Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -T nycDataStore.xml -H "Content-type: text/xml" http://localhost/geoserver/rest/workspaces/acme/datastores

If executed correctly, the response should contain the following:

< HTTP/1.1 200 OK

The store information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme/datastores/nyc.xml

The response should look like the following:

<dataStore>
 <name>nyc</name>
 <type>PostGIS</type>
 <enabled>true</enabled>
 <workspace>
 <name>acme</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/workspaces/acme.xml" type="application/xml"/>
 </workspace>
 <connectionParameters>
 <entry key="port">5432</entry>
 <entry key="dbtype">postgis</entry>
 <entry key="host">localhost</entry>
 <entry key="user">bob</entry>
 <entry key="database">nyc</entry>
 <entry key="namespace">http://acme</entry>
 </connectionParameters>
 <__default>false</__default>
 <featureTypes>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes.xml"
 type="application/xml"/>
 </featureTypes>
</dataStore>

Adding a PostGIS table

In this example, a table from the PostGIS database created in the previous example will be added as a featuretype.

Warning

This example assumes the table has already been created and the tiger_roads Layer deleted in case you have executed the previous steps.

The following adds the table tiger_roads as a new feature type:

Note

Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "<featureType><name>tiger_roads</name></featureType>" http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

The featuretype information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes/tiger_roads.xml

This layer can viewed with a WMS GetMap request:

http://localhost/geoserver/wms/reflect?layers=acme:tiger_roads

Creating a PostGIS table

In the previous example, a new feature type was added based on a PostGIS table that already existed in the database. The following example will not only create a new feature type in GeoServer, but will also create the PostGIS table itself.

Create a new text file and add the following content to it. This will represent the definition of the new feature type and table. Save the file as annotations.xml.

<featureType>
 <name>annotations</name>
 <nativeName>annotations</nativeName>
 <title>Annotations</title>
 <srs>EPSG:4326</srs>
 <attributes>
 <attribute>
 <name>the_geom</name>
 <binding>com.vividsolutions.jts.geom.Point</binding>
 </attribute>
 <attribute>
 <name>description</name>
 <binding>java.lang.String</binding>
 </attribute>
 <attribute>
 <name>timestamp</name>
 <binding>java.util.Date</binding>
 </attribute>
 </attributes>
</featureType>

This request will perform the feature type creation and add the new table:

Note

Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -T annotations.xml -H "Content-type: text/xml" http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

The result is a new, empty table named “annotations” in the “nyc” database, fully configured as a feature type.

The featuretype information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes/annotations.xml

Creating a layer group

Warning

This example assumes the tables has already been created and the tiger_roads, poly_landmarks, poi, giant_polygon Layers have been created.

$ curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "<featureType><name>giant_polygon</name></featureType>" http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

$ curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "<featureType><name>poi</name></featureType>" http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

$ curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "<featureType><name>poly_landmarks</name></featureType>" http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

In this example, a layer group will be created, based on layers that already exist on the server.

Create a new text file and add the following content to it. This file will represent the definition of the new layer group. Save the file as nycLayerGroup.xml.

<layerGroup>
 <name>nyc</name>
 <layers>
 <layer>poi</layer>
 <layer>poly_landmarks</layer>
 <layer>tiger_roads</layer>
 </layers>
 <styles>
 <style>point</style>
 <style>polygon</style>
 <style>roads_style</style>
 </styles>
</layerGroup>

The following request creates the new layer group:

Note

Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -d @nycLayerGroup.xml -H "Content-type: text/xml" http://localhost/geoserver/rest/layergroups

Note

The argument -d@filename.xml in this example is used to send a file as the body of an HTTP request with a POST method. The argument -T filename.xml used in the previous example was used to send a file as the body of an HTTP request with a PUT method.

This layer group can be viewed with a WMS GetMap request:

http://localhost/geoserver/wms/reflect?layers=nyc&format=openlayers

Retrieving component versions

This example shows how to retrieve the versions of the main components: GeoServer, GeoTools, and GeoWebCache:

Note

The code block below contains a single command that is extended over multiple lines.

curl -v -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/geoserver/rest/about/version.xml

The response will look something like this:

<about>
 <resource name="GeoServer">
 <Build-Timestamp>04-Aug-2015 11:00</Build-Timestamp>
 <Git-Revision>bca94d09e2e18839814a4b663ba8b0fca2130e47</Git-Revision>
 <Version>2.7-SNAPSHOT</Version>
 </resource>
 <resource name="GeoTools">
 <Build-Timestamp>29-Jul-2015 10:13</Build-Timestamp>
 <Git-Revision>f50be97a039cd06d43a87ec3cc101626f0ac9fd2</Git-Revision>
 <Version>13-SNAPSHOT</Version>
 </resource>
 <resource name="GeoWebCache">
 <Git-Revision>f6e0d39c29c2317d2839c52a84676935e5b046cf/f6e0d39c29c2317d2839c52a84676935e5b046cf</Git-Revision>
 <Version>1.7-SNAPSHOT</Version>
 </resource>
</about>

Retrieving manifests

This collection of examples shows how to retrieve the full manifest and subsets of the manifest as known to the ClassLoader.

Note

The code block below contains a single command that is extended over multiple lines.

curl -v -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/geoserver/rest/about/manifest.xml

The result will be a very long list of manifest information. While this can be useful, it is often desirable to filter this list.

Filtering over resource name

It is possible to filter over resource names using regular expressions. This example will retrieve only resources where the name attribute matches gwc-.*:

Note

The code block below contains a single command that is extended over multiple lines.

curl -v -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/geoserver/rest/about/manifest.xml?manifest=gwc-.*

The result will look something like this (edited for brevity):

<about>
 <resource name="gwc-2.3.0">
 ...
 </resource>
 <resource name="gwc-core-1.4.0">
 ...
 </resource>
 <resource name="gwc-diskquota-core-1.4.0">
 ...
 </resource>
 <resource name="gwc-diskquota-jdbc-1.4.0">
 ...
 </resource>
 <resource name="gwc-georss-1.4.0">
 ...
 </resource>
 <resource name="gwc-gmaps-1.4.0">
 ...
 </resource>
 <resource name="gwc-kml-1.4.0">
 ...
 </resource>
 <resource name="gwc-rest-1.4.0">
 ...
 </resource>
 <resource name="gwc-tms-1.4.0">
 ...
 </resource>
 <resource name="gwc-ve-1.4.0">
 ...
 </resource>
 <resource name="gwc-wms-1.4.0">
 ...
 </resource>
 <resource name="gwc-wmts-1.4.0">
 ...
 </resource>
</about>

Filtering over resource properties

Filtering is also available over resulting resource properties. This example will retrieve only resources with a property equal to GeoServerModule.

Note

The code blocks below contain a single command that is extended over multiple lines.

curl -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/geoserver/rest/about/manifest.xml?key=GeoServerModule

The result will look something like this (edited for brevity):

<about>
 <resource name="control-flow-2.3.0">
 <GeoServerModule>extension</GeoServerModule>
 ...
 </resource>
 ...
 <resource name="wms-2.3.0">
 <GeoServerModule>core</GeoServerModule>
 ...
 </resource>
</about>

It is also possible to filter against both property and value. To retrieve only resources where a property named GeoServerModule has a value equal to extension, append the above request with &value=extension:

curl -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/geoserver/rest/about/manifest.xml?key=GeoServerModule&value=extension

Uploading and modifying a image mosaic

The following command uploads a polyphemus.zip file containing the definition of a mosaic (along with at least one granule of the mosaic to initialize the resolutions, overviews and the like) and will configure all the coverages in it as new layers.

Note

The code blocks below contain a single command that is extended over multiple lines.

curl -u admin:geoserver -XPUT -H "Content-type:application/zip" --data-binary @polyphemus.zip http://localhost/geoserver/rest/workspaces/topp/coveragestores/polyphemus/file.imagemosaic

The following instead instructs the mosaic to harvest (or re-harvest) a single file into the mosaic, collecting its properties and updating the mosaic index:

curl -v -u admin:geoserver -XPOST -H "Content-type: text/plain" -d "file:///path/to/the/file/polyphemus_20130302.nc" "http://localhost/geoserver/rest/workspaces/topp/coveragestores/poly-incremental/external.imagemosaic"

Harvesting can also be directed towards a whole directory, as follows:

curl -v -u admin:geoserver -XPOST -H "Content-type: text/plain" -d "file:///path/to/the/mosaic/folder" "http://localhost/geoserver/rest/workspaces/topp/coveragestores/poly-incremental/external.imagemosaic"

The image mosaic index structure can be retrieved using something like:

curl -v -u admin:geoserver -XGET "http://localhost/geoserver/rest/workspaces/topp/coveragestores/polyphemus-v1/coverages/NO2/index.xml"

Which will result in the following:

 <Schema>
 <attributes>
 <Attribute>
 <name>the_geom</name>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>com.vividsolutions.jts.geom.Polygon</binding>
 </Attribute>
 <Attribute>
 <name>location</name>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>java.lang.String</binding>
 </Attribute>
 <Attribute>
 <name>imageindex</name>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>java.lang.Integer</binding>
 </Attribute>
 <Attribute>
 <name>time</name>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>java.sql.Timestamp</binding>
 </Attribute>
 <Attribute>
 <name>elevation</name>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>java.lang.Double</binding>
 </Attribute>
 <Attribute>
 <name>fileDate</name>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>java.sql.Timestamp</binding>
 </Attribute>
 <Attribute>
 <name>updated</name>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>java.sql.Timestamp</binding>
 </Attribute>
 </attributes>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost/geoserver/rest/workspaces/topp/coveragestores/polyphemus-v1/coverages/NO2/index/granules.xml" type="application/xml"/>
</Schema>

Listing the existing granules can be performed as follows:

curl -v -u admin:geoserver -XGET "http://localhost/geoserver/rest/workspaces/topp/coveragestores/polyphemus-v1/coverages/NO2/index/granules.xml?limit=2"

This will result in a GML description of the granules, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<wfs:FeatureCollection xmlns:gf="http://www.geoserver.org/rest/granules" xmlns:ogc="http://www.opengis.net/ogc" xmlns:wfs="http://www.opengis.net/wfs" xmlns:gml="http://www.opengis.net/gml">
 <gml:boundedBy>
 <gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
 <gml:coord>
 <gml:X>5.0</gml:X>
 <gml:Y>45.0</gml:Y>
 </gml:coord>
 <gml:coord>
 <gml:X>14.875</gml:X>
 <gml:Y>50.9375</gml:Y>
 </gml:coord>
 </gml:Box>
 </gml:boundedBy>
 <gml:featureMember>
 <gf:NO2 fid="NO2.1">
 <gf:the_geom>
 <gml:Polygon>
 <gml:outerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates>5.0,45.0 5.0,50.9375 14.875,50.9375 14.875,45.0 5.0,45.0</gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
 </gml:Polygon>
 </gf:the_geom>
 <gf:location>polyphemus_20130301.nc</gf:location>
 <gf:imageindex>336</gf:imageindex>
 <gf:time>2013-03-01T00:00:00Z</gf:time>
 <gf:elevation>10.0</gf:elevation>
 <gf:fileDate>2013-03-01T00:00:00Z</gf:fileDate>
 <gf:updated>2013-04-11T10:54:31Z</gf:updated>
 </gf:NO2>
 </gml:featureMember>
 <gml:featureMember>
 <gf:NO2 fid="NO2.2">
 <gf:the_geom>
 <gml:Polygon>
 <gml:outerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates>5.0,45.0 5.0,50.9375 14.875,50.9375 14.875,45.0 5.0,45.0</gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
 </gml:Polygon>
 </gf:the_geom>
 <gf:location>polyphemus_20130301.nc</gf:location>
 <gf:imageindex>337</gf:imageindex>
 <gf:time>2013-03-01T00:00:00Z</gf:time>
 <gf:elevation>35.0</gf:elevation>
 <gf:fileDate>2013-03-01T00:00:00Z</gf:fileDate>
 <gf:updated>2013-04-11T10:54:31Z</gf:updated>
 </gf:NO2>
 </gml:featureMember>
</wfs:FeatureCollection>

Removing all the granules originating from a particular file (a NetCDF file can contain many) can be done as follows:

curl -v -u admin:geoserver -XDELETE "http://localhost/geoserver/rest/workspaces/topp/coveragestores/polyphemus-v1/coverages/NO2/index/granules.xml?filter=location='polyphemus_20130301.nc'"

Creating an empty mosaic and harvest granules

The next command uploads an empty.zip file.
This archive contains the definition of an empty mosaic (no granules in this case) through the following files:

datastore.properties (the postgis datastore connection params)
indexer.xml (The mosaic Indexer, note the CanBeEmpty=true parameter)
polyphemus-test.xml (The auxiliary file used by the NetCDF reader to parse schemas and tables)

Note

Make sure to update the datastore.properties file with your connection params and refresh the zip when done, before uploading it.

Note

The code blocks below contain a single command that is extended over multiple lines.

Note

The configure=none parameter allows for future configuration after harvesting

curl -u admin:geoserver -XPUT -H "Content-type:application/zip" --data-binary @empty.zip http://localhost/geoserver/rest/workspaces/topp/coveragestores/empty/file.imagemosaic?configure=none

The following instead instructs the mosaic to harvest a single polyphemus_20120401.nc file into the mosaic, collecting its properties and updating the mosaic index:

curl -v -u admin:geoserver -XPOST -H "Content-type: text/plain" -d "file:///path/to/the/file/polyphemus_20120401.nc" "http://localhost/geoserver/rest/workspaces/topp/coveragestores/empty/external.imagemosaic"

Once done you can get the list of coverages/granules available on that store.

curl -v -u admin:geoserver -XGET "http://localhost/geoserver/rest/workspaces/topp/coveragestores/empty/coverages.xml?list=all"

Which will result in the following:

<list>
 <coverageName>NO2</coverageName>
 <coverageName>O3</coverageName>
</list>

Next step is configuring ONCE for coverage (as an instance NO2), an available coverage.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xm" -d @"/path/to/coverageconfig.xml" "http://localhost/geoserver/rest/workspaces/topp/coveragestores/empty/coverages"

Where coverageconfig.xml may look like this

<coverage>
 <name>NO2</name>
</coverage>

Note

When specifying only the coverage name, the coverage will be automatically configured

Master Password Change

The master password can be fetched wit a GET request.

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/security/masterpw.xml

A generated master password may be -“}3a^Kh. Next step is creating an XML file.

File changes.xml

<masterPassword>
 <oldMasterPassword>-"}3a^Kh</oldMasterPassword>
 <newMasterPassword>geoserver1</newMasterPassword>
</masterPassword>

Changing the master password using the file:

curl -v -u admin:geoserver -XPUT -H "Content-type: text/xml" -d @change.xml http://localhost/geoserver/rest/security/masterpw.xml

PHP

The examples in this section use the server-side scripting language PHP [http://php.net/index.php/], a popular language for dynamic webpages. PHP has cURL functions [http://php.net/manual/en/ref.curl.php/] , as well as
XML functions [http://www.php.net/manual/en/refs.xml.php/], making it a convenient method for performing batch processing through the GeoServer REST interface. The following scripts execute single requests, but can be easily modified with looping structures to perform batch processing.

Note

In order to execute the examples just copy the script content into a test.php file and execute the following command:

$ php test.php

POST with PHP/cURL

The following script attempts to add a new workspace.

<?php
 // Open log file
 $logfh = fopen("GeoserverPHP.log", 'w') or die("can't open log file");

 // Initiate cURL session
 $service = "http://localhost:8080/geoserver/"; // replace with your URL
 $request = "rest/workspaces"; // to add a new workspace
 $url = $service . $request;
 $ch = curl_init($url);

 // Optional settings for debugging
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true); //option to return string
 curl_setopt($ch, CURLOPT_VERBOSE, true);
 curl_setopt($ch, CURLOPT_STDERR, $logfh); // logs curl messages

 //Required POST request settings
 curl_setopt($ch, CURLOPT_POST, True);
 $passwordStr = "admin:geoserver"; // replace with your username:password
 curl_setopt($ch, CURLOPT_USERPWD, $passwordStr);

 //POST data
 curl_setopt($ch, CURLOPT_HTTPHEADER,
 array("Content-type: application/xml"));
 $xmlStr = "<workspace><name>test_ws</name></workspace>";
 curl_setopt($ch, CURLOPT_POSTFIELDS, $xmlStr);

 //POST return code
 $successCode = 201;

 $buffer = curl_exec($ch); // Execute the curl request

 // Check for errors and process results
 $info = curl_getinfo($ch);
 if ($info['http_code'] != $successCode) {
 $msgStr = "# Unsuccessful cURL request to ";
 $msgStr .= $url." [". $info['http_code']. "]\n";
 fwrite($logfh, $msgStr);
 } else {
 $msgStr = "# Successful cURL request to ".$url."\n";
 fwrite($logfh, $msgStr);
 }
 fwrite($logfh, $buffer."\n");

 curl_close($ch); // free resources if curl handle will not be reused
 fclose($logfh); // close logfile

?>

The logfile should look something like:

* About to connect() to www.example.com port 80 (#0)
* Trying 123.456.78.90... * connected
* Connected to www.example.com (123.456.78.90) port 80 (#0)
* Server auth using Basic with user 'admin'
> POST /geoserver/rest/workspaces HTTP/1.1
Authorization: Basic sDsdfjkLDFOIedlsdkfj
Host: www.example.com
Accept: */*
Content-type: application/xml
Content-Length: 43

< HTTP/1.1 201 Created
< Date: Fri, 21 May 2010 15:44:47 GMT
< Server: Apache-Coyote/1.1
< Location: http://www.example.com/geoserver/rest/workspaces/test_ws
< Content-Length: 0
< Content-Type: text/plain
<
* Connection #0 to host www.example.com left intact
Successful cURL request to http://www.example.com/geoserver/rest/workspaces

* Closing connection #0

If the cURL request fails, a code other than 201 will be returned.
Here are some possible values:

	Code

	Meaning

	0

	Couldn’t resolve host; possibly a typo in host name

	201

	Successful POST

	30x

	Redirect; possibly a typo in the URL

	401

	Invalid username or password

	405

	Method not Allowed: check request syntax

	500

	GeoServer is unable to process the request,
e.g. the workspace already exists, the XML is malformed, …

For other codes see cURL Error Codes [https://curl.haxx.se/libcurl/c/libcurl-errors.html] and HTTP Codes [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html].

GET with PHP/cURL

The script above can be modified to perform a GET request to obtain
the names of all workspaces by replacing the code blocks for required
settings, data and return code with the following:

<?php
 // Required GET request settings
 // curl_setopt($ch, CURLOPT_GET, True); // CURLOPT_GET is True by default

 //GET data
 curl_setopt($ch, CURLOPT_HTTPHEADER, array("Accept: application/xml"));

 //GET return code
 $successCode = 200;
?>

The logfile should now include lines like:

> GET /geoserver/rest/workspaces HTTP/1.1

< HTTP/1.1 200 OK

DELETE with PHP/cURL

To delete the (empty) workspace we just created, the script is modified as follows:

<?php
 $request = "rest/workspaces/test_ws"; // to delete this workspace
?>

<?php
 //Required DELETE request settings
 curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "DELETE");
 $passwordStr = "admin:geoserver"; // replace with your username:password
 curl_setopt($ch, CURLOPT_USERPWD, $passwordStr);

 //DELETE data
 curl_setopt($ch, CURLOPT_HTTPHEADER,
 array("Content-type: application/atom+xml"));

 //DELETE return code
 $successCode = 200;
?>

The log file will include lines like:

> DELETE /geoserver/rest/workspaces/test_ws HTTP/1.1

< HTTP/1.1 200 OK

Python

We are looking for volunteers to flesh out this section with examples.

In the meantime, anyone looking to do python scripting of the GeoServer REST config API should use gsconfig.py [https://github.com/boundlessgeo/gsconfig/wiki].
It is quite capable, and is used in production as part of GeoNode [http://geonode.org], so examples can be found in that codebase.
Documentation and examples can be found at the section GeoNode’s Ad-Hoc API.

Java

We are looking for volunteers to flesh out this section with examples.

In the meantime, anyone looking to do Java scripting of the GeoServer REST API should use GeoServer Manager [https://github.com/geosolutions-it/geoserver-manager/wiki/], a REST client library with minimal dependencies on external libraries.

Another option is gsrcj [http://code.google.com/p/gsrcj/]. This project is a GeoServer REST client written in Java with no extra dependencies on GeoServer/GeoTools, unlike the standard GeoServer REST module. The project has minimal documentation, but does include a Quickstart [http://code.google.com/p/gsrcj/wiki/Quickstart].

Ruby

The examples in this section use rest-client [https://github.com/archiloque/rest-client], a REST client for Ruby. There is also a project to create a GeoServer-specific REST client in Ruby: RGeoServer [https://github.com/rnz0/rgeoserver].

Once installed on a system, rest-client can be included in a Ruby script by adding require 'rest-client'.

GET and PUT Settings

Note

In order to execute the example just copy the script content into a test.ruby file and execute the following command:

$ ruby test.ruby

This example shows how to read the settings using GET, make a change and then use PUT to write the change to the server.

require 'json'
require 'rest-client'

url = 'http://admin:geoserver@localhost:8080/geoserver/rest/'

get the settings and parse the JSON into a Hash
json_text = RestClient.get(url + 'settings.json')
settings = JSON.parse(json_text)

settings can be found with the appropriate keys
global_settings = settings["global"]
jai_settings = global_settings["jai"]

change a value
jai_settings["allowInterpolation"] = true

put changes back to the server
RestClient.put(url + 'settings, settings.to_json, :content_type => :json)

GeoServer Importer

The Importer extension gives a GeoServer administrator an alternate, more-streamlined method for uploading and configuring new layers.

There are two primary advantages to using the Importer over the standard GeoServer data-loading workflow:

	Supports batch operations (loading and publishing multiple spatial files or database tables in one operation)

	Creates unique styles for each layer, rather than linking to the same (existing) styles.

This section will discuss the Importer extension.

	Installing the Importer extension

	Using the Importer extension

	Importer interface reference

	Supported data formats

	REST API

	Importer REST API examples

Installing the Importer extension

The Importer extension is an official extension, available on the GeoServer download [http://geoserver.org/download] page.

	Download the extension for your version of GeoServer. (If you see an option, select Core.)

Warning

Make sure to match the version of the extension to the version of GeoServer.

	Extract the archive and copy the contents into the GeoServer WEB-INF/lib directory.

	Restart GeoServer.

	To verify that the extension was installed successfully, open the web_admin and look for an Import Data option in the Data section on the left-side menu.

[image: ../../../../_images/importer_link.png]
Importer extension successfully installed.

For additional information please see the section on Using the Importer extension.

Using the Importer extension

Here are step-by-step instructions to import multiple shapefiles in one operation. For more details on different types of operations, please see the Importer interface reference

	Find a directory of shapefiles and copy into your data_directory.

Note

You can always use the Natural Earth Quickstart [http://www.naturalearthdata.com/downloads/] data for this task.

	Log in as an administrator and navigate to the Data –> Import Data page.

	For select Spatial Files as the data source.

[image: ../../../../_images/using_datasource.png]
Data source

	Click Browse to navigate to the directory of shapefiles to be imported.

	The web-based file browser will show as options your home directory, data directory, and the root of your file system (or drive). In this case, select Data directory

[image: ../../../../_images/using_directory.png]
Directory

	Back on the main form, select Create new next to Workspace, and enter ne to denote the workspace.

Note

Make sure the Store field reads Create new as well.

[image: ../../../../_images/using_workspace.png]
Import target workspace

	Click Next to start the import process.

	On the next screen, any layers available for import will be shown.

Note

Non-spatial files will be ignored.

[image: ../../../../_images/using_layerlist.png]
Import layer list

	In most cases, all files will be ready for import, but if the spatial reference system (SRS) is not recognized, you will need to manually input this but clicking Advanced

Note

You will need to manually input the SRS if you used the Natural Earth data above. For each layer click on Advanced and set reprojection to EPSG:4326.

[image: ../../../../_images/using_advanced.png]
Advanced import settings

	Check the box next to each layer you wish to import.

[image: ../../../../_images/using_layerlistchecked.png]
Setting the layers to import

	When ready, click Import.

Warning

Don’t click Done at this point, otherwise the import will be canceled.

	The results of the import process will be shown next to each layer.

	When finished, click Done.

Note

Recent import processes are listed at the bottom of the page. You may wish to visit these pages to check if any difficulties were encountered during the import process or import additional layers.

[image: ../../../../_images/using_recent.png]
Recent imports

Importer interface reference

The Layer Importer user interface is a component of the GeoServer web interface. You can access it from the GeoServer web interface by clicking the Import Data link, found on the left side of the screen after logging in.

Data sources page

The front page of the Layer Importer is where the data source and format are set. The following options are displayed:

Choose a data source to import from

Select one of the following data sources to use for the import:

	Spatial Files (see Supported data formats for more details)

	PostGIS database

	Oracle database

	SQL Server database

[image: ../../../../_images/sources_choosesourcefiles.png]
Choose a data source

The contents of the next section is dependent on the data source chosen here.

Configure the data source: Spatial Files

There is a single box for selecting a file or directory. Click the Browse link to bring up a file chooser. To select a file, click on it. To select a directory, click on a directory name to open it and then click OK.

[image: ../../../../_images/sources_spatialfiles.png]
Spatial file data source

[image: ../../../../_images/sources_filechooser.png]
File chooser for selecting spatial files

Configure the data source: PostGIS

Fill out fields for Connection type (Default or JNDI) Host, Port, Database name, Schema, Username to connect with, and Password.

There are also advanced connection options, which are common to the standard PostGIS store loading procedure. (See the PostGIS data store page in the GeoServer reference documentation.)

[image: ../../../../_images/sources_postgis.png]
PostGIS data source connection

Configure the data source: Oracle

The parameter fields for the Oracle import are identical to that of PostGIS. The fields aren’t populated with default credentials with the exception of the port, which is set to 1521 by default.

Note

This option is only enabled if the Oracle extension is installed.

[image: ../../../../_images/sources_oracle.png]
Oracle data source connection

Configure the data source: SQL Server

The parameter fields for the SQL Server import are identical to that of PostGIS. The fields aren’t populated with default credentials with the exception of the port, which is set to 4866 by default.

Note

This option is only enabled if the SQL Server extension is installed.

[image: ../../../../_images/sources_sqlserver.png]
SQL Server data source connection

Specify the target for the import

This area specifies where in the GeoServer catalog the new data source will be stored. This does not affect file placement.

Select the name of an existing workspace and store.

[image: ../../../../_images/sources_target.png]
Target workspace and store in GeoServer

Alternately, select Create New and type in a names for a new workspace or store. During the import process, these will be created.

[image: ../../../../_images/sources_newworkspace.png]
Creating a new workspace and store

Recent imports

This section will list previous imports, and whether they were successful or not. Items can be removed from this list with the Remove button, but otherwise cannot be edited.

[image: ../../../../_images/sources_recentimports.png]
Recent imports

When ready to continue to the next page, click Next.

Layer listing page

On the next page will be a list of layers found by the Layer Importer. The layers will be named according to the source content’s name (file name of database table name). For each entry there will be a Status showing if the source is ready to be imported.

All layers will be selected for import by default, but can be deselected here by unchecking the box next to each entry.

[image: ../../../../_images/layerlist_select.png]
List of layers to be imported

A common issue during the import process is when a CRS cannot be determined for a given layer. In this case, a dialog box will display where the CRS can be declared explicitly. Enter the CRS and Click Apply.

[image: ../../../../_images/layerlist_crs.png]
Declaring a CRS

When ready to perform the import, click Import.

Each selected layer will be added to the GeoServer catalog inside a new or existing store, and published as a layer.

After the import is complete the status area will refresh showing if the import was successful for each layer. If successful, a dialog box for previewing the layer will be displayed, with options for Layer Preview (OpenLayers), Google Earth, and GeoExplorer.

[image: ../../../../_images/layerlist_success.png]
Layers successfully imported

Advanced import settings page

The Advanced link next to each layer will lead to the Advanced import settings page.

On this page, data can be set to be reprojected from one CRS to another during the import process. To enable reprojection, select the Reprojection box, and enter the source and target CRS.

In addition, on this page attributes can be renamed and their type changed. Click on the Add link under Attribute Remapping to select the attribute to alter, its type, and its new name. Click Apply when done.

Click Save when finished.

[image: ../../../../_images/advanced.png]
Advanced layer list page

Supported data formats

The importer supports any format that GeoServer can use a data store
or coverage store. These include the most commonly used formats:

	Shapefile

	GeoTIFF

And a few additional formats:

	CSV

	KML

The following databases are supported:

	PostGIS

	Oracle

	Microsoft SQL Server

Note

Oracle and SQL Server require extra drivers to be installed.

	Install instructions for Oracle

	Install instructions for SQL Server

REST API

Importer concepts

The importer REST API is built around a tree of objects representing a single import, structured as follows:

	
	import

	
	target workspace

	data

	
	task (one or more)

	
	data

	layer

	transformation (one or more)

An import refers to the top level object and is a “session” like entity the state of the entire import. It maintains information relevant to the import as a whole such as user information, timestamps
along with optional information that is uniform along all tasks, such as a target workspace, the shared input data (e.g., a directory, a database).
An import is made of any number of task objects.

A data is the description of the source data of a import (overall) or a task. In case the import has a global data definition, this normally refers to an aggregate
store such as a directory or a database, and the data associated to the tasks refers to a single element inside such aggregation, such as a single file or table.

A task represents a unit of work to the importer needed to register one new layer, or alter an existing one, and contains the following information:

	The data being imported

	The target store that is the destination of the import

	The target layer

	The data of a task, referred to as its source, is the data to be processed as part of the task.

	The transformations that we need to apply to the data before it gets imported

This data comes in a variety of forms including:

	A spatial file (Shapefile, GeoTiff, KML, etc…)

	A directory of spatial files

	A table in a spatial database

	A remote location that the server will download data from

A task is classified as either “direct” or “indirect”. A direct task is one in which the data being imported requires no transformation to be imported.
It is imported directly. An example of such a task is one that involves simply importing an existing Shapefile as is.
An indirect task is one that does require a transformation to the original import data. An example of an indirect task is one that involves importing a Shapefile into an existing PostGIS database.
Another example of indirect task might involve taking a CSV file as an input, turning a x and y column into a Point, remapping a string column into a timestamp, and finally import the result into a PostGIS.

REST API Reference

All the imports

/imports

	Method

	Action

	Status Code/Headers

	Input

	Output

	Parameters

	GET

	Retrieve all imports

	200

	n/a

	Import Collection

	n/a

	POST

	Create a new import

	201 with Location header

	n/a

	Imports

	async=false/true

Retrieving the list of all imports

GET /imports

results in:

Status: 200 OK
Content-Type: application/json

 {
 "imports": [{
 "id": 0,
 "state": "COMPLETE",
 "href": "http://localhost:8080/geoserver/rest/imports/0"

 }, {
 "id": 1,
 "state": "PENDING",
 "href": "http://localhost:8080/geoserver/rest/imports/1"
 }]
 }

Creating a new import

Posting to the /imports path a import JSON object creates a new import session:

Content-Type: application/json

{
 "import": {
 "targetWorkspace": {
 "workspace": {
 "name": "scratch"
 }
 },
 "targetStore": {
 "dataStore": {
 "name": "shapes"
 }
 },
 "data": {
 "type": "file",
 "file": "/data/spearfish/archsites.shp"
 }
 }
}

The parameters are:

	Name

	Optional

	Description

	targetWorkspace

	Y

	The target workspace to import to

	targetStore

	Y

	The target store to import to

	data

	Y

	The data to be imported

The mere creation does not start the import, but it may automatically populate its tasks depending on the target.
For example, by referring a directory of shapefiles to be importer, the creation will automatically fill in a task to import each of the shapefiles as a new layer.

The response to the above POST request will be:

Status: 201 Created
Location: http://localhost:8080/geoserver/rest/imports/2
Content-Type: application/json

{
 "import": {
 "id": 2,
 "href": "http://localhost:8080/geoserver/rest/imports/2",
 "state": "READY",
 "targetWorkspace": {
 "workspace": {
 "name": "scratch"
 }
 },
 "targetStore": {
 "dataStore": {
 "name": "shapes",
 "type": "PostGIS"
 }
 },
 "data": {
 "type": "file",
 "format": "Shapefile",
 "href": "http://localhost:8080/geoserver/rest/imports/2/data",
 "file": "archsites.shp"
 },
 "tasks": [
 {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/2/tasks/0",
 "state": "READY"
 }
]
 }
}

The operation of populating the tasks can require time, especially if done against a large set of
files, or against a “remote” data (more on this later), in this case the POST request can include ?async=true
at the end of the URL to make the importer run it asynchronously.
In this case the import will be created in INIT state and will remain in such state until all
the data transfer and task creation operations are completed. In case of failure to fetch data
the import will immediately stop, the state will switch to the INIT_ERROR state,
and a error message will appear in the import context “message” field.

Import object

/imports/<importId>

	Method

	Action

	Status Code/Headers

	Input

	Output

	Parameters

	GET

	Retrieve import with id <importId>

	200

	n/a

	Imports

	n/a

	POST

	Execute import with id <importId>

	204

	n/a

	n/a

	async=true/false

	PUT

	Create import with proposed id <importId>. If the proposed id is
ahead of the current (next) id, the current id will be advanced. If the
proposed id is less than or equal to the current id, the current will be
used. This allows an external system to dictate the id management.

	201 with Location header

	n/a

	Imports

	n/a

	DELETE

	Remove import with id <importId>

	200

	n/a

	n/a

	n/a

The representation of a import is the same as the one contained in the import creation response.
The execution of a import can be a long task, as such, it’s possible to add async=true to the
request to make it run in a asynchronous fashion, the client will have to poll the import representation
and check when it reaches the “COMPLETE” state.

Data

A import can have a “data” representing the source of the data to be imported. The data can
be of different types, in particular, “file”, “directory”, “mosaic”, “database” and “remote”.
During the import initialization the importer will scan the contents of said resource, and
generate import tasks for each data found in it.

Most data types are discussed in the task section, the only type that’s specific to the whole
import context is the “remote” one, that is used to ask the importer to fetch the data from
a remote location autonomously, without asking the client to perform an upload.

The representation of a remote resource looks as follows:

"data": {
 "type": "remote",
 "location": "ftp://fthost/path/to/importFile.zip",
 "username": "user",
 "password": "secret",
 "domain" : "mydomain"
}

The location can be any URI supported by Commons VFS [http://commons.apache.org/proper/commons-vfs/filesystems.html],
including HTTP and FTP servers. The username, password and domain elements are all optional,
and required only if the remote server demands an authentication of sorts.
In case the referred file is compressed, it will be unpacked as the download completes, and the
tasks will be created over the result of unpacking.

Tasks

/imports/<importId>/tasks

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve all tasks for import with id <importId>

	200

	n/a

	Task Collection

	POST

	Create a new task

	201 with Location header

	Multipart form data

	Tasks

Getting the list of tasks

GET /imports/0/tasks

Results in:

Status: 200 OK
Content-Type: application/json

{
 "tasks": [
 {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/2/tasks/0",
 "state": "READY"
 }
]
}

Creating a new task as a file upload

A new task can be created by issuing a POST to imports/<importId>/tasks as a “Content-type: multipart/form-data” multipart encoded data as defined by RFC 2388 [https://www.ietf.org/rfc/rfc2388.txt].
One or more file can be uploaded this way, and a task will be created for importing them. In case the file being uploaded is a zip file, it will be unzipped on the server side and treated as a directory of files.

The response to the upload will be the creation of a new task, for example:

Status: 201 Created
Location: http://localhost:8080/geoserver/rest/imports/1/tasks/1
Content-type: application/json

{
 "task": {
 "id": 1,
 "href": "http://localhost:8080/geoserver/rest/imports/2/tasks/1",
 "state": "READY",
 "updateMode": "CREATE",
 "data": {
 "type": "file",
 "format": "Shapefile",
 "href": "http://localhost:8080/geoserver/rest/imports/2/tasks/1/data",
 "file": "bugsites.shp"
 },
 "target": {
 "href": "http://localhost:8080/geoserver/rest/imports/2/tasks/1/target",
 "dataStore": {
 "name": "shapes",
 "type": "PostGIS"
 }
 },
 "progress": "http://localhost:8080/geoserver/rest/imports/2/tasks/1/progress",
 "layer": {
 "name": "bugsites",
 "href": "http://localhost:8080/geoserver/rest/imports/2/tasks/1/layer"
 },
 "transformChain": {
 "type": "vector",
 "transforms": []
 }
 }
}

Creating a new task from form upload

This creation mode assumes the POST to imports/<importId>/tasks of form URL encoded data containing a url parameter:

Content-type: application/x-www-form-urlencoded

url=file:///data/spearfish/

The creation response will be the same as the multipart upload.

Single task resource

/imports/<importId>/task/<taskId>

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve task with id <taskId> within import with id <importId>

	200

	n/a

	Task

	PUT

	Modify task with id <taskId> within import with id <importId>

	200

	Task

	Task

	DELETE

	Remove task with id <taskId> within import with id <importId>

	200

	n/a

	n/a

The representation of a task resource is the same one reported in the task creation response.

Updating a task

A PUT request over an existing task can be used to update its representation. The representation can be partial, and just contains
the elements that need to be updated.

The updateMode of a task normally starts as “CREATE”, that is, create the target resource if missing. Other possible values are
“REPLACE”, that is, delete the existing features in the target layer and replace them with the task source ones, or “APPEND”,
to just add the features from the task source into an existing layer.

The following PUT request updates a task from “CREATE” to “APPEND” mode:

Content-Type: application/json

{
 "task": {
 "updateMode": "APPEND"
 }
}

Directory files representation

The following operations are specific to data objects of type directory.

/imports/<importId>/task/<taskId>/data/files

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve the list of files for a task with id <taskId> within import with id <importId>

	200

	n/a

	Task

The response to a GET request will be:

Status: 200 OK
Content-Type: application/json

{
 files: [
 {
 file: "tasmania_cities.shp",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/files/tasmania_cities.shp"
 },
 {
 file: "tasmania_roads.shp",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/files/tasmania_roads.shp"
 },
 {
 file: "tasmania_state_boundaries.shp",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/files/tasmania_state_boundaries.shp"
 },
 {
 file: "tasmania_water_bodies.shp",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/files/tasmania_water_bodies.shp"
 }
]
}

/imports/<importId>/task/<taskId>/data/files/<fileId>

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve the file with id <fileId> from the data of a task with id <taskId> within import with id <importId>

	200

	n/a

	Task

	DELETE

	Remove a specific file from the task with id <taskId> within import with id <importId>

	200

	n/a

	n/a

Following the links we’ll get to the representation of a single file, notice how in this case a main file can be associate to sidecar files:

Status: 200 OK
Content-Type: application/json

{
 type: "file",
 format: "Shapefile",
 location: "C:\devel\gs_data\release\data\taz_shapes",
 file: "tasmania_cities.shp",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/files/tasmania_cities.shp",
 prj: "tasmania_cities.prj",
 other: [
 "tasmania_cities.dbf",
 "tasmania_cities.shx"
]
}

Mosaic extensions

In case the input data is of mosaic type, we have all the attributes typical of a directory, plus support
for directly specifying the timestamp of a particular granule.

In order to specify the timestamp a PUT request can be issued against the granule:

Content-Type: application/json

{
 "timestamp": "2004-01-01T00:00:00.000+0000"
}

and the response will be:

Status: 200 OK
Content-Type: application/json

{
 "type": "file",
 "format": "GeoTIFF",
 "href": "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/files/bm_200401.tif",
 "location": "/data/bluemarble/mosaic",
 "file": "bm_200401.tiff",
 "prj": null,
 "other": [],
 "timestamp": "2004-01-01T00:00:00.000+0000"
}

Database data

The following operations are specific to data objects of type database. At the time or writing, the REST API does not allow
the creation of a database data source, but it can provide a read only description of one that has been created using the GUI.

/imports/<importId>/tasks/<taskId>/data

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve the database connection parameters for a task with id <taskId> within import with id <importId>

	200

	n/a

	List of database connection parameters and available tables

Performing a GET on a database type data will result in the following response:

{
 type: "database",
 format: "PostGIS",
 href: "http://localhost:8080/geoserver/rest/imports/0/data",
 parameters: {
 schema: "public",
 fetch size: 1000,
 validate connections: true,
 Connection timeout: 20,
 Primary key metadata table: null,
 preparedStatements: true,
 database: "gttest",
 port: 5432,
 passwd: "cite",
 min connections: 1,
 dbtype: "postgis",
 host: "localhost",
 Loose bbox: true,
 max connections: 10,
 user: "cite"
 },
 tables: [
 "geoline",
 "geopoint",
 "lakes",
 "line3d",
]
}

Database table

The following operations are specific to data objects of type table. At the time or writing, the REST API does not allow
the creation of a database data source, but it can provide a read only description of one that has been created using the GUI.
A table description is normally linked to task, and refers to a database data linked to the overall import.

/imports/<importId>/tasks/<taskId>/data

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve the table description for a task with id <taskId> within import with id <importId>

	200

	n/a

	A table representation

Performing a GET on a database type data will result in the following response:

{
 type: "table",
 name: "abc",
 format: "PostGIS",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data"
}

Task target layer

/imports/<importId>/tasks/<taskId>/layer

The layer defines how the target layer will be created

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve the layer of a task with id <taskId> within import with id <importId>

	200

	n/a

	A layer JSON representation

	PUT

	Modify the target layer for a task with id <taskId> within import with id <importId>

	200

	Task

	Task

Requesting the task layer will result in the following:

Status: 200 OK
Content-Type: application/json

{
 layer: {
 name: "tasmania_cities",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/layer",
 title: "tasmania_cities",
 originalName: "tasmania_cities",
 nativeName: "tasmania_cities",
 srs: "EPSG:4326",
 bbox: {
 minx: 147.2909004483,
 miny: -42.85110181689001,
 maxx: 147.2911004483,
 maxy: -42.85090181689,
 crs: "GEOGCS["WGS 84", DATUM["World Geodetic System 1984", SPHEROID["WGS 84", 6378137.0, 298.257223563, AUTHORITY["EPSG","7030"]], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]], UNIT["degree", 0.017453292519943295], AXIS["Geodetic longitude", EAST], AXIS["Geodetic latitude", NORTH], AUTHORITY["EPSG","4326"]]"
 },
 attributes: [
 {
 name: "the_geom",
 binding: "com.vividsolutions.jts.geom.MultiPoint"
 },
 {
 name: "CITY_NAME",
 binding: "java.lang.String"
 },
 {
 name: "ADMIN_NAME",
 binding: "java.lang.String"
 },
 {
 name: "CNTRY_NAME",
 binding: "java.lang.String"
 },
 {
 name: "STATUS",
 binding: "java.lang.String"
 },
 {
 name: "POP_CLASS",
 binding: "java.lang.String"
 }
],
 style: {
 name: "cite_tasmania_cities",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/layer/style"
 }
 }
}

All the above attributes can be updated using a PUT request. Even if the above representation is similar to the REST config API, it should not
be confused with it, as it does not support all the same properties, in particular the supported properties are all the ones listed above.

Task transformations

/imports/<importId>/tasks/<taskId>/transforms

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve the list of transformations of a task with id <taskId> within import with id <importId>

	200

	n/a

	A list of transfromations in JSON format

	POST

	Create a new transormation and append it inside a task with id <taskId> within import with id <importId>

	201

	A JSON transformation representation

	The transform location

Retrieving the transformation list

A GET request for the list of transformations will result in the following response:

Status: 200 OK
Content-Type: application/json

{
 "transforms": [
 {
 "type": "ReprojectTransform",
 "href": "http://localhost:8080/geoserver/rest/imports/0/tasks/1/transforms/0",
 "source": null,
 "target": "EPSG:4326"
 },
 {
 "type": "DateFormatTransform",
 "href": "http://localhost:8080/geoserver/rest/imports/0/tasks/1/transforms/1",
 "field": "date",
 "format": "yyyyMMdd"
 }
]
}

Appending a new transformation

Creating a new transformation requires posting a JSON document with a type property identifying the class of the
transformation, plus any extra attribute required by the transformation itself (this is transformation specific, each one will use a different set of attributes).

The following POST request creates an attribute type remapping:

Content-Type: application/json

{
 "type": "AttributeRemapTransform",
 "field": "cat",
 "target": "java.lang.Integer"
}

The response will be:

Status: 201 OK
Location: http://localhost:8080/geoserver/rest/imports/0/tasks/1/transform/2

/imports/<importId>/tasks/<taskId>/transforms/<transformId>

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve a transformation identified by <transformId> inside a task with id <taskId> within import with id <importId>

	200

	n/a

	A single transformation in JSON format

	PUT

	Modifies the definition of a transformation identified by <transformId> inside a task with id <taskId> within import with id <importId>

	200

	A JSON transformation representation (eventually just the portion of it that needs to be modified)

	The full transformation representation

	DELETE

	Removes the transformation identified by <transformId> inside a task with id <taskId> within import with id <importId>

	200

	A JSON transformation representation (eventually just the portion of it that needs to be modified)

	The full transformation representation

Retrieve a single transformation

Requesting a single transformation by identifier will result in the following response:

Status: 200 OK
Content-Type: application/json

{
 "type": "ReprojectTransform",
 "href": "http://localhost:8080/geoserver/rest/imports/0/tasks/1/transforms/0",
 "source": null,
 "target": "EPSG:4326"
}

Modify an existing transformation

Assuming we have a reprojection transformation, and that we need to change the target SRS type, the following PUT request will do the job:

Content-Type: application/json
{
 "type": "ReprojectTransform",
 "target": "EPSG:3005"
}

The response will be:

Status: 200 OK
 Content-Type: application/json

 {
 "type": "ReprojectTransform",
 "href": "http://localhost:8080/geoserver/rest/imports/0/tasks/1/transform/0",
 "source": null,
 "target": "EPSG:3005"
 }

Transformation reference

AttributeRemapTransform

Remaps a certain field to a given target data type

	Parameter

	Optional

	Description

	field

	N

	The name of the field to be remapped

	target

	N

	The “target” field type, as a fully qualified Java class name

AttributesToPointGeometryTransform

Transforms two numeric fields latField and lngField into a point geometry representation POINT(lngField,latField), the source fields will be removed.

	Parameter

	Optional

	Description

	latField

	N

	The “latitude” field

	lngField

	N

	The “longitude” field

CreateIndexTransform

For database targets only, creates an index on a given column after importing the data into the database

	Parameter

	Optional

	Description

	field

	N

	The field to be indexed

DateFormatTransform

Parses a string representation of a date into a Date/Timestamp object

	Parameter

	Optional

	Description

	field

	N

	The field to be parsed

	format

	Y

	A date parsing pattern, setup using the Java SimpleDateFormat syntax [http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html]. In case it’s missing, a number of built-in formats will be tried instead (short and full ISO date formats, dates without any separators).

IntegerFieldToDateTransform

Takes a integer field and transforms it to a date, interpreting the integer field as a date

	Parameter

	Optional

	Description

	field

	N

	The field containing the year information

ReprojectTransform

Reprojects a vector layer from a source CRS to a target CRS

	Parameter

	Optional

	Description

	source

	Y

	Identifier of the source coordinate reference system (the native one will be used if missing)

	target

	N

	Identifier of the target coordinate reference system

GdalTranslateTransform

Applies gdal_translate to a single file raster input. Requires gdal_translate to be inside the PATH used by the web container running GeoServer.

	Parameter

	Optional

	Description

	options

	N

	Array of options that will be passed to gdal_translate (beside the input and output names, which are internally managed)

GdalWarpTransform

Applies gdalwarp to a single file raster input. Requires gdalwarp to be inside the PATH used by the web container running GeoServer.

	Parameter

	Optional

	Description

	options

	N

	Array of options that will be passed to gdalwarp (beside the input and output names, which are internally managed)

GdalAddoTransform

Applies gdaladdo to a single file raster input. Requires gdaladdo to be inside the PATH used by the web container running GeoServer.

	Parameter

	Optional

	Description

	options

	N

	Array of options that will be passed to gdaladdo (beside the input file name, which is internally managed)

	levels

	N

	Array of integers with the overview levels that will be passed to gdaladdo

Importer REST API examples

Mass configuring a directory of shapefiles

In order to initiate an import of the c:\data\tasmania directory into the existing tasmania workspace the following JSON will be POSTed to GeoServer:

{
 "import": {
 "targetWorkspace": {
 "workspace": {
 "name": "tasmania"
 }
 },
 "data": {
 "type": "directory",
 "location": "C:/data/tasmania"
 }
 }
}

This curl command can be used for the purpose:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @import.json "http://localhost:8080/geoserver/rest/imports"

The importer will locate the files to be imported, and automatically prepare the tasks, returning the following response:

{
 "import": {
 "id": 9,
 "href": "http://localhost:8080/geoserver/rest/imports/9",
 "state": "PENDING",
 "archive": false,
 "targetWorkspace": {
 "workspace": {
 "name": "tasmania"
 }
 },
 "data": {
 "type": "directory",
 "format": "Shapefile",
 "location": "C:\\data\\tasmania",
 "href": "http://localhost:8080/geoserver/rest/imports/9/data"
 },
 "tasks": [
 {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/0",
 "state": "READY"
 },
 {
 "id": 1,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/1",
 "state": "READY"
 },
 {
 "id": 2,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/2",
 "state": "READY"
 },
 {
 "id": 3,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/3",
 "state": "READY"
 }
]
 }
}

After checking every task is ready, the import can be initiated by executing a POST on the import resource:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/9"

The resource can then be monitored for progress, and eventually final results:

curl -u admin:geoserver -XGET "http://localhost:8080/geoserver/rest/imports/9"

Which in case of successful import will look like:

{
 "import": {
 "id": 9,
 "href": "http://localhost:8080/geoserver/rest/imports/9",
 "state": "COMPLETE",
 "archive": false,
 "targetWorkspace": {
 "workspace": {
 "name": "tasmania"
 }
 },
 "data": {
 "type": "directory",
 "format": "Shapefile",
 "location": "C:\\data\\tasmania",
 "href": "http://localhost:8080/geoserver/rest/imports/9/data"
 },
 "tasks": [
 {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/0",
 "state": "COMPLETE"
 },
 {
 "id": 1,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/1",
 "state": "COMPLETE"
 },
 {
 "id": 2,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/2",
 "state": "COMPLETE"
 },
 {
 "id": 3,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/3",
 "state": "COMPLETE"
 }
]
 }
}

Configuring a shapefile with no projection information

In this case, let’s assume we have a single shapefile, tasmania_cities.shp, that does not have the ancillary .prj file
(the example is equally good for any case where the prj file contents cannot be matched to an official EPSG code).

We are going to post the following import definition:

{
 "import": {
 "targetWorkspace": {
 "workspace": {
 "name": "tasmania"
 }
 },
 "data": {
 "type": "file",
 "file": "C:/data/tasmania/tasmania_cities.shp"
 }
 }
}

With the usual curl command:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @import.json "http://localhost:8080/geoserver/rest/imports"

The response in case the CRS is missing will be:

{
 "import": {
 "id": 13,
 "href": "http://localhost:8080/geoserver/rest/imports/13",
 "state": "PENDING",
 "archive": false,
 "targetWorkspace": {
 "workspace": {
 "name": "tasmania"
 }
 },
 "data": {
 "type": "file",
 "format": "Shapefile",
 "file": "tasmania_cities.shp"
 },
 "tasks": [
 {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/13/tasks/0",
 "state": "NO_CRS"
 }
]
 }
}

Drilling down to the task layer, we can see the SRS information is missing:

{
 "layer": {
 "name": "tasmania_cities",
 "href": "http://localhost:8080/geoserver/rest/imports/13/tasks/0/layer",
 "title": "tasmania_cities",
 "originalName": "tasmania_cities",
 "nativeName": "tasmania_cities",
 "bbox": {
 "minx": 146.2910004483,
 "miny": -43.85100181689,
 "maxx": 148.2910004483,
 "maxy": -41.85100181689
 },
 "attributes": [
 {
 "name": "the_geom",
 "binding": "com.vividsolutions.jts.geom.MultiPoint"
 },
 {
 "name": "CITY_NAME",
 "binding": "java.lang.String"
 },
 {
 "name": "ADMIN_NAME",
 "binding": "java.lang.String"
 },
 {
 "name": "CNTRY_NAME",
 "binding": "java.lang.String"
 },
 {
 "name": "STATUS",
 "binding": "java.lang.String"
 },
 {
 "name": "POP_CLASS",
 "binding": "java.lang.String"
 }
],
 "style": {
 "name": "tasmania_tasmania_cities2",
 "href": "http://localhost:8080/geoserver/rest/imports/13/tasks/0/layer/style"
 }
 }
}

The following PUT request will update the SRS:

curl -u admin:geoserver -XPUT -H "Content-type: application/json" -d @layerUpdate.json "http://localhost:8080/geoserver/rest/imports/13/tasks/0/layer/"

Where layerUpdate.json is:

{
 layer : {
 srs: "EPSG:4326"
 }
}

Getting the import definition again, we’ll find it ready to execute:

{
 "import": {
 "id": 13,
 "href": "http://localhost:8080/geoserver/rest/imports/13",
 "state": "PENDING",
 "archive": false,
 "targetWorkspace": {
 "workspace": {
 "name": "tasmania"
 }
 },
 "data": {
 "type": "file",
 "format": "Shapefile",
 "file": "tasmania_cities.shp"
 },
 "tasks": [
 {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/13/tasks/0",
 "state": "READY"
 }
]
 }
}

A POST request will make it execute:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/13"

And eventually succeed:

{
 "import": {
 "id": 13,
 "href": "http://localhost:8080/geoserver/rest/imports/13",
 "state": "COMPLETE",
 "archive": false,
 "targetWorkspace": {
 "workspace": {
 "name": "tasmania"
 }
 },
 "data": {
 "type": "file",
 "format": "Shapefile",
 "file": "tasmania_cities.shp"
 },
 "tasks": [
 {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/13/tasks/0",
 "state": "COMPLETE"
 }
]
 }
}

Uploading a CSV file to PostGIS while transforming it

A remote sensing tool is generating CSV files with some locations and measurements, that we want to upload
into PostGIS as a new spatial table. The CSV file looks as follows:

AssetID, SampleTime, Lat, Lon, Value
1, 2015-01-01T10:00:00, 10.00, 62.00, 15.2
1, 2015-01-01T11:00:00, 10.10, 62.11, 30.25
1, 2015-01-01T12:00:00, 10.20, 62.22, 41.2
1, 2015-01-01T13:00:00, 10.31, 62.33, 27.6
1, 2015-01-01T14:00:00, 10.41, 62.45, 12

First, we are going to create a empty import with an existing PostGIS store as the target:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @import.json "http://localhost:8080/geoserver/rest/imports"

Where import.json is:

{
 "import": {
 "targetWorkspace": {
 "workspace": {
 "name": "topp"
 }
 },
 "targetStore": {
 "dataStore": {
 "name": "gttest"
 }
 }
 }
}

Then, we are going to POST the CSV file to the tasks list, in order to create an import task for it:

curl -u admin:geoserver -F name=test -F filedata=@values.csv "http://localhost:8080/geoserver/rest/imports/0/tasks"

And we are going to get back a new task definition, with a notification that the CRS is missing:

{
 "task": {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/16/tasks/0",
 "state": "NO_CRS",
 "updateMode": "CREATE",
 "data": {
 "type": "file",
 "format": "CSV",
 "file": "values.csv"
 },
 "target": {
 "href": "http://localhost:8080/geoserver/rest/imports/16/tasks/0/target",
 "dataStore": {
 "name": "values",
 "type": "CSV"
 }
 },
 "progress": "http://localhost:8080/geoserver/rest/imports/16/tasks/0/progress",
 "layer": {
 "name": "values",
 "href": "http://localhost:8080/geoserver/rest/imports/16/tasks/0/layer"
 },
 "transformChain": {
 "type": "vector",
 "transforms": [

]
 }
 }
}

As before, we are going to force the CRS by updating the layer:

curl -u admin:geoserver -XPUT -H "Content-type: application/json" -d @layerUpdate.json "http://localhost:8080/geoserver/rest/imports/0/tasks/0/layer/"

Where layerUpdate.json is:

{
 layer : {
 srs: "EPSG:4326"
 }
}

Then, we are going to create a transformation mapping the Lat/Lon columns to a point:

{
 "type": "AttributesToPointGeometryTransform",
 "latField": "Lat",
 "lngField": "Lon"
}

The above will be uploaded to GeoServer as follows:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @toPoint.json "http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"

Now the import is ready to run, and we’ll execute it using:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/0"

If all goes well the new layer is created in PostGIS and registered in GeoServer as a new layer.

In case the features in the CSV need to be appended to an existing layer a PUT request against the task might be performed, changing its
updateMode from “CREATE” to “APPEND”. Changing it to “REPLACE” instead will preserve the layer, but remove the old contents and replace
them with the newly uploaded ones.

Uploading and optimizing a GeoTiff with ground control points

A data supplier is periodically providing GeoTIFFs that we need to configure in GeoServer.
The GeoTIFF is referenced via Ground Control Points, is organized by stripes, and has no overviews.
The objective is to rectify, optimize and publish it via the importer.

First, we are going to create a empty import with no store as the target:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @import.json "http://localhost:8080/geoserver/rest/imports"

Where import.json is:

{
 "import": {
 "targetWorkspace": {
 "workspace": {
 "name": "sf"
 }
 }
 }
}

Then, we are going to POST the GeoTIFF file to the tasks list, in order to create an import task for it:

curl -u admin:geoserver -F name=test -F filedata=@box_gcp_fixed.tif "http://localhost:8080/geoserver/rest/imports/0/tasks"

We are then going to append the transformations to rectify (gdalwarp), retile (gdal_translate) and add overviews (gdaladdo) to it:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @warp.json "http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"
curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @gtx.json "http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"
curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @gad.json "http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"

warp.json is:

{
 "type": "GdalWarpTransform",
 "options": ["-t_srs", "EPSG:4326"]
}

gtx.json is:

{
 "type": "GdalTranslateTransform",
 "options": ["-co", "TILED=YES", "-co", "BLOCKXSIZE=512", "-co", "BLOCKYSIZE=512"]
}

gad.json is:

{
 "type": "GdalAddoTransform",
 "options": ["-r", "average"],
 "levels" : [2, 4, 8, 16]
}

Now the import is ready to run, and we’ll execute it using:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/0"

A new layer box_gcp_fixed layer will appear in GeoServer, with an underlying GeoTIFF file ready
for web serving.

Adding a new granule into an existing mosaic

A data supplier is periodically providing new time based imagery that we need to add into an existing mosaic
in GeoServer.
The imagery is in GeoTIFF format, and lacks a good internal structure, which needs to be aligned with
the one into the other images.

First, we are going to create a import with an indication of where the granule is located, and
the target store:

curl -u admin:geoserver -XPOST -H “Content-type: application/json” -d @import.json “http://localhost:8080/geoserver/rest/imports”

Where import.json is:

{
 "import": {
 "targetWorkspace": {
 "workspace": {
 "name": "topp"
 }
 },
 "data": {
 "type": "file",
 "file": "/home/aaime/devel/gisData/ndimensional/data/world/world.200407.3x5400x2700.tiff"
 },
 "targetStore": {
 "dataStore": {
 "name": "bluemarble"
 }
 }
 }
}

We are then going to append the transformations to harmonize the file with the rest of the mosaic:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @gtx.json "http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"
curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @gad.json "http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"

gtx.json is:

{
 "type": "GdalTranslateTransform",
 "options": ["-co", "TILED=YES"]
}

gad.json is:

{
 "type": "GdalAddoTransform",
 "options": ["-r", "average"],
 "levels" : [2, 4, 8, 16, 32, 64, 128]
}

Now the import is ready to run, and we’ll execute it using:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/0"

The new granule will be ingested into the mosaic, and will thus be available for time based requests.

Asynchronously fetching and importing data from a remote server

We assume a remote FTP server contains multiple shapefiles that we need to import in GeoServer
as new layers. The files are large, and the server has much better bandwidth than the client,
so it’s best if GeoServer performs the data fetching on its own.

In this case a asynchronous request using remote data will be the best fit:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @import.json "http://localhost:8080/geoserver/rest/imports?async=true"

Where import.json is:

{
 "import": {
 "targetWorkspace": {
 "workspace": {
 "name": "topp"
 }
 },
 "data": {
 "type": "remote",
 "location": "ftp://myserver/data/bc_shapefiles",
 "username": "dan",
 "password": "secret"
 }
 }
}

The request will return immediately with an import context in “INIT” state, and it will remain in such
state until the data is fetched and the tasks created.
Once the state switches to “PENDING” the import will be ready for execution. Since there is
a lot of shapefiles to process, also the import run will be done in asynchronous mode:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/0?async=true"

The response will return immediately in this case as well, and the progress can be followed as the
tasks in the import switch state.

GeoNode’s Ad-Hoc API

	gsconfig
	Installing

	Getting Help

	Sample Layer Creation Code

	Running Tests

	More Examples - Updated for GeoServer 2.4+

	gsimporter
	Installing

	Getting Help

	Running Tests

gsconfig

gsconfig is a python library for manipulating a GeoServer instance via the GeoServer RESTConfig API.

The project is distributed under a MIT License .

Installing

pip install gsconfig

For developers:

git clone git@github.com:boundlessgeo/gsconfig.git
cd gsconfig
python setup.py develop

Getting Help

There is a brief manual at http://boundlessgeo.github.io/gsconfig/ .
If you have questions, please ask them on the GeoServer Users mailing list: http://geoserver.org/comm/ .

Please use the GitHub project at https://github.com/boundlessgeo/gsconfig for any bug reports (and pull requests are welcome, but please include tests where possible.)

Sample Layer Creation Code

from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8080/geoserver/")
topp = cat.get_workspace("topp")
shapefile_plus_sidecars = shapefile_and_friends("states")
shapefile_and_friends should look on the filesystem to find a shapefile
and related files based on the base path passed in
#
shapefile_plus_sidecars == {
'shp': 'states.shp',
'shx': 'states.shx',
'prj': 'states.prj',
'dbf': 'states.dbf'
}

'data' is required (there may be a 'schema' alternative later, for creating empty featuretypes)
'workspace' is optional (GeoServer's default workspace is used by... default)
'name' is required
ft = cat.create_featurestore(name, workspace=topp, data=shapefile_plus_sidecars)

Running Tests

Since the entire purpose of this module is to interact with GeoServer, the test suite is mostly composed of integration tests [https://en.wikipedia.org/wiki/Integration_testing].
These tests necessarily rely on a running copy of GeoServer, and expect that this GeoServer instance will be using the default data directory that is included with GeoServer.
This data is also included in the GeoServer source repository as /data/release/.
In addition, it is expected that there will be a PostgreSQL database available at postgres:password@localhost:5432/db.
You can test connecting to this database with the psql command line client by running $ psql -d db -Upostgres -h localhost -p 5432 (you will be prompted interactively for the password.)

To override the assumed database connection parameters, the following environment variables are supported:

	DATABASE

	DBUSER

	DBPASS

If present, psycopg will be used to verify the database connection prior to running the tests.

If provided, the following environment variables will be used to reset the data directory:

	GEOSERVER_HOME

	Location of git repository to read the clean data from. If only this option is provided
git clean will be used to reset the data.

	GEOSERVER_DATA_DIR

	Optional location of the data directory GeoServer will be running with. If provided, rsync
will be used to reset the data.

	GS_VERSION

	Optional environment variable allowing the catalog test cases to automatically download
and start a vanilla GeoServer WAR form the web.
Be sure that there are no running services on HTTP port 8080.

Here are the commands that I use to reset before running the gsconfig tests:

$ cd ~/geoserver/src/web/app/
$ PGUSER=postgres dropdb db
$ PGUSER=postgres createdb db -T template_postgis
$ git clean -dxff -- ../../../data/release/
$ git checkout -f
$ MAVEN_OPTS="-XX:PermSize=128M -Xmx1024M" \
GEOSERVER_DATA_DIR=../../../data/release \
mvn jetty:run

At this point, GeoServer will be running foregrounded, but it will take a few seconds to actually begin listening for http requests.
You can stop it with CTRL-C (but don’t do that until you’ve run the tests!)
You can run the gsconfig tests with the following command:

$ python setup.py test

Instead of restarting GeoServer after each run to reset the data, the following should allow re-running the tests:

$ git clean -dxff -- ../../../data/release/
$ curl -XPOST --user admin:geoserver http://localhost:8080/geoserver/rest/reload

More Examples - Updated for GeoServer 2.4+

Loading the GeoServer catalog using gsconfig is quite easy. The example below allows you to connect to GeoServer by specifying custom credentials.

from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8080/geoserver/rest/", "admin", "geoserver")

The code below allows you to create a FeatureType from a Shapefile

geosolutions = cat.get_workspace("geosolutions")
import geoserver.util
shapefile_plus_sidecars = geoserver.util.shapefile_and_friends("C:/work/gsconfig/test/data/states")
shapefile_and_friends should look on the filesystem to find a shapefile
and related files based on the base path passed in
#
shapefile_plus_sidecars == {
'shp': 'states.shp',
'shx': 'states.shx',
'prj': 'states.prj',
'dbf': 'states.dbf'
}
'data' is required (there may be a 'schema' alternative later, for creating empty featuretypes)
'workspace' is optional (GeoServer's default workspace is used by... default)
'name' is required
ft = cat.create_featurestore("test", shapefile_plus_sidecars, geosolutions)

It is possible to create JDBC Virtual Layers too. The code below allow to create a new SQL View called my_jdbc_vt_test defined by a custom sql.

from geoserver.catalog import Catalog
from geoserver.support import JDBCVirtualTable, JDBCVirtualTableGeometry, JDBCVirtualTableParam

cat = Catalog('http://localhost:8080/geoserver/rest/', 'admin', '****')
store = cat.get_store('postgis-geoserver')
geom = JDBCVirtualTableGeometry('newgeom','LineString','4326')
ft_name = 'my_jdbc_vt_test'
epsg_code = 'EPSG:4326'
sql = 'select ST_MakeLine(wkb_geometry ORDER BY waypoint) As newgeom, assetid, runtime from waypoints group by assetid,runtime'
keyColumn = None
parameters = None

jdbc_vt = JDBCVirtualTable(ft_name, sql, 'false', geom, keyColumn, parameters)
ft = cat.publish_featuretype(ft_name, store, epsg_code, jdbc_virtual_table=jdbc_vt)

This example shows how to easily update a layer property. The same approach may be used with every catalog resource

ne_shaded = cat.get_layer("ne_shaded")
ne_shaded.enabled=True
cat.save(ne_shaded)
cat.reload()

Deleting a store from the catalog requires to purge all the associated layers first. This can be done by doing something like this:

st = cat.get_store("ne_shaded")
cat.delete(ne_shaded)
cat.reload()
cat.delete(st)
cat.reload()

There are some functionalities allowing to manage the ImageMosaic coverages. It is possible to create new ImageMosaics, add granules to them,
and also read the coverages metadata, modify the mosaic Dimensions and finally query the mosaic granules and list their properties.

The gsconfig methods map the REST APIs for ImageMosaic [http://docs.geoserver.org/stable/en/user/rest/examples/curl.html#uploading-and-modifying-a-image-mosaic]

In order to create a new ImageMosaic layer, you can prepare a zip file containing the properties files for the mosaic configuration. Refer to the GeoTools ImageMosaic Plugin guide
in order to get details on the mosaic configuration. The package contains an already configured zip file with two granules.
You need to update or remove the datastore.properties file before creating the mosaic otherwise you will get an exception.

from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8180/geoserver/rest")
cat.create_imagemosaic("NOAAWW3_NCOMultiGrid_WIND_test", "NOAAWW3_NCOMultiGrid_WIND_test.zip")

By default the cat.create_imagemosaic tries to configure the layer too. If you want to create the store only, you can specify the following parameter

cat.create_imagemosaic("NOAAWW3_NCOMultiGrid_WIND_test", "NOAAWW3_NCOMultiGrid_WIND_test.zip", "none")

In order to retrieve from the catalog the ImageMosaic coverage store you can do this

store = cat.get_store("NOAAWW3_NCOMultiGrid_WIND_test")

It is possible to add more granules to the mosaic at runtime.
With the following method you can add granules already present on the machine local path.

cat.harvest_externalgranule("file://D:/Work/apache-tomcat-6.0.16/instances/data/data/MetOc/NOAAWW3/20131001/WIND/NOAAWW3_NCOMultiGrid__WIND_000_20131001T000000.tif", store)

The method below allows to send granules remotely via POST to the ImageMosaic.
The granules will be uploaded and stored on the ImageMosaic index folder.

cat.harvest_uploadgranule("NOAAWW3_NCOMultiGrid__WIND_000_20131002T000000.zip", store)

To delete an ImageMosaic store, you can follow the standard approach, by deleting the layers first.
ATTENTION: at this time you need to manually cleanup the data directory from the mosaic granules and, in case you used a DB datastore, you must also drop the mosaic tables.

layer = cat.get_layer("NOAAWW3_NCOMultiGrid_WIND_test")
cat.delete(layer)
cat.reload()
cat.delete(store)
cat.reload()

The method below allows you the load and update the coverage metadata of the ImageMosaic.
You need to do this for every coverage of the ImageMosaic of course.

coverage = cat.get_resource_by_url("http://localhost:8180/geoserver/rest/workspaces/natocmre/coveragestores/NOAAWW3_NCOMultiGrid_WIND_test/coverages/NOAAWW3_NCOMultiGrid_WIND_test.xml")
coverage.supported_formats = ['GEOTIFF']
cat.save(coverage)

By default the ImageMosaic layer has not the coverage dimensions configured. It is possible using the coverage metadata to update and manage the coverage dimensions.
ATTENTION: notice that the presentation parameters accepts only one among the following values {‘LIST’, ‘DISCRETE_INTERVAL’, ‘CONTINUOUS_INTERVAL’}

from geoserver.support import DimensionInfo
timeInfo = DimensionInfo("time", "true", "LIST", None, "ISO8601", None)
coverage.metadata = ({'dirName':'NOAAWW3_NCOMultiGrid_WIND_test_NOAAWW3_NCOMultiGrid_WIND_test', 'time': timeInfo})
cat.save(coverage)

One the ImageMosaic has been configures, it is possible to read the coverages along with their granule schema and granule info.

from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8180/geoserver/rest")
store = cat.get_store("NOAAWW3_NCOMultiGrid_WIND_test")
coverages = cat.mosaic_coverages(store)
schema = cat.mosaic_coverage_schema(coverages['coverages']['coverage'][0]['name'], store)
granules = cat.mosaic_granules(coverages['coverages']['coverage'][0]['name'], store)

The granules details can be easily read by doing something like this:

granules['crs']['properties']['name']
granules['features']
granules['features'][0]['properties']['time']
granules['features'][0]['properties']['location']
granules['features'][0]['properties']['run']

When the mosaic grows up and starts having a huge set of granules, you may need to filter the granules query through a CQL filter on the coverage schema attributes.

granules = cat.mosaic_granules(coverages['coverages']['coverage'][0]['name'], store, "time >= '2013-10-01T03:00:00.000Z'")
granules = cat.mosaic_granules(coverages['coverages']['coverage'][0]['name'], store, "time >= '2013-10-01T03:00:00.000Z' AND run = 0")
granules = cat.mosaic_granules(coverages['coverages']['coverage'][0]['name'], store, "location LIKE '%20131002T000000.tif'")

gsimporter

gsimporter is a python library for using GeoServer’s importer API.

Installing

pip install gsconfig

or

git clone https://github.com/boundlessgeo/gsimporter
cd gsimporter
pip install .

Getting Help

Please use the GitHub project at https://github.com/boundlessgeo/gsimporter for any bug reports (and pull requests are welcome, but please include tests where possible.)

Running Tests

The tests are integration tests. These require having a running GeoServer instance with the community/importer modules installed. Because some of the tests use a PostgreSQL database, a data base is required to run. It is strongly advised to run with a data directory you don’t care about.

The test suite will first attempt to verify a connection to GeoServer and a connection to the database. If the default values are not appropriate, provide them via environment variables on the command line or via export. For example:

GEOSERVER_BASE_URL=http://localhost:8080 python setup.py test

A convenient way to deal with connection or other settings (besides setting things up to use the defaults) is to put them all in a bash (or other shell) script.

The tests are designed to create a workspace named importer and importer2 for use in testing. importer will be set to the default workspace. As much as possible, things are cleaned up after test execution.

To run all of the tests, one way is via setup.py. python setup.py test should do the trick.

If developing and finer grained control is desired, specific tests and other flags can be provided using python test/uploadtests.py. Supported arguments are:

	–clean delete layers and stores in the test workspaces. Useful for cleanup.

	–skip-teardown don’t delete things after running. May cause errors but useful for a single test.

To run a single case (or drop the method name to run the whole class):

python test/uploadtests.py ErrorTests.test_invalid_file

Testing in GeoNode

The community encourages Test Driven Development (TDD) and the contribution of new tests to extend test coverage. Ideally every model, view, and utility should be covered by tests.

GeoNode has Unit, Integration and Javascript tests. The Unit tests are located in the tests file of every Django app (Maps, Layers, Documents, Catalogue, Search, Security etc).

The Integration, CSW and smoke tests are located under the tests folder).

Warning

The tests are meant to be ran using the SQLite database, some of them may fail using PostgreSQL or others. Therefore remove or rename your local_settings.py file before running the tests.

	If running them in development mode make sure to have the jetty server

	shut down otherwise the test could get stuck. To make sure it is run:

$ paver stop

Unit Tests

To run the unit tests make sure you have the virtualenv active (if running GeoNode under virtualenv) then run:

$ paver test # or python setup.py test when testing development versions

This will produce a detailed test report.

It’s possible to run just specific apps tests by using the Django command:

$ python manage.py test app/tests.py

For example:

$ python manage.py test geonode.maps.tests

To run a single test case or method (omit the method name to run the whole class), for example:

$ python manage.py test geonode.maps.tests:MapsTest.test_maps_search

These tests are based on the Python/Django unit test suite.

Integration Tests

To run the unit tests make sure you have the virtualenv active (if running GeoNode under virtualenv) then run:

$ paver test_integration # or python setup.py test_integration when testing development versions

To run the CSW integration test run:

$ paver test_integration -n geonode.tests.csw

Like the unit tests above, it is also possible to test specific modules, for example:

$ paver test_integration -n geonode.tests.integration:GeoNodeMapTest.test_search_result_detail

To test with with coverage:

$ python manage.py test geonode.maps.tests -- --with-coverage --cover-package=geonode.maps

These tests are based on the Python/Django unit test suite.

Javascript Tests

Note

Javascript tests has been currently disabled in GeoNode. There is a plan to improve and re-enable them in the future.

Pavement.py and Paver

Paver [http://pythonhosted.org/Paver/] is a python module that automates repetitive tasks like running documentation generators, moving files around,
testing and downloading things using the convenience of Python’s syntax and massive library of code. GeoNode comes with several
paver tasks which save administrators and developers from having to manually perform repetitive operations from the command line.
The tasks are stored in the pavement.py file in your GeoNode root directory and can be run with `paver <task_name>` from that directory.

Pavement Tasks

Here’s a list of Pavement tasks maintained by the GeoNode development team.

deb

`paver deb`

Creates Debian packages.

Use the key option (or its shorter version -k) to specify the GPG key to sign the package with.

Use the ppa option (or its shorter version -p) to specify the PPA the package should be published to.

package

`paver package`

Creates a distributable tarball for GeoNode.

reset

`paver reset`

Resets the GeoNode development environment by deleting the development database and re-deploying the GeoServer data directory.

reset_hard

`paver reset_hard`

Cleans the local GeoNode git repository and removes untracked directories.

test

`paver test`

Runs the GeoNode unit tests.

test_integration

`paver test_integration`

Runs the GeoNode integration tests.

setup

`paver setup`

Installs GeoNode’s Python dependencies using pip.

setup_data

`paver setup_data`

Loads sample GIS data from the gisdata python package.

Use the type option (or its shorter version -t) to only import a specific data type. Supported types are “vector”, “raster”, and “time.”

setup_geoserver

`paver setup_geoserver`

Downloads GeoServer and the Jetty Runner and then moves the GeoServer data directory to the correct location.

start

`paver start`

Starts the GeoNode development web server and GeoServer.

start_django

`paver start_django`

Starts the GeoNode development web server on the local machine.

Use the bind option (or its shorter version -b) to bind the development server to a specific IP address and port number.

start_geoserver

`paver start_geoserver`

Runs the local GeoServer using Jetty.

stop

`paver stop`

Stops the GeoNode development web server and GeoServer.

stop_django

`paver stop_django`

Stops the GeoNode development web server.

stop_geoserver

`paver stop_geoserver`

Stops GeoServer.

sync

`paver sync`

Synchronizes the database according the GeoNode models and loads the GeoNode sample data.

static

`paver static`

Note

This task requires the Node Package Manager [https://www.npmjs.com/] to be installed.

Downloads and installs GeoNode’s static file dependencies and creates the production assets.

upgrade_db

`paver upgrade_db`

Updates database schemas from legacy GeoNode versions.

Use the version option (or its shorter version -v) to specify the GeoNode version when running this task.

Introduction to GeoNode Projects

GeoNode enables you to set up a complete site simply by installing the packages and adding your data. If you want to create your own project based on GeoNode, there are a several options available that enable you to customize the look and feel of your GeoNode site. You can add additional modules that are necessary for your own use case and to integrate your GeoNode project with other external sites and services.

This module assumes that you have installed a GeoNode site with the Ubuntu Packages and that you have a working GeoNode based on that setup. If you want to follow this same methodology on a different platform, you can follow this module and adapt as necessary for your environment.

Overview

GeoNode is an out-of-the-box, full-featured Spatial Data Infrastructure solution, but many GeoNode implementations require either customization of the default site or the use of additional modules, whether they be third-party Django Pluggables or modules developed by a GeoNode implementer.

There are quite a few existing Downstream GeoNode projects some of which follow the methodology described in this module. You should familiarize yourself with these projects and how and why they extend GeoNode. You should also carefully think about what customization and additional modules you need for your own GeoNode-based project and research the options that are available to you. The Django Packages [https://djangopackages.org/] site is a great place to start looking for existing modules that may meet your needs.

Existing downstream GeoNode projects

	Harvard Worldmap [https://github.com/cga-harvard/cga-worldmap]

	MapStory [https://github.com/MapStory/mapstory]

	Risiko/SAFE

	MetroBoston DataCommon [http://metroboston.datacommon.org/]

	WFP GeoNode [http://geonode.wfp.org/]

	ADRIPLAN [https://github.com/CNR-ISMAR/adriplan]

	ROGUE GeoNode [https://github.com/ROGUE-JCTD/geonode]

Django template projects

GeoNode follows the Django template projects paradigm introduced in Django 1.4. At a minimum, a Django project consists of a settings.py file and a urls.py file; Django apps are used to add specific pieces of functionality. The GeoNode development team has created a template project which contains these required files with all the GeoNode configuration you need to get up and running with your own GeoNode project. If you would like learn more about Django projects and apps, you should consult the Django Documentation [https://docs.djangoproject.com/en/1.8/]

Make a GeoNode release

Making a GeoNode release requires a quite complex preparation of the environment while once everything is set up is a really easy and quick task.
As said the complex part is the preparation of the environment since it involves, the generation of a password key to be uploaded to the Ubuntu servers and imported in launchpad.

If you have already prepared the environment then jump to the last paragraph.

Before start, make sure to have a pypi [https://pypi.python.org/pypi] and a launchpad [https://launchpad.net/] account.

Before doing the release, a GeoNode team member who can already make release has to add you as a launchpad GeoNode team member.

Creating and importing a gpg key

A GPG key is needed to push and publish the package.
There is a complete guide on how to create and import [https://help.launchpad.net/YourAccount/ImportingYourPGPKey] a GPG key

Preparing the environment

Make sure to have a Ubuntu 12.04 machine.
Install the following packages in addition to the python virtualenv tools:

$ sudo apt-get install git-core git-buildpackage dbhelper devscripts

Get the GeoNode code (from master) in a virtualenv:

$ mkvirtualenv geonode
$ git clone https://github.com/GeoNode/geonode.git
$ cd geonode

Edit the .bashrc file and add the following lines (the key ID can be found in “your personal keys” tab:

export GPG_KEY_GEONODE="your_gpg_key_id"
export DEBEMAIL=yourmail@mail.com
export EDITOR=vim
export DEBFULLNAME="Your Full Name"

then close and:

$ source .bashrc

Type “env” to make sure all the variables are correctly exported

Set the correct git email:

$ git config --global user.email "yourmail@mail.com"

Register your credentials:

$ python setup.py register

Make the release

The followings are the only commands needed if the environment and the various registrations have already been done.

Make sure to have pulled the master to the desired commit.
Edit the file geonode/__init__.py at line 21 and set the correct version.

Install GeoNode in the virtualenv (make sure to have the virtualenv activated and be in the geonode folder):

$ pip install -e geonode

Publish the package:

$ cd geonode
$ paver publish

The last command will:

	Tag the release and push it to GitHub

	Create the debian package and push it at ppa:geonode/testing in launchpad

	Create the .tar.gz sources and push them to Pypi

	Update the changelog and commit it to master

Advanced Workshop

Welcome to the GeoNode Training Advanced Workshop documentation v2.8.

This module introduces advanced techniques and methodologies for the management of the geospatial data and the maintenance and tuning of the servers on Production Environments.

The last sections of the module will teach also you how to add brand new classes and functionalities to your GeoNode installation.

	Prerequisites

	You should be familiar with GeoNode, GeoServer, Python framework and development concepts other than with system administrator and caching concepts and techniques.

	Advanced Data Management and Processing

	Advanced Data Management and Processing techniques.

	GeoNode Advanced Configuration

	Learn how to deal with advanced GeoNode configuration settings and external Django Apps.

	GeoNode on Production

	Concepts and techniques for the deployment of GeoNode and GeoServer on a Production system.

Advanced Data Management and Processing

Warning

Some parts of this section have been taken from the GeoServer [http://geoserver.org] project and training documentation.

	Loading OSM Data into GeoNode

	Learn how to load OSM Data into GeoNode

	Adding Data to GeoServer

	Learn how to add data to GeoServer.

	Pretty maps with GeoServer

	Learn how to create pretty styles for the Maps in GeoServer.

	Advanced Raster Data Management

	Learn advanced techniques for the delivery of Raster Data with GeoServer.

	Advanced Vectorial Data Management

	Learn advanced techniques for the delivery of Vectorial Data with GeoServer.

	spatial_processing

	Learn how to do Spatial Processing using external tools.

Loading OSM Data into GeoNode

In this section, we will walk through the steps necessary to load OSM data into your GeoNode project. As discussed in previous sections, your GeoNode already uses OSM tiles from MapQuest and the main OSM servers as some of the available base layers. This session is specifically about extracting actual data from OSM and converting it for use in your project and potentially for Geoprocessing tasks.

The first step in this process is to get the data from OSM. We will be using the OSM Overpass API since it lets us do more complex queries than the OSM API itself. You should refer to the OSM Overpass API documentation to learn about all of its features. It is an extremely powerful API that lets you extract data from OSM using a very sophisticated API.

	http://wiki.openstreetmap.org/wiki/Overpass_API

	http://wiki.openstreetmap.org/wiki/Overpass_API/Language_Guide

In this example, we will be extracting building footprint data around Port au Prince in Haiti. To do this we will use an interactive tool that makes it easy construct a Query against the Overpass API. Point your browser at http://overpass-turbo.eu/ and use the search tools to zoom into Port Au Prince and Cité Soleil specifically.

You will need to cut and paste the query specified below to get all of the appropriate data under the bounding box:

<osm-script>
 <union into="_">
 <bbox-query {{bbox}}/>
 <recurse into="x" type="node-relation"/>
 <query type="way">
 <bbox-query {{bbox}}/>
 <has-kv k="building" v="yes"></has-kv>
 </query>
 <recurse into="x" type="way-node"/>
 <recurse type="way-relation"/>
 </union>
 <print mode="meta"/>
</osm-script>

This should look like the following.

[image: ../../../_images/overpass_turbo.png]

When you have the bounding box and query set correctly, click the “Export” button on the menu to bring up the export menu, and then click the API interpreter link to download the OSM data base on the query you have specified.

[image: ../../../_images/overpass_export.png]

This will download a file named ‘export.osm’ on your file system. You will probably want to rename it something else more specific. You can do that by issuing the following command in the directory where it was downloaded:

$ mv export.osm cite_soleil_buildings.osm

Note

You can also rename the file in your Operating Systems File management tool (Windows Explorer, Finder etc).

Exporting OSM data to shapefile using QGIS

Now that we have OSM data on our filesystem, we will need to convert it into a format suitable for uploading into your GeoNode. There are many ways to accomplish this, but for purposes of this example, we will use an OSM QGIS plugin that makes if fairly easy. Please consult the wiki page that explains how to install this plugin and make sure it is installed in your QGIS instance. Once its installed, you can use the Web Menu to load your file.

[image: ../../../_images/load_osm.png]

This will bring up a dialog box that you can use to find and convert the OSM file we downloaded.

[image: ../../../_images/load_osm_dialog.png]

When the process has completed, you will see your layers in the Layer Tree in QGIS.

[image: ../../../_images/qgis_layers.png]

Since we are only interested in the polygons, we can turn the other 2 layers off in the Layer Tree.

[image: ../../../_images/qgis_layer_off.png]

The next step is to use QGIS to convert this layer into a Shapefile so we can upload it into GeoNode. To do this, select the layer in the Layer tree, right click and then select the Save As option.

[image: ../../../_images/qgis_save_as.png]

This will bring up the Save Vector Layer as Dialog.

[image: ../../../_images/qgis_save_as_dialog.png]

Specify where on disk you want your file saved, and hit Save then OK.

[image: ../../../_images/save_layer_path.png]

You now have a shapefile of the data you extracted from OSM that you can use to load into GeoNode. Use the GeoNode Layer Upload form to load the Shapefile parts into your GeoNode, and optionally edit the metadata and then you can view your layer in the Layer Info page in your geonode.

[image: ../../../_images/buildings_layer_geonode.png]

Note

You may want to switch to an imagery layer in order to more easily see the buildings on the OSM background.

Exporting OSM data to shapefile using GDAL

An alternative way to export the .osm file to a shapefile is to use ogr2ogr [http://www.gdal.org/ogr2ogr.html] combined with the GDAL osm driver [http://www.gdal.org/drv_osm.html], available from GDAL version 1.10.

As a first step, inspect how the GDAL OSM driver sees the .osm file using the ogrinfo command:

$ ogrinfo cite_soleil_buildings.osm
Had to open data source read-only.
INFO: Open of `cite_soleil_buildings.osm'
 using driver `OSM' successful.
1: points (Point)
2: lines (Line String)
3: multilinestrings (Multi Line String)
4: multipolygons (Multi Polygon)
5: other_relations (Geometry Collection)

ogrinfo has detected 5 different geometric layers inside the OSM data source. As we are just interested in the buildings, you will just export the multipolygons layer to a new shapefile using the GDAL ogr2ogr command utility:

$ ogr2ogr cite_soleil_buildings cite_soleil_buildings.osm multipolygons

Now you can upload the shapefile to GeoNode using the GeoNode Upload form in the same manner as you did in the previous section.

Using GeoGig to load OSM Data into Manage OSM Data

Another alternative for working with OSM data in your GeoNode is to use GeoGig [http://geogig.org/]. GeoGig is a tool that draws inspiration from Git but adapts its core concepts to handle distributed versioning of geospatial data. GeoGig allows you to load OpenStreetMap data into a repository on your server and either export that data into PostGIS for use in your GeoNode, or configure the GeoGig GeoServer extension and expose the repo directly from GeoServer. An article about this process can be found on the Boundless Geo Blog [https://boundlessgeo.com/2014/03/geogit-and-openstreetmap-for-yolanda/], and will be described below. Much of the impetus for GeoGig came from the ROGUE JCTD and the technology has been incorporated into Boundless Exchange [https://boundlessgeo.com/boundless-exchange/].

Much more information about how to perform the steps below can be found in the GeoGig documentation page on Using GeoGig with OpenStreetMap data [http://geogig.org/docs/interaction/osm.html]. The instructions that follow are only a brief overview of the process.

Getting Started

You will first need to install the GeoGig command line tools. These can be found on the projects SourceForge page [https://sourceforge.net/projects/geogig/files/latest/download]. Follow the instructions contained in the installation file in order to install the CLI tools on your GeoNode server. Once you have the tools installed and added to your path, the geogig command should be available:

$ geogig --version
 Project Version : 1.0-SNAPSHOT
 Build Time : December 18, 2014 at 03:59:10 UTC
 Build User Name : Unknown
 Build User Email : Unknown
 Git Branch : master
 Git Commit ID : a4a80a8dd853dfe497729b35399594947866e8ae
 Git Commit Time : December 18, 2014 at 03:44:24 UTC
 Git Commit Author Name : Gabriel Roldan
 Git Commit Author Email : gabriel.roldan@gmail.com
 Git Commit Message : Synchronize DefaultPlatform.getTempDir() to avoid false precondition check on concurrent access.

Once the GeoGig command is available, you will need to create an empty repository to hold your data. Change directories to a suitable location on your servers filesystem and issue the following command substituting my_repo for whatever name you choose:

$ cd /somewhere/on/file/system
$ mkdir my_repo
$ geogig init
Initialized empty Geogig repository in /somewhere/on/filesystem/my_repo/.geogig

Loading OSM Data into your Repository

Now that you have an empty repository to store our data, the next step is to load the current snapshot of OSM data into your repository using the geogig osm download command. At a minimum, you will want to use a bounding box filter to limit the downloaded data to the area of interest for your geonode installation. The example below is a bounding box that encompasses the country of Malawi. More information about the GeoGig OSM download command can be found in the geogig docs [http://geogig.org/manpages/osmdownload.html].:

$ geogig osm download --bbox -17.129459 32.668991 -9.364680 35.920441 --saveto ./mw-osm-temp --keep-files

Connecting to http://overpass-api.de/api/interpreter...

Downloaded data will be kept in /somewhere/on/filesystem/my_repo/./mw-osm-temp

Importing into GeoGig repo...
1,164,420
1,164,420 entities processed in 5.892 min

Building trees for [node, way]

Trees built in 7.614 s
0%
Staging features...
100%

Committing features...
100%
Processed entities: 1,164,420.
 Nodes: 1,091,572.
 Ways: 72,848

GeoGig stores data in trees which are basically equivalent to layers in a normal geospatial context. At this point in the process, your repo contains 2 trees for ways and nodes from OSM. In order to convert these into layers that may be more familiar to your users like roads, buildings or medical facilities, you will need to apply a mapping that filters the complete list of nodes and ways and converts the tags into attributes. There are a great set of sample mappings in the US State Departments CyberGIS project. You can find them at this link [https://github.com/state-hiu/cybergis-osm-mappings/tree/master/mappings]. You should clone this repository along side your GeoGig repository and then apply them as shown below:

$ geogig osm map ../cybergis-osm-mappings/mappings/basic/buildings_and_roads.json

$ geogig osm map ../cybergis-osm-mappings/mappings/health/medical_centers.json

$ geogig osm map ../cybergis-osm-mappings/mappings/education/schools.json

Now you can inspect the repository using the following commands:

$ geogig ls-tree
osm_roads
osm_buildings
node
way

$ geogig show osm_roads
TREE ID: 596a4f39ab9fadcbba6ffcaf5c135e29c2bc67d3
SIZE: 20288
NUMBER Of SUBTREES: 0
DEFAULT FEATURE TYPE ID: 0f7cbc6c114727858fb50668eb8a4448667bdc12

DEFAULT FEATURE TYPE ATTRIBUTES
id: <LONG>
geom: <LINESTRING>
status: <STRING>
media: <STRING>
name: <STRING>
ref: <STRING>
highway: <STRING>
lanes: <STRING>
oneway: <STRING>
surface: <STRING>
access: <STRING>
source: <STRING>
motor_vehicle: <STRING>
nodes: <STRING>

Updating the OSM Data in your Repository

As OpenStreetMap is a constantly changing dataset, you will want to periodically update your repo with the latest changes from OSM. GeoGig provides a way to do this using the geogig osm download command with the –update flag:

$ geogig osm download --update

Note

If you get an error that looks like the error below, this means that there are no changes in OSM since your last update and it can be ignored.

Committing features…

An unhandled error occurred: Nothing to commit after f249200302d5e808fb1b04f329b39b5853ffb7d0. See the log for more details.

Serving your GeoGig repository in GeoNode

At this point you have different options on how to serve this repository from your GeoNode. The most basic option is to export this data to PostGIS and configure the PostGIS database in GeoServer for use in GeoNode. First create a PostGIS database that will be used to store the data and then use the geogig pg export command [http://geogig.org/manpages/pgexport.html] to export the layers into this database for serving. Note you will need to replace the connection parameters below to match you r servers setup:

$ geogig pg export --host localhost --port 5432 -- schema myschema --database my_osm_database --user my_user --password my_password osm_train_stations osm_train_stations

Define your new primary key for the table we can’t export (id is the osm id):

INSERT INTO gt_pk_metadata_table (table_schema, table_name, pk_column) VALUES ('geogig_data','osm_train_stations','id');

Next you need to alter your OSM data table accordingly:

ALTER TABLE geogig_data.osm_train_stations DROP CONSTRAINT osm_train_stations_pkey;

ALTER TABLE geogig_data.osm_train_stations ADD PRIMARY KEY (id);

ALTER TABLE geogig_data.osm_train_stations DROP COLUMN fid;

ALTER TABLE geogig_data.osm_train_stations ADD COLUMN fid character varying(64);

Then you can run the geogig pg export command with the -o option to overwrite the table:

$ geogig pg export -o --host localhost --port 5432 -- schema myschema --database my_osm_database --user my_user --password my_password osm_train_stations osm_train_stations

At this point, you need to configure your PostGIS database connection in GeoServer. More information about this process can be found in the GeoServer documentation [http://docs.geoserver.org/stable/en/user/data/database/postgis.html].

Once the layers are configured in GeoServer. You want to issue the updatelayers to configure them in your GeoNode:

$ python manage.py updatelayers --store geogig_data --filter osm_train_stations

Using the GeoGig GeoServer Extension

The GeoGig project also contains a GeoServer extension that allows a GeoServer administrator to configure and serve the GeoGig store directly. This extension basically lets you treat your GeoGig repository as any other store of spatial data.

Note

This section is still to be completed.

Using the osm-extract script to download OSM Data into PostGIS

osm-extract is a script that allows to download data from OpenStreetMap, perform ETL procedures in order to classify data into layers and publish it in a PostgreSQL+PostGIS database.
It is based on a fork from Terronodo and it is built around a Makefile with instructions that must be executed with the Linux make command (we assume you are working on a Linux based OS).
Once OSM data have been loaded into PostGIS, they can be published in GeoNode.

The script processes the whole .pbf file provided in input, therefore the processing extent depends on the bounding box of the .pbf file itself.
In addition data can be updated on a fixed frequency, by executing the Makefile with a scheduled cron job. In such case a sql instruction can be executed in order to update the publication date of the respective metadata published by GeoNode.

Steps for putting it in production

	Download the repo

	Install the dependencies: osmosis. (GeoNode is assumed to be up and running)

	Launch the Makefile for the first time

	Publish the layers in GeoNode, update_layers

	Customize the sh file

	Customize the SQL file

	Schedule the shell file as a cron job

1. Download the repo:

git clone https://github.com/MalawiGeospatialTools/osm-extract.git

2. Install the dependencies

We assume that GeoNode is already installed on your machine.
In addition to that you need to install osmosis, which is used by the Makefile to handle OSM data.
In order to do so, follow the instructions at Installing pre-built Osmosis [http://wiki.openstreetmap.org/wiki/Osmosis/Installation#Linux]

3. Launch the Makefile for the first time

Set the current directory to the directory where the Makefile is stored.
Then launch it by typing the following command:

make all NAME=<country> URL="<Planet.osm mirror>"

Substitute in the command <country> with the name of your country of interest (e.g. malawi), if you’re working on a specific country (the name is used for naming the staging files created by the procedure).

Also replace <Planet.osm mirror> with one of the mirrors listed in http://wiki.openstreetmap.org/wiki/Planet.osm#Downloading; make sure that the mirror publishes extracts in .pbf format. One handy mirror is http://download.openstreetmap.fr/extracts, which published data on a country or area basis: this allows to reduce the processing steps to a single country or area of interest.

The procedure is going to create a new database in your PostgreSQL instance and store in it the OSM data for your country. Therefore you should run the Makefile with a user that has enough privileges.

The features and attributes to be included in each table and consequently in each GeoNode layer are defined in configuration files which are stored in the conf directory.

A few indications on the computing resources: 30 seconds of computing time are required for processing a .pbf file sized 38MB (the country of Malawi) with an Amazon m3 medium instance (1 Intel Xeon E5-2670 CPU, 3.75GB RAM).

4. Publish the layers in GeoNode

We propose to do so in two steps: firstly publish the layers in GeoServer and then in GeoNode.
In GeoServer generate a new Store so that you can keep it separate from the default GeoNode Store. Then publish the layers of your interest from the ones that were created by the procedure at the previous step (please note that some of them may be empty, depending on the country of interest).
In GeoNode take advantage of the updatelayers command and publish all layers from the GeoServer Workspace created ad-hoc at the previous step. See the updatelayers documentation [http://docs.geonode.org/en/master/tutorials/admin/admin_mgmt_commands/] for details.

5. Customize the sh file

Customize the osm_update.sh file in order to fit your server and software configuration, namely:

	define the installation path (on line 3) for the osmosis software, so that it can be found by the OS

	change the current directory to a working directory of your interest, where temporary files can be stored, deleted and updated (on line 4)

	define the name of the country of interest as well as the url (on line 6) as you did in step 3

6. Customize the SQL file

Customize the set_pub_date.sql file in order to fit it for your purpose. In particular substitute the store name osm_extracts with the name of the store in which your OSM data are in GeoServer.

7. Schedule the shell file as a cron job

Insert the osm_update.sh file in the crontab of your server as a scheduled job. In order to do so, please have a look at the official cron documentation. If you’re using Ubuntu OS, please have a look here [https://help.ubuntu.com/community/CronHowto].

Adding Data to GeoServer

	GeoServer Data Directory
	What you will learn

	Adding base types
	What you will learn

Managing GeoServer Data Directory

This section explain how to manage the GeoServer Data Directory.

What you will learn

In this section you will:

	Creating and setting a New Data Directory

	Structure of the Data Directory

Creating and setting a new GeoServer Data Directory

	Generally if GeoServer is running in Web Archive mode inside of a servlet container, like in this Workshop, the data directory is located at <web application root>/data (the data directory contains the GeoServer configuration data).

	The first thing to do is to correctly configure the GEOSERVER_DATA_DIR. To increase the portability of their data and to facilitate updates GeoServer, in the default Workshop configuration the GEOSERVER_DATA_DIR is configured under the directory:

${TRAINING_ROOT}/geoserver_data or %TRAINING_ROOT%\geoserver_data on Windows

Generally this is not an issue, but if you run the system from the Live DVD this folder resides in memory. The first thing to do is to move this folder into a local persistent storage.

	Move the GEOSERVER_DATA_DIR somewhere in the persistent storage using the command:

sudo mv -f ${TRAINING_ROOT}/geoserver_data <TARGET_DIR>

	Make a symbolic link to the GEOSERVER_DATA_DIR by issuing the command:

ln -s <TARGET_DIR> ${TRAINING_ROOT}/geoserver_data

Warning

Check that the user geo has permissions to read/write all the files/folder inside the GEOSERVER_DATA_DIR.

Note

Instead of creating a symbolic link you can configure GeoServer in order to allow it to point to the new GEOSERVER_DATA_DIR. To do that edit the file /opt/tomcat-geoserver/webapps/geoserver/WEB-INF/web.xml and modify the context param GEOSERVER_DATA_DIR.

Structure of the GeoServer Data Directory

The following is the GEOSERVER_DATA_DIR structure:

data_directory/
 coverages/
 data/
 demo/
 gwc/
 gwc-layers/
 layergroups/
 logs/
 palettes/
 security/
 styles/
 temp/
 user_projections/
 validation/
 workspaces/
 www/
 global.xml
 gwc-gs.xml
 logging.xml
 wcs.xml
 wfs.xml
 wms.xml
 wps.xml

	File

	Description

	coverages

	Contains some demo raster layers for this training

	data

	Not to be confused with the GeoServer data directory itself, the data directory is a location where actual data can be stored. This directory is commonly used to store shapefiles and raster files but can be used for any data that is file based. The main benefit of storing data files inside of the data directory is portability.

	demo

	The demo directory contains files which define the sample requests available in the Sample Request Tool.

	gwc

	This directory holds the cache created by the embedded GeoWebCache service.

	gwc-layers

	This directory holds the configuration files created by the embedded GeoWebCache service for each layer.

	layergroups

	Contains information on the layer groups configurations.

	logs

	This directory contains the GeoServer logging files (log file and logging properties files).

	palettes

	The palettes directory is used to store pre-computed Image Palettes. Image palettes are used by the GeoServer WMS as way to reduce the size of produced images while maintaining image quality.

	security

	The security directory contains all the files used to configure the GeoServer security subsystem. This includes a set of property files which define access roles, along with the services and data each role is authorized to access.

	styles

	The styles directory contains a number of Styled Layer Descriptor (SLD) files which contain styling information used by the GeoServer WMS.

	temp

	Temporary directory, used by the WPS service.

	user_projections

	The user_projections directory contains extra spatial reference system definitions. The epsg.properties can be used to add new spatial reference systems, whilst the epsg_override.properties file can be used to override an official definition with a custom one.

	validation

	This directory contains the validation rules

	workspaces

	The various workspaces directories contain metadata about stores and layers which are published by GeoServer. Each layer will have a layer.xml file associated with it, as well as either a coverage.xml or a featuretype.xml file depending on whether it’s a raster or vector.

	www

	The www directory is used to allow GeoServer to act like a regular web server and serve regular files. While not a replacement for a full blown web server the www directory can be useful to easily serve OpenLayers map applications (this avoids the need to setup a proxy in order to respect the same origin policy [https://en.wikipedia.org/wiki/Same_origin_policy]).

	global.xml

	Contains settings that go across services, including contact information, JAI settings, character sets and verbosity.

	gwc-gs.xml

	Contains various settings for the GeoWebCache service.

	logging.xml

	Specifies the logging level, location, and whether it should log to std out.

	wcs.xml

	Contains the service metadata and various settings for the WCS service.

	wfs.xml

	Contains the service metadata and various settings for the WFS service.

	wms.xml

	Contains the service metadata and various settings for the WMS service.

Adding base types

This section explain how to add some of the base data types into GeoServer. As an example we will learn how to insert a shapefile and GeoTIFF into GeoServer, as well as how to import a Shapefile into PostGIS and then publish it from there.

What you will learn

In this section you will:

	Adding a Shapefile

	Loading a Shapefile into Postgis

	Adding a Postgis layer

	Adding a GeoTiff

	Adding a WMS Cascade Layer

	Adding a WFS Cascade Layer

	Adding a SQL Parametric Views

	Adding an Image Mosaic

	Adding a GDAL Data Format

Adding a Shapefile

The task of adding a Shapefile is one that is core to any GIS tool. This section covers the task of adding and publishing a Shapefile with GeoServer.

	Navigate to the workshop directory $TRAINING_ROOT/data/user_data/ (on Windows %TRAINING_ROOT%\data\user_data) and find the following shapefiles:

Mainrd.shp
Mainrd.shx
Mainrd.dbf
Mainrd.prj

Copy the files to the following directory:

$GEOSERVER_DATA_DIR/data/boulder

for Windows:

%GEOSERVER_DATA_DIR%\data\boulder

Note

Ensure that all four parts of the shapefile are copied. This includes the shp, shx, dbf, and prj extensions.

	Navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/web/].

	On the Welcome page locate the Login form located at the top right corner, and enter the username “admin” and password “Geos”.

[image: ../../../../_images/vector1.png]
GeoServer Login

	Click the Add stores link.

[image: ../../../../_images/vector2.png]
Add stores link

	Select the Shapefile link and click it.

[image: ../../../../_images/vector3.png]
Add a new shapefile

Note

The new data source menu contains a list of all the spatial formats supported by GeoServer. When creating a new data store one of these formats must be chosen. Formats like Shapefile and PostGIS are supported by default, and many other formats are available as extensions.

	On the Edit Vector Data Source page enter “Mainrd” in the Data Source Name and Description fields. Finally click on browse link in order to set the Shapefile location in the URL field and click Save.

Note

The Mainrd.shp got just copied in the data directory, inside the “data/boulder” folder, and the file browser opens right in the data directory, so just click on “data” and then “boulder” and you’ll find it

[image: ../../../../_images/vector4.png]
Specifying Shapefile parameters

	After saving, you will be taken to a page that lists all the layers in the shapefile and gives you the option to publish any of them. Click Publish.

[image: ../../../../_images/vector5.png]
Publishing a layer from the shapefile

	The Coordinate Reference Systems have to be manually populated. The Name and Title fields should be automatically populated.

[image: ../../../../_images/vector6.png]
Populate fields.

Scroll down the page and generate the bounds for the layer by clicking the Compute from data button in the Bounding Boxes section.

[image: ../../../../_images/vector7.png]
Generating the layer bounding box

	Scroll to the bottom of the page, notice the read only Feature Type Detail table and then click Save.

[image: ../../../../_images/vector8.png]
Submitting the layer configuration

	If all went well, you should see something like this:

[image: ../../../../_images/vector9.png]
After a successful save

At this point a shapefile has been added and is ready to be served by GeoServer.

[image: ../../../../_images/vector10.png]

	Choose the preview link in the main menu and filter the layer list with mainrd:

[image: ../../../../_images/preview_shapefile1.png]
Selecting the mainrd shapefile in the layer preview.

	Click on the OpenLayers link to preview the layer in an interactive viewer:

[image: ../../../../_images/preview_shapefile2.png]
The mainrd shapefile preview

In the next section we will see how to load a shapefile into PostGIS.

Loading a Shapefile into PostGIS

This task shows how to load a shapefile into PostGIS database:

	Open the terminal window and enter the following command and press enter to creating a new database named ‘shape’:

	Linux:

createdb -U postgres -T postgis20 shape

	Windows:

setenv.bat
createdb -U postgres -T postgis20 shape

	Enter the following command and press enter to load the shapefile into ‘shape’ database:

	Linux:

shp2pgsql -I ${TRAINING_ROOT}/data/user_data/Mainrd.shp public.main_roads | psql -d shape

	Windows:

shp2pgsql -I "%TRAINING_ROOT%\data\user_data\Mainrd.shp" public.main_roads | psql -U postgres -d shape

The shapefile will be loaded within the ‘main_roads’ table of the ‘shape’ database. The following screenshot shows some of the table contents in pgAdmin III

[image: ../../../../_images/shp_postgis1.png]
A PostGIS table by ShapeFile

In the next section we will see how to add a PostGIS layer into GeoServer.

Adding a Postgis layer

This task shows how to add a PostGIS layer into GeoServer:

	Navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/web/].

	If you are not already logged in, on the Welcome page locate the Login form located at the top right corner, and enter the username “admin” and password “Geos”.

[image: ../../../../_images/vector1.png]
GeoServer Login

	Click the Add stores link.

[image: ../../../../_images/vector2.png]
Add stores link

	Select the PostGIS link and click it.

[image: ../../../../_images/postgis_lay1.png]
Add new PostGIS Store

	On the New Vector Data Source page fill the following parameter:

	Data source name, ‘shape’

	port, ‘5434’

	database, ‘shape’ the name of the database created in previous workshop step.

	user, ‘geonode’ the name of the user database owner.

	password, ‘geonode’ the user password.

and click Save.

[image: ../../../../_images/postgis_lay2.png]

[image: ../../../../_images/postgis_lay2b.png]
Setting database connection parameters

	After saving, you will be taken to a page that lists all the layers in the PostGIS database and gives you the option to publish any of them. Click Publish.

[image: ../../../../_images/postgis_lay4.png]
Publishing a layer from the PostGIS table

	The Name and Title fields should be automatically populated. Fill the Declared SRS field to set the Coordinate Reference Systems and generate the bounds for the layer by clicking the Compute from data and Compute from native bounds buttons in the Bounding Boxes section

[image: ../../../../_images/postgis_lay5.png]

[image: ../../../../_images/postgis_lay6.png]
Populating fields and generating the layer bounding box

	Scroll to the bottom of the page, notice the read only Feature Type Detail table and then click Save.

[image: ../../../../_images/postgis_lay7.png]
Submitting the layer configuration

	If all went well, you should see something like this:

[image: ../../../../_images/postgis_lay8.png]
After a successful save

	At this point the PostGIS layer has been added and is ready to be served by GeoServer. Use the layer preview to view its contents, filtering on the ‘main_road’ name.

Adding a GeoTIFF

GeoTIFF is a widely used geospatial raster data format. It is composed of a single file containing both the data and the georeferencing information (not to be confused with the .tiff/.tfw/.prj file triplet, which is considered a “world image” file in GeoServer).
This section provides instructions to add and publish a GeoTIFF file.

	Open the web browser and navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver].

	Select Add stores from the interface.

[image: ../../../../_images/geotiff_addstores.png]

	Select GeoTIFF - Tagged Image File Format with Geographic information from the set of available Raster Data Sources.

[image: ../../../../_images/geotiff_sources.png]

	Specify a proper name (as an instance, 13tde815295_200803_0x6000m_cl) in the Data Source Name field of the interface.

	Click on browse link in order to set the GeoTIFF location in the URL field.

Note

The 13tde815295_200803_0x6000m_cl.tif is located at $TRAINING_ROOT/data/user_data/aerial/13tde815295_200803_0x6000m_cl.tif (on Windows %TRAINIG_ROOT%\data\user_data\aerial\13tde815295_200803_0x6000m_cl.tif)

[image: ../../../../_images/addgeotiff1.png]

	Click Save.

	Publish the layer by clicking on the publish link.

[image: ../../../../_images/addgeotiff2.png]

	Check the Coordinate Reference Systems and the Bounding Boxes fields are properly set and click on Save.

[image: ../../../../_images/addgeotiff3.png]

	At this point the GeoTIFF is being published with GeoServer. You can use the layer preview to inspect the data.

[image: ../../../../_images/addgeotiff4.png]

Adding a WMS Cascade Layer

WMS cascading allows to expose layers coming from other WMS servers as if they were local layers. This provides for some interesting advantages:

	Clients connecting to your SDI need to care about less points of origin, which might be important for high security networks

	It is now possible to ask for maps in formats not supported by the original server, or to reproject the maps in projections not supported by the original server (GeoServer supports out of the box almost 5000 different coordinate reference systems)

	It is now possible to mix the layers with local ones to generate print oriented formats such as PDF

	It is now possible to provide more informations about the layer, such as a better description, more keywords, which will benefit all clients, in particular catalogues harvesting informations from your capabilities document

Configuration

The configuration as usage of the cascaded layers follows GeoServer traditional ease of use.

	Open the web browser and navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver].

	Select Add stores from the interface.

[image: ../../../../_images/geotiff_addstores.png]

	Select WMS - Cascades a remote Web Map Service from the set of available Other Data Sources.

[image: ../../../../_images/wmscascade_sources.png]

	Specify a proper name (as an instance, geoserver-enterprise) in the Data Source Name field of the interface.

	Specify http://demo1.geo-solutions.it/geoserver-enterprise/ows?service=wms&version=1.1.1&request=GetCapabilities as the URL of the sample data in the Capabilities URL field.

[image: ../../../../_images/wmscascade_store.png]

	Click Save.

	Publish the layer by clicking on the publish link near the geosolutions:ne_shaded layer name. Notice that you can also add more layers later.

[image: ../../../../_images/wmscascading_publish.png]

	Check the Coordinate Reference Systems and the Bounding Boxes fields are properly set and click on Save.

[image: ../../../../_images/wmscascade_bbox.png]

	At this point the new WMS Layer is being published with GeoServer. You can use the layer preview to inspect the data.

[image: ../../../../_images/wmscascading_preview.png]

Adding a WFS Cascade Layer

GeoServer has the ability to load data from a remote Web Feature Server (WFS).
This is useful if the remote WFS lacks certain functionality that GeoServer contains.
For example, if the remote WFS is not also a Web Map Server (WMS), data from the WFS can be cascaded through GeoServer to utilize GeoServer’s WMS.
If the remote WFS has a WMS but that WMS cannot output KML, data can be cascaded through GeoServer’s WMS to output KML.

Configuration

The configuration as usage of the cascaded layers follows GeoServer traditional ease of use.

	Open the web browser and navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver].

	Select Add stores from the interface.

[image: ../../../../_images/geotiff_addstores.png]

	Select Web Feature Server from the set of available Vector Data Sources.

	Specify a proper name (as an instance, wfs-cascade) in the Data Source Name field of the interface.

	Specify http://demo1.geo-solutions.it/geoserver-enterprise/ows?service=wfs&version=1.0.0&request=GetCapabilities as the URL of the sample data in the Capabilities URL field.

[image: ../../../../_images/wfscascade_store.png]

	Make sure that the HTTP Authentication fields match the remote server authorization you have on it (In this case the server is open so we don’t need them).

	Click Save.

	Publish the layer by clicking on the publish link near the geosolutions_country layer name. Notice that you can also add more layers later.

[image: ../../../../_images/wfscascading_publish.png]

	Check the Coordinate Reference Systems and the Bounding Boxes fields are properly set and click on Save.

[image: ../../../../_images/wfscascade_bbox.png]

	At this point the new WMS Layer is being published with GeoServer. You can use the layer preview to inspect the data.

[image: ../../../../_images/wfscascading_preview.png]

Adding a SQL Parametric View based Layer

The traditional way to use database backed data is to configure either a table or a database view as a new layer in GeoServer.
Starting with GeoServer 2.1.0 the user can also create a new layer by specifying a raw SQL query, without the need to actually creating a view in the database.
The SQL can also be parametrized, and parameter values passed in along with a WMS or WFS request.

Creating a plain SQL view

	In order to create an SQL view the administrator can go into the Add a new resource from the Layers page.

[image: ../../../../_images/sqlviews_addlayer.png]

	Upon selection of a database backed store a list of tables and views available for publication will appear, but at the bottom of if a new link, Configure new SQL view, will appear:

[image: ../../../../_images/sqlviews_postgrestore.png]

[image: ../../../../_images/sqlviews_addsqllayer.png]

	Selecting the link Configure new SQL view will open a new page where the SQL statement can be specified:

[image: ../../../../_images/sqlviews_plainsql_params.png]
Plain SQL View configuration

SELECT st.obs_year,
 st.storm_num,
 st.storm_name,
 min(st.obs_datetime)
 AS storm_start, max(st.obs_datetime)
 AS storm_end, max(st.wind)
 AS max_wind, st_makeline(st.geom)
 AS the_route
FROM (SELECT storm_obs.storm_num,
 storm_obs.storm_name,
 storm_obs.wind,
 storm_obs.press,
 storm_obs.obs_datetime,
 date_part('year'::text, storm_obs.obs_datetime)
 AS obs_year, storm_obs.geom
 FROM storm_obs
 ORDER BY date_part('year'::text, storm_obs.obs_datetime),
 storm_obs.storm_num,
 storm_obs.obs_datetime) st
GROUP BY st.obs_year, st.storm_num, st.storm_name
ORDER BY st.obs_year, st.storm_num

Note

The query can be any SQL statement that can be validly executed as part of a subquery in the FROM clauses, that is select * from (<the sql view>) [as] vtable. This is true for most SQL statements, but specific syntax might be needed to call onto a stored procedure depending on the database. Also, all the columns returned by the SQL statement must have a name, in some databases aliasing is required when calling function names

	Once a valid SQL statement has been specified press the refresh link in the Attributes table to get a list of the feature type attributes:

[image: ../../../../_images/sqlviews_plainsql_refresh.png]

Note

GeoServer will do its best to figure out automatically the geometry type and the native srid, but they should always be double checked and eventually corrected. In particular having the right SRID (spatial reference id) is key to have spatial queries actually work. In many spatial databases the SRID is equal to the EPSG code for the specific spatial reference system, but that is not always true (e.g., Oracle has a number of non EPSG SRID codes).

	Specify a valid SRID.

[image: ../../../../_images/sqlviews_plainsql_refresh_srid.png]
Forcing manually 4326 SRID in this case

Note

If stable feature ids are desired for the view’s features one or more column providing a unique identification for the features should be checked in the Indentifier column. Always make sure those attributes generate a actually unique key, or filtering and WFS clients will mishbehave.

	Once the query and the attribute details are set press Save and the usual new layer configuration page will show up. That page will have a link to a SQL view editor at the bottom of the Data tab:

[image: ../../../../_images/sqlviews_plainsql_featuretype.png]

	Make sure the CRS is EPSG:4326 and write manually (-180,-90,180,90) values in the Bounding Boxes sections.

[image: ../../../../_images/sqlviews_plainsql_bbox.png]

	Click Save.

At this point the new WMS Layer is being published with GeoServer.

Creating a parametric SQL view

Warning

As a rule of thumb use SQL parameter substitution only if the required functionality cannot be obtained with safer means, such as dynamic filtering (CQL filters) or SLD parameter substitution. Only use SQL parameters as a last resort, improperly validated parameters can open the door to SQL injection attacks [https://en.wikipedia.org/wiki/SQL_injection].

A parametric SQL view is based on a SQL query containing parameters whose values can be dynamically provided along WMS or WFS requests. A parameter is bound by % signs, can have a default value, and should always have a validation regular expression.

	In order to create a parametric SQL view performs the steps 1 and 2 like before and then insert the following parameters:

[image: ../../../../_images/sqlviews_parametricsql_params.png]
Parametric SQL View configuration

SELECT date_part('year'::text, t1.obs_datetime) AS obs_year, t1.storm_num, t1.storm_name, t1.wind, t2.wind AS wind_end, t1.press, t2.press AS press_end, t1.obs_datetime, t2.obs_datetime AS obs_datetime_end, st_makeline(t1.geom, t2.geom) AS geom
FROM storm_obs t1
JOIN (SELECT storm_obs.id, storm_obs.storm_num, storm_obs.storm_name, storm_obs.wind, storm_obs.press, storm_obs.obs_datetime, storm_obs.geom
 FROM storm_obs) t2 ON (t1.obs_datetime + '06:00:00'::interval) = t2.obs_datetime AND t1.storm_name::text = t2.storm_name::text
WHERE
 date_part('year'::text, t1.obs_datetime) BETWEEN %MIN_OBS_YEAR% AND %MAX_OBS_YEAR%
ORDER BY date_part('year'::text, t1.obs_datetime), t1.storm_num, t1.obs_datetime

Note

The query defines two parameters %MIN_OBS_YEAR% and %MAX_OBS_YEAR%.

	Click on the Guess parameters from SQL. GeoServer will automatically create fields with the parameters specified in the view:

[image: ../../../../_images/sqlviews_parametricsql_guess_params.png]

Note

Always provide default values for each parameter in order to let the layer work properly and also be sure the regular expression for the values validation are correct.

Examples of Regular Expressions:

	^[\d\.\+-eE]+$ will check that the parameter value is composed with valid elements for a floating point number, eventually in scientific notation, but will not check that the provided value is actually a valid floating point number

	[^;']+ will check the parameter value does not contain quotes or semicolumn, preventing common sql injection attacks, without actually imposing much on the parameter value structure

	Fill in some default values for the parameters, so that GeoServer can run the query and inspect the results in the next steps. Set MAX_OBS_YEAR to 2020 and MIN_OBS_YEAR to 0.

	Refresh the attributes, check the Geometry SRID and publish the layer like before.
Also assign the storm_track_interval style to the layer as Default Style.

[image: ../../../../_images/sqlviews_parametricsql_publishing.png]

	Click on the OpenLayers on the Layer Preview list for v_storm_track_interval layer.

	At a first glance you won’t see anything since the layer is using the default parameters for the observation years. Specify two years for the view adding this parameter at the end of the GetMap Request:

&viewparams=MIN_OBS_YEAR:2000;MAX_OBS_YEAR:2000

You should obtain a request like this:

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:v_storm_track_interval&styles=&bbox=-180.0,-90.0,180.0,90.0&width=660&height=330&srs=EPSG:4326&format=application/openlayers&viewparams=MIN_OBS_YEAR:2000;MAX_OBS_YEAR:2000

Now you are able to see the hurricanes from the parametric view and also dynamically choose the observation years interval of interest.

[image: ../../../../_images/sqlviews_parametricsql_preview.png]
Parametric SQL View OL preview

Adding an Image Mosaic to GeoServer

This section covers the task of adding and publishing a ImageMosaic file with GeoServer.

	Navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/web/].

	On the Welcome page locate the Login form located at the top right corner, and enter the username “admin” and password “Geos”.

[image: ../../../../_images/vector1bis.png]
GeoServer Login

	Click the Add stores link.

[image: ../../../../_images/vector2bis.png]
Add stores link

	Select the ImageMosaic link and click it.

[image: ../../../../_images/raster1.png]
Add a new Image Mosaic

	On the Add Raster Data Source page enter $TRAINING_ROOT/data/user_data/aerial (on Windows %TRAINING_ROOT%\data\user_data\aerial\) in the URL field (or browse the filesystem clicking on Browse), “boulder_bg” in the Data Source Name and Description fields, and click Save.

[image: ../../../../_images/raster2.png]
Specifying store parameters

	After saving, you will be taken to a page that lists all the layers in the store and gives you the option to publish any of them. Click Publish.

[image: ../../../../_images/raster3.png]
Publishing a layer from the store

	The Coordinate Reference Systems should be automatically populated, as well as the Name, Title and Bounding Boxes fields.

Note

Change the Name and Title into boulder_bg as shown in the figure.

The CRS and BBox fields are auto-filled with information taken from the underlying files. The coverage options section is filled with default parameters (which will be discussed later on in the training).

[image: ../../../../_images/raster5.png]

[image: ../../../../_images/raster5b.png]
The coverage layer gui for the boulder_bg layer.

[image: ../../../../_images/raster5bis.png]
The coverage bands details

	Scroll to the bottom of the page and then click Save. If all went well you should see something like this:

[image: ../../../../_images/raster6.png]
After a successful save.

	In the Layer Preview section click on the OpenLayers link to preview the layer in an interactive viewer, filtering by boulder_bg name:

[image: ../../../../_images/raster7.png]
Mosaic preview.

Adding a GDAL Supported Format

In case the GDAL libraries are available, it is possible to access to several GDAL’s supported data formats.
Actually, the available GDAL plugins allow to support DTED, EHdr, ERDASImg, MrSID, JPEG 2000 (via MrSID Driver) and NITF data formats.
Moreover, in case a valid license have been purchased and the proper native library is available, also ECW, JPEG 2000 (via ECW) and JPEG 2000 (via Kakadu) are supported.
This section provides instructions to add and publish MrSID, ECW and JPEG 2000 datasets.

Warning

This assumes the GeoServer image GDAL plug-in is already installed. The GDAL plugin is normally an extension.

If the store described in this section are not avaiable, install the ‘geoserver-2.2-SNAPSHOT-gdal-plugin’ from %TRAINING_ROOT%\data\plugins\. Just decompress the zip file into %TRAINING_ROOT%\webapps\geoserver\WEB-INF\lib\ and restart GeoServer.

MrSID Data Set

	Open the web browser and navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver].

	Select Add stores from the interface.

[image: ../../../../_images/geotiff_addstores.png]

	Select MrSID - MrSID Coverage Format from the set of available Raster Data Sources.

[image: ../../../../_images/gdal_sources.png]

	Specify a proper name (as an instance, c3008957_nes_20) in the Data Source Name field of the interface.

	Specify file:%TRAINING_ROOT%/data/user_data/c3008957_nes_20/c3008957_nes_20.sid as URL of the sample data in the Connections Parameter’s - URL field. (replace %TRAINING_ROOT% with your current training root directory)

[image: ../../../../_images/gdal_addraster.jpg]

	Click Save.

	Assign a proper layername (e.g c3008957_nes_20) then publish the layer by clicking on the publish link.

[image: ../../../../_images/gdal_publish.jpg]

	Click on Save when done.

At this point the MrSID data is being published with GeoServer.

	Click the Layer Preview link in the left GeoServer menu.

	Look for a geosolutions:c3008957_nes_20 layer and click the OpenLayers link beside of it.

[image: ../../../../_images/gdal_preview.jpg]

[image: ../../../../_images/gdal_openlayer.jpg]

ECW Data Set

Warning

Attention, you need a license in order to use ECW data sets. Here we are using a free distributed ECW file only for demonstration.

ECW (Enhanced Compression Wavelet) is a proprietary wavelet compression image format optimized for aerial and satellite imagery.

	Open the web browser and navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver].

	Select Add stores from the interface.

[image: ../../../../_images/geotiff_addstores.png]

	Select ECW - ECW Coverage Format from the set of available Raster Data Sources.

[image: ../../../../_images/ecw.png]

	Specify a proper name (as an instance, TerraColor_Sydney_AU_15m) in the Data Source Name field of the interface.

	Specify file:%TRAINING_ROOT%/data/user_data/tc_sydney_au_ecw/TerraColor_Sydney_AU_15m.ecw as URL of the sample data in the Connections Parameter’s - URL field (replace %TRAINING_ROOT% with your current training root directory).

[image: ../../../../_images/ecw0.png]

	Click Save.

	Assign a proper layername (e.g TerraColor_Sydney_AU_15m) then publish the layer by clicking on the publish link.

[image: ../../../../_images/ecw1.png]

At this point the ECW data is being published with GeoServer.

	Click the Layer Preview link in the left GeoServer menu.

	Look for a geosolutions:TerraColor_Sydney_AU_15m layer and click the OpenLayers link beside of it.

[image: ../../../../_images/ecw3.png]

[image: ../../../../_images/ecw4.png]

JP2K Data Set

JPEG 2000 is a image coding system that uses state-of-the-art compression techniques based on wavelet technology.

	Open the web browser and navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver].

	Select Add stores from the interface.

[image: ../../../../_images/geotiff_addstores.png]

	Select JP2ECW - JP2 (ECW) Coverage Format from the set of available Raster Data Sources.

Note

We used JP2ECW - JP2 (ECW) Coverage Format because JP2MrSID - JP2 (MrSID) Coverage Format is not fully stable, and may not work properly especially with several Linux distributions.

[image: ../../../../_images/jpeg2k0.png]

	Specify a proper name (as an instance, TerraColor_Sydney_AU_15m_JP2K) in the Data Source Name field of the interface.

	Specify file:%TRAINING_ROOT%/data/user_data/tc_sydney_au_jp2/TerraColor_Sydney_AU_15m.jp2 as URL of the sample data in the Connections Parameter’s - URL field. (replace %TRAINING_ROOT% with your current training root directory)

[image: ../../../../_images/jpeg2k1.png]

	Click Save.

	Assign a proper layername (e.g TerraColor_Sydney_AU_15m_JP2K) then publish the layer by clicking on the publish link.

[image: ../../../../_images/jpeg2k2.png]

[image: ../../../../_images/jpeg2k3.png]

At this point the JPEG 2000 data is being published with GeoServer.

	Click the Layer Preview link in the left GeoServer menu.

	Look for a geosolutions:TerraColor_Sydney_AU_15m_JP2K layer and click the OpenLayers link beside of it.

Pretty maps with GeoServer

This module describes how to manage the GeoServer maps visualization. Will be discussed all those aspects which relate styles, decorations, Layer Groups and other interesting GeoServer features affecting the WMS protocol.

In this module you will:

	Styling with SLD
	What you will learn

	Styling with CSS
	Creating line styles

	Creating point styles

	Creating polygon styles

	Styling raster data

	Creating a Base Map

	Filtering Maps

	Producing and Using palettes
	Options to enable paletted output

	An Example with Vector Data

	Generating the custom palette

	An example with raster data

	Decorating a Map

	Accessing Map information

	Cross layer filtering
	The querylayer module

	Finding all polygonal landmarks crossing a trail

	Finding all buildings located inside a park

	Finding all buildings close enough to the Boulder County Courthouse

Styling with SLD

This section introduces the concepts of the Styled Layer Descriptor (SLD) markup language. SLD is the styling engine used by GeoServer, and how all WMS portrayal is specified.

What you will learn

In this section you will:

	Adding a style

	Styling Vector data

	Styling Raster data

Adding a Style

The most important function of a web map server is the ability to style and render data. This section covers the task of adding a new style to GeoServer and configuring the default style for a particular layer.

	From the GeoServer Welcome Page [http://localhost:8083/geoserver] navigate to Style.

[image: ../../../../_images/style1.png]
Navigating to Style configuration

	Click New

[image: ../../../../_images/style2.png]
Adding a new style

	Enter “mainrd” in the Name field and notice the file upload dialogue SLD file.

[image: ../../../../_images/style3.png]
Specifying style name and populating from a file.

	Navigate to the workshop (on Linux) $TRAINING_ROOT/data/user_data/ directory (on Windows %TRAINING_ROOT%\data\user_data\), select the foss4g_mainrd.sld file, and click Upload.

Note

In GeoServer, styles are represented via SLD (Styled Layer Descriptor) documents. SLD is an XML format for specifying the symbolization of a layer. When an SLD document is uploaded the contents are shown in the text editor. The editor can be used to edit the contents of the SLD directly.

	Add the new style by clicking Submit. Once it’s save, you should see something like this:

[image: ../../../../_images/style4.png]
Submitting style

	After having created the style, it’s time to apply it to a vector layer. Click on the Layers link.

[image: ../../../../_images/style5.png]
Navigating to Layers

	Select the “Mainrd” on the Layers page.

[image: ../../../../_images/style6.png]
Selecting a layer

	Select the Publish tab.

[image: ../../../../_images/style7.png]
Publish tab

	Assign the new created style “mainrd” as the default style.

[image: ../../../../_images/style8.png]
Publish tab

Warning

Many new users mistake the Available Styles for the Default Style, please take into account that they are different, the default one allows that style to be used implicitly when no style is specified in a map request, while the available ones are just optional compatible styles.

Note

Geoserver 2.x assigns a default style depending on the geometry of the objects and the type, for example: line, poly, raster, point.

	Scroll to the bottom of the page and hit Save.

	Use the map preview to show how the style, please note you’ll have to zoom in once to show the data due to the map scale filters (MaxScaleDenominator directive in the SLD).

Styling Vector data

In previous modules the style for a layer was configured by uploading an existing SLD. In this section the task of creating a new SLD document from scratch will be covered.
In particular we are going to create some styles that can be applied to vectorial datasets, in the first case by drawing patterns and dash arrays to polygons and lines and in the second case drawing roads and labels to lines.

What you will learn

In this section you will:

	Adding a simple style

	Patterns and dash arrays

	Roads and labelling roads

	Style point data

	Styling in real world units

	Geometry Transformations

	Charting

Styling Raster data

In the previous section we have created and optimized some vector styles. In this section we will deal with a styled SRTM raster and we will see how to get a better visualization of that layer by adding hillshade.

	From the Welcome Page [http://localhost:8083/geoserver] navigate to Layer Preview and select the OpenLayers link for the geosolutions:srtm layer.

[image: ../../../../_images/raster_srtm.png]
SRTM rendering with DEM style

There is a DEM style associated to that SRTM dataset layer, resulting in such a colored rendering.

	Return to the GeoServer Welcome Page, select the Styles and click the dem style to see which color map is applied.

Note

You have to be logged in as Administrator in order to edit/check styles.

[image: ../../../../_images/raster_dem_style.png]
Style editing

Note the entries with opacity = 0.0 which allow to make no data values as transparent.

The current DEM style allows to get a pleasant rendering of the SRTM dataset but we can get better results by combining it with an hillshade layer which will be created through another GDAL utility (gdaldem).

Adding hillshade

	Open a shell and run:

* Linux

gdaldem hillshade -z 5 -s 111120 ${TRAINING_ROOT}/geoserver_data/data/boulder/srtm_boulder.tiff ${TRAINING_ROOT}/geoserver_data/data/boulder/srtm_boulder_hs.tiff -co tiled=yes

* Windows

gdaldem hillshade -z 5 -s 111120 %TRAINING_ROOT%\geoserver_data\data\boulder\srtm_boulder.tiff %TRAINING_ROOT%\geoserver_data\data\boulder\srtm_boulder_hs.tiff -co tiled=yes

Note

The z parameter exaggerates the elevation, the s parameter provides the ratio between the elevation units and the ground units (degrees in this case), -co tiled=yes makes gdaldem generate a TIFF with inner tiling. We’ll investigate this last option better in the following pages.

	From the Welcome Page [http://localhost:8083/geoserver] navigate to Styles and select Add a new style as previously seen in the Adding a style section.

	In the SLD Editor enter the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld" xmlns:sld="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml" version="1.0.0">
 <sld:UserLayer>
 <sld:LayerFeatureConstraints>
 <sld:FeatureTypeConstraint/>
 </sld:LayerFeatureConstraints>
 <sld:UserStyle>
 <sld:Title/>
 <sld:FeatureTypeStyle>
 <sld:Name>name</sld:Name>
 <sld:FeatureTypeName>Feature</sld:FeatureTypeName>
 <sld:Rule>
 <sld:MinScaleDenominator>75000</sld:MinScaleDenominator>
 <sld:RasterSymbolizer>
 <sld:Geometry>
 <ogc:PropertyName>grid</ogc:PropertyName>
 </sld:Geometry>
 <sld:ColorMap>
 <sld:ColorMapEntry color="#000000" opacity="0.0" quantity="0.0"/>
 <sld:ColorMapEntry color="#999999" opacity="0.7" quantity="1.0"/>
 <sld:ColorMapEntry color="#FFFFFF" opacity="0.7" quantity="256.0"/>
 </sld:ColorMap>
 </sld:RasterSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
</sld:StyledLayerDescriptor>

Note

Note the opacity values being less than 1, in order to made it partially transparent which will allows to do overlaying on other layers

	Set hillshade as name and then click the Submit button.

	Select Add stores from the GeoServer Welcome Page to add the previously created hillshade raster.

	Select GeoTIFF - Tagged Image File Format with Geographic information from the set of available Raster Data Sources.

	Specify hillshade as name in the Data Source Name field of the interface.

	Click on browse link in order to set the GeoTIFF location in the URL field.

Note

make sure to specify the srtm_boulder_hs.tiff previously created with gdaldem, which should be located at $TRAINING_ROOT/geoserver_data/data/boulder

	Click Save.

	Publish the layer by clicking on the publish link.

[image: ../../../../_images/raster_hillshade.png]
Publishing Raster Layer

	Set SRTM Hillshade as Title

	Switch to Publishing tab

[image: ../../../../_images/raster_hillshade_publishing.png]

	Make sure to set the default style to hillshade on the Publishing –> Default Style section.

[image: ../../../../_images/raster_hillshade_defaultstyle.png]
Editing Raster Publishing info

	Click Save to create the new layer.

	Use the Layer Preview to preview the new layer with the hillshade style.

[image: ../../../../_images/raster_hillshade_preview.png]
Previewing the new raster layer with the hillshade style applied

	Edit the Layer Preview URL in your browser by locating the layers parameter

[image: ../../../../_images/raster_overlay_url.png]

	Insert the geosolutions:srtm, additional layer (note the final comma) before the geosolutions:hillshade one, and in the styles parameter, add a comma before hillshade to make GeoServer use the default style for the srtm layer

[image: ../../../../_images/raster_overlay_2layers.png]

	Press Enter to send the updated request. The Layer Preview should change like this where you can see both the SRTM and hillshade layers.

[image: ../../../../_images/raster_overlay.png]
Layer preview with SRTM and hillshade being overlaid

Styling with CSS

The CSS extension module allows to build map styles using a compact, expressive styling language already well known to most web developers: Cascading Style Sheets.

The standard CSS language has been extended to allow for map filtering and managing all the details of a map production. In this section we’ll experience creating a few simple styles with the CSS language.

Creating line styles

	From the main menu bar select the CSS styles [http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.community.css.web.CssDemoPage] entry

	Click on the “Choose a different layer” link and switch to the Mainrd layer

	Click on the “Create a new style” link and input css_mainrd as the style name, then press the “Create” button

[image: ../../../../_images/css_mainrd.png]
Creating a new CSS style for the Mainrd layer

	Set the style contents to the following, press submit and switch to the map preview

* {
 stroke: orange;
 stroke-width: 6;
 stroke-linecap: round;
}

[image: ../../../../_images/css_mainrd_map1.png]

	Now let’s create a cased line effect by adding a second set of colours and widths, and forcing two different z indexes for them. Press submit, look at the map and at the generated SLD

* {
 stroke: orange, yellow;
 stroke-width: 6, 2;
 stroke-linecap: round;
 z-index: 1, 2;
}

[image: ../../../../_images/css_mainrd_map2.png]

	Finally, let’s add a label that follows the road

* {
 stroke: orange, yellow;
 stroke-width: 6, 2;
 stroke-linecap: round;
 z-index: 1, 2;
 label: [LABEL_NAME];
 font-fill: black;
 font-family: Arial;
 font-size: 12;
 font-weight: bold;
 halo-color: white;
 halo-radius: 2;
 -gt-label-follow-line: true;
 -gt-label-group: true;
 -gt-label-repeat: 400;
 -gt-label-max-displacement: 50;
}

[image: ../../../../_images/css_mainrd_map3.png]

Creating point styles

	Similarly to the previous section, switch the map to “bptlandmarks” and create a new style called “css_bptlandmarks”

	Insert the following in the CSS to get a basic point style, and press “Submit”:

* {
 mark: symbol('circle');
 mark-size: 5;
}

[image: ../../../../_images/css_point_map1.png]

	Let’s change the color of the points by specifying a fill. If we specified a fill in the top level rule it would be interpreted as a polygonal fill, to express that we want to fill inside the marks we have to create a new rule with the :mark pseudo-selector:

* {
 mark: symbol('circle');
 mark-size: 5;
}

:mark {
 fill: cyan;
 stroke: darkblue;
}

[image: ../../../../_images/css_point_map2.png]

	Finally, let’s override the default styling for all shopping centers. Shopping centers are not easy to find, they have a MTFCC category of C3081 and contain Shopping in the name

* {
 mark: symbol('circle');
 mark-size: 5;
}

:mark {
 fill: cyan;
 stroke: darkblue;
}

[MTFCC = 'C3081' AND FULLNAME LIKE '%Shopping%'] {
 mark: url("./img/landmarks/shop_supermarket.p.16.png");
 mark-size: ;
}

[image: ../../../../_images/css_point_map3.png]

Creating polygon styles

	For this exercise, change the current layer to “WorldCountries” and create a new style called “css_worldcountries”

	We want to create a simple 3 class thematic map based on the country population, stored in the POP_EST attribute

[POP_EST < 10000000] {
 fill: lightgrey;
}

[POP_EST >= 10000000 AND POP_EST < 50000000] {
 fill: olive;
}

[POP_EST > 50000000] {
 fill: salmon
}

[image: ../../../../_images/css_poly_map1.png]

	Let’s also add a very thin black border around all polygons, regardless of their population, using the * selector

[POP_EST < 10000000] {
 fill: lightgrey;
}

[POP_EST >= 10000000 AND POP_EST < 50000000] {
 fill: olive;
}

[POP_EST > 50000000] {
 fill: salmon
}

* {
 stroke: black;
 stroke-width: 0.2;
}

[image: ../../../../_images/css_poly_map2.png]

Styling raster data

	For this exercise we are going to switch to the “srtm” layer and create a new css_raster style

	In order to activate raster styling the raster-channels property needs to be specified, in this case with a value of auto to let the engine choose automatically the bands to use:

* {
 raster-channels: auto;
}

[image: ../../../../_images/css_ras_map1.png]

	The above map shows GeoServer automatically creating a grayscale map out of the elevation data, with automatic adaptation to the current contents of the map (the black areas you see once applied the map are “no data” areas, try to go into an area that does not have any)

	Now let’s apply a color map to get a nicer and consistent looking map instead

* {
 raster-channels: auto;
 raster-color-map:
 color-map-entry(black, 0, 0)
 color-map-entry(green, 1500)

 color-map-entry(yellow, 2000)
 color-map-entry(maroon, 3000)
 color-map-entry(white, 4000);
}

[image: ../../../../_images/css_ras_map2.png]

Creating a Base Map with a Layer Group

The best way to easily set-up a map with more than one layer for consumption is to create a Layer Group, that is what we are going to do in this section.

	Locate the Layer Group link and click it.

[image: ../../../../_images/group1.png]
Layer Group link

	Click the Add new layer group link.

[image: ../../../../_images/group2.png]
Add new layer group link

	Name it test.

[image: ../../../../_images/group3-1.png]

	Click the Add layer link:

[image: ../../../../_images/group3-2.png]
Add new layer

	Select the “Mainrd” layer in the popup window.

[image: ../../../../_images/group4.png]
Select a layer

	Add also “BoulderCityLimits” and “bplandmarks”, the final list should look like this:.

[image: ../../../../_images/group5.png]
List of layers for the group

Note

You can use the green arrows to adjust the ordering of the layers until it looks like the above figure.

	Click the generate bounds button to have GeoServer compute the group bounds from the layers inside of it:

	Scroll to the bottom of the page and then click Save.

	If all went well, you should see something like this:

[image: ../../../../_images/group7.png]
After a successful save.

Note

The autogenerated bounds may be too large and you may experience a bad feeling when previewing the map. You can optionally reduce the layer group bounds by inserting manually the bbox values. Good values are the following:
minx = 3.057.566,8646; maxx = 3.079.500,65246; miny = 1.241.929,35617; maxy = 1.257.467,5777

The layer group is now ready to be consumed:

	Navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/web/].

	Go to the Layer Preview link at the bottom of the left-hand menu.

[image: ../../../../_images/preview1.png]
Layer Preview

	Find the test layer group and click on the OpenLayers link. You will see a slippy map with all the configured layers of the Boulder district. You can control zoom by using the mouse wheel, pan by dragging, and zoom by window holding SHIFT pressed while dragging.

[image: ../../../../_images/preview3.png]
OpenLayers view

Note

Check the browser’s address bar for an interesting sample WMS request for the layer.

	As you might have noticed before, a larger, more realistic group has already been configured for you. It is named boulder. Have a look at its definition and add to this the Mainrd layer. Then using the green arrows move the layer at the following position (see the screenshot).

[image: ../../../../_images/preview3b.png]
A new layer inside the existing layer group.

	Then use the Map Preview to display it.

	Try clicking in the middle of the map. A couple of tables with more information about the vector features that have been clicked should appear at the bottom.

[image: ../../../../_images/preview4.png]
Feature info

	Try zooming in more and more. New layers should start to appear. This is scale dependent styling.

Now let’s see how desktop clients handle the layer group, and how we can change the way the see it.

	Go to the command line, enter the workshop directory, if you haven’t done that yet, run setenv.bat and then udig.bat

	Once both GeoServer and uDig are up, organize their Windows so that you can see GeoServer and uDig ones at the same time

	Now go to the GeoServer home page, where all the capabilities links are kept, take the WMS 1.1.1 one, and drag&drop it into uDig “Catalog” tab to import the WMS as a uDig data source:

[image: ../../../../_images/group8.png]

	Look at the layer tree. The boulder group is visible as a simple layer, and all the layers it contains are actually shown at the same level as the group.

[image: ../../../../_images/group9.png]

	Let’s change it so that the layer group internal structure is shown. Go back to the “boulder” layer group page, and change its “mode” to “Named tree”, then press the “Save” button

[image: ../../../../_images/group10.png]

	We need to make uDig aware of the change. Right click the root of the capabilities tree and choose the “Reset” command

[image: ../../../../_images/group11.png]

	Now most of the layers are contained inside the “boulder” group

[image: ../../../../_images/group12.png]

Filtering Maps

This section shows the GeoServer WMS filtering capabilities.

	Navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/web/].

	Go to the Layer Preview link at the bottom of the left-hand menu and show the geosolutions:WorldCountries layer with OpenLayers ‘Common Format’.

[image: ../../../../_images/filtering1.png]
Showing the GeoServer layer preview

[image: ../../../../_images/filtering2.png]
Show the layer with OpenLayers

	From the Filter combo box select ‘CQL’ and enter the following command in the text field:

POP_EST <= 5000000 AND POP_EST >100000

	Click ‘Apply Filter’ button on the right.

[image: ../../../../_images/filtering3.png]
Result of the CQL filter

The corresponding WMS request is:

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:WorldCountries&styles=&bbox=-180.0,-89.99889902136009,180.00000000000003,83.59960032829278&width=684&height=330&srs=EPSG:4326&format=image/png&CQL_FILTER=POP_EST%20%3C=%205000000%20AND%20POP_EST%20%3E100000

	Now enter the following command in the text field:

DISJOINT(the_geom, POLYGON((-90 40, -90 45, -60 45, -60 40, -90 40))) AND strToLowerCase(NAME) LIKE '%on%'

	Click ‘Apply Filter’ button on the right.

[image: ../../../../_images/filtering6.png]
Result of the CQL filter

The corresponding WMS request is:

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:WorldCountries&styles=&bbox=-180.0,-89.99889902136009,180.00000000000003,83.59960032829278&width=684&height=330&srs=EPSG:4326&format=image/png&CQL_FILTER=DISJOINT%28the_geom%2C%20POLYGON%28%28-90%2040%2C%20-90%2045%2C%20-60%2045%2C%20-60%2040%2C%20-90%2040%29%29%29%20AND%20strToLowerCase%28NAME%29%20LIKE%20%27%25on%25%27

	From the Filter combo box select ‘OGC’ and enter the following filter in the text field:

<Filter><PropertyIsEqualTo><PropertyName>TYPE</PropertyName><Literal>Sovereign country</Literal></PropertyIsEqualTo></Filter>

	Click ‘Apply Filter’ button on the right.

[image: ../../../../_images/filtering4.png]
Result of the OGC filter

The corresponding WMS request is

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:WorldCountries&styles=&bbox=-180.0,-89.99889902136009,180.00000000000003,83.59960032829278&width=684&height=330&srs=EPSG:4326&format=image/png&CQL_FILTER=TYPE%20%3D%20%27Sovereign%20country%27

	From the Filter combo box select ‘FeatureID’ and enter the following features ids in the text field separated by comma:

WorldCountries.227,WorldCountries.184,WorldCountries.33

	Click ‘Apply Filter’ button on the right.

[image: ../../../../_images/filtering5.png]
Result of the FeatureID filter

The corresponding WMS request is:

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:WorldCountries&styles=&bbox=-180.0,-89.99889902136009,180.00000000000003,83.59960032829278&width=684&height=330&srs=EPSG:4326&format=image/png&FEATUREID=WorldCountries.227,WorldCountries.184,WorldCountries.33

Producing and Using palettes

GeoServer has the ability to output high quality 256 color images. This tutorial introduces you to the palette concepts, the various image generation options, and offers a quality/resource comparison of them in different situations. In this section the task is to use the palettes.

Note

Some image formats, such as GIF or PNG, can use a palette, which is normally a table of 256 colors use get get better compression (trading it sometimes with a lower image quality). Basically, instead of representing each pixel with its full color triplet, which takes 24bits (plus eventual 8 more for transparency), they use a 8 bit index that represent the position inside the palette, and thus the color. This allows for images that are 3-4 times smaller than the standard images, with the limitation that only 256 different colors can appear on the image itself. Depending of the actual map, this may be a very stringent limitation, visibly degrading the image quality, or it may be that the output cannot be told from a full color image. For many common vector maps one can easily find 256 representative colors that are a good fit. In the latter case, the smaller footprint of paletted images is usually a gain in both performance and costs, because more data can be served with the same internet connection, and the clients will obtain responses faster.

Options to enable paletted output

The easiest way to get a paletted image output is to ask for a 256 color output format, such as:

	image/png8: PNG output, with a 256 color palette

	image/gif: standard GIF output

These output formats, if no other parameters are provided, do compute the optimal palette on the fly. This is an expensive process (CPU bound) but, depending on the speed of the network connecting the server and the client, the extra CPU cost can be offset by a lower data transfer time (especially on slow/busy networks).

Optimal palette computation is anyway a repetitive work that can be done up front: a user can compute the optimal palette once, and tell GeoServer to use it.
There are three ways to do so:

	Use the internet safe palette [http://www.intuitive.com/coolweb/colors.html], a standard palette built in into GeoServer, by appending palette=safe to the GetMap request.
Of course, to get good results, the styling will have to be made using the colors in that palette.

	Provide a palette by example. In this case, the user will generate an 256 color images using an external program (such as Photoshop), and then will save it into the $GEOSERVER_DATA_DIR/palettes directory. The sample file can be either in GIF or PNG format. If the file is named mypalette.gif or mypalette.png, the user will be able to refer it appending palette=mypalette to the GetMap request. GeoServer will load the palette from the file and use it.

	Provide a palette file. The process is just as before, but this time only the palette, in .PAL format, will be stored into the $GEOSERVER_DATA_DIR/palettes directory. The PAL file in in Microsoft Palette Format, and can be generated by programs such as Paint Shop Pro and IrfanView.

An Example with Vector Data

Enough theory, let’s have a look at how to deal with paletted images in practice. We’ll use the prato basemap to gather some numbers and we’ll change various parameters in order to play with formats and palettes. Here goes the sampler:

	The standard PNG full color output:

http://localhost:8083/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:blakes,geosolutions:bplandmarks,geosolutions:brivers,geosolutions:Mainrd&styles=&bbox=3056181.93510,1237476.92868,3080671.07513,1260141.38768&width=512&height=475&srs=EPSG:2876&format=image/png

[image: ../../../../_images/palette1.png]
The standard PNG output

Parameters:FORMAT=image/png | Size: 105.5 KB | Map generation time: 186 ms

	JPEG output:

http://localhost:8083/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:blakes,geosolutions:bplandmarks,geosolutions:brivers,geosolutions:Mainrd&styles=&bbox=3056181.93510,1237476.92868,3080671.07513,1260141.38768&width=512&height=475&srs=EPSG:2876&format=image/jpeg

[image: ../../../../_images/palette2.png]
JPEG output

Parameters:FORMAT=image/jpeg | Size: 43.2 KB | Map generation time: 100 ms

	The PNG8 output:

http://localhost:8083/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:blakes,geosolutions:bplandmarks,geosolutions:brivers,geosolutions:Mainrd&styles=&bbox=3056181.93510,1237476.92868,3080671.07513,1260141.38768&width=512&height=475&srs=EPSG:2876&format=image/png8

[image: ../../../../_images/palette3.png]
The PNG8 output

Parameters:FORMAT=image/png8 | Size: 48.0 KB | Map generation time: 190 ms

	PNG + internet safe palette:

http://localhost:8083/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:blakes,geosolutions:bplandmarks,geosolutions:brivers,geosolutions:Mainrd&styles=&bbox=3056181.93510,1237476.92868,3080671.07513,1260141.38768&width=512&height=475&srs=EPSG:2876&format=image/png&palette=safe

[image: ../../../../_images/palette4.png]
The PNG output + internet safe palette

Parameters:FORMAT=image/png&palette=safe | Size: 38.8 KB | Map generation time: 161 ms

	PNG + palette by example:

http://localhost:8083/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:blakes,geosolutions:bplandmarks,geosolutions:brivers,geosolutions:Mainrd&styles=&bbox=3056181.93510,1237476.92868,3080671.07513,1260141.38768&width=512&height=475&srs=EPSG:2876&format=image/png&palette=boulder

[image: ../../../../_images/palette5.png]
The PNG output palette by example

Parameters:FORMAT=image/png&palette=boulder | Size: 54.4 KB | Map generation time: 163 ms

Generating the custom palette

To generate a custom palette you can use IrfanView for example, on Windows. The steps are simple:

	Open the 24-bit PNG version of the image

	Use Image/Decrease Color Depth and set 256 colors

	Use Image/Palette/Export to save the palette

An example with raster data

To give you an example when paletted images may not fit the bill, let’s consider the geosolutions:13tde815295_200803_0x6000m_cl coverage from the sample data, and repeat the same operation as before.

	The standard PNG full color output:

http://localhost:8083/geoserver/geosolutions/wms?LAYERS=geosolutions%3A13tde815295_200803_0x6000m_cl&STYLES=&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A26913&BBOX=482574.82910157,4429949.7070313,482949.82910157,4430324.7070313&WIDTH=512&HEIGHT=512&FORMAT=image%2Fpng

[image: ../../../../_images/palette6.png]
The standard PNG output

Parameters:FORMAT=image/png | Size: 528.9 KB | Map generation time:90ms

	JPEG output:

http://localhost:8083/geoserver/geosolutions/wms?LAYERS=geosolutions%3A13tde815295_200803_0x6000m_cl&STYLES=&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A26913&BBOX=482574.82910157,4429949.7070313,482949.82910157,4430324.7070313&WIDTH=512&HEIGHT=512&FORMAT=image%2Fjpeg

[image: ../../../../_images/palette7.png]
JPEG output

Parameters:FORMAT=image/jpeg | Size: 39.5 KB | Map generation time: 35ms

	PNG8 output (the output using a “palette by example would be the same”):

http://localhost:8083/geoserver/geosolutions/wms?LAYERS=geosolutions%3A13tde815295_200803_0x6000m_cl&STYLES=&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A26913&BBOX=482574.82910157,4429949.7070313,482949.82910157,4430324.7070313&WIDTH=512&HEIGHT=512&FORMAT=image%2Fpng8

[image: ../../../../_images/palette8.png]
PNG8 output

Parameters:FORMAT=image/png8 | Size: 141.8 KB | Map generation time: 201ms

	PNG output + safe palette:

http://localhost:8083/geoserver/geosolutions/wms?LAYERS=geosolutions%3A13tde815295_200803_0x6000m_cl&STYLES=&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A26913&BBOX=482574.82910157,4429949.7070313,482949.82910157,4430324.7070313&WIDTH=512&HEIGHT=512&FORMAT=image%2Fpng&palette=safe

[image: ../../../../_images/palette9.png]
PNG + sape palette output

Parameters:FORMAT=image/png&palette=safe | Size: 96.8 KB | Map generation time: 235ms

Note

As the sampler shows, the JPEG output has the same quality as the full color image, is generated faster and uses only a fraction of its size. At the opposite, the version using the internet safe palette is fast and smaller than the full PNG, but the output is totally ruined. Everything considered, JPEG is the clear winner, sporting good quality, fast image generation and smaller size that. PNGs are the suggested imagery raster format only in case the output needs to be used as an overlay and thus requires transparent areas, or when the raster has large areas with uniform colors, which may happen for example in land use rasters.

Decorating a Map

WMS Decorations provide a framework for visually annotating images from WMS with absolute, rather than spatial, positioning. Examples of this decoration include scale lines, legends, and image.

	Go to $GEOSERVER_DATA_DIR and create a new directory named layouts and create a new file named boulder_ly.xml inside it.

	Inside the boulder_ly.xml file enter the following XML (replace ${GEOSERVER_DATA_DIR} with your actual path, e.g., file://C:/training/geoserver_data):

<layout>
 <decoration type="image" affinity="top,left" offset="45,8"
 size="174,60">
 <option name="url"
 value="${GEOSERVER_DATA_DIR}/geosolutions-logo-tx.png" />
 </decoration>

 <decoration type="text" affinity="bottom,right" offset="3,3">
 <option name="message" value="Boulder City" />
 <option name="font-size" value="14" />
 <option name="font-color" value="#FFFFFF" />
 <option name="halo-radius" value="1" />
 <option name="halo-color" value="#000000" />
 </decoration>

 <decoration type="scaleline" affinity="bottom,left" offset="3,3" />

 <decoration type="legend" affinity="top,right"
 offset="6,6" size="auto" />
</layout>

	Save and close the file.

	Go to the Layer Preview to preview the new map decoration on geosolutions:Mainrd layer. Once the layout boulder_ly.xml is defined, request it by adding format_options=layout:boulder_ly to the request parameters.

[image: ../../../../_images/decoration2.png]
Map decoration

The request:

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:Mainrd&styles=&bbox=3048474.661,1226045.092,3095249.0,1279080.5&width=451&height=512&srs=EPSG:2876&format=application/openlayers&format_options=layout:boulder_ly

Note

Zoom-in until the layer and legend appears since for this layer we have scale_denominator based rules. Also you can apply this format_layout to any layer, but be careful with the overalys since you will have all the legends printed out on the right-top side of the map.

Accessing Map information

This workshop section describes how to use the GeoServer template system to create custom HTML GetFeatureInfo responses. GetFeatureInfo is a WMS standard call that allows one to retrieve information about features and coverages displayed in a map.

The map can be composed of various layers, and GetFeatureInfo can be instructed to return multiple feature descriptions, which may be of different types. GetFeatureInfo can generate output in various formats: GML2, plain text and HTML.

Templating is concerned with the HTML one.

	Go to the Layer preview to show geosolutions:bplandmarks layer.

	Click for example on the Rocky Mountain Natl Park region in the OpenLayers map to show the FeatureInfo.

[image: ../../../../_images/info1.png]
Default GetFeatureInfo request

	In order to configure a custom template of the GetFeatureInfo results create three .ftl files in $GEOSERVER_DATA_DIR/workspaces/geosolutions directory named:

- header.ftl
- content.ftl
- footer.ftl

Note

The Template is managed using Freemarker [https://sourceforge.net/projects/freemarker/]. This is a simple yet powerful template engine that GeoServer uses whenever developers allowed user customization of textual outputs. In particular, at the time of writing it’s used to allow customization of GetFeatureInfo, GeoRSS and KML outputs.

Note

Splitting the template in three files allows the administrator to keep a consistent styling for the GetFeatureInfo result, but use different templates for different workspaces or different layers: this is done by providing a master header.ftl and footer.ftl file, but specify a different content.ftl for each layer.

	In header.ftl file enter the following HTML:

<#--
Header section of the GetFeatureInfo HTML output. Should have the <head> section, and
a starter of the <body>. It is advised that eventual CSS uses a special class for featureInfo,
since the generated HTML may blend with another page changing its aspect when using generic classes
like td, tr, and so on.
-->
<html>
 <head>
 <title>Geoserver GetFeatureInfo output</title>
 </head>
 <style type="text/css">
 table.featureInfo, table.featureInfo td, table.featureInfo th {
 border:1px solid #ddd;
 border-collapse:collapse;
 margin:0;
 padding:0;
 font-size: 90%;
 padding:.2em .1em;
 }

 table.featureInfo th{
 padding:.2em .2em;
 text-transform:uppercase;
 font-weight:bold;
 background:#eee;
 }

 table.featureInfo td{
 background:#fff;
 }

 table.featureInfo tr.odd td{
 background:#eee;
 }

 table.featureInfo caption{
 text-align:left;
 font-size:100%;
 font-weight:bold;
 text-transform:uppercase;
 padding:.2em .2em;
 }
 </style>
 <body>

	In content.ftl file enter the following HTML:

<#list features as feature>
 Type: ${type.name} (id: ${feature.fid}):

 <#list feature.attributes as attribute>
 <#if !attribute.isGeometry>
 ${attribute.name}: ${attribute.value}
 </#if>
 </#list>

</#list>

	In footer.ftl file enter the following HTML:

<#--
Footer section of the GetFeatureInfo HTML output. Should close the body and the html tag.
-->
 </body>
</html>

	Go to the Map Preview to show geosolutions:bplandmarks layer.

	Click on the Rocky Mountain Natl Park region in the OpenLayers map to show the new FeatureInfo representation.

[image: ../../../../_images/info2.png]
Custom GetFeatureInfo template

Cross layer filtering with GeoServer

Normal GeoServer operation allows a filter to be applied on each layer in isolation, based on
its attribute and external information (geometry, values) provided by the user.
Cross layer filtering is instead the ability to select features from one layer that bear some
relationship with features coming from another layer.
Common questions that cross layer filters can help answering are:

	find all the ice cream stores located in a public park (point vs polygon)

	find all bus stops within 100m from the National Bank subsidiaries (point vs point, with distance reference)

	find all coastal roads (line VS polygon, assuming we have a set of polygons representing the water areas)

In order to solve these questions with a vanilla GeoServer a client would have to first
use WFS to gather all the geometries satisfying the base conditions (e.g., find the National Bank Subsidiaries),
load and unite them, and then issue a second request to the server in order to get the data from the
other layer (e.g., the bus stops within 100m from the previously loaded points).

[image: ../../../../_images/before_crosslayer.png]
Round trips without cross layer filtering

The querylayer module

The querylayer extension, already installed in the workshop GeoServer instance, provides three new filter
functions that can be used to avoid the client/server extra round trips, and have the server handle the
secondary geometries collection instead.

	Name

	Arguments

	Description

	querySingle

	layer: String, attribute:String, filter:String

	Queries the specified layer``applying the specified (E)CQL ``filter and returns the value of attribute from the first feature in the result set. The layer name should be qualified (e.g. topp:states), the filter can be INCLUDE if no filtering is desired

	queryCollection

	layer: String, attribute:String, filter:String

	Queries the specified layer``applying the specified (E)CQL ``filter and returns the list of the values from attribute out of every single feature in the result set. The layer name should be qualified (e.g. topp:states), the filter can be INCLUDE if no filtering is desired. Will throw an exception if too many results are being collected (see the memory limits section for details)

	collectGeometries

	geometries: a list of Geometry objects

	Turns the list of geometries into a single Geometry object, suitable for being used as the reference geometry in spatial filters. Will throw an exception if too many coordinates are being collected (the results of queryCollection cannot be used as is)

These filter functions can be used directly in CQL filters, OGC filters and SLD, meaning they are available
both from WMS and WFS.

Finding all polygonal landmarks crossing a trail

The following map [http://localhost:8083/geoserver/geosolutions/wms/reflect?layers=geosolutions:bplandmarks,Trails&format=application/openlayers&width=512&height=512&BBOX=-105.31,39.97,-105.26,40.2] , obtained using the WMS reflector to keep the URL short, shows all polygonal landmarks and trails in Boulder (trails are visible when zooming-in due to scale dependencies):

http://localhost:8083/geoserver/geosolutions/wms/reflect?layers=geosolutions:bplandmarks,Trails&format=application/openlayers&width=512&height=512&BBOX=-105.31,39.97,-105.26,40.2

[image: ../../../../_images/landmark_trails.png]
Polygonal landmarks and trails in Boulder

Now, let’s assume we want to find all polygonal landmarks crossing any trail using the above filter functions.
The first step would be to locate all the trails and extract their geometry attribute (the_geom):

queryCollection('Trails', 'the_geom', 'INCLUDE')

The above builds a list of geometries that we want to turn into a single MULTILINESTRING, in order to use it as a reference for a INTERSECTS filter. So we’ll call collectGeometries:

collectGeometries(queryCollection('Trails', 'the_geom', 'INCLUDE'))

Now that we have all the trails in a single geometry object we can use it to build a intersection filter with the polygonal landmarks:

INTERSECTS(the_geom, collectGeometries(queryCollection('Trails', 'the_geom', 'INCLUDE')))

Since the map contains two layers and we only want to filter on the first, the final CQL filter used in the GetMap request will be:

INTERSECTS(the_geom, collectGeometries(queryCollection('Trails', 'the_geom', 'INCLUDE')));INCLUDE

The result is that only two polygonal landmarks, the Boulder Mountain Park, and the smaller Buckingham Park, cross any trail:

[image: ../../../../_images/landmark_crossing_trails.png]
Polygonal landmarks intersecting trails in Boulder

Finding all buildings located inside a park

In this case we’ll start with this map [http://localhost:8083/geoserver/geosolutions/wms/reflect?layers=geosolutions:bplandmarks,bbuildings&format=application/openlayers&width=512&height=512&&BBOX=-105.29,40.01,-105.28,40.02]:

http://localhost:8083/geoserver/geosolutions/wms/reflect?layers=geosolutions:bplandmarks,bbuildings&format=application/openlayers&width=512&height=512&&BBOX=-105.29,40.01,-105.28,40.02

[image: ../../../../_images/buildings_parks.png]
Buildings and parks in Boulder

The filter construction is similar to the previous case, but this time we need to collect geometries only from parks, which have a MTFCC attribute equals to K2180:

INCLUDE;INTERSECTS(the_geom, collectGeometries(queryCollection('bplandmarks', 'the_geom', 'MTFCC = ''K2180''')))

[image: ../../../../_images/buildings_inside_park.png]
Buildings inside parks in Boulder

Finding all buildings close enough to the Boulder County Courthouse

In this case we want to find all the buildings close to the Boulder County Courthouse.
The reference map [http://localhost:8083/geoserver/geosolutions/wms/reflect?layers=geosolutions:bptlandmarks,bbuildings&format=application/openlayers&width=512&height=512&&BBOX=-105.28061758059,40.016146865234,-105.27475307863,40.021151240234] this time is:

http://localhost:8083/geoserver/geosolutions/wms/reflect?layers=geosolutions:bptlandmarks,bbuildings&format=application/openlayers&width=512&height=512&&BBOX=-105.28061758059,40.016146865234,-105.27475307863,40.021151240234

[image: ../../../../_images/court_buildings.png]
Boulder County Courthouse surrounded by buildings

This will extract a single geometry that we’ll use as a reference, so this time we are going to use the querySingle function instead, and use the DWITHIN function to locate all buildings within 400 feet from the courthouse:

INCLUDE;DWITHIN(the_geom, querySingle('bptlandmarks', 'the_geom', 'FULLNAME = ''Boulder County Courthouse'''), 400, feet)

the resulting map is going to be:

[image: ../../../../_images/court_close_buildings.png]
Buildings close to the Boulder County Courthouse

Advanced Raster Data Management

	Introduction To Processing With GDAL Utilities
	gdalinfo

	gdal_translate

	gdaladdo

	Process in bulk

	gdalwarp

	Advanced Mosaics and Pyramids Configuration
	Configuring an Image Mosaic

	Configuring an Image Pyramid

	Using ImageMosaic with Footprint
	Introduction

	Configuration

	Examples

	Advanced Processing With GDAL Utilities
	Example n° 1: Serving a large number of GrayScale GeoTiff with Palette

	Example n° 2: Serving a large number of DTM ASCII Grid Files

	Example n° 3: Serving a large number of Cartographic Black/White GeoTiff with Palette

Introduction To Processing With GDAL Utilities

In the Adding a GeoTiff section, a GeoTIFF file has been added to GeoServer as is. However, it’s common practice to do a preliminary analysis on the available data and, if needed, optimize it since configuring big datasets without proper pre-processing, may result in low performance when accessing them.
In this section, instructions about how to do data optimization will be provided by introducing some FWTools Utilities.

Note

On a Windows machine you can set-up a shell with all GDAL Utilities opening a terminal and running the file setenv.bat under the %TRAINING_ROOT% folder. This operation must repeated whenever a new terminal window is open. Alternatively run directly the file gdal.bat under the %TRAINING_ROOT% folder.

gdalinfo

This utility allows to get several info from the GDAL library, for instance, specific Driver capabilities and input Datasets/Files properties.

gdalinfo - Getting Drivers Capabilities

Being GeoTIFF a widely adopted geospatial format, it’s useful to get information about the GDAL GeoTIFF’s Driver capabilities using the command:

gdalinfo --format GTIFF

This is only a trimmed down version of a typical output:

Format Details:
 Short Name: GTiff
 Long Name: GeoTIFF
 Extension: tif
 Mime Type: image/tiff
 Help Topic: frmt_gtiff.html
 Supports: Create() - Create writeable dataset.
 Supports: CreateCopy() - Create dataset by copying another.
 Supports: Virtual IO - eg. /vsimem/
 Creation Datatypes: Byte UInt16 Int16 UInt32 Int32 Float32 Float64 CInt16 CInt32 CFloat32 CFloat64
 <CreationOptionList>
 <Option name="COMPRESS" type="string-select">
 <Value>NONE</Value>
 <Value>LZW</Value>
 <Value>PACKBITS</Value>
 <Value>JPEG</Value>
 <Value>CCITTRLE</Value>
 <Value>CCITTFAX3</Value>
 <Value>CCITTFAX4</Value>
 <Value>DEFLATE</Value>
 </Option>
 <Option name="PREDICTOR" type="int" description="Predictor Type" />
 <Option name="JPEG_QUALITY" type="int" description="JPEG quality 1-100" default="75"/>
 <Option name="ZLEVEL" type="int" description="DEFLATE compression level 1-9" default="6" />
 <Option name="LZMA_PRESET" type="int" description="LZMA compression level 0(fast)-9(slow)" default="6" />
 <Option name="NBITS" type="int" description="BITS for sub-byte files (1-7), sub-uint16 (9-15), sub-uint32 (17-31)" />
 <Option name="INTERLEAVE" type="string-select" default="PIXEL">
 <Value>BAND</Value>
 <Value>PIXEL</Value>
 </Option>
 <Option name="TILED" type="boolean" description="Switch to tiled format"/>
 <Option name="TFW" type="boolean" description="Write out world file"/>
 <Option name="RPB" type="boolean" description="Write out .RPB (RPC) file" />
 <Option name="BLOCKXSIZE" type="int" description="Tile Width"/>
 <Option name="BLOCKYSIZE" type="int" description="Tile/Strip Height"/>
 <Option name="PHOTOMETRIC" type="string-select">
 <Value>MINISBLACK</Value>
 <Value>MINISWHITE</Value>
 <Value>PALETTE</Value>
 <Value>RGB</Value>
 <Value>CMYK</Value>
 <Value>YCBCR</Value>
 <Value>CIELAB</Value>
 <Value>ICCLAB</Value>
 <Value>ITULAB</Value>
 </Option>
 <Option name="SPARSE_OK" type="boolean" description="Can newly created files have missing blocks?" default="FALSE" />
 <Option name="ALPHA" type="boolean" description="Mark first extrasample as being alpha" />
 <Option name="PROFILE" type="string-select" default="GDALGeoTIFF">
 <Value>GDALGeoTIFF</Value>
 <Value>GeoTIFF</Value>
 <Value>BASELINE</Value>
 </Option>
 <Option name="PIXELTYPE" type="string-select">
 <Value>DEFAULT</Value>
 <Value>SIGNEDBYTE</Value>
 </Option>
 <Option name="BIGTIFF" type="string-select" description="Force creation of BigTIFF file">
 <Value>YES</Value>
 <Value>NO</Value>
 <Value>IF_NEEDED</Value>
 <Value>IF_SAFER</Value>
 </Option>
 <Option name="ENDIANNESS" type="string-select" default="NATIVE" description="Force endianness of created file. For DEBUG purpose mostly">
 <Value>NATIVE</Value>
 <Value>INVERTED</Value>
 <Value>LITTLE</Value>
 <Value>BIG</Value>
 </Option>
 <Option name="COPY_SRC_OVERVIEWS" type="boolean" default="NO" description="Force copy of overviews of source dataset (CreateCopy())" />
 </CreationOptionList>

	From the above list of create options it’s possible to determine the main GeoTIFF Driver’s writing capabilities:

	
	COMPRESS: customize the compression to be used when writing output data

	JPEG_QUALITY: specify a quality factor to be used by the JPEG compression

	TILED: When set to YES it allows to tile output data

	BLOCKXSIZE, BLOCKYZISE: Specify the Tile dimension width and Tile dimension height

	PHOTOMETRIC: Specify the photometric interpretation of the data

	PROFILE: Specify the GeoTIFF profile to be used (some profiles only support a minimal set of TIFF Tags while some others provide a wider range of Tags)

	BIGTIFF: Specify when to write data as BigTIFF (A TIFF format which allows to break the 4GB Offset boundary)

gdalinfo - Getting Dataset/File Properties

The following instructions allow you to get information about the sample dataset previously configured in GeoServer.

	Run:

* Linux::

 cd ${TRAINING_ROOT}/data/user_data/aerial

 gdalinfo 13tde815295_200803_0x6000m_cl.tif

* Windows::

 setenv.bat

 cd %TRAINING_ROOT%\data\user_data\aerial\

 gdalinfo 13tde815295_200803_0x6000m_cl.tif

[image: ../../../../_images/fw_basegdalinfo.png]
Part of the gdalinfo output on a sample dataset

	Check the Block info as well as the Overviews info if present.

	Block: It represents the internal tiling. Notice that the sample dataset has tiles made of 16 rows having width equals to the full image width.

	Overviews: It provides information about the underlying overviews. Notice that the sample dataset doesn’t have overviews since the Overviews property is totally missing from the gdalinfo output.

gdal_translate

This utility allows to convert a dataset to a different format by allowing a wide set of parameters to customize the conversion.

Running the command:

gdal_translate

allows to get the list of supported parameters as well as the supported output formats:

Usage: gdal_translate [--help-general]
 [-ot {Byte/Int16/UInt16/UInt32/Int32/Float32/Float64/
 CInt16/CInt32/CFloat32/CFloat64}] [-strict]
 [-of format] [-b band] [-mask band] [-expand {gray|rgb|rgba}]
 [-outsize xsize[%] ysize[%]]
 [- unscale] [-scale [src_min src_max [dst_min dst_max]]]
 [-srcwin xoff yoff xsize ysize] [-projwin ulx uly lrx lry]
 [-a_srs srs_def] [-a_ullr ulx uly lrx lry] [-a_nodata value]
 [-gcp pixel line easting northing [elevation]]*
 [-mo "META-TAG=VALUE"]* [-q] [-sds]
 [-co "NAME=VALUE"]* [-stats]
 src_dataset dst_dataset

	Where the meaning of the main parameters is summarized below:

	
	-ot: allows to specify the output datatype (Make sure that the specified datatype is contained in the Creation Datatypes list of the Writing driver)

	-of: specify the desired output format (GTIFF is the default value)

	-b: allows to specify an input band to be written in the output file. (Use multiple -b option to specify more bands)

	-mask: allows to specify an input band to be write an output dataset mask band.

	-expand: allows to expose a dataset with 1 band with a color table as a dataset with 3 (rgb) or 4 (rgba) bands. The (gray) value allows to expand a dataset with a color table containing only gray levels to a gray indexed dataset.

	-outsize: allows to set the size of the output file in terms of pixels and lines unless the % sign is attached in which case it’s as a fraction of the input image size.

	-unscale: allows to apply the scale/offset metadata for the bands to convert from scaled values to unscaled ones.

	-scale: allows to rescale the input pixels values from the range src_min to src_max to the range dst_min to dst_max. (If omitted the output range is 0 to 255. If omitted the input range is automatically computed from the source data).

	-srcwin: allows to select a subwindow from the source image in terms of xoffset, yoffset, width and height

	-projwin: allows to select a subwindow from the source image by specifying the corners given in georeferenced coordinates.

	-a_srs: allows to override the projection for the output file. The srs_def may be any of the usual GDAL/OGR forms, complete WKT, PROJ.4, EPSG:n or a file containing the WKT.

	-a_ullr: allows to assign/override the georeferenced bounds of the output file.

	-a_nodata: allows to assign a specified nodata value to output bands.

	-co: allows to set a creation option in the form “NAME=VALUE” to the output format driver. (Multiple -co options may be listed.)

	-stats: allows to get statistics (min, max, mean, stdDev) for each band

	src_dataset: is the source dataset name. It can be either file name, URL of data source or subdataset name for multi*-dataset files.

	dst_dataset: is the destination file name.

gdal_translate - Tiling the sample dataset

The following steps provide instructions to tile the sample dataset previously configured in GeoServer, by using the GeoTIFF driver.

	Create a directory to store the converted data:

	Linux:

cd ${TRAINING_ROOT}/data/user_data

mkdir retiled

	Windows:

cd %TRAINING_ROOT%\data\user_data

mkdir retiled

	Convert the input sample data to an output file having tiling set to 512x512. Run:

	Linux:

gdal_translate -co "TILED=YES" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" aerial/13tde815295_200803_0x6000m_cl.tif retiled/13tde815295_200803_0x6000m_cl.tif

	Windows:

gdal_translate -co "TILED=YES" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" aerial\13tde815295_200803_0x6000m_cl.tif retiled\13tde815295_200803_0x6000m_cl.tif

	Optionally, check that the output dataset have been successfully tiled, by running the command:

	Linux:

gdalinfo retiled/13tde815295_200803_0x6000m_cl.tif

	Windows:

gdalinfo retiled\13tde815295_200803_0x6000m_cl.tif

[image: ../../../../_images/fw_tiledgdalinfo.png]
Part of the gdalinfo output on the tiled dataset. Notice the Block value now is 512x512

gdaladdo

This utility allows to add overviews to a dataset. The following steps provide instructions to add overviews to the tiled sample dataset.

Running the command:

gdaladdo

allows to get the list of supported parameters:

Usage: gdaladdo [-r {nearest,average,gauss,average_mp,average_magphase,mode}]
 [-ro] [--help-general] filename levels

	Where the meaning of the main parameters is summarized below:

	
	-r: allows to specify the resampling algorithm (Nearest is the default value)

	-ro: allows to open the dataset in read-only mode, in order to generate external overview (for GeoTIFF especially)

	filename: represents the file to build overviews for.

	levels: allows to specify a list of overview levels to build.

gdaladdo - Adding overviews to the sample dataset

	Run:

	Linux:

cd ${TRAINING_ROOT}/data/user_data/retiled

gdaladdo -r average 13tde815295_200803_0x6000m_cl.tif 2 4 8 16 32

	Windows:

cd %TRAINING_ROOT%\data\user_data\retiled

gdaladdo -r average 13tde815295_200803_0x6000m_cl.tif 2 4 8 16 32

to add 5 levels of overviews having 2,4,8,16,32 subsampling factors applied to the original image resolution respectively.

	Optionally, check that the overviews have been added to the dataset, by running the command:

gdalinfo 13tde815295_200803_0x6000m_cl.tif

[image: ../../../../_images/fw_tiledovgdalinfo.png]
Part of the gdalinfo output on the tiled dataset with overviews. Notice the Overviews properties

Process in bulk

Instead of manually repeating these 2 steps (retile + add overviews) for each file, we can invoke a few commands to get it automated.

	Run:

	Linux:

cd ${TRAINING_ROOT}/data/user_data

mkdir optimized

cd aerial

for i in `find *.tif`; do gdal_translate -CO "TILED=YES" -CO "BLOCKXSIZE=512" -CO "BLOCKYSIZE=512" $i ../optimized/$i; gdaladdo -r average ../optimized/$i 2 4 8 16 32; done

	Windows:

cd %TRAINING_ROOT%\data\user_data\

mkdir optimized

cd aerial

 notepad optimize.bat

will open a text editor. Copy the following content:

for %%F in (*.tif) do (
 echo Processing file %%F

 REM translate
 echo Performing gdal_translate on file %%F to file %%~nF.tiff
 gdal_translate -co "TILED=YES" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -co "COMPRESS=DEFLATE" %%F ..\optimized\%%~nF.tiff

 REM add overviews
 echo Adding overviews on file %%~nF.tiff
 gdaladdo -r average --config COMPRESS_OVERVIEW DEFLATE ..\optimized\%%~nF.tiff 2 4 8 16 32

)

Then save the file and run the created .bat file:

optimize.bat

	You should see a list of run like this:

...
Input file size is 2500, 2500
0...10...20...30...40...50...60...70...80...90...100 - done.
0...10...20...30...40...50...60...70...80...90...100 - done.
Input file size is 2500, 2500
0...10...20...30...40...50...60...70...80...90...100 - done.
0...10...20...30...40...50...60...70...80...90...100 - done.
Input file size is 2500, 2500
0...10...20...30...40...50...60...70...80...90...100 - done.
0...10...20...30...40...50...60...70...80...90...100 - done.
...

Warning

This process can take some seconds.

At this point optimized datasets have been prepared and they are ready to be served by GeoServer as an ImageMosaic.

gdalwarp

This utility allows to warp and reproject a dataset. The following steps provide instructions to reproject the aerial dataset (which has “EPSG:26913” coordinate reference system) to WGS84 (“EPSG:4326”).

Running the command:

gdalwarp

allows to get the list of supported parameters:

Usage: gdalwarp [--help-general] [--formats]
 [-s_srs srs_def] [-t_srs srs_def] [-to "NAME=VALUE"]
 [-order n | -tps | -rpc | -geoloc] [-et err_threshold]
 [-refine_gcps tolerance [minimum_gcps]]
 [-te xmin ymin xmax ymax] [-tr xres yres] [-tap] [-ts width height]
 [-wo "NAME=VALUE"] [-ot Byte/Int16/...] [-wt Byte/Int16]
 [-srcnodata "value [value...]"] [-dstnodata "value [value...]"] -dstalpha
 [-r resampling_method] [-wm memory_in_mb] [-multi] [-q]
 [-cutline datasource] [-cl layer] [-cwhere expression]
 [-csql statement] [-cblend dist_in_pixels] [-crop_to_cutline]
 [-of format] [-co "NAME=VALUE"]* [-overwrite]
 srcfile* dstfile

	Where the meaning of the main parameters is summarized below:

	
	-s_srs: allows to specify the source coordinate reference system

	-t_srs: allows to specify the target coordinate reference system

	-te: allows to set georeferenced extents (expressed in target CRS) of the output

	-tr: allows to specify the output resolution (expressed in target georeferenced units)

	-ts: allows to specify the output size in pixel and lines.

	-r: allows to specify the resampling method (one of near, bilinear, cubic, cubicspline and lanczos)

	-srcnodata: allows to specify band values to be excluded from interpolation.

	-dstnodata: allows to specify nodata values on output file.

	-wm: allows to specify the amount of memory (expressed in megabytes) used by the warping API for caching.

gdalwarp - Reprojecting sample dataset to WGS84

	Run:

	Linux:

cd ${TRAINING_ROOT}/data/user_data/retiled

gdalwarp -t_srs "EPSG:4326" -co "TILED=YES" 13tde815295_200803_0x6000m_cl.tif 13tde815295_200803_0x6000m_cl_warped.tif

	Windows:

cd %TRAINING_ROOT%/data/user_data/retiled

gdalwarp -t_srs "EPSG:4326" -co "TILED=YES" 13tde815295_200803_0x6000m_cl.tif 13tde815295_200803_0x6000m_cl_warped.tif

to reproject the specified aerial dataset to WGS84 coordinate reference system.

	Optionally, check that reprojection has been successfull, by running the command:

gdalinfo 13tde815295_200803_0x6000m_cl_warped.tif

[image: ../../../../_images/fw_warpedgdalinfo.png]
Part of the gdalinfo output on the warped dataset. Notice the updated Coordinate System property

In the next section, instructions to configure an ImageMosaic will be provided.

Advanced Mosaics and Pyramids Configuration

In this section will learn how to manage Image Mosaics and Image Pyramids in GeoServer.

Configuring an Image Mosaic

As introduced in a previous section an Image Mosaic is composed of a set of datasets which are exposed as a single coverage. The ImageMosaic format allows to automatically build and setup a mosaic from a set of georeferenced datasets.
This section provides better instructions to configure an Image Mosaic

Note

Before you start, ensure that the Maps - Raster section has been completed.

We will configure an ImageMosaic using the optimized dataset. As explained in the Maps - Raster section, follow the steps 1 to 4, then at the step 5 fill the fields as explained below.

	Specify a proper name (as an instance, boulder_bg_optimized) in the Data Source Name field of the interface.

	Specify file:<TRAINING_ROOT>/data/user_data/optimized as URL of the sample data in the Connections Parameter’s - URL field.

[image: ../../../../_images/mosaic_addraster.jpg]

	Click Save.

	Publish the layer by clicking on the publish link.

[image: ../../../../_images/mosaic_publish.jpg]

	Set boulder_bg_optimized as name and title of the layer.

[image: ../../../../_images/mosaic_setname.jpg]

	Check the Coordinate Reference Systems and the Bounding Boxes fields are properly set.

	Customize the ImageMosaic properties if needed. For the sample mosaic, set the OutputTransparentColor to the value 000000 (Which is the Black color). Click on Save when done.

[image: ../../../../_images/raster51.png]

	AllowMultithreading: If true, enable tiles multithreading loading. This allows to perform parallelized loading of the granules that compose the mosaic.

	BackgroundValues: Set the value of the mosaic background. Depending on the nature of the mosaic it is wise to set a value for the no data area (usually -9999). This value is repeated on all the mosaic bands.

	Filter: Filter granules based on attributes from the input coverage.

	InputTransparentColor: Set the transparent color for the granules prior to mosaicking them in order to control the superimposition process between them. When GeoServer composes the granules to satisfy the user request, some of them can overlap some others, therefore, setting this parameter with the opportune color avoids the overlap of no data areas between granules.

	MaxAllowedTiles: Set the maximum number of the tiles that can be load simultaneously for a request. In case of a large mosaic this parameter should be opportunely set to not saturating the server with too many granules loaded at the same time.

	MergeBehavior: Merging behaviour for the various granules of the mosaic that GeoServer will produce. This parameter controls whether we want to merge in a single mosaic or stack all the bands into the final mosaic.

	OutputTransparentColor: Set the transparent color for the created mosaic.

	SORTING: Allow to specify the time order of the obtained granules set. Valid values are DESC (descending) or ASC (ascending). Note that it works just using DBMS as indexes.

	SUGGESTED_TILE_SIZE: Controls the tile size of the input granules as well as the tile size of the output mosaic. It consists of two positive integers separated by a comma, like 512,512.

	USE_JAI_IMAGEREAD: If true, GeoServer will make use of JAI ImageRead operation and its deferred loading mechanism to load granules; if false, GeoServer will perform direct ImageIO read calls which will result in immediate loading.

At this point the ImageMosaic is being published with GeoServer. Next step is checking how the performances in accessing the datasets have been improved.

	Click the Layer Preview link in the left GeoServer menu.

	Look for a geosolutions:boulder_bg layer (the dataset without optimization) and click the OpenLayers link beside of it.

[image: ../../../../_images/mosaic_pratopreview.jpg]

	Play with the map preview by zooming and panning. When zooming, the response time isn’t immediate due to the access to the underlying big datasets which haven’t been optimized.

	Return to the Layer Preview page.

	Look for a geosolutions:boulder_bg_optimized layer (the optimized dataset with tiling and overviews set) and click the OpenLayers link beside of it.

[image: ../../../../_images/mosaic_retiledpreview.jpg]

	Play with the map preview by zooming and panning:

	Check how the performances have been improved leveraging on both overviews and tiling.

	Note the better image quality of the lowest resolution views, having used an average interpolation algorithm when creating the overviews.

Configuring an Image Pyramid

GeoServer can efficiently deal with large TIFF with overviews, as long as the TIFF is below the 2GB size limit. Once the image size goes beyond such limit it’s time to start considering an image pyramid instead. An image pyramid builds multiple mosaics of images, each one at a different zoom level, making it so that each tile is stored in a separate file. This comes with a composition overhead to bring back the tiles into a single image, but can speed up image handling as each overview is tiled, and thus a sub-set of it can be accessed efficiently (as opposed to a single GeoTIFF, where the base level can be tiled, but the overviews never are).

Note

In order to build the pyramid we’ll use the gdal_retile.py [http://www.gdal.org/gdal_retile.html] utility, part of the GDAL command line utilities and available for various operating systems.

	Navigate to the workshop directory and create the bmpyramid directory into the <TRAINING_ROOT>\data\user_data directory

	From the command line run

	Linux:

cd $TRAINING_ROOT/data/user_data
mkdir bmpyramid
gdal_retile.py -v -r bilinear -levels 4 -ps 2048 2048 -co "TILED=YES" -co "COMPRESS=JPEG" -targetDir bmpyramid bmreduced.tiff

	Windows:

cd %TRAINING_ROOT%
cd %TRAINING_ROOT%\data\user_data\
mkdir bmpyramid
gdal_retile -v -r bilinear -levels 4 -ps 2048 2048 -co "TILED=YES" -co "COMPRESS=JPEG" -targetDir bmpyramid bmreduced.tiff

The gdal_retile.py [http://www.gdal.org/gdal_retile.html] user guide provides a detailed explanation for all the possible parameters, here is a description of the ones used in the command line above:

	-v: verbose output, allows the user to see each file creation scroll by, thus knowing progress is being made (a big pyramid construction can take hours)

	-r bilinear: use bilinear interpolation when building the lower resolution levels. This is key to get good image quality without asking GeoServer to perform expensive interpolations in memory

	-levels 4: the number of levels in the pyramid

	-ps 2048 2048: each tile in the pyramid will be a 2048x2048 GeoTIFF

	-co “TILED=YES”: each GeoTIFF tile in the pyramid will be inner tiled

	-co “COMPRESS=JPEG”: each GeoTIFF tile in the pyramid will be JPEG compressed (trades small size for higher performance, try out it without this parameter too)

	-targetDir bmpyramid: build the pyramid in the bmpyramid directory. The target directory must exist and be empty

	bmreduced.tiff: the source file

This will produce a number of TIFF files in bmpyramid along with the sub-directories 1, 2, 3, and 4.

	Go to the Stores section an add a new Raster Data Source clicking on ImagePyramid:

[image: ../../../../_images/pyramid1.png]
Adding a ImagePyramid Data Source

Warning

This assumes the GeoServer image pyramid plug-in is already installed. The pyramid is normally an extension.

If the ImagePyramid store is not avaiable, before doing the exercise install the geoserver pyramid plugin from %TRAINING_ROOT%/data/plugins/ . Just decompress the zip file into %TRAINING_ROOT%/webapps/geoserver/WEB-INF/lib/ and restart GeoServer.

	Specify a proper name (bm_pyramid) in the Data Source Name field of the interface and specify a proper URL with the pyramid data directory

	Windows:

file:%TRAINING_ROOT%/data/user_data/bmpyramid

	Linux:

file:/home/geosolutions/Desktop/geoserver_training/data/user_data/bmpyramid

[image: ../../../../_images/pyramid2.png]
Configuring a image pyramid store

	Click the Save button.

Note

When clicking save the store will look into the directory, recognize a gdal_retile generated structure and perform some background operations:

- move all tiff files in the root to a newly create directory 0
- create an image mosaic in all sub-directories (shapefile index plus property file)
- create the root property file describing the whole pyramid structure

	Publish the new pyramid created:

[image: ../../../../_images/pyramid3.png]
Choosing the coverage for publishing

	Setup the layer parameter USE_JAI_IMAGEREAD to false to get better scalability: as told before the image loading using ImageRead is done using the JAI deferred mode so the data will be really loaded when are needed. This may cause many idle open ImageReaders, in case of having to deal with big pyramids (lots of granules over many levels) and it could cause performances issues.

[image: ../../../../_images/pyramid4.png]
Tuning the pyramid parameters

	Click Submit button and go to the GeoServer Map Preview to see the pyramid:

[image: ../../../../_images/pyramid5.png]
Previewing the pyramid

Using the ImageMosaic plugin with footprint management

Introduction

This section describes how to associate a vector footprint to a raster dataset in GeoServer using the ImageMosaic plugin.

A vector footprint is a shape used as a mask for the mosaic. Masking can be useful for hiding pixels which are meaningless, or for enhancing only few regions of the image in respect to others.

This chapter contains two sub-sections:

	The first sub-section, Configuration, describes the possible configurations needed to set up an ImageMosaic with footprint.

	The second sub-section, Examples, provides examples of configuration of an ImageMosaic with footprint.

Configuration

A vector footprint can be linked to an ImageMosaic in three different ways:

	By using for each mosaic granule a Sidecar File, a Shapefile with the same filename of the granule which contains the footprint for it;

	By using a single Shapefile called footprints.shp which contains all the footprints for each granule; each feature contained in the shapefile represent a footprint for an ImageMosaic granule. Each footprint is associated to a granule with the location attribute;

	By using a file called footprints.properties, this option add more flexibility to the option number 2.

The last option allows to write the following configuration inside the footprints.properties file:

footprint_source=*location of the Shapefile*
footprint_filter=*filter on the Shapefile searching for the attribute associated to each granule*

So the user is free to decide the Shapefile name to use (not only footprints.shp) and the attribute to use for the footprint granule association adding also a custom filter for the content of that attribute.

The footprint.properties can be used also to hold other kind of configurations, see the Inset Support paragraph below.

For example if a Shapefile called fakeShapeFile stores the various footprints in a table like this, where each Name attribute is referred to a granule file:

[image: ../../../../_images/shp_table.png]

And the associated granules are:

	ortho_1-1_1n_s_la087_2010_1.tif

	ortho_2-2_1n_s_la075_2010_1.tif

	ortho_1-1_1n_s_la103_2010_1.tif

	and so on …

The associated footprints.properties file must be like this:

footprint_source=fakeShapeFile.shp
footprint_filter=Name=strSubstring(granule.location, 0, strLength(granule.location) - 4)

The substring operation is done for comparing the footprint attribute names and the granule names without the .tif extension.
Standard GeoServer Filter Functions can be use in this expression. A complete reference for them can be found here [http://docs.geoserver.org/2.6.x/en/user/filter/function_reference.html#string-functions].

Footprint Behaviours

There are three possible behaviours for Footprint:

	None: simply doesn’t use the Footprint and behaves like a standard ImageMosaic layer;

	Transparent: adds an alpha band of 0s on the image portions outside of the Footprint making them transparent, typically used for RGB data;

	Cut: set the background value on the image portions outside of the Footprint, typically used for grayscale data.

The behaviour must be set directly on the Layer configuration page.

Inset Support

Another feature of the Footprint is the possibility to calculate an Inset on the vector footprint prior to applying it to the image. With the Inset a shrinking of the footprint is applied, typically for removing compression artefacts or any nasty effect at the borders. The inset can be activated by adding the following code inside footprints.properties:

 footprint_inset=*value in the shapefile u.o.m.*
 footprint_inset_type=*full/border*

* **Full** inset type calculates the inset for each footprint side
* **Border** does the same operation but those straight lines that overlap the image bounds are avoided; this last parameter is useful for images already cut in a regular grid.

Each modification of the footprints.properties file requires to Reload GeoServer. This operation can be achieved by going to Server Status and clicking on the
Reload button on the bottom-right side of the page.

Examples

The two datasets used in the following can be found into

	Linux: $TRAINING_ROOT/data/user_data/footprint_data

	Windows %TRAINING_ROOT%\data\user_data\footprint_data

The content of the footprint_data is:

	The first dataset, mosaic_single_tiff, contains a Shapefile called srtm_boulder.shp which represents a mask to use on the Boulder (Colorado) layer inside the $TRAINING_ROOT/data/user_data/boulder folder and can be used for testing footprint configuration with a Sidecar File.

	The second dataset, mosaic_sample, is a mosaic which represents Italy and is used for testing the other two configurations.

Here are presented a few steps for configuring a new ImageMosaic layer with footprint.

1. Vector Footprint configured with a sidecar file

Here the steps to load an ImageMosaic with a sidecar file as a vector footprint.

Step 1: Create a new ImageMosaic Layer

As seen in a previous chapter an ImageMosaic data store can be created by going to Stores ‣ Add New Store ‣ ImageMosaic.

Load the mosaic_single_tiff folder, from the TRAINING_ROOT folder navigate to \data\user_data\footprint_data\mosaic_single_tiff

[image: ../../../../_images/mosaic_single_tiff.png]

Publish a Layer from that store going to Layers ‣ Add New Resource, choosing the name of the data store created above and then clicking on the publish button.

Step 2: Configuring a new Layer for the Mosaic

Warning

fill the field Declared CRS with the value EPSG:4326 if the CRS is not automatically set.

The layer will be rendered depending on the value of the FootprintBehavior field:

[image: ../../../../_images/footprint_behav.png]

The user can set one of the three values for the Footprint behaviour as described above (None, Transparent, Cut).

After that, the user must confirm the modification by clicking on the Save button on the bottom side of the page.

Step 3: Example Results

Here are presented the results for each dataset.

This is an example of mosaic (mosaic_single_tiff) without applying Footprint:

[image: ../../../../_images/footprint_normal.png]

And this is the result of setting FootprintBehavior to Cut:

[image: ../../../../_images/footprint_cut.png]

Then navigate the filesystem in the mosaic directory, open (or create it if not exist) the file footprints.properties and write:

footprint_inset=0.01
footprint_inset_type=full

to add an inset.

Note

Remember that each modification on footprints.properties requires a GeoServer catalog and a GeoServer resource cache reloading in order to apply the changes.

If an Inset is added, the final mosaic is:

[image: ../../../../_images/footprint_cut_inset.png]

2. Vector Footprint configured with footprints.shp

Repeat the steps described above but loading the mosaic_sample folder from %TRAINING_ROOT%\data\user_data\footprint_data\mosaic_sample

This is another example of mosaic (mosaic_sample) without Footprint:

[image: ../../../../_images/footprint_mosaic_none.png]

And now after setting FootprintBehavior to Transparent (no Inset is used) on the Layer:

[image: ../../../../_images/footprint_mosaic.png]

3. Vector Footprint configured with footprints.properties

For testing this functionality the user must

	Clone the directory %TRAINING_ROOT%\data\user_data\footprint_data\mosaic_sample and call it mosaic_sample2

	Rename all the footprints.xxx files that compose the shapefile to mask.xxx (don’t rename footprints.properties too!) and load another ImageMosaic datastore.

	open (create if not exist) the footprints.properties file and write:

footprint_source=mask.shp
footprint_inset=0.00001
footprint_inset_type=border

In order to specify an inset and use a footprint shapefile with a custom name.

	Then publish the ImageMosaic located in the cloned directory called mosaic_sample2

The result of setting FootprintBehavior to Transparent, Inset type to border and Inset value to 0.00001 is:

[image: ../../../../_images/footprint_mosaic_prop.png]

Advanced Processing With GDAL Utilities

In this section we are including some advanced examples of processing of Raster Data for GeoServer serving using GDAL Utilities.
Here below you can find a list of examples.

	Example n° 1: Serving a large number of GrayScale GeoTiff with Palette

	Example n° 2: Serving a large number of DTM ASCII Grid Files

	Example n° 3: Serving a large number of Cartographic Black/White GeoTiff with Palette

Example n° 1: Serving a large number of grayscale GeoTIFFs with palettes

In this example, there is a group of grayscale GeoTIFF images. The purpose of this section is to describe how to merge these images using GDAL.
These data are taken from the Regione Marche Cartographic Portal [http://www.ambiente.marche.it/Territorio/Cartografiaeinformazioniterritoriali/Archiviocartograficoeinformazioniterritoriali/Cartografie/ORTOFOTOCARTEREGIONALI110000.aspx#].

Note

Data have the same pixel resolution and same Coordinate Reference System EPSG:26592.

	Navigate to the workshop directory $TRAINING_ROOT/data/user_data/gdal_processing_data (on Windows %TRAINING_ROOT%\data\user_data\gdal_processing_data) and find the grayscale_data directory.

	Navigate inside the grayscale_data directory with the SDK shell.

Note

The following operations must be executed from the shell inside the selected directory. In Windows, run setenv.bat if not already launched.

	Calling the gdalinfo command on an image for retrieving the associated information:

gdalinfo 32501_.tif

And the result is:

Driver: GTiff/GeoTIFF
Files: 32501_.tif
 32501_.tfw
Size is 5494, 4526
Coordinate System is `'
Origin = (2356751.582169299000000,4762684.428062002200000)
Pixel Size = (1.269090000000000,-1.269090000000000)
Metadata:
 TIFFTAG_RESOLUTIONUNIT=2 (pixels/inch)
 TIFFTAG_XRESOLUTION=1200
 TIFFTAG_YRESOLUTION=1200
Image Structure Metadata:
 COMPRESSION=LZW
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (2356751.582, 4762684.428)
Lower Left (2356751.582, 4756940.527)
Upper Right (2363723.963, 4762684.428)
Lower Right (2363723.963, 4756940.527)
Center (2360237.772, 4759812.477)
Band 1 Block=5494x1 Type=Byte, ColorInterp=Palette
 Color Table (RGB with 256 entries)
 0: 0,0,0,255
 1: 1,1,1,255
 2: 2,2,2,255

 ~

 254: 254,254,254,255
 255: 255,255,255,255

From gdalinfo it is possible to note:

	No CRS definition. An image without CRS cannot be displayed on GeoServer.

	Tiles Striped (5494x1).

	LZW Compression.

	ColorInterpretation as a Palette.

	Using gdal_translate it is possible to change the ColorInterpretation from Palette to Gray.:

gdal_translate -expand gray -a_srs EPSG:26592 -of vrt $f ${f:0:6}.vrt

The final image format is not GeoTIFF but VRT. This format simply creates an XML file containing information about the operation to
perform on the image; the output image is created only when the image must be shown to the screen. The CRS is set with the -a_srs parameter.
The color interpretation can be set to gray because each palette value is equal to a grayscale value (this last step is optional).

Note

The expand gray option does not create a multi banded image but only one band is present.

Note

In future a possible operation could be the processing of the input image with the color interpretation set to gray and the calculation of the optimal palette on the final image.

For executing the same operation on all the input images a script called script.sh (Linux) or script.bat (Windows) must be created and executed:

Note

In order to edit the scripts use the basic notepad editor on Windows or gedit on Linux. Remember that on Linux, after the script creation, it must be marked as executable with the command chmod +x <nome_script>.sh

Linux:

#!/bin/bash
FILES="*.tif"
echo start
for f in $FILES
do
 echo $f
 gdal_translate -expand gray -a_srs EPSG:26592 -of vrt $f ${f:0:6}.vrt
done
echo stop

Windows:

for /R %%f in (*.tif) do (
 gdal_translate -expand gray -a_srs EPSG:26592 -of vrt %%~f %%~f.vrt
)

	Creating a list of the VRT files:

ls *.vrt > list.txt (Linux)

or

dir /b *.vrt > list.txt (Windows)

	Merging of all the input files with the gdalbuildvrt command:

gdalbuildvrt -srcnodata 255 -vrtnodata 255 -resolution highest -input_file_list list.txt merged_vrt.vrt

Parameters used:

	-srcnodata 255 -vrtnodata 255 : setting of the input and output image No Data.

	-resolution highest : selection of the highest image resolution.

	-input_file_list list.txt : definition of the input file list.

The result of calling gdalinfo on the output image is:

Driver: VRT/Virtual Raster
Files: merged_vrt.vrt
 32501_.vrt

 ~

 32507_.vrt
Size is 16342, 9157
Coordinate System is:
PROJCS["Monte Mario (Rome) / Italy zone 2 (deprecated)",
 GEOGCS["Monte Mario (Rome)",
 DATUM["Monte_Mario_Rome",
 SPHEROID["International 1924",6378388,297,
 AUTHORITY["EPSG","7022"]],
 TOWGS84[-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68],
 AUTHORITY["EPSG","6806"]],
 PRIMEM["Rome",12.45233333333333,
 AUTHORITY["EPSG","8906"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4806"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",2.54766666666666],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",2520000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AXIS["X",EAST],
 AXIS["Y",NORTH],
 AUTHORITY["EPSG","26592"]]
Origin = (2356629.695870598300000,4762684.428062002200000)
Pixel Size = (1.267290000000000,-1.267290000000000)
Corner Coordinates:
Upper Left (2356629.696, 4762684.428) (0d32'36.59"E, 42d59'54.65"N)
Lower Left (2356629.696, 4751079.854) (0d32'48.78"E, 42d53'38.68"N)
Upper Right (2377339.749, 4762684.428) (0d47'50.77"E, 43d 0' 9.65"N)
Lower Right (2377339.749, 4751079.854) (0d48' 1.42"E, 42d53'53.63"N)
Center (2366984.722, 4756882.141) (0d40'19.38"E, 42d56'54.40"N)
Band 1 Block=128x128 Type=Byte, ColorInterp=Gray
 NoData Value=255

	Transforming from VRT to GeoTIFF with gdal_translate:

gdal_translate -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -co "TILED=YES" -co "BIGTIFF=YES" -co "COMPRESS=DEFLATE" merged_vrt.vrt merged_tif.tif

Warning

This operation might take many minutes.

Parameters used:

	-co “BLOCKXSIZE=512” -co “BLOCKYSIZE=512” -co “TILED=YES” : setting tile dimensions.

	-co “BIGTIFF=YES” -co “COMPRESS=DEFLATE” : (Optional) loss-less compression of the image for reducing the disk space occupation, similar to LZW.

Note

-co “BIGTIFF=YES” is used because GDAL is not automatically able to convert the GeoTiff image into a BigTiff if compression is set.

From gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_tif.tif
Size is 16342, 9157
Coordinate System is:
PROJCS["Monte Mario (Rome) / Italy zone 2",
 GEOGCS["Monte Mario (Rome)",
 DATUM["Monte_Mario_Rome",
 SPHEROID["International 1924",6378388,297.0000000000014,
 AUTHORITY["EPSG","7022"]],
 TOWGS84[-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68],
 AUTHORITY["EPSG","6806"]],
 PRIMEM["Rome",12.45233333333333],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4806"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",15],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",2520000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AUTHORITY["EPSG","26592"]]
Origin = (2356629.695870598300000,4762684.428062002200000)
Pixel Size = (1.267290000000000,-1.267290000000000)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 COMPRESSION=DEFLATE
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (2356629.696, 4762684.428) (12d59'44.99"E, 42d59'54.65"N)
Lower Left (2356629.696, 4751079.854) (12d59'57.18"E, 42d53'38.68"N)
Upper Right (2377339.749, 4762684.428) (13d14'59.17"E, 43d 0' 9.65"N)
Lower Right (2377339.749, 4751079.854) (13d15' 9.82"E, 42d53'53.63"N)
Center (2366984.722, 4756882.141) (13d 7'27.78"E, 42d56'54.40"N)
Band 1 Block=512x512 Type=Byte, ColorInterp=Gray
 NoData Value=255

This image can be displayed on GeoServer but a further optimization step could bring to better performances. There could be two ways for optimizing
the GeoServer performances:

	building image overviews.

	building a pyramid of the image.

	(Optional) Optimization.

	Building overview with gdaladdo:

gdaladdo -r cubicspline --config COMPRESS_OVERVIEW DEFLATE --config GDAL_TIFF_OVR_BLOCKSIZE 512 merged_tif.tif 2 4 8 16 32

Overviews are reduced views of the input image used by GeoServer for displaying the image at a lower resolutions.

Parameters used:

	-r cubicspline : setting the interpolation mode to cubicspline (by default is nearest-neighbour).

	–config COMPRESS_OVERVIEW DEFLATE : setting DEFLATE compression on the overviews, for reducing disk space occupation.

	–config GDAL_TIFF_OVR_BLOCKSIZE 512 : setting tile dimensions on overviews.

	2 ~ 32 : setting overview level.

And with gdalinfo:

Band 1 Block=512x512 Type=Byte, ColorInterp=Gray
 NoData Value=255
 Overviews: 8171x4579, 4086x2290, 2043x1145, 1022x573, 511x287

Then the result can be displayed in GeoServer by configuring the image as a GeoTIFF (see Adding a GeoTiff section).

	Building a pyramid through several gdalwarp invocations, each time by reducing the image resolution:

gdalwarp -r cubicspline -dstnodata 255 -srcnodata 255 -multi -tr 2,53458 -2,53458 -co BLOCKXSIZE=512 -co BLOCKYSIZE=512 -co TILED=YES -co COMPRESS=DEFLATE merged_tif.tif merged_tif_2.tif

Parameters used:

	-r cubicspline : definition interpolation method.

	-dstnodata 255 -srcnodata 255 : definition of the image input and output NO DATA.

	-multi : forcing to use multithreading.

	-tr 2,53458 -2,53458 : definition of the image resolutions.

Output image from gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_tif_2.tif
Size is 8171, 4578
Coordinate System is:

~

Band 1 Block=512x512 Type=Byte, ColorInterp=Gray
 NoData Value=255

After another gdalwarp on the output image:

gdalwarp -r cubicspline -dstnodata 255 -srcnodata 255 -multi -tr 5,06916 -5,06916 -co BLOCKXSIZE=512 -co BLOCKYSIZE=512 -co TILED=YES -co COMPRESS=DEFLATE merged_tif_2.tif merged_tif_4.tif

And gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_tif_4.tif
Size is 4085, 2289
Coordinate System is:

~

Band 1 Block=512x512 Type=Byte, ColorInterp=Gray
 NoData Value=255

The operations must be executed on the first image, then the same operation must be repeated on the output image and so on. This cycle
allows to create a pyramid of images, each one with a lower resolution.

Then the result can be displayed in GeoServer by configuring the images as a pyramid (see Advanced Mosaic and Pyramid configuration section).

	Displaying the result on GeoServer:

[image: ../../../../../_images/screen_overview.png]
Result with gdaladdo

[image: ../../../../../_images/screen_pyramid.png]
Result with ImagePyramid

Example n° 2: Serving a large number of DTM ASCII Grid Files

In this example there is a group of DTM images in ASCII Grid format. The purpose of this section is to describe how the GDAL commands may be used for merging the input
files provided. These data are taken from Regione Calabria Open Data Portal [http://pr5sit.regione.calabria.it/web/pr5sit/sezione-opendata1;jsessionid=D37F21C541E793075AF90E3B0A3AAFBD]
at the ASCII - GRID section.

Note

Data have the same pixel resolution and same Coordinate Reference System EPSG:3003.

Warning

This example requires GDAL with Python bindings.

	Navigate to the workshop directory $TRAINING_ROOT/data/user_data/gdal_processing_data (on Windows %TRAINING_ROOT%\data\user_data\gdal_processing_data) and find the DTM_data directory.

	Navigate into the DTM_data directory with the SDK Shell.

Note

The following operations must be executed from the shell inside the selected directory. In Windows, run setenv.bat if not already launched.

	Calling the gdalinfo command on an image for retrieving the associated information:

gdalinfo 521150.asc

And the result is:

Driver: AAIGrid/Arc/Info ASCII Grid
Files: 521150.asc
Size is 193, 154
Coordinate System is `'
Origin = (2590740.000000000000000,4433860.000000000000000)
Pixel Size = (40.000000000000000,-40.000000000000000)
Metadata:
 AREA_OR_POINT=Point
Corner Coordinates:
Upper Left (2590740.000, 4433860.000)
Lower Left (2590740.000, 4427700.000)
Upper Right (2598460.000, 4433860.000)
Lower Right (2598460.000, 4427700.000)
Center (2594600.000, 4430780.000)
Band 1 Block=193x1 Type=Float32, ColorInterp=Undefined
 NoData Value=-9999

From gdalinfo it is possible to note:

	No CRS definition. An image without CRS cannot be displayed on GeoServer.

	Tiles Striped (193x1).

	No Compression.

	Listing of all the images into a single text list with the following command:

ls *.asc > list.txt (Linux)

or

dir /b *.asc > list.txt (Windows)

	Merging of all the input files with the gdal_merge.py command:

gdal_merge.py -o merged.tif -co "TILED=YES" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -co "COMPRESS=DEFLATE" -co "ZLEVEL=9" -co "BIGTIFF=YES" -init -9999 -a_nodata -9999 -n -9999 -ot Float32 --optfile list.txt

Note

This command must be executed with python for avoiding import errors.

Parameters used:

	-o merged.tif : definition of the output file name.

	-co “TILED=YES” -co “BLOCKXSIZE=512” -co “BLOCKYSIZE=512” : definition of tile dimensions.

	-co “COMPRESS=DEFLATE” -co “ZLEVEL=9” -co “BIGTIFF=YES” : definition of the compression mode.

Note

-co “BIGTIFF=YES” is used because GDAL is not automatically able to convert the GeoTiff image into a BigTiff if compression is set.

	-init -9999 : initialization of the image pixels to NO DATA.

	-a_nodata -9999 : definition of the output value for NO DATA.

	-n -9999 : definition of the input pixel value to ignore during merging.

	-ot Float32 : definition of the image output type.

	–optfile list.txt : definition of the input file list.

The gdalinfo output on the merged image is:

Driver: GTiff/GeoTIFF
Files: merged.tif
Size is 3613, 6284
Coordinate System is `'
Origin = (2570700.000000000000000,4445900.000000000000000)
Pixel Size = (40.000000000000000,-40.000000000000000)
Image Structure Metadata:
 COMPRESSION=DEFLATE
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (2570700.000, 4445900.000)
Lower Left (2570700.000, 4194540.000)
Upper Right (2715220.000, 4445900.000)
Lower Right (2715220.000, 4194540.000)
Center (2642960.000, 4320220.000)
Band 1 Block=512x512 Type=Float32, ColorInterp=Gray
 NoData Value=-9999

The merged image has a good tiling(512x512) and compression, but the CRS is still undefined.

	Setting of the image CRS with gdal_translate:

gdal_translate -a_srs "EPSG:3003" -co "TILED=YES" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -co "COMPRESS=DEFLATE" -co "ZLEVEL=9" -co "BIGTIFF=YES" merged.tif merged_CRS.tif

The various input parameters are maintained because by default GDAL do not compress the input image and set a bad tiling.

From gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_CRS.tif
Size is 3613, 6284
Coordinate System is:
PROJCS["Monte Mario / Italy zone 1",
 GEOGCS["Monte Mario",
 DATUM["Monte_Mario",
 SPHEROID["International 1924",6378388,297.0000000000014,
 AUTHORITY["EPSG","7022"]],
 TOWGS84[-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68],
 AUTHORITY["EPSG","6265"]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4265"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",9],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",1500000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AUTHORITY["EPSG","3003"]]
Origin = (2570700.000000000000000,4445900.000000000000000)
Pixel Size = (40.000000000000000,-40.000000000000000)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 COMPRESSION=DEFLATE
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (2570700.000, 4445900.000) (21d25'57.43"E, 39d29'28.80"N)
Lower Left (2570700.000, 4194540.000) (21d 3'12.94"E, 37d16'39.68"N)
Upper Right (2715220.000, 4445900.000) (23d 3'58.08"E, 39d18' 6.80"N)
Lower Right (2715220.000, 4194540.000) (22d38'27.42"E, 37d 6' 9.29"N)
Center (2642960.000, 4320220.000) (22d 2'40.73"E, 38d17'47.75"N)
Band 1 Block=512x512 Type=Float32, ColorInterp=Gray
 NoData Value=-9999

This image can be displayed on GeoServer but a further optimization step could bring to better performances.

	(Optional) Creation of the overviews associated to the merged image for having better throughput:

gdaladdo -r nearest --config COMPRESS_OVERVIEW DEFLATE --config GDAL_TIFF_OVR_BLOCKSIZE 512 merged_CRS.tif 2 4 8 16

Overviews are reduced views of the input image used by GeoServer for displaying the image at a lower resolutions.

Parameters used:

	-r nearest : definition of the interpolation method.

	–config COMPRESS_OVERVIEW DEFLATE : definition of the compression on overviews.

	–config GDAL_TIFF_OVR_BLOCKSIZE 512 : definition of the tile dimensions on overviews.

And with gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_CRS.tif
Size is 3613, 6284
Coordinate System is:
PROJCS["Monte Mario / Italy zone 1",
 GEOGCS["Monte Mario",
 DATUM["Monte_Mario",
 SPHEROID["International 1924",6378388,297.0000000000014,
 AUTHORITY["EPSG","7022"]],
 TOWGS84[-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68],
 AUTHORITY["EPSG","6265"]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4265"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",9],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",1500000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AUTHORITY["EPSG","3003"]]
Origin = (2570700.000000000000000,4445900.000000000000000)
Pixel Size = (40.000000000000000,-40.000000000000000)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 COMPRESSION=DEFLATE
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (2570700.000, 4445900.000) (21d25'57.43"E, 39d29'28.80"N)
Lower Left (2570700.000, 4194540.000) (21d 3'12.94"E, 37d16'39.68"N)
Upper Right (2715220.000, 4445900.000) (23d 3'58.08"E, 39d18' 6.80"N)
Lower Right (2715220.000, 4194540.000) (22d38'27.42"E, 37d 6' 9.29"N)
Center (2642960.000, 4320220.000) (22d 2'40.73"E, 38d17'47.75"N)
Band 1 Block=512x512 Type=Float32, ColorInterp=Gray
 NoData Value=-9999
 Overviews: 1807x3142, 904x1571, 452x786, 226x393

Then the result can be displayed in GeoServer by configuring the image as a GeoTIFF (see Adding a GeoTiff section).

	Displaying the result on GeoServer:

[image: ../../../../../_images/ascii_merged.png]

Example n° 3: Serving a large number of Cartographic Black/White GeoTiff with Palette

In this example there is a group of Cartographic Black/White images from “CARTA TECNICA DELLA REGIONE TOSCANA”. The purpose of this example is to describe how the GDAL commands may be used for merging the input
files provided.

Note

Data have the same pixel resolution and same Coordinate Reference System EPSG:25832. Also each pixel is stored into single bit.

	Navigate to the workshop directory $TRAINING_ROOT/data/user_data/gdal_processing_data (on Windows %TRAINING_ROOT%\data\user_data\gdal_processing_data) and find the CTR_data directory.

	Navigate into the CTR_data directory with the SDK Shell.

Note

The following operations must be executed from the shell inside the selected directory. In Windows, run setenv.bat if not already launched.

	Calling the gdalinfo command on an image for retrieving the associated information:

gdalinfo 20E27_1994.TIF

And the result is:

Driver: GTiff/GeoTIFF
Files: 20E27_1994.TIF
 20E27_1994.TFW
Size is 16050, 14050
Coordinate System is `'
GeoTransform =
 600769.026848671, 0.1, 7.3789937e-007
 4863785.940434861, -8.172141e-008, -0.1
Metadata:
 TIFFTAG_RESOLUTIONUNIT=2 (pixels/inch)
 TIFFTAG_SOFTWARE=IrfanView
 TIFFTAG_XRESOLUTION=72
 TIFFTAG_YRESOLUTION=72
Image Structure Metadata:
 COMPRESSION=PACKBITS
 INTERLEAVE=BAND
 MINISWHITE=YES
Corner Coordinates:
Upper Left (600769.027, 4863785.940)
Lower Left (600769.037, 4862380.940)
Upper Right (602374.027, 4863785.939)
Lower Right (602374.037, 4862380.939)
Center (601571.532, 4863083.440)
Band 1 Block=16050x4 Type=Byte, ColorInterp=Palette
 Image Structure Metadata:
 NBITS=1
 Color Table (RGB with 2 entries)
 0: 255,255,255,255
 1: 0,0,0,255

From gdalinfo it is possible to note:

	No CRS definition. An image without CRS cannot be displayed on GeoServer.

	Color Interpretation as palette.

	A GeoTransformation matrix is associated.

	Tiles Striped (16050x4).

	Packbits Compression.

	Executing the following commands on the tiff images:

gdalwarp -t_srs EPSG:25832 -of vrt $f ${f:0:10}_temp.vrt

gdal_translate -expand gray -of vrt ${f:0:10}_temp.vrt ${f:0:10}.vrt

The first operation sets the CRS to each image and creates a VRT file, for reducing space occupation. Also the use of gdalwarp internally performs
the GeoTransformation associated to the image.

The second operation is used for changing the color interpretation from palette to gray. This operation is done because in the final steps other grey levels
will be added with the interpolation. The expansion to the gray color interpretation leads to an expansion of the pixel dimension from 1 to 8 bits.

Note

The expand gray option does not create a multi banded image but only a single banded one.

Note

If the user wants to keep the palette, then can go directly to the Optional elaboration without expanding the Palette paragraph.

These operations must be executed inside a script:

Linux:

#!/bin/bash
FILES="*.TIF"
echo start
for f in $FILES
do
 echo $f
 gdalwarp -t_srs EPSG:25832 -of vrt $f ${f:0:10}_temp.vrt
 gdal_translate -expand gray -of vrt ${f:0:10}_temp.vrt ${f:0:10}.vrt
done
echo stop

Windows:

for /R %%f in (*.tif) do (
 gdalwarp -t_srs EPSG:25832 -of vrt %%~f %%~f_temp.vrt
 gdal_translate -expand gray -of vrt %%~f_temp.vrt %%~f.vrt
)

	Listing of all the VRT files into a single text list with the following command:

ls *.vrt > list.txt (Linux)

or

dir /b *.vrt > list.txt (Windows)

Warning

Delete the _temp.vrt files from the list because they overlap with the final vrt files created.

	Merging of all the input files with the gdalbuildvrt command:

gdalbuildvrt -srcnodata 255 -vrtnodata 255 -input_file_list list.txt merged_vrt.vrt

Parameters used:

	-srcnodata 255 -vrtnodata 255 : definition of the No Data associated with the file.

	-input_file_list list.txt : definition of input files to elaborate.

The gdalinfo output on the merged image is:

Driver: VRT/Virtual Raster
Files: merged_vrt_nodata.vrt
 20E27_1994.vrt

 ~

 20E60_1995.vrt
Size is 50052, 62047
Coordinate System is:
PROJCS["ETRS89 / UTM zone 32N",
 GEOGCS["ETRS89",
 DATUM["European_Terrestrial_Reference_System_1989",
 SPHEROID["GRS 1980",6378137,298.257222101,
 AUTHORITY["EPSG","7019"]],
 TOWGS84[0,0,0,0,0,0,0],
 AUTHORITY["EPSG","6258"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4258"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",9],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",500000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AXIS["Easting",EAST],
 AXIS["Northing",NORTH],
 AUTHORITY["EPSG","25832"]]
Origin = (600768.734234663190000,4863785.940434861000000)
Pixel Size = (0.100000372821407,-0.100000372821407)
Corner Coordinates:
Upper Left (600768.734, 4863785.940) (10d15'18.69"E, 43d55'13.06"N)
Lower Left (600768.734, 4857581.217) (10d15'14.46"E, 43d51'51.99"N)
Upper Right (605773.953, 4863785.940) (10d19' 3.07"E, 43d55'10.54"N)
Lower Right (605773.953, 4857581.217) (10d18'58.64"E, 43d51'49.47"N)
Center (603271.344, 4860683.579) (10d17' 8.72"E, 43d53'31.28"N)
Band 1 Block=128x128 Type=Byte, ColorInterp=Gray
 NoData Value=255

	Transforming from VRT to GeoTIFF with gdal_translate:

gdal_translate -a_nodata none -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -co "TILED=YES" -co "BIGTIFF=YES" -co "COMPRESS=DEFLATE" merged_vrt.vrt merged_tif.tif

The various input parameters are:

	-a_nodata none : avoid setting 255 as No Data for a better image optimization.

	-co “BLOCKXSIZE=512” -co “BLOCKYSIZE=512” -co “TILED=YES” : definition of the tile dimensions.

	-co “BIGTIFF=YES” -co “COMPRESS=DEFLATE” : definition of the compression method.

Note

BIGTIFF=YES must be set for big images because when compression is used, by default gdal_translate is not able to check if the final
image is a BigTiff or not.

From gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_tif.tif
Size is 50052, 62047
Coordinate System is:
PROJCS["ETRS89 / UTM zone 32N",
 GEOGCS["ETRS89",
 DATUM["European_Terrestrial_Reference_System_1989",
 SPHEROID["GRS 1980",6378137,298.2572221010002,
 AUTHORITY["EPSG","7019"]],
 TOWGS84[0,0,0,0,0,0,0],
 AUTHORITY["EPSG","6258"]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4258"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",9],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",500000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AUTHORITY["EPSG","25832"]]
Origin = (600768.734234663190000,4863785.940434861000000)
Pixel Size = (0.100000372821407,-0.100000372821407)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 COMPRESSION=DEFLATE
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (600768.734, 4863785.940) (10d15'18.69"E, 43d55'13.06"N)
Lower Left (600768.734, 4857581.217) (10d15'14.46"E, 43d51'51.99"N)
Upper Right (605773.953, 4863785.940) (10d19' 3.07"E, 43d55'10.54"N)
Lower Right (605773.953, 4857581.217) (10d18'58.64"E, 43d51'49.47"N)
Center (603271.344, 4860683.579) (10d17' 8.72"E, 43d53'31.28"N)
Band 1 Block=512x512 Type=Byte, ColorInterp=Gray

This image can be displayed on GeoServer but a further optimization step could bring to better performances. There could be two ways for optimizing
the GeoServer performances:

	building image overviews.

	building a pyramid of the image.

	(Optional) Optimization methods. Here are described two possible optimizations each of them using a different interpolation type:

	Creation of the overviews associated to the merged image for having better throughput:

gdaladdo -r average --config COMPRESS_OVERVIEW DEFLATE --config GDAL_TIFF_OVR_BLOCKSIZE 512 merged_tif.tif 2 4 8 16 32 64 128

Overviews are reduced views of the input image used by GeoServer for displaying the image at a lower resolutions.

Parameters used:

	-r average : definition of the interpolation method.

	–config COMPRESS_OVERVIEW DEFLATE : definition of the compression on overviews.

	–config GDAL_TIFF_OVR_BLOCKSIZE 512 : definition of the tile dimensions on overviews.

	2 ~ 128 : definition of the overviews level

And with gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_tif.tif
Size is 50052, 62047

~

Band 1 Block=512x512 Type=Byte, ColorInterp=Gray
 Overviews: 25026x31024, 12513x15512, 6257x7756, 3129x3878, 1565x1939, 783x970, 392x485

Then the result can be displayed in GeoServer by configuring the image as a GeoTIFF (see Adding a GeoTiff section).

	(Optional) Creation of a pyramid associated to the merged image and displaying the image on GeoServer with the ImagePyramid plugin (see Advanced Mosaic and Pyramid configuration section).

For building a pyramid the gdalwarp command must be called several times. The operation to execute on the first image is:

gdalwarp -r cubic -multi -tr 0,200000745642814 -0,200000745642814 -co BLOCKXSIZE=512 -co BLOCKYSIZE=512 -co TILED=YES -co COMPRESS=DEFLATE merged_tif.tif merged_tif_2.tif

The parameters are:

	-r cubic : definition of the interpolation method (average interpolation can be used only with GDAL 1.10).

	-multi : forcing to use multithreading.

	-tr 0,200000745642814 -0,200000745642814 : definition of the image resolution.

From gdalinfo on the result image:

Driver: GTiff/GeoTIFF
Files: merged_tif_2.tif
Size is 25026, 31024

~

Band 1 Block=512x512 Type=Byte, ColorInterp=Gray

Then the same operation, with another value for the resolution must be executed on the result image:

gdalwarp -r cubic -multi -tr 0,400001491285628 -0,400001491285628 -co BLOCKXSIZE=512 -co BLOCKYSIZE=512 -co TILED=YES -co COMPRESS=DEFLATE merged_tif_2.tif merged_tif_4.tif

These operation must be repeated until the final image has a resolution 128 times lower than that of the initial image.

Note

Each call of gdalwarp reduces by half the image resolution.

After creating the various rasters, they must be saved inside a new directory. This directory must be internally divided into sub-directories numbered from 1 to 7, each of them
containing a raster of smaller dimension(going from 1 to 7) and leaving the original raster in the super-directory.

Then the user can configure the following structure with the ImagePyramid plugin.

	Displaying the result on GeoServer:

[image: ../../../../../_images/ctr_screen_pyr.png]

Result as a pyramid (Zoom on the image for seeing the result).

[image: ../../../../../_images/ctr_screen_ovr.png]

Result with overviews (Zoom on the image for seeing the result).

Optional elaboration without expanding the Palette

If the user wants to keep the palette the steps to achieve are quite similar.

	Executing the following commands on the tiff images:

gdalwarp -t_srs EPSG:25832 -of vrt $f ${f:0:10}_temp.vrt

gdal_translate -of vrt ${f:0:10}_temp.vrt ${f:0:10}.vrt

These operations must be executed inside a script:

Linux:

#!/bin/bash
FILES="*.TIF"
echo start
for f in $FILES
do
 echo $f
 gdalwarp -t_srs EPSG:25832 -of vrt $f ${f:0:10}_temp.vrt
 gdal_translate -of vrt ${f:0:10}_temp.vrt ${f:0:10}.vrt
done
echo stop

Windows:

for /R %%f in (*.tif) do (
 gdalwarp -t_srs EPSG:25832 -of vrt %%~f %%~f_temp.vrt
 gdal_translate -of vrt %%~f_temp.vrt %%~f.vrt
)

	Listing of all the VRT files into a single text list with the following command:

ls *.vrt > list.txt (Linux)

or

dir /b *.vrt > list.txt (Windows)

Warning

Delete the _temp.vrt files from the list because they overlap with the final vrt files created.

	Merging of all the input files with the gdalbuildvrt command:

gdalbuildvrt -srcnodata 0 -vrtnodata 0 -input_file_list list.txt merged_vrt.vrt

Parameters used:

	-srcnodata 0 -vrtnodata 0 : definition of the No Data associated with the file.

	-input_file_list list.txt : definition of input files to elaborate.

The gdalinfo output on the merged image is:

Driver: VRT/Virtual Raster
Files: merged_vrt_0.vrt
20E27_1994.TIF.vrt

~

20E60_1995.TIF.vrt
Size is 50052, 62047
Coordinate System is:
PROJCS["ETRS89 / UTM zone 32N",
 GEOGCS["ETRS89",
 DATUM["European_Terrestrial_Reference_System_1989",
 SPHEROID["GRS 1980",6378137,298.257222101,
 AUTHORITY["EPSG","7019"]],
 TOWGS84[0,0,0,0,0,0,0],
 AUTHORITY["EPSG","6258"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4258"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",9],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",500000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AXIS["Easting",EAST],
 AXIS["Northing",NORTH],
 AUTHORITY["EPSG","25832"]]
Origin = (600768.734234663190000,4863785.940434861000000)
Pixel Size = (0.100000372821407,-0.100000372821407)
Corner Coordinates:
Upper Left (600768.734, 4863785.940) (10d15'18.69"E, 43d55'13.06"N)
Lower Left (600768.734, 4857581.217) (10d15'14.46"E, 43d51'51.99"N)
Upper Right (605773.953, 4863785.940) (10d19' 3.07"E, 43d55'10.54"N)
Lower Right (605773.953, 4857581.217) (10d18'58.64"E, 43d51'49.47"N)
Center (603271.344, 4860683.579) (10d17' 8.72"E, 43d53'31.28"N)
Band 1 Block=128x128 Type=Byte, ColorInterp=Palette
 NoData Value=0
 Color Table (RGB with 2 entries)
 0: 255,255,255,255
 1: 0,0,0,255

	Transforming from VRT to GeoTIFF with gdal_translate:

gdal_translate -co "NBITS=1" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -co "TILED=YES" -co "BIGTIFF=YES" -co "COMPRESS=DEFLATE" merged_vrt.vrt merged_tif.tif

The various input parameters are:

	-co “NBITS=1” : sets the bits per pixel to 1, because the Palette contains only 0 or 1.

	-co “BLOCKXSIZE=512” -co “BLOCKYSIZE=512” -co “TILED=YES” : definition of the tile dimensions.

	-co “BIGTIFF=YES” -co “COMPRESS=DEFLATE” : definition of the compression method.

Note

BIGTIFF=YES must be set for big images because when compression is used, by default gdal_translate is not able to check if the final
image is a BigTiff or not.

From gdalinfo:

Size is 50052, 62047
Coordinate System is:
PROJCS["ETRS89 / UTM zone 32N",
 GEOGCS["ETRS89",
 DATUM["European_Terrestrial_Reference_System_1989",
 SPHEROID["GRS 1980",6378137,298.2572221010002,
 AUTHORITY["EPSG","7019"]],
 TOWGS84[0,0,0,0,0,0,0],
 AUTHORITY["EPSG","6258"]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4258"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",9],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",500000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AUTHORITY["EPSG","25832"]]
Origin = (600768.734234663190000,4863785.940434861000000)
Pixel Size = (0.100000372821407,-0.100000372821407)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 COMPRESSION=DEFLATE
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (600768.734, 4863785.940) (10d15'18.69"E, 43d55'13.06"N)
Lower Left (600768.734, 4857581.217) (10d15'14.46"E, 43d51'51.99"N)
Upper Right (605773.953, 4863785.940) (10d19' 3.07"E, 43d55'10.54"N)
Lower Right (605773.953, 4857581.217) (10d18'58.64"E, 43d51'49.47"N)
Center (603271.344, 4860683.579) (10d17' 8.72"E, 43d53'31.28"N)
Band 1 Block=512x512 Type=Byte, ColorInterp=Palette
 NoData Value=0
 Image Structure Metadata:
 NBITS=1
 Color Table (RGB with 2 entries)
 0: 255,255,255,255
 1: 0,0,0,255

	(Optional) Optimization methods described here are similar to that described above:

	The overview creation method is equal to that described above.

	For creating the pyramid the commands to use are the same as described above with the addition of the -co “NBITS=1” command.

	Displaying the result on GeoServer:

[image: ../../../../../_images/ctr_palette_pyr.png]

Result as a pyramid (Zoom on the image for seeing the result).

[image: ../../../../../_images/ctr_palette_ovr.png]

Result with overviews (Zoom on the image for seeing the result).

Advanced Vectorial Data Management

This module presents working with vector data, how to obtain vector data information, filter, extract and update.

In this module you will learn how to:

	Retrieving data and metadata

	Filtering and extracting

	Modifying Feature Types
	Modifying Feature Types using GeoNode

	Modifying Feature Types using a Desktop GIS client

Retrieving vector data and metadata

In this section we will learn how to deal with vector data using WFS. First we will learn how to deal with metadata and then how to retrieve the features. We will be using the layer named Counties in the workshop namespace.

Note

The Open Geospatial Consortium Web Feature Service Interface Standard (WFS) provides an interface allowing requests for geographical features across the web using platform-independent calls. One can think of geographical features as the “source code” behind a map, whereas the WMS interface or online mapping portals like Google Maps return only an image, which end-users cannot edit or spatially analyze.

	Navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/web/].

	On the Welcome page locate the Layer Preview link (no need to login).

[image: ../../../../_images/get1.png]
Layer Preview

	Navigate to the WFS GML output of the Counties layer.

[image: ../../../../_images/get2.png]
WFS GML output

Depending on the browser, the output may be unformatted or recognized as XML. Here is what Firefox 3 shows:
http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=geosolutions:Counties&maxFeatures=50&outputFormat=GML2

[image: ../../../../_images/get3.png]
Default WFS layer preview.

Note

We recommend the Mozilla Firefox web browser for navigating WFS response documents.

	Now that we know the quick and easy way to get WFS data, let’s go back and do it the way a standard WFS client works. First, the only thing expected to be known is the WFS server URL: http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0

Using that URL, we can issue a GetCapabilities request in order to know which layer it contains and what operations are supported:
http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=GetCapabilities

[image: ../../../../_images/get4.png]
GetCapabilities response

If we scroll below, we will find the Counties feature type described:

[image: ../../../../_images/get5.png]
GetCapabilities response (Counties feature type)

	
	Now let’s request more information for the Counties layer using a DescribeFeatureType request:

	http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=DescribeFeatureType&typename=geosolutions:Counties

Which gives us information about the fields names and types as well as the geometry type, in this case MultiPolygon.

[image: ../../../../_images/get6.png]
DescribeFeatureType response for Counties feature type

	After that, we can issue a basic GetFeature request, that looks like this:

http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=geosolutions:Counties&featureId=Counties.1

Note

Notice it’s almost the same as the one that Geoserver generated, but it’s requestin a single feature specifying its identifier via featureId=Counties.1

In the next section we will see how to filter the WFS output based on various attributes.

Filtering and Extracting vector data

WFS also defines mechanisms to only retrieve a subset of the data that matches some specified constraints.

	Create a new request.xml file in the training root and past the following request into it:

<wfs:GetFeature xmlns:wfs='http://www.opengis.net/wfs'
 xmlns:ogc='http://www.opengis.net/ogc' service='WFS' version='1.0.0'>
 <Query typeName='geosolutions:WorldCountries'>
 <ogc:Filter>
 <ogc:FeatureId fid='WorldCountries.137' />
 </ogc:Filter>
 </Query>
</wfs:GetFeature>

	Go on the command line, move to the training folder root, and execute the request using CURL:

curl -XPOST -d @request.xml -H "Content-type: application/xml" "http://localhost:8083/geoserver/ows"

	Now, let’s write an equivalent request - using the name of the state instead of the id- issuing a GET and encoding the filter in a language called CQL [https://en.wikipedia.org/wiki/CQL]. Copy the following URL in your browser’s navigation bar:

http://localhost:8083/geoserver/wfs?request=GetFeature&service=WFS&version=1.0.0&typeName=geosolutions:WorldCountries&outputFormat=GML2&CQL_FILTER=NAME=%27Monaco%27

[image: ../../../../_images/cql-filter-url.png]
The CQL filter in the Firefox URL bar

[image: ../../../../_images/cql_filter_result.png]
The results of the CQL filter

That’s how a feature set is filtered with either the OGC encoding or the CQL notation.

In the next section we will see how to edit the features via a protocol called WFS Transactional (WFS-T).

Modifying Feature Types

GeoServer provides a fully Transactional Web Feature Service (WFS-T) which enables users to insert/delete/modify the available FeatureTypes.
This section shows a few of the GeoServer WFS-T capabilities and interactions with GIS clients.

Modifying Feature Types using GeoNode

	Open your instance of GeoNode [http://geonode.org] and log in as a superuser or a user having write rights on at least some Layers

[image: ../../../../_images/wfs-t_geonode1.png]
GeoNode Layers

	Select a Layer on which when you have right to edit data

Warning

You can edit only Layers which have been stored on a JDBC DataStore, like a DataBase. On GeoNode this is only possible if the DB datastore has been enabled from the settings.

[image: ../../../../_images/wfs-t_geonode2.png]
GeoNode Layer Select

	Click on Edit Layer and then, from the pop-up window, click on Edit data

Warning

The Edit data button will be available only for writable Layers (see above).

[image: ../../../../_images/wfs-t_geonode3.png]
GeoNode Edit Layer

	When the Map shows up along with your Layer, zoom in to a region you want to update or create.

[image: ../../../../_images/wfs-t_geonode4.png]
GeoNode Navigate Layer

	Identify the Edit button on the map top toolbar, click on the small arrow on the left in order to show up the context menu.

[image: ../../../../_images/wfs-t_geonode5.png]
GeoNode Edit Button

	Lets first Modify a FeatureType. Click on Modify.

[image: ../../../../_images/wfs-t_geonode6.png]
GeoNode Modify FeatureType

	Select a geometry and click over it. From the small info dialog window, select Edit

[image: ../../../../_images/wfs-t_geonode7.png]
GeoNode Editing a FeatureType

	Modify the geometry and/or the values of the field as you wish, and then click on Save.

Hint

If you want you can also completely delete the FeatureType by clicking on the Delete button from the same info dialog window.

[image: ../../../../_images/wfs-t_geonode8.png]
GeoNode Updating a FeatureType

	Verify that the changes have been stored on GeoServer.

Replace the URL

http://your_host/maps/new?layer=geonode:streams_1

with

http://your_host/geoserver/wms/reflect?layers=geonode:streams_1

Warning

Pay attention to the parameter: layer becomes layers, plural. If you want you can also add an output format parameter, like format=openlayers. In that case the complete URL becomes:

http://your_host/geoserver/wms/reflect?layers=geonode:streams_1&format=openlayers

[image: ../../../../_images/wfs-t_geonode9.png]
GeoServer Displaying the Updated Layer

Click over the FeautreType in order to display the updates values too.

	Repeat the FeatureType editing but this time click on Create (or simply click over the Edit button and not on its right small arrow).

[image: ../../../../_images/wfs-t_geonode10.png]
GeoNode Creating a FeatureType

[image: ../../../../_images/wfs-t_geonode11.png]
GeoServer Displaying the New Feature

Modifying Feature Types using a Desktop GIS client

	Open uDig [http://udig.refractions.net] GIS desktop client by going on the command line, changing directory in the training root if necessary, and running the udig command.

	Add GeoServer WFS to the catalog.

[image: ../../../../_images/wfs-t1.png]

Use the import button in the catalog tab, and select “data” in the first page of the wizard

[image: ../../../../_images/wfs-t2.png]
Selection of Web Feature Service data

Insert into the URL text box the following address:

http://localhost:8083/geoserver/wfs?request=GetCapabilities&service=WFS

[image: ../../../../_images/wfs-t3.png]
The WFS URL

Select the Mainrd from the list

[image: ../../../../_images/wfs-t4.png]
WFS Datasets shown into the uDig catalog

	Load the Mainrd Feature Type using drag-n-drop.

[image: ../../../../_images/wfs-t5.png]
Importing Mainrd into the map

	Perform a zoom operation on the upper-right part of the layer.

[image: ../../../../_images/wfs-t6.png]
Zooming in …

[image: ../../../../_images/wfs-t7.png]
Zooming in …

	By using the Select and Edit Geometry tool try to move/add/remove some vertex to the small line at the center of the screen.

[image: ../../../../_images/wfs-t8.png]
Playing with the Geometry

	Once finished use the Commit tool to persist the changes on GeoServer.

[image: ../../../../_images/wfs-t9.png]
Committing changes throught the WFS-T protocol

	Use GeoServer Layer Preview to view the changes on the Mainrd layer.

Warning

In order to view the streets lines you have to specify the line style on the GetMap request.

[image: ../../../../_images/wfs-t10.png]
Showing the changes to the Mainrd Feature Type

	On uDig look the Feature attribute values using the Info tool.

[image: ../../../../_images/wfs-t11.png]
Retrieving Feature Type info from uDig interface

	Now open/create the request.xml file in the training root directory and set in the following request, which will be used to issue an Update Feature type request to the WFS-T updating all roads labelled as Monarch Rd to Monarch Road

<wfs:Transaction xmlns:topp="http://www.openplans.org/topp" xmlns:ogc="http://www.opengis.net/ogc" xmlns:wfs="http://www.opengis.net/wfs" service="WFS" version="1.0.0">
 <wfs:Update typeName="geosolutions:Mainrd">
 <wfs:Property>
 <wfs:Name>LABEL_NAME</wfs:Name>
 <wfs:Value>Monarch Road</wfs:Value>
 </wfs:Property>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>LABEL_NAME</ogc:PropertyName>
 <ogc:Literal>Monarch Rd</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 </wfs:Update>
</wfs:Transaction>

	Issue the WFS-T request towards GeoServer using curl on the command line:

curl -XPOST -d @request.xml -H "Content-type: application/xml" "http://localhost:8083/geoserver/ows"

	The response should be a TransactionResponse XML document containing a wfs:SUCCESS element

	Ask the info again using the uDig Info tool …

Note

In order to issue a GetFeatureInfo request from the OpenLayers MapPreview tool, just left-click over the line.

[image: ../../../../_images/wfs-t13.png]
Obtaining the updated Feature Type info from uDig interface

	Finally, obtain the Feature type info using the GetFeatureInfo operation issued directly by the Map Preview [http://localhost:8083/geoserver/mapPreview.do] .

[image: ../../../../_images/wfs-t14.png]
Obtaining the updated Feature Type info from OpenLayers MapPreview GetFeatureInfo

GeoNode Advanced Configuration

Here you will find information about every component of Geonode, such as GeoServer, geonode settings, security, etc.

Settings

GeoNode Django Apps

Make a GeoNode release

Settings

Here’s a list of settings available in GeoNode and their default values. This includes settings for some external applications that
GeoNode depends on.

Documents settings

Here’s a list of settings available for the Documents app in GeoNode.

ALLOWED_DOCUMENT_TYPES

Default: ['doc', 'docx', 'xls', 'xlsx', 'pdf', 'zip', 'jpg', 'jpeg', 'tif', 'tiff', 'png', 'gif', 'txt']

A list of acceptable file extensions that can be uploaded to the Documents app.

MAX_DOCUMENT_SIZE

Default: 2

Metadata settings

CATALOGUE

A dict with the following keys:

	ENGINE: The CSW backend (default is geonode.catalogue.backends.pycsw_local)

	URL: The FULLY QUALIFIED base URL to the CSW instance for this GeoNode

	USERNAME: login credentials (if required)

	PASSWORD: login credentials (if required)

pycsw is the default CSW enabled in GeoNode. pycsw configuration directives
are managed in the PYCSW entry.

PYCSW

A dict with pycsw’s configuration. Of note are the sections
metadata:main to set CSW server metadata and metadata:inspire
to set INSPIRE options. Setting metadata:inspire['enabled'] to true
will enable INSPIRE support. Server level configurations can be overridden
in the server section. See http://docs.pycsw.org/en/latest/configuration.html
for full pycsw configuration details.

MODIFY_TOPICCATEGORY

Default: False

Metadata Topic Categories list should not be modified, as it is strictly defined
by ISO (See: http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml
and check the <CodeListDictionary gml:id=”MD_MD_TopicCategoryCode”> element).

Some customisation it is still possible changing the is_choice and the GeoNode
description fields.

In case it is absolutely necessary to add/delete/update categories, it is
possible to set the MODIFY_TOPICCATEGORY setting to True.

Maps settings

DEFAULT_MAP_BASE_LAYER

The name of the background layer to include in newly created maps.

DEFAULT_MAP_CENTER

Default: (0, 0)

A 2-tuple with the latitude/longitude coordinates of the center-point to use
in newly created maps.

DEFAULT_MAP_ZOOM

Default: 0

The zoom-level to use in newly created maps. This works like the OpenLayers
zoom level setting; 0 is at the world extent and each additional level cuts
the viewport in half in each direction.

MAP_BASELAYERS

Default:

MAP_BASELAYERS = [{
"source": {
 "ptype": "gxp_wmscsource",
 "url": OGC_SERVER['default']['PUBLIC_LOCATION'] + "wms",
 "restUrl": "/gs/rest"
 }
 },{
 "source": {"ptype": "gxp_olsource"},
 "type":"OpenLayers.Layer",
 "args":["No background"],
 "visibility": False,
 "fixed": True,
 "group":"background"
 }, {
 "source": {"ptype": "gxp_osmsource"},
 "type":"OpenLayers.Layer.OSM",
 "name":"mapnik",
 "visibility": False,
 "fixed": True,
 "group":"background"
 }, {
 "source": {"ptype": "gxp_mapquestsource"},
 "name":"osm",
 "group":"background",
 "visibility": True
 }, {
 "source": {"ptype": "gxp_mapquestsource"},
 "name":"naip",
 "group":"background",
 "visibility": False
 }, {
 "source": {"ptype": "gxp_bingsource"},
 "name": "AerialWithLabels",
 "fixed": True,
 "visibility": False,
 "group":"background"
 },{
 "source": {"ptype": "gxp_mapboxsource"},
 }, {
 "source": {"ptype": "gxp_olsource"},
 "type":"OpenLayers.Layer.WMS",
 "group":"background",
 "visibility": False,
 "fixed": True,
 "args":[
 "bluemarble",
 "http://maps.opengeo.org/geowebcache/service/wms",
 {
 "layers":["bluemarble"],
 "format":"image/png",
 "tiled": True,
 "tilesOrigin": [-20037508.34, -20037508.34]
 },
 {"buffer": 0}
]

}]

A list of dictionaries that specify the default map layers.

GEONODE_CLIENT_LAYER_PREVIEW_LIBRARY

Default: "geoext"

The library to use for display preview images of layers. The library choices are:

	"leaflet"

	"geoext"

OGC_SERVER

Default: {} (Empty dictionary)

A dictionary of OGC servers and their options. The main
server should be listed in the ‘default’ key. If there is no ‘default’
key or if the OGC_SERVER setting does not exist Geonode will raise
an Improperly Configured exception. Below is an example of the OGC_SERVER
setting:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 }
}

BACKEND

Default: "geonode.geoserver"

The OGC server backend to use. The backend choices are:

	'geonode.geoserver'

BACKEND_WRITE_ENABLED

Default: True

Specifies whether the OGC server can be written to. If False, actions that modify
data on the OGC server will not execute.

DATASTORE

Default: '' (Empty string)

An optional string that represents the name of a vector datastore that Geonode uploads
are imported into. In order to support vector datastore imports there also needs to be an
entry for the datastore in the DATABASES dictionary with the same name. Example:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 'DATASTORE': 'geonode_imports'
 }
}

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': 'development.db',
 },
 'geonode_imports' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'NAME': 'geonode_imports',
 'USER' : 'geonode_user',
 'PASSWORD' : 'a_password',
 'HOST' : 'localhost',
 'PORT' : '5432',
 }
 }

GEOGIG_ENABLED

Default: False

A boolean that represents whether the OGC server supports GeoGig datastores.

GEONODE_SECURITY_ENABLED

Default: True

A boolean that represents whether GeoNode’s security application is enabled.

LOCATION

Default: "http://localhost:8080/geoserver/"

A base URL from which GeoNode can construct OGC service URLs.
If using GeoServer you can determine this by
visiting the GeoServer administration home page without the
/web/ at the end. For example, if your GeoServer administration app is at
http://example.com/geoserver/web/, your server’s location is http://example.com/geoserver.

MAPFISH_PRINT_ENABLED

Default: True

A boolean that represents whether the MapFish printing extension is enabled on the server.

PASSWORD

Default: 'geoserver'

The administrative password for the OGC server as a string.

PRINT_NG_ENABLED

Default: True

A boolean that represents whether printing of maps and layers is enabled.

PUBLIC_LOCATION

Default: "http://localhost:8080/geoserver/"

The URL used to in most public requests from Geonode. This settings allows a user to write to one OGC server (the LOCATION setting)
and read from a separate server or the PUBLIC_LOCATION.

USER

Default: 'admin'

The administrative username for the OGC server as a string.

WMST_ENABLED

Default: False

Not implemented.

WPS_ENABLED

Default: False

Not implemented.

TIMEOUT

Default: 10

The maximum time, in seconds, to wait for the server to respond.

SITEURL

Default: 'http://localhost:8000/'

A base URL for use in creating absolute links to Django views and generating links in metadata.

Proxy settings

PROXY_ALLOWED_HOSTS

Default: () (Empty tuple)

A tuple of strings representing the host/domain names that GeoNode can proxy requests to. This is a security measure
to prevent an attacker from using the GeoNode proxy to render malicious code or access internal sites.

Values in this tuple can be fully qualified names (e.g. ‘www.geonode.org’), in which case they will be matched against
the request’s Host header exactly (case-insensitive, not including port). A value beginning with a period can be used
as a subdomain wildcard: .geonode.org will match geonode.org, www.geonode.org, and any other subdomain of
geonode.org. A value of ‘*’ will match anything and is not recommended for production deployments.

PROXY_URL

Default /proxy/?url=

The URL to a proxy that will be used when making client-side requests in GeoNode. By default, the
internal GeoNode proxy is used but administrators may favor using their own, less restrictive proxies.

Search settings

DEFAULT_SEARCH_SIZE

Default: 10

An integer that specifies the default search size when using geonode.search for querying data.

Security settings

AUTH_EXEMPT_URLS

Default: () (Empty tuple)

A tuple of URL patterns that the user can visit without being authenticated.
This setting has no effect if LOCKDOWN_GEONODE is not True. For example,
AUTH_EXEMPT_URLS = ('/maps',) will allow unauthenticated users to
browse maps.

LOCKDOWN_GEONODE

Default: False

By default, the GeoNode application allows visitors to view most pages without being authenticated. If this is set to True
users must be authenticated before accessing URL routes not included in AUTH_EXEMPT_URLS.

RESOURCE_PUBLISHING

Default: True

By default, the GeoNode application allows GeoNode staff members to
publish/unpublish resources.
By default resources are published when created. When this settings is set to
True the staff members will be able to unpublish a resource (and eventually
publish it back).

Social settings

SOCIAL_BUTTONS

Default: True

A boolean which specifies whether the social media icons and JavaScript should be rendered in GeoNode.

SOCIAL_ORIGINS

Default:

SOCIAL_ORIGINS = [{
 "label":"Email",
 "url":"mailto:?subject={name}&body={url}",
 "css_class":"email"
}, {
 "label":"Facebook",
 "url":"http://www.facebook.com/sharer.php?u={url}",
 "css_class":"fb"
}, {
 "label":"Twitter",
 "url":"https://twitter.com/share?url={url}",
 "css_class":"tw"
}, {
 "label":"Google +",
 "url":"https://plus.google.com/share?url={url}",
 "css_class":"gp"
}]

A list of dictionaries that is used to generate the social links displayed in the Share tab. For each origin, the name and URL format parameters are replaced by the actual values of the ResourceBase object (layer, map, document).

SHOW_PROFILE_EMAIL

Default: False

A boolean which specifies wether to display the email in user’s profile.

CKAN_ORIGINS

Default:

CKAN_ORIGINS = [{
 "label":"Humanitarian Data Exchange (HDX)",
 "url":"https://data.hdx.rwlabs.org/dataset/new?title={name}¬es={abstract}",
 "css_class":"hdx"
}]

A list of dictionaries that is used to generate the links to CKAN instances displayed in the Share tab. For each origin, the name and abstract format parameters are replaced by the actual values of the ResourceBase object (layer, map, document). This is not enabled by default. To enabled, uncomment the following line: SOCIAL_ORIGINS.extend(CKAN_ORIGINS).

TWITTER_CARD

Default:: True

A boolean that specifies whether Twitter cards are enabled.

TWITTER_SITE

Default:: '@GeoNode'

A string that specifies the site to for the twitter:site meta tag for Twitter Cards.

TWITTER_HASHTAGS

Default:: ['geonode']

A list that specifies the hashtags to use when sharing a resource when clicking on a social link.

OPENGRAPH_ENABLED

Default:: True

A boolean that specifies whether Open Graph is enabled. Open Graph is used by Facebook and Slack.

Upload settings

GEOGIG_DATASTORE_NAME

Default: None

A string with the default GeoGig datastore name. This value is only used if no GeoGig datastore name is provided
when data is uploaded but it must be populated if your deployment supports GeoGig.

UPLOADER

Default:

{
 'BACKEND' : 'geonode.rest',
 'OPTIONS' : {
 'TIME_ENABLED': False,
 'GEOGIG_ENABLED': False,
 }
}

A dictionary of Uploader settings and their values.

BACKEND

Default: 'geonode.rest'

The uploader backend to use. The backend choices are:

	'geonode.importer'

	'geonode.rest'

The importer backend requires the GeoServer importer extension to be enabled and is required for uploading data into
GeoGig datastores.

OPTIONS

Default:

'OPTIONS' : {
 'TIME_ENABLED': False,
 'GEOGIG_ENABLED': False,
}

TIME_ENABED

Default: False

A boolean that specifies whether the upload should allow the user to enable time support when uploading data.

GEOGIG_ENABED

Default: False

A boolean that specifies whether the uploader should allow the user to upload data into a GeoGig datastore.

User Account settings

REGISTRATION_OPEN

Default: False

A boolean that specifies whether users can self-register for an account on your site.

THEME_ACCOUNT_CONTACT_EMAIL

Default: 'admin@example.com'

This email address is added to the bottom of the password reset page in case users have trouble unlocking their account.

Download settings

DOWNLOAD_FORMATS_METADATA

Specifies which metadata formats are available for users to download.

Default:

DOWNLOAD_FORMATS_METADATA = [
 'Atom', 'DIF', 'Dublin Core', 'ebRIM', 'FGDC', 'ISO',
]

DOWNLOAD_FORMATS_VECTOR

Specifies which formats for vector data are available for users to download.

Default:

DOWNLOAD_FORMATS_VECTOR = [
 'JPEG', 'PDF', 'PNG', 'Zipped Shapefile', 'GML 2.0', 'GML 3.1.1', 'CSV',
 'Excel', 'GeoJSON', 'KML', 'View in Google Earth', 'Tiles',
]

DOWNLOAD_FORMATS_RASTER

Specifies which formats for raster data are available for users to download.

Default:

DOWNLOAD_FORMATS_RASTER = [
 'JPEG', 'PDF', 'PNG' 'Tiles',
]

Contrib settings

EXIF_ENABED

Default: False

A boolean that specifies whether the Exif contrib app is enabled. If enabled, metadata is generated from Exif tags when documents are uploaded.

NLP_ENABED

Default: False

A boolean that specifies whether the NLP (Natural Language Processing) contrib app is enabled. If enabled, NLP (specifically MITIE) is used to infer additional metadata from uploaded documents to help fill metadata gaps.

NLP_LOCATION_THRESHOLD

Default: 1.0

A float that specifies the threshold for location matches.

NLP_LIBRARY_PATH

Default:: '/opt/MITIE/mitielib'

A string that specifies the location of the MITIE library

NLP_MODEL_PATH

Default:: '/opt/MITIE/MITIE-models/english/ner_model.dat'

A string that specifies the location of the NER (Named Entity Resolver). MITIE comes with English and Spanish NER models. Other models can be trained.

SLACK_ENABED

Default: False

A boolean that specifies whether the Slack contrib app is enabled. If enabled, GeoNode will send messages to the slack channels specified in SLACK_WEBHOOK_URLS when a document is uploaded, metadata is updated, etc. Coverage of events is still incomplete.

SLACK_WEBHOOK_URLS

A list that specifies the URLs to post Slack messages to. Each URL is for a different channel. The default URL should be replaced when slack integration is enabled.

Default:

SLACK_WEBHOOK_URLS = [
 "https://hooks.slack.com/services/T000/B000/XX"
]

MONITORING_ENABLED

Default: False

Enable internal monitoring application (geonode.contrib.monitoring). If set to True, add following code to your local settings:

MONITORING_ENABLED = True
add following lines to your local settings to enable monitoring
if MONITORING_ENABLED:
 INSTALLED_APPS + ('geonode.contrib.monitoring',)
 MIDDLEWARE_CLASSES + ('geonode.contrib.monitoring.middleware.MonitoringMiddleware',)

See GeoNode Monitoring for details.

GeoNode Django Apps

The user interface of a GeoNode site is built on top of the Django web
framework. GeoNode includes a few “apps” (reusable Django modules) to support
development of those user interfaces. While these apps have reasonable default
configurations, for customized GeoNode sites you will probably want to adjust
these apps for your specific needs.

geonode.base - GeoNode core functionality

Stores core functionality used throughout the GeoNode application.

Template Tags

num_ratings <object>

Returns the number of ratings an object has. Example usage:

{% load base_tags %}
{% num_ratings map as num_votes %}

<p>Map votes: {{num_votes}}.</p>

categories

Returns topic categories and the count of objects in each category.

geonode.documents - Document creation and management

Manages uploaded files that can be related to maps. Documents can be any type of file that is included in the
ALLOWED_DOCUMENTS_TYPES setting.

settings.py Entries

	ALLOWED_DOCUMENT_TYPES

	Default: ['doc', 'docx', 'xls', 'xslx', 'pdf', 'zip', 'jpg', 'jpeg', 'tif', 'tiff', 'png', 'gif', 'txt']

A list of acceptable file extensions that can be uploaded to the Documents app.

	MAX_DOCUMENT_SIZE

	Default: 2

The maximum size (in megabytes) that an upload will be before it gets rejected.

geonode.layers - Layer creation and geospatial data management

This Django app provides support for managing and manipulating single geospatial datasets known as layers.

Models

	Attribute - Feature attributes for a layer managed by the GeoNode.

	Layer - A data layer managed by the GeoNode

	Style - A data layer’s style managed by the GeoNode

Views

	Creating, viewing, browsing, editing, and deleting layers and their metadata

Template Tags

	featured_layers

	Returns the 7 newest layers.

	layer_thumbnail <layer>

	Returns the layer’s thumbnail.

manage.py Commands

	importlayers

	python manage.py importlayers

Brings a data file or a directory full of data files into a
GeoNode site. Layers are added to the Django database, the
GeoServer configuration, and the GeoNetwork metadata index.

	updatelayers

	python manage.py updatelayers

Scan GeoServer for data that has not been added to GeoNode.

geonode.maps - Map creation and geospatial data management

This Django app provides some support for managing and manipulating geospatial
datasets. In particular, it provides tools for editing, viewing, and searching
metadata for data layers, and for editing, viewing, and searching maps that
aggregate data layers to display data about a particular topic.

Models

	Map - A collection of data layers composed in a particular order to form a map

	MapLayer - A model that maintains some map-specific information related to a layer, such as the z-indexing order.

Views

The maps app provides views for:

	Creating, viewing, browsing, editing, and deleting Maps

These operations require the use of GeoServer to manage map rendering, as well
as GeoExt to provide interactive editing and previewing of maps and data layers.

There are also some URL mappings in the geonode.maps.urls module for easy
inclusion in GeoNode sites.

settings.py Entries

	OGC_SERVER

	Default: {} (Empty dictionary)

A dictionary of OGC servers and their options. The main
server should be listed in the ‘default’ key. If there is no ‘default’
key or if the OGC_SERVER setting does not exist GeoNode will raise
an Improperly Configured exception. Below is an example of the OGC_SERVER
setting:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 }
}

	BACKEND

	Default: "geonode.geoserver"

The OGC server backend to use. The backend choices are:

	'geonode.geoserver'

	BACKEND_WRITE_ENABLED

	Default: True

Specifies whether the OGC server can be written to. If False, actions that modify
data on the OGC server will not execute.

	LOCATION

	Default: "http://localhost:8080/geoserver/"

A base URL from which GeoNode can construct OGC service URLs.
If using GeoServer you can determine this by
visiting the GeoServer administration home page without the
/web/ at the end. For example, if your GeoServer administration app is at
http://example.com/geoserver/web/, your server’s location is http://example.com/geoserver.

	PUBLIC_LOCATION

	Default: "http://localhost:8080/geoserver/"

The URL used to in most public requests from GeoNode. This settings allows a user to write to one OGC server (the LOCATION setting)
and read from a separate server or the PUBLIC_LOCATION.

	USER

	Default: 'admin'

The administrative username for the OGC server as a string.

	PASSWORD

	Default: 'geoserver'

The administrative password for the OGC server as a string.

	MAPFISH_PRINT_ENABLED

	Default: True

A boolean that represents whether the MapFish printing extension is enabled on the server.

	PRINT_NG_ENABLED

	Default: True

A boolean that represents whether printing of maps and layers is enabled.

	GEONODE_SECURITY_ENABLED

	Default: True

A boolean that represents whether GeoNode’s security application is enabled.

	GEOGIT_ENABLED

	Default: False

A boolean that represents whether the OGC server supports GeoGig datastores.

	WMST_ENABLED

	Default: False

Not implemented.

	WPS_ENABLED

	Default: False

Not implemented.

	DATASTORE

	Default: '' (Empty string)

An optional string that represents the name of a vector datastore that GeoNode uploads
are imported into. In order to support vector datastore imports there also needs to be an
entry for the datastore in the DATABASES dictionary with the same name. Example:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 'DATASTORE': 'geonode_imports'
 }
}

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': 'development.db',
 },
 'geonode_imports' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'NAME': 'geonode_imports',
 'USER' : 'geonode_user',
 'PASSWORD' : 'a_password',
 'HOST' : 'localhost',
 'PORT' : '5432',
 }
 }

	GEOSERVER_CREDENTIALS

	Removed in GeoNode 2.0, this value is now specified in the OGC_SERVER settings.

	GEOSERVER_BASE_URL

	Removed in GeoNode 2.0, this value is now specified in the OGC_SERVER settings.

	CATALOGUE

	A dict with the following keys:

	ENGINE: The CSW backend (default is geonode.catalogue.backends.pycsw_local)

	URL: The FULLY QUALIFIED base URL to the CSW instance for this GeoNode

	USERNAME: login credentials (if required)

	PASSWORD: login credentials (if required)

pycsw is the default CSW enabled in GeoNode. pycsw configuration directives
are managed in the PYCSW entry.

	PYCSW

	A dict with pycsw’s configuration. Of note are the sections
metadata:main to set CSW server metadata and metadata:inspire
to set INSPIRE options. Setting metadata:inspire['enabled'] to true
will enable INSPIRE support. Server level configurations can be overridden
in the server section. See http://pycsw.org/docs/configuration.html
for full pycsw configuration details.

	SITEURL

	Default: 'http://localhost:8000/'

A base URL for use in creating absolute links to Django views.

	DEFAULT_MAP_BASE_LAYER

	The name of the background layer to include in newly created maps.

	DEFAULT_MAP_CENTER

	Default: (0, 0)

A 2-tuple with the latitude/longitude coordinates of the center-point to use
in newly created maps.

	DEFAULT_MAP_ZOOM

	Default: 0

The zoom-level to use in newly created maps. This works like the OpenLayers
zoom level setting; 0 is at the world extent and each additional level cuts
the viewport in half in each direction.

	ASYNC_SIGNALS_BROKER_URL

	Default: `memory://

Sets broker url for async signals handling. Asynchronous signals are part of
scalable architecture of GeoNode.

Internally, this will be parsed and used by kombu library. Default is memory
transport, meaning all signals send with this method will be handled in-process,
synchronously. When using memory:// you do not need to set up external AMQP broker.

See Asynchronous signals handling for details.

geonode.proxy - Assist JavaScript applications in accessing remote servers

This Django app provides some HTTP proxies for accessing data from remote
servers, to overcome restrictions imposed by the same-origin policy used by
browsers. This helps the GeoExt applications in a GeoNode site to access various XML documents from OGC-compliant data services.

Views

	geonode.proxy.views.proxy

	This view forwards requests without authentication to a URL provided in the
request, similar to the proxy.cgi script provided by the OpenLayers project.

	geonode.proxy.views.geoserver

	This view proxies requests to GeoServer. Instead of a URL-encoded URL
parameter, the path component of the request is expected to be a path
component for GeoServer. Requests to this URL require valid authentication
against the Django site, and will use the default OGC_SERVER USER,
PASSWORD and LOCATION settings as defined in the maps application.

geonode.search - Provides the GeoNode search functionality.

This Django app provides a fast search functionality to GeoNode.

Views

	search_api- Builds and executes a search query based on url parameters and returns matching results in requested format.

geonode.security - GeoNode granular Auth Backend

This app provides an authentication backend for use in assigning permissions to individual objects (maps and layers).

settings.py Entries

	LOCKDOWN_GEONODE

	Default: False

By default, the GeoNode application allows visitors to view most pages without
being authenticated. Set LOCKDOWN_GEONODE = True to require a user to
be authenticated before viewing the application.

	AUTH_EXEMPT_URLS

	Default: () (Empty tuple)

A tuple of URL patterns that the user can visit without being authenticated.
This setting has no effect if LOCKDOWN_GEONODE is not True. For example,
AUTH_EXEMPT_URLS = ('/maps',) will allow unauthenticated users to
browse maps.

Template Tags

	geonode_media <media_name>

	Accesses entries in MEDIA_LOCATIONS without requiring the view to explicitly
add it to the template context. Example usage:

{% include geonode_media %}
{% geonode_media "ext_base" %}

	has_obj_perm <user> <obj> <permission>

	Checks whether the user has the specified permission on an object.

{% has_obj_perm user obj "app.view_thing" as can_view_thing %}

Django’s error templates

GeoNode customizes some of Django’s default error templates.

500.html

If no custom handler for 500 errors is set up in urls.py, Django will call django.views.defaults.server_error which expects a 500.html file in the root of the templates directory. In GeoNode, we have put a template that does not inherit from anything as 500.html and because most of Django’s machinery is down when an INTERNAL ERROR (500 code) is encountered the use of template tags should be avoided.

3rd party apps

pinax.notifications

This application enables users to receive notifications from specific events within GeoNode. For user-specific configuration, see Setting notification preferences. For settings, see User notifications settings.

Make a GeoNode release

Making a GeoNode release requires a quite complex preparation of the environment while once everything is set up is a really easy and quick task.
As said the complex part is the preparation of the environment since it involves, the generation of a password key to be uploaded to the Ubuntu servers and imported in launchpad.

If you have already prepared the environment then jump to the last paragraph.

Before start, make sure to have a pypi [https://pypi.python.org/pypi] and a launchpad [https://launchpad.net/] account.

Before doing the release, a GeoNode team member who can already make release has to add you as a launchpad GeoNode team member.

Creating and importing a gpg key

A GPG key is needed to push and publish the package.
There is a complete guide on how to create and import [https://help.launchpad.net/YourAccount/ImportingYourPGPKey] a GPG key

Preparing the environment

Make sure to have a Ubuntu 12.04 machine.
Install the following packages in addition to the python virtualenv tools:

$ sudo apt-get install git-core git-buildpackage debhelper devscripts

Get the GeoNode code (from master) in a virtualenv:

$ mkvirtualenv geonode
$ git clone https://github.com/GeoNode/geonode.git
$ cd geonode

Edit the .bashrc file and add the following lines (the key ID can be found in “your personal keys” tab:

export GPG_KEY_GEONODE="your_gpg_key_id"
export DEBEMAIL=yourmail@mail.com
export EDITOR=vim
export DEBFULLNAME="Your Full Name"

then close and:

$ source .bashrc

Type “env” to make sure all the variables are correctly exported

Set the correct git email:

$ git config --global user.email "yourmail@mail.com"

Register on Pypi with your Pypi credentials:

$ python setup.py register

Make the release

The followings are the only commands needed if the environment and the various registrations have already been done.

Make sure to have pulled the master to the desired commit.
Edit the file geonode/__init__.py at line 21 and set the correct version.

Install GeoNode in the virtualenv (make sure to have the virtualenv activated and be in the geonode folder):

$ pip install -e geonode

Publish the package:

$ cd geonode
$ paver publish

The last command will:

	Tag the release and push it to GitHub

	Create the debian package and push it at ppa:geonode/testing in launchpad

	Create the .tar.gz sources and push them to Pypi

	Update the changelog and commit it to master

GeoNode on Production

Configuring GeoNode for Production

Advanced GeoServer Configuration

Running GeoNode under SSL

GeoSites: GeoNode Multi-Tenancy

Configuring GeoNode for Production

This page documents recommendations for configuring GeoNode in production environments.
The steps mentioned in the first section are required to run GeoNode, the ones in the second section are either optional or ways to get more performance.

Note

This document makes numerous references to the <host> variable, please replace it with the IP Address of your GeoNode or the DNS entry.

For example: instead of http://<host>/geoserver, write down: http://mygeonode.com/geoserver or http://127.0.0.1/geoserver

Set the correct GeoServer Proxy URL value

Navigate to http://localhost/geoserver, log in and click on the Global link in the Settings section.

Note

The Geoserver default username is admin with geoserver as the password. Change this ASAP and update local_settings.py.

[image: ../../../_images/geoserver_global_settings.png]
Find the Proxy Base URL text field, put the complete address there:

http://<host>/geoserver/

[image: ../../../_images/geoserver_proxy_url.png]

Configure the Printing Module

This lives in the GeoServer Data directory /usr/share/geoserver/data/printing/config.yaml, add your server’s IP address or domain name to the list of exceptions.
Please refer to http://docs.geoserver.org/2.4.x/en/user/datadirectory/index.html for additional information on managing the GeoServer data directory:

hosts:
 - !dnsMatch
 host: YOUR_IP_ADDRESS
 port: 80

Recommended Steps (optional)

Adding layers from Google, Bing and other providers

Bing

Get an API key from Microsoft at http://www.bingmapsportal.com/ and place it in local_settings.py.:

BING_API_KEY="zxcxzcXAWdsdfkjsdfWWsdfjpowxcxz"

Copy the MAP_BASELAYERS dictionary from settings.py into local_settings.py and add the following snippet:

},{
"source": {
 "ptype":"gxp_bingsource",
 "apiKey": BING_API_KEY
 },
"group":"background",
"name":"Aerial",
"visibility": False,
"fixed": True,

Note

The approach described above only works with versions of django-geoexplorer up to 4.0.34. If you have a newer version installed, you can revert to this older version using pip (pip install django-geoexplor==4.0.34).

Google

Get an API key from Google at https://developers.google.com/maps/faq?csw=1#using-google-maps-apis and place it in local_settings.py, for example:

GOOGLE_API_KEY="zxcxzcXAWdqwdQWWQEDzxcxz"

Copy the MAP_BASELAYERS dictionary from settings.py into local_settings.py (or edit the previously copied snippet) and add the following snippet:

},{
"source": {
 "ptype":"gxp_googlesource",
 "otherParams": "sensor=false&key={0}".format(GOOGLE_API_KEY)
 },
"group":"background",
"name":"SATELLITE",
"visibility": False,
"fixed": True,

Sitemaps Configuration

GeoNode can automatically generate a sitemap suitable for submission to search
engines which can help them to index your GeoNode site more efficiently and
effectively.

In order to generate the sitemap properly, the sites domain name must be set
within the sites framework. This requires that an superuser login to the
admin interface and navigate to the sites module and change example.com to the
actual domain name (and port if applicable). The admin interface can be accessed
at http://<host>/admin/sites/site/. Click on the example.com link, and change
both the Domain name and Display name entries to match your system.

It is possible to ‘inform’ google of changes to your sitemap. This is accomplished
using the ping_google management command. More information can be found here
https://docs.djangoproject.com/en/dev/ref/contrib/sitemaps/#django.contrib.sitemaps.ping_google
It is recommended to put this call into a cron (scheduled) job to update google periodically.

Configuring User Registration

You can optionally configure GeoNode to allow new users to register through the web. New registrants will be sent an email inviting them to activate their account.

To allow new user registration:

	Set up the email backend for Django (see Django documentation [https://docs.djangoproject.com/en/1.8/topics/email/#email-backends])
and add the appropriate settings to
./src/GeoNodePy/geonode/local_settings.py. For example:

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST = 'smtp.gmail.com'
EMAIL_HOST_USER = 'foo@gmail.com'
EMAIL_HOST_PASSWORD = 'bar'
EMAIL_PORT = 587
EMAIL_USE_TLS = True

	In the same settings file set:

REGISTRATION_OPEN=True

	With the Django application running, set the domain name of the service properly through the admin interface as specified above in the Sitemaps section. (This domain name is used in the account activation emails.).

	Restart Apache:

$ sudo service apache2 restart

	(Optional) Disable automatic approval of new users. Administrators would receive an email and need to manually approve new accounts. For this option to work, an email backed has to be defined in order to email the users with Staff status the notification to approve the new account:

ACCOUNT_APPROVAL_REQUIRED = True

To register as a new user, click the ‘’Register’’ link in the GeoNode index header.

Additional Configuration

Some other things that require tweaking:

	Web-accessible uploads directory for user profile photos

Robot Exclusion File

GeoNode has several views that require considerable resources to properly respond - for example, the download links on layer detail pages require GeoServer to dynamically generate output in PDF, PNG, etc. format.

Crawlers for web search engines such as Google may cause problems by quickly following many such links in succession.

In order to request that “robots” do not make requests directly to GeoServer, you can ensure that requests to /robots.txt return a text file with the following content:

User-agent: *
Disallow: /geoserver/

This will only affect automated web agents; web browsers in particular are unaffected.

Memory Management

At the time of the GeoNode 1.0 release, the GeoNode manual recommended at least 4GB RAM for servers running GeoNode.

While 4GB physical RAM is sufficient, it is recommended that machines be configured with at least 6GB total virtual memory.

For example, a machine with 4GB physical RAM and 2GB swap space should be able to run GeoNode, but if you would like to run without a swapfile then you should configure the machine with at least 6GB RAM.

On Linux and Mac OS X hosts, you can check the available RAM with the following command:

$ free -m
 total used free shared buffers cached
Mem: 6096 3863 2232 0 0 0
-/+ buffers/cache: 3863 2232
Swap: 0 0 0

The “total” column lists the available physical memory and swap space in megabytes; adding them together yields the amount of virtual memory available to the system.

In this example, there is no Swap space so that field is 0 and the available RAM on the system is 6096MB (6 GB).

Security Integration Optimization

GeoServer delegates authentication and authorization to GeoNode. The default configuration uses an HTTP endpoint in GeoNode to discover the current user and the layers that are accessible. For production, it is advisable to use a database-level connection.

Installing the Stored Procedure

The SQL for the stored procedure is distributed with the GeoServer web application archive and can be found at WEB-INF/classes/org/geonode/security/geonode_authorize_layer.sql in the webapps directory. It can be loaded using the psql command by following these steps (if not using tomcat6 or Ubuntu, locate the webapps directory for your configuration):

$ cd /var/lib/tomcat6/webapps
$ sudo su - postgres
$ psql -d YOUR_DATABASE < geoserver/WEB-INF/classes/org/geonode/security/geonode_authorize_layer.sql

Configuring GeoServer to Use the Database Security Client

If a context configuration XML file does not already exist, create one for GeoServer. If using Tomcat 6 on Ubuntu, this file resides at /etc/tomcat6/Catalina/localhost/geoserver.xml. If creating a new file, the following XML should be added (replace ALLCAPS with your specific values):

<Context path="/geoserver"
 antiResourceLocking="false" >
 <Parameter name="org.geonode.security.databaseSecurityClient.url"
 value="jdbc:postgresql://localhost:5432/DATABASE?user=USER&password=PASSWORD"/>
</Context>

If the file exists already, just add the Parameter element from above.

Verification of Database Security Client

To verify the settings change, look in the GeoServer logs for a line that notes: “using geonode database security client”. If any issues arise, check your connection configuration as specified in the context file above.

Configuring the Servlet Container

GeoServer is the most resource intensive component of GeoNode.

There are some general notes on setting up GeoServer for production environments in the GeoServer manual [http://docs.geoserver.org/stable/en/user/production/index.html] .

However, the following are some GeoServer recommendations with GeoNode’s specific needs in mind.

JVM Options

The JRE used with GeoNode should be that distributed by Oracle.

Others such as OpenJDK may work but Oracle’s JRE is recommended for higher performance rendering.

Startup options should include the following:

-Xmx1024M -Xms1024M -XX:MaxPermSize=256M \
 -XX:CompileCommand=exclude,net/sf/saxon/event/ReceivingContentHandler.startEvent

These can be specified using the CATALINA_OPTS variable in Tomcat’s bin/catalina.sh file, or the JETTY_OPTS in Jetty’s bin/jetty.sh file.

Constrain GeoServer Worker Threads

While the JVM provides memory management for most operations in Java applications, the memory used for rendering (in GeoServer’s case, responding to WMS GetMap requests) is not managed this way, so it is allocated in addition to the memory permitted by the JVM options above.

If GeoServer receives many concurrent requests, it may increase the memory usage significantly, so it is recommended to constrain the number of concurrent requests at the servlet container (ie, Jetty or Tomcat).

For Tomcat, you can edit conf/server.xml. By default, this file contains an entry defining a ContextHandler:

<Connector port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8443"/>

Add a maxThreads attribute to limit the number of threads (concurrent requests) to 50 (the default in Tomcat is 200):

<Connector port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8443" maxThreads="50"/>

Note

This configuration is possible in Jetty as well but not yet documented in this manual.

Native JAI and JAI ImageIO

Using the native-code implementation of JAI and JAI ImageIO speeds up GeoServer, thereby requiring less concurrency at the same level of throughput.

The GeoServer manual contains platform-specific instructions [http://docs.geoserver.org/stable/en/user/production/java.html#install-native-jai-and-imageio-extensions] for configuring JAI and JAI ImageIO.

GeoServer Configuration

There are a few controls to be set in the GeoServer configuration itself as well.

On the JAI Settings page

[image: ../../../_images/GeoServer-JAI-Settings.png]
There are two considerations for the JAI settings.

	Enable JPEG and PNG Native Acceleration to speed up the performance of WMS requests

	Disable Tile Recycling as this optimization is less relevant on recent JVM implementations and has some overhead itself.

On the WMS Service page

[image: ../../../_images/GeoServer-Web-Map-Service.png]
There is only one consideration for the Web Map Service page

	Don’t set the “Resource Consumption Limits.”
This sounds a bit counter intuitive, but these limits are implemented in an inefficient way such that unless resource-intensive requests are common on your server it is more efficient to avoid the limits.
A better implementation of this feature is available for GeoServer 2.1 and will be incorporated in GeoNode 1.1.

Printing with the Mapfish Print Service

The GeoNode map composer can “print” maps to PDF documents using the Mapfish
print service [http://www.mapfish.org/doc/print]. The recommended way to run
this service is by using the printing extension to GeoServer (if you are using
the pre-built GeoNode package, this extension is already installed for you).
However, the print service includes restrictions on the servers that can
provide map tiles for printed maps. These restrictions have a fairly strict
default, so you may want to loosen these constraints.

Adding servers by hostname

The MapFish printing module is configured through a YAML [http://yaml.org/]
configuration file, usually named print.yaml. If you are using the
GeoServer plugin to run the printing module, this configuration file can be
found at GEOSERVER_DATA_DIR/printing/config.yaml. The default
configuration should contain an entry like so:

hosts:
 - !dnsMatch
 host: labs.metacarta.com
 port: 80
 - !dnsMatch
 host: terraservice.net
 port: 80

You can add host/port entries to this list to allow other servers.

See also

The Mapfish documentation [http://www.mapfish.org/doc/print/configuration.html] on configuring the
print module.

The GeoServer documentation [http://docs.geoserver.org/maintain/en/user/extensions/printing/index.html] on
configuring the print module.

Advanced GeoServer Configuration

In this module we are going to cover some advanced configurations and :

	Configuring GeoServer for robustness

	Advanced Production GeoServer configuration

	Advanced Coordinate Reference System Handling

	Advanced Database Connection Pooling Configuration

	Installing and Configuring the Monitoring Extension

	How to measure performances with JMeter

	Configuring the Control flow Extension

Configuring GeoServer for robustness

In a production environment may be necessary to properly configure the WMS service in order to give a limit to resources associated with a request. The Resource Limits options allow the administrator to limit the resources consumed by each WMS GetMap request.

GeoServer provides a user interface for these options:

[image: ../../../../_images/parameters1.png]
Setting the Resource consumption limits

The following table shows each option name, a description, and the minimum GeoServer version at which the option is available (old versions will just ignore it if set).

	Option

	Description

	Version

	Max rendering memory

	Sets the maximum amount of memory, in kilobytes, a single GetMap request is allowed to use. Each output format will make a best effort attempt to respect the maximum using the highest consuming portion of the request processing as a reference. For example, the PNG output format will take into consideration the memory used to prepare the image rendering surface in memory, usually proportional to the image size multiplied by the number of bytes per pixel

	1.7.5

	Max rendering time

	Sets the maximum amount of time, in seconds, GeoServer will use to process the request. This time limits the “blind processing” portion of the request serving, that is, the part in which GeoServer is computing the results before writing them out to the client. The portion that is writing results back to the client is not under the control of this parameter, since this time is also controlled by how fast the network between the server and the client is. So, for example, in the case of PNG/JPEG image generation, this option will control the pure rendering time, but not the time used to write the results back.

	1.7.5

	Max rendering errors

	Sets the maximum amount of rendering errors tolerated by a GetMap. Usually GetMap skips over faulty features, reprojection errors and the like in an attempt to serve the results anyways. This makes for a best effort rendering, but also makes it harder to spot issues, and consumes CPU cycles as each error is handled and logged

	1.7.5

Out of the box GeoServer uses 65MB, 60 seconds and 1000 errors respectively. All limits can be disabled by setting their value to 0.

Once any of the set limits is exceeded, the GetMap operation will stop and a ServiceException will be returned to the client.

It is suggested that the administrator sets all of the above limits taking into consideration peak conditions. For example, while a GetMap request under normal circumstance may take less than a second, under high load it is acceptable for it to take longer, but usually, it’s not sane that a request goes on for 30 minutes straight. The following table shows some example values for the configuration options above, with explanations of how each is computed:

	Option

	Value

	Rationale

	maxRequestMemory

	65000

	65MB are sufficient to render a 4078x4078 image at 4 bytes per pixel (full color and transparency), or a 8x8 meta-tile if you are using GeoWebCache or TileCache. Mind the rendering process will use an extra in memory buffer for each subsequent FeatureTypeStyle in your SLD, so this will also limit the size of the image. For example, if the SLD contains two FeatureTypeStyle element in order to draw cased lines for an highway the maximum image size will be limited to 2884x2884 (the memory goes like the square of the image size, so halving the memory does not halve the image size)

	maxRenderingTime

	60

	A request that processes for one minute straight is probably drawing a lot of features independent of the current load. It might be the result of a client making a GetMap against a big layer using a custom style that does not have the proper scale dependencies

	maxRenderingErrors

	1000

	Encountering 1000 errors is probably the result of a request that is trying to reproject a big data set into a projection that is not suited to area it covers, resulting in many reprojection failures.

Advanced Production GeoServer configuration

Most of the GeoServer downloads are geared towards quickly showing off the capabilities, with an array of demos, sample layers, and an embedded servlet container. If you are using GeoServer in a production environment, there are a few things we’d like to recommend. In this section the task is to configure your system to use it in production.

Note

Before you start, ensure that the Web Administrator Interface - Server section has been completed.

Configuring your container for production

Note

Most open source Java web containers, such as Tomcat, ship with development mode configurations that allow for quick startup but don’t deliver the best performance.

Make sure that in the ‘setenv.sh’, or ‘setenv.bat’ on Windows machines, file exists the following configuration to set up the Java virtual machine options in your container. Open the ‘setenv.sh/.bat’ file located in ‘<TRAINING_ROOT>’ directory and look at the options:

[image: ../../../../_images/java_opts.png]
Setting the JAVA_OPTS for Tomcat container

	-server: Not present among the training options, this option enables the server JVM, which JIT compiles bytecode much earlier, and with stronger optimizations. Startup and first calls will be slower due to JIT compilation taking more time, but subsequent ones will be faster (to give you some numbers, on the same machine a vanilla VM returns GML at 7MB/s speed, a -server one runs at 10MB/s). This option is required only if the JMV does not already get into server mode, which happens on a server operating system (Linux, Windows server) with at least 2 cores and 2 GB of memory.

Note

This parameter is necessary only for Windows environments of class workstation

	-Xms512m -Xmx512M: give your server memory. By default JVM will use only 64MB of heap. If you’re serving just vector data, you’ll be full streaming, so having much memory won’t help a lot, but if you’re serving coverages JAI will use a cache to avoid hitting the disk often. In this case, give GeoServer at least 256MB or memory, or more if you have plenty of RAM, and go configure the JAI title cache size in the GeoServer configuration panel so that it uses 75% of the heap (0.75). If you have plenty of memory it is suggested to set -Xms to the same value as -Xmx, this will make heap management more stable during heavy load serving. Generally speaking, don’t allocate more than 2GB for the GeoServer heap.

	-XX:MaxPermSize=128m (or more): the permanent generation is the heap portion where the class bytecode is stored. GeoServer uses lots of classes, and it may exhaust that space quickly leading to out of memory errors. If you’re deploying GeoServer along with other applications in the same container or if you need to deploy multiple GeoServer instances inside the same container (e.g., different instances for different customers or similar needs) you better raise up the MaxPermSize to 128m or more.

Warning

In order to obtain best performance, install the native JAI version in your JDK. In particular, installing the native JAI is important for all raster processing, which is used heavily in both WMS and WCS to rescale, cut and reproject rasters. Installing the native JAI is also important for all raster reading and writing, which affects both WMS and WCS. Finally, native JAI is very useful even if there is no raster data involved, as WMS output encoding requires writing PNG/GIF/JPEG images, which are themselves rasters. For more information how to installa JAI and ImageIO see the Installing the native JAI and ImageIO section

Setting up logging for production

Note

Logging may visibly affect the performance of your server. High logging levels are often necessary to track down issues, but by default you should run with low ones (and you can switch the logging levels at runtime, so don’t worry about having to stop the server to gather more information). You can change the logging level by going to the GeoServer configuration panel, Server section.

	Go to http://localhost:8083/geoserver and click on the ‘Global’ link in the ‘Settings’ section.

	Select ‘PRODUCTION_LOGGING.properties’ in Logging Profile and click submit.

[image: ../../../../_images/login_setup.png]
Set up logging for production

Choosing a service strategy

Note

A service strategy is the way we serve the output to the client. Basically, you have to choose between being absolutely sure of reporting errors with the proper OGC codes and serving output quickly.

You can configure the service strategy modifying the web.xml file located in ‘<TOMCAT_HOME>/instances/instance1/webapps/geoserver/WEB-INF’ directory of your GeoServer install:

	Set the ‘serviceStrategy’ param-name with ‘SPEED’.

All the possible strategies are:

	SPEED: serve outputs right away. The fastest strategy, make it unlikely to be able to report proper OGC errors in WFS though (they are reported only if the error occurs before the GML encodingstarts).

	BUFFER: stores the whole result in memory, and then serves it after the output is complete. This ensures proper OGC error reporting, but delays the response quite a bit and will exhaust memory if the response is big.

	FILE: same as buffer, but uses a file storage for buffering. Slower than BUFFER, ensures there won’t be memory issues.

	PARTIAL-BUFFER2: a balance between the two, tries to buffer in memory a few kilobytes of response, then behaves like SPEED.

Configuring all data and metadata to your instance

Note

It may be tempting to just skip some of the configuration steps, leave in the same keywords and abstract as the sample. Please do not, as this will only confuse potential users. They will have a list of GeoServers called ‘My GeoServer’.

	Completely fill out the WFS and WMS Contents sections.

	Put in your own URI (such as the name of your website) for the Namespace (Data -> Workspace) and remove the defaults.

	Make sure your datastores all use your URI.

	Remove the sample layers (states, spearfish, New York roads and the like, the easiest way to is go and remove the demo workspaces, everything contained in them will be removed as a result)

Change the administrator password

GeoServer ships by default with “admin” and “geoserver” as the default administrator user name and password. Before putting the GeoServer on-line it is imperative to change at least the administrator password.

Making use of an external Data Directory to store your configurations

Note

The configuration data resides within the GEOSERVER_DATA_DIR. To increase the portability of their data and to facilitate updates GeoServer, you should place this directory outside of GeoServer editing the web.xml file with the path that you prefer

See the ‘GEOSERVER_DATA_DIR’ context parameter in ‘<TRAINING_ROOT>/tomcat-6.0.36/instances/instance1/webapps/geoserver/WEB-INF’:

<context-param>
 <param-name>GEOSERVER_DATA_DIR</param-name>
 <param-value>$GEOSERVER_DATA_DIR</param-value>
</context-param>

Note

The external data dir can be also configured throught the environment variables on the ‘setenv.sh/.bat’ file.

Using a Spatial Database

We make shapefiles available as a datastore, as they are such a common format. But if you are running GeoServer in a production environment and if you need to manage the spatial indexes, transactions or if you have specific requirements involving the use of a database, setting up a spatial database and converting your shapefiles is highly recommended. If you’re doing transactions against GeoServer this is essential. Even though we have a very nice transaction framework, doubling up with the native transaction support of relational databases ensures your data integrity. Most all the major spatial DBs provide support to easily turn shapefiles into their native format. We recommend PostGIS, open source extensions to the PostgreSQL DB, most of our testing has been performed against it. Oracle, DB2, SQL Server and ArcSDE are also well supported. At the moment we don’t recommend MySQL, as it has trouble with rollbacks on geometry tables, and lacks advanced spatial functionality, but it is an option.

Setting security

GeoServer by default includes WFS-T, which lets users modify your backend database. If you don’t want that to happen, you can turn off transactions in the web admin tool, Service Panel -> WFS and set Service Level to Basic. If you’d like some users to be able to modify it, but not all, you’ll have to set up data access level security. For extra security when operating in read only mode, make sure that the connection to the datastore that is open to all is with a user who has read only permissions. That will make it so it’s completely impossible to do a SQL injection (though GeoServer is generally designed well enough that it’s not vulnerable).

Dealing with a locked down environment

GeoServer code, and the libraries it uses (Geotools, JAI) are not designed to be run in a security locked down environment. They need free access to environment variables, temp directory, user preferences and the like. In operating systems like Ubuntu the default Tomcat is locked down so that most of the above is not authorized. So far, the only way to run GeoServer in that environment is to grant all permissions to it.

Caching

Server-side caching of WMS tiles is the best way to get performance. Essentially how the caching works is the server will recognize a request and quickly return a pre-rendered result. This is how you can optimize for tile-based WMS clients and it works the best for them. There are several ways to set up caching for GeoServer like GeoWebCache.

Advanced Coordinate Reference System Handling

This section describes how coordinate reference systems (CRS) are handled in GeoServer, as well as what can be done to extend GeoServer’s CRS handling abilities.

Coordinate Reference System Configuration

When adding data, GeoServer tries to inspect data headers looking for an EPSG code: if the data has a CRS with an explicit EPSG code and the full CRS definition behind the code matches the one in GeoServer, the CRS will be already set for the data.
If the data has a CRS but no EPSG code, you’ll have to manually guess the EPSG code. Browsing to http://www.spatialreference.org might be a good option to find the exact EPSG code for your data.

If an EPSG code cannot be found, then either the data has no CRS or it is unknown to GeoServer. In this case, there are a few options:

	Force the declared CRS, ignoring the native one. This is the best solution if the native CRS is known to be wrong.

	Reproject from the native to the declared CRS. This is the best solution if the native CRS is correct, but cannot be matched to an EPSG number. An alternative is to add a custom EPSG code that matches exactly the native SRS.

If your data has no native CRS information, the only option is to specify/force an EPSG code.

Custom CRS Definitions

Add a custom CRS

This example shows how to add a custom projection in GeoServer.

	The projection parameters need to be provided as a WKT (well known text) definition. The code sample below is just an example:

PROJCS["NAD83 / Austin",
 GEOGCS["NAD83",
 DATUM["North_American_Datum_1983",
 SPHEROID["GRS 1980", 6378137.0, 298.257222101],
 TOWGS84[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
 PRIMEM["Greenwich", 0.0],
 UNIT["degree", 0.017453292519943295],
 AXIS["Lon", EAST],
 AXIS["Lat", NORTH]],
 PROJECTION["Lambert_Conformal_Conic_2SP"],
 PARAMETER["central_meridian", -100.333333333333],
 PARAMETER["latitude_of_origin", 29.6666666666667],
 PARAMETER["standard_parallel_1", 31.883333333333297],
 PARAMETER["false_easting", 2296583.333333],
 PARAMETER["false_northing", 9842500.0],
 PARAMETER["standard_parallel_2", 30.1166666666667],
 UNIT["m", 1.0],
 AXIS["x", EAST],
 AXIS["y", NORTH],
 AUTHORITY["EPSG","100002"]]

Note

This code sample has been formatted for readability. The information will need to be provided on a single line instead, or with backslash characters at the end of every line (except the last one).

	Go into the user_projections directory inside your data directory, and open the epsg.properties file. If this file doesn’t exist, you can create it.

	Insert the code WKT for the projection at the end of the file (on a single line or with backslash characters):

100002=PROJCS["NAD83 / Austin", \
 GEOGCS["NAD83", \
 DATUM["North_American_Datum_1983", \
 SPHEROID["GRS 1980", 6378137.0, 298.257222101], \
 TOWGS84[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], \
 PRIMEM["Greenwich", 0.0], \
 UNIT["degree", 0.017453292519943295], \
 AXIS["Lon", EAST], \
 AXIS["Lat", NORTH]], \
 PROJECTION["Lambert_Conformal_Conic_2SP"], \
 PARAMETER["central_meridian", -100.333333333333], \
 PARAMETER["latitude_of_origin", 29.6666666666667], \
 PARAMETER["standard_parallel_1", 31.883333333333297], \
 PARAMETER["false_easting", 2296583.333333], \
 PARAMETER["false_northing", 9842500.0], \
 PARAMETER["standard_parallel_2", 30.1166666666667], \
 UNIT["m", 1.0], \
 AXIS["x", EAST], \
 AXIS["y", NORTH], \
 AUTHORITY["EPSG","100002"]]

Note

Note the number that precedes the WKT. This will determine the EPSG code. So in this example, the EPSG code is 100002.

	Save the file.

	Restart GeoServer.

	Verify that the CRS has been properly parsed by navigating to the srs_list page in the web_admin.

	If the projection wasn’t listed, examine the logs for any errors.

Override an official EPSG code

In some situations it is necessary to override an official EPSG code with a custom definition. A common case is the need to change the TOWGS84 parameters in order to get better reprojection accuracy in specific areas.

The GeoServer referencing subsystem checks the existence of another property file, epsg_overrides.properties, whose format is the same as epsg.properties. Any definition contained in epsg_overrides.properties will override the EPSG code, while definitions stored in epsg.properties can only add to the database.

Special care must be taken when overriding the Datum parameters, in particular the TOWGS84 parameters. To make sure the override parameters are actually used the code of the Datum must be removed, otherwise the referencing subsystem will keep on reading the official database in search of the best Datum shift method (grid, 7 or 5 parameters transformation, plain affine transform).

For example, if you need to override the official TOWGS84 parameters of EPSG:3003 to better match the peninsular area of Italy:

PROJCS["Monte Mario / Italy zone 1",
GEOGCS["Monte Mario",
 DATUM["Monte Mario",
 SPHEROID["International 1924", 6378388.0, 297.0, AUTHORITY["EPSG","7022"]],
 TOWGS84[-50.2, -50.4, 84.8, -0.69, -2.012, 0.459, -5.791915759418465],
 AUTHORITY["EPSG","6265"]],
 PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]],
 UNIT["degree", 0.017453292519943295],
 AXIS["Geodetic longitude", EAST],
 AXIS["Geodetic latitude", NORTH],
 AUTHORITY["EPSG","4265"]],
PROJECTION["Transverse Mercator", AUTHORITY["EPSG","9807"]],
PARAMETER["central_meridian", 9.0],
PARAMETER["latitude_of_origin", 0.0],
PARAMETER["scale_factor", 0.9996],
PARAMETER["false_easting", 1500000.0],
PARAMETER["false_northing", 0.0],
UNIT["m", 1.0],
AXIS["Easting", EAST],
AXIS["Northing", NORTH],
AUTHORITY["EPSG","3003"]]

You should write the following (in a single line, here it’s reported formatted over multiple lines for readability):

3003 =
 PROJCS["Monte Mario / Italy zone 1",
GEOGCS["Monte Mario",
 DATUM["Monte Mario",
 SPHEROID["International 1924", 6378388.0, 297.0, AUTHORITY["EPSG","7022"]],
 TOWGS84[-104.1, -49.1, -9.9, 0.971, -2.917, 0.714, -11.68],
 AUTHORITY["EPSG","6265"]],
 PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]],
 UNIT["degree", 0.017453292519943295],
 AXIS["Geodetic longitude", EAST],
 AXIS["Geodetic latitude", NORTH]],
PROJECTION["Transverse_Mercator"],
PARAMETER["central_meridian", 9.0],
PARAMETER["latitude_of_origin", 0.0],
PARAMETER["scale_factor", 0.9996],
PARAMETER["false_easting", 1500000.0],
PARAMETER["false_northing", 0.0],
UNIT["m", 1.0],
AXIS["Easting", EAST],
AXIS["Northing", NORTH],
AUTHORITY["EPSG","3003"]]

The definition has been changed in two places: the TOWGS84 parameters, and the Datum code, AUTHORITY["EPSG","4265"], have been removed.

Advanced Database Connection Pooling Configuration

	Database connections are valuable resources and as such shall be managed with care:

	
	they are heavy to create and maintain for the database server itself since they are usually child processes of the DBMS server process

	being processes that means that creating a connection is not a zero-cost process therefore we should avoid creating connections as we need to connect to a DB but we should tend to create them in advance in order to minimize the impact of the time needed to create them on the time needed to serve a request.

	as a consequence of the fact that a connection require non negligible resources on the server DBMS DBAs tend to

	limit the number of connections globally available (e.g. PostgreSQL by default has a limit set to 100)

	limit the lifetime of connections created in order to discourage clients from retaining connections for a really long time

The purpose served by a connection pool is to maintain connections to an underlying database between requests. The benefit is that connection set-up only need to occur once on the first request while subsequent requests use existing connections and achieve a performance benefit as a result.

Ok, now let’s go into GeoServer specifics. In most GeoServer datastores you have the possibility to use the JNDI 1 or the standard store which basically means you can have GeoServer manage the connection pool for you or you can configure it externally (from within the Application Server of choice) and then have GeoServer lean onto it to get connections. Baseline is, one way or the other you’ll always end-up using a connection pool in GeoServer.

GeoServer Internal Connection Pool Parameters

Whenever a data store backed by a database is added to GeoServer an internal connection pool, for which relies on Apache Commons DBCP 2, is created by default. This connection pool is configurable, however let me say this upfront, the number of pool configuration parameters that we expose is a subset of the possible ones, although the most interesting are there. Namely there are a few that you might want to customize. Here below you can find some more details on the available connection parameters.

	max connections

	The maximum number of connections the pool can hold. When the maximum number of connections is exceeded, additional requests that require a database connection will be halted until a connection from the pool becomes available and eventually times out if that’s not possible within the time specified in the connection time-out. The maximum number of connections limits the number of concurrent requests that can be made against the database.

	min connections

	
	The minimum number of connections the pool will hold. This number of connections is held even when there are no active requests. When this number of connections is exceeded due to serving incoming requests additional connections are opened until the pool reaches its maximum size (described above). The implications of this number are multiple:

	-1- If it is very far from the max connections this might limit the ability of the GeoServer to respond quickly to unexpected or random heavy load situations due to the fact that it takes a non negligible time to create a new connections. However this set up is very good when the DBMS is quite loaded since it tends to use as less connections as possible at all times.

-2- If it is very close to the max connections value the GeoServer will be very fast to respond to random load situation. However in this case the GeoServer would put a big burden on DBMS shoulders as the the poll will try to hold all needed connections at all times.

	validate connections

	Flag indicating whether connections from the pool should be validated before they are used. A connection in the pool can become invalid for a number of reasons including network breakdown, database server timeout, etc.. The benefit of setting this flag is that an invalid connection will never be used which can prevent client errors. The downside of setting the flag is that a small performance penalty is paid in order to validate connections when the connection is borrowed from the pool since the validation is done by sending smal query to the server. However the cost of this query is usually small, as an instance on PostGis the validation query is Select 1.

	fetch size

	The number of records read from the database in each network exchange. If set too low (<50) network latency will affect negatively performance, if set too high it might consume a significant portion of GeoServer memory and push it towards an Out Of Memory Error. Defaults to 1000, it might be beneficial to push it to a higher number if the typical database query reads much more data than this, and there is enough heap memory to hold the results

	connection timeout

	Time, in seconds, the connection pool will wait before giving up its attempt to get a new connection from the database. Defaults to 20 seconds. This timeout kicks in during heavy load conditions when the number of requests needing a connection to a certain DB outnumber greatly the number of available connections in the pool, therefore some requests might get error messages due to the timeouts while acquiring a connection. This condition is not per se problematic since usually a request does not use a DB connection for its entire lifecycle hence we do not need 100 connections at hand to respond to 100 requests; however we should strive to limit this condition since it would queue threads on the connection pool after they might have allocated memory (e.g. for rendering). We will get back to this later on.

	max open prepared statements

	Maximum number of prepared statements kept open and cached for each connection in the pool.

	max wait

	number of seconds the connection pool will wait before timing out attempting to get a new connection (default, 20 seconds)

	validate connection

	It forces GeoServer to check that the connections borrowed from the pool are valid (i.e. not closed on the DMBS side) before using them.

	Test while idle

	Periodically test if the connections are still valid also while idle in the pool. Sometimes performing a test query using an idle connection can make the datastore unavailable for a while. Often the cause of this troublesome behaviour is related to a network firewall placed between Geoserver and the Database that force the closing of the underlying idle TCP connections.

	Evictor run periodicity

	Number of seconds between idle object evictor runs.

	Max connection idle time

	Number of seconds a connection needs to stay idle before the evictor starts to consider closing it.

	Evictor tests per run

	Number of connections checked by the idle connection evictor for each of its runs.

Prepared statements consideration

Prepared statements are used by databases to avoid re-planning the data access every time, the plan is done only once up-front, and as long as the statement is cached, the plan does not need to be re-computed.

In business applications fetching a small amount of data at a time this is beneficial for performance, however, in spatial ones, where we typically fetch thousands of rows, the benefit is limited, and sometimes, turns into a performance problem.
This is the case with PostGIS, that is able to tune the access plan by inspecting the requested bounding box, and deciding if a sequential scan is preferable (the BBOX really accesses most of the data) or using the spatial index is best instead. So, as a rule of thumb, when working with PostGIS, it’s better not to enable prepared statements.

With other databases there are no choices, Oracle currently works only with prepared statements, SQL server only without them (this is often related to implementation limitations than database specific issues).

There is an upside of using prepared statement though: no SQL injection attacks are possible when using them. GeoServer code tries hard to avoid this kind of attack when working without prepared statements, but enabling them makes the attack via filter parameters basically impossible.

Final Thoughts

To summarize, when creating standard datastores for serving vector data from DBMS in GeoServer you need to remember that internally a connection pool will be created.
This approach is the simplest to implement but might lead to an inefficient distribution of the connections between different stores in the following cases:

	if we tend to separate tables into different schemas this will lead to the need for creating multiple stores to serve them out since GeoServer works best if the “schema” parameter is specified, this leading to the creation of (mostly unnecessary) connection pools

	if we want to create stores in different workspaces connecting to the same database this again will lead to unnecessary duplication of connection pools in different store leading to inefficient usage of connections

Long story short the fact that the pool is internal with respect to the stores may lead to inefficient usage of connections to the underlying DBMS since they will be split between multiple stores limiting the scalability of each of them: in fact having 100 connections shared between N normal datastore will impose limits to the maximum number that each can use, otherwise if we managed to keep the connections into a single pool shared, in turn, with the various datastore we would achieve a much more efficient sharing between the store as, as an instance, a single store under high load could scale to use all the connections available.

Configuration of a JNDI connection pool with Tomcat

Many datastores in GeoServer provide the option of exploiting the Java Naming and Directory Interface or JNDI [https://en.wikipedia.org/wiki/Java_Naming_and_Directory_Interface]. for managing the connections pools. JNDI allows for components in a Java system to look up other objects and data by a predefined name. A common use of JNDI is to set-up a connection pool in order to improve the database resource management.

In order to set-up a connection pool, Tomcat needs to be provided with a JDBC driver for the database used and the necessary pool configurations.
Usually the JDBC driver can be found in the website of the DBMS provider or can be available in the database installation directory. This is important to know since we are not usually allowed to redistribute them.

The JDBC driver for creating connection pool to be shared via JNDI shall be placed in the $TOMCAT_HOME/lib directory, where $TOMCAT_HOME is the directory on which Tomcat is installed.

Note

Make sure to remove the JDBC driver from the Geoserver WEB-INF/lib folder when copied to the Tomcat shared libs, to avoid issues in JNDI DataStores usage.

The configuration is very similar between different databases. Here below some typical examples will be described.

PostgreSQL JNDI Configuration

For configuring a PostgreSQL JNDI pool you have to remove the Postgres JDBC driver (it should be named postgresql-X.X-XXX.jdbc3.jar) from the GeoServer WEB-INF/lib folder and put it into the TOMCAT_HOME/lib folder.

Tomcat Set-up

The first step to perform for creating a JNDI datasource (connection pool) is to edit the context.xml file inside $TOMCAT_HOME/conf directory. This file contains the different JNDI resources configured for Tomcat.
In this case, we are going to configure a JNDI datasource for a PostgreSQL database. If the file is not present you should create it and add a content similar to the following:

<Context>
 <Resource
 name="jdbc/postgres" auth="Container" type="javax.sql.DataSource"
 driverClassName="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/testdb"
 username="admin"
 password="admin"
 maxActive="20"
 maxIdle="10"
 maxWait="10000"
 minEvictableIdleTimeMillis="300000"
 timeBetweenEvictionRunsMillis="300000"
 validationQuery="SELECT 1"/>
</Context>

Note

If the file is already present, do not add the <Context></Context> labels.

In the previous XML snippet, we configured a connection to a PostgreSQL database called testdb which have the host name as localhost and port number equal to 5432.

Note

Note that the user shall set proper username and password for the database.

Some of the parameters that can be configured for the JNDI connection pool are as follows:

	maxActive : The number of maximum active connections to use.

	maxIdle : The number of maximum unused connections.

	maxWait : The maximum number of milliseconds that the pool will wait.

	poolPreparedStatements : Enable the prepared statement pooling (very important for good performance).

	maxOpenPreparedStatements : The maximum number of prepared statements in pool.

	validationQuery : (default null) A validation query that double checks the connection is still alive before actually using it.

	timeBetweenEvictionRunsMillis : (default -1) The number of milliseconds to sleep between runs of the idle object evictor thread. When non-positive, no idle object evictor thread will be run.

	numTestsPerEvictionRun : (default 3) The number of objects to examine during each run of the idle object evictor thread (if any).

	minEvictableIdleTimeMillis : : (default 1000 * 60 * 30) The minimum amount of time, in milliseconds, an object may sit idle in the pool before it is eligible for eviction by the idle object evictor (if any).

	removeAbandoned : (default false) Flag to remove abandoned connections if they exceed the removeAbandonedTimeout. If set to true a connection is considered abandoned and eligible for removal if it has been idle longer than the removeAbandonedTimeout. Setting this to true can recover db connections from poorly written applications which fail to close a connection.

	removeAbandonedTimeout : (default 300) Timeout in seconds before an abandoned connection can be removed.

	logAbandoned : (default false) Flag to log stack traces for application code which abandoned a Statement or Connection.

	testWhileIdle : (default false) Flag used to test connections when idle.

Warning

The previous settings should be modified only by experienced users. Using wrong low values for removedAbandonedTimeout and minEvictableIdleTimeMillis may result in connection failures; if so try it is important to set-up logAbandoned to true and check your catalina.out log file.

More informations about the parameters can be found at the DBCP documentation [http://commons.apache.org/proper/commons-dbcp/configuration.html].

GeoServer Set-up

Launch GeoServer and navigate to the Stores ‣ Add new Store section.

First, choose the PostGIS (JNDI) datastore and give it a name:

[image: ../../../../_images/postgis_start.png]
PostGIS JNDI Store Configuration

And then you can configure the connection pool:

[image: ../../../../_images/postgis_conf.png]
PostGIS JNDI Store Configuration

When you are doing this, make sure the schema is properly configured, or the datastore will list all the tables it can find in the schema it is given access to.

Microsoft SQLServer JNDI Configuration

Before configuring a SQLServer connection pool you must follow these Guidelines [http://docs.geoserver.org/stable/en/user/data/database/sqlserver.html].

Warning

You must remove the sqljdbc.jar file from the WEB-INF/lib folder and put it inside the $TOMCAT_HOME/lib folder.

Tomcat Set-up

In this case, we are going to configure a JNDI datasource for a SQLServer database. You shall create/edit the context.xml file inside $TOMCAT_HOME/conf directory
with the following lines:

<Context>
 <Resource
 name="jdbc/sqlserver"
 auth="Container"
 type="javax.sql.DataSource"
 url="jdbc:sqlserver://localhost:1433;databaseName=test;user=admin;password=admin;"
 driverClassName="com.microsoft.sqlserver.jdbc.SQLServerDriver"
 username="admin"
 password="admin"
 maxActive="20"
 maxIdle="10"
 maxWait="10000"
 minEvictableIdleTimeMillis="300000"
 timeBetweenEvictionRunsMillis="300000"
 validationQuery="SELECT 1"/>
</Context>

Note

Note that database name, username and password must be defined directly in the URL.

GeoServer Set-up

Launch GeoServer and navigate to the Stores ‣ Add new Store section.

Then choose the Microsoft SQL Server (JNDI) datastore and give it a name:

[image: ../../../../_images/sqlserver_start.png]
Microsoft SQLServer JNDI Store Configuration

After, you can configure the connection pool:

[image: ../../../../_images/sqlserver_conf.png]
Microsoft SQLServer JNDI Store Configuration

Oracle JNDI Configuration

Before configuring an Oracle connection pool you should download the Oracle plugin from the GeoServer Download Page [http://geoserver.org/download/]
and then put the ojdbc14.jar file into the $TOMCAT_HOME/lib folder.

Warning

You must remove the ojdbc14.jar file from the WEB-INF/lib folder and put it inside the $TOMCAT_HOME/lib folder.

Tomcat Set-up

First you must create/edit the context.xml file inside $TOMCAT_HOME/conf directory with the following lines:

<Context>
 <Resource
 name="jdbc/oralocal"
 auth="Container" type="javax.sql.DataSource"
 url="jdbc:oracle:thin:@localhost:1521:xe"
 driverClassName="oracle.jdbc.driver.OracleDriver"
 username="dbuser"
 password="dbpasswd"
 maxActive="20"
 maxIdle="3"
 maxWait="10000"
 minEvictableIdleTimeMillis="300000"
 timeBetweenEvictionRunsMillis="300000"
 poolPreparedStatements="true"
 maxOpenPreparedStatements="100"
 validationQuery="SELECT SYSDATE FROM DUAL" />
</Context>

GeoServer Set-up

Launch GeoServer and navigate to the Stores ‣ Add new Store section.

Then choose the Oracle NG (JNDI) datastore and give it a name:

[image: ../../../../_images/oracle_start.png]
Oracle JNDI Store Configuration

After, you can configure the connection pool:

[image: ../../../../_images/oracle_conf.png]
Oracle JNDI Store Configuration

Note

In Oracle the schema is usually the user name, upper cased.

Configuring Connection Pools for production usage

Connection waiting time and relation with other parameters

In general it is important to set the connection waiting time in a way that the connection pool does not become a place where to queue threads executing requests under big load. It is indeed possible that under big load threads executing requests for a vector layer will outnumber the available connections in the pool hence such threads will be blocked trying to acquire a new connection; if the number of connections is much smaller than the number of incoming requests and the max wait time is quite big (e.g. 60 seconds) we will find ourselves in the condition to have many threads waiting for a long time to acquire a connection after most of the resources they need will be allocated, especially the memory back buffer if these are WMS requests.

The max wait time in general shall be set accordingly to the expected maximum execution time for a requests, end-to-end. This include things like, accessing the file system, loading the data. As an instance if we take into account WMS requests we are allowed to specify a maximum response time, therefore if set this to N seconds the max wait time should be set to a value smaller than that since we don’t want to waste resources having threads blocked unnecessarily waiting for a connection. In this case it shall be preferable to fail fast to release resources that might be used unnecessarily otherwise.

Maximizing sharing of Connection Pools

	How the data is organized between database, schemas and table impact the degree of flexibility we have when trying to best share connections, regardless of the fact that we were using JNDI pools or not. Summarising:

	
	Splitting tables into many schemas makes it hard for GeoServer to access tables belonging to different schemas unless we switch to JNDI, since the schema must be specified as part of the connection parameters when using internal pools

	Using different users for different schemas prevent JNDI from working efficiently across schemas. It’s best to use when possible a single dedicated account across schemas

	Generally speaking having a complex combination of users and schema can lead to inefficient split of available connections in multiple pools

Long story short, whenever it’s possible strive to make use of a small number of users and if not using JNDI to a small number of schema, although JNDI is a must for organization willing to create a complex set up where different workspaces (i.e Virtual Services) serve the same content differently.

Query Validation

Regardless of how we configure the validation query it is extremely important that we always remember to validate connections before using them in GeoServer; not doing this might lead to spurious errors due to stale connections sitting the pool. This can be achieved with the internal connection pool (via the validate connections box) as well as with the pools declared in JNDI (via the validation query mechanism); it is worth to remind that the latter will account for finer grain configurability.

Footnotes

	1

	https://en.wikipedia.org/wiki/Java_Naming_and_Directory_Interface

	2

	http://commons.apache.org/proper/commons-dbcp/

Installing and Configuring the Monitoring plugin

The monitoring extension provides a request monitor for GeoServer. It captures
information about each request a GeoServer instance handles and produces reports
based on the request data.

	Installation of the Extension

	Basic Configuration of the Extension

	Configuring Auditing (File Bases Monitoring Logging)

Installing the Monitoring Extension

Monitoring is an official extension, as such it can be found alongside any GeoServer release. The extension is split into two modules, “core” and “hibernate”, where core provides the basic underpinnings of the module and allows to monitor “live” requests, while the hibernate extension provides database storage of the requests.

	Get the monitoring zip files, already downloaded for you, from the training material data\plugins folder (search for zip files containing the monitoring word, there will be two)

	Extract the contents of the archives into the <TRAINING_ROOT>/tomcat-6.0.36/instances/instance1/webapps/geoserver/WEB-INF/lib directory of the GeoServer installation.

Verifying the Installation

There are two ways to verify that the monitoring extension has been properly installed.

	Start GeoServer and open the Web Administration interface [http://localhost:8083/geoserver]. Log in using the administration account. If successfully installed, there will be a Monitor section on the left column of the home page.

[image: ../../../../_images/monitorwebadmin.png]
Monitoring section in the web admin interface

	Start GeoServer and navigate to the current data directory. If successfully installed, a new directory named monitoring will be created in the data directory.

Basic Configuration of the Monitor Extension

Many aspects of the monitor extension are configurable. All configuration files
are stored in the data directory under the monitoring directory:

<data_directory>
 monitoring/
 db.properties
 filter.properties
 hibernate.properties
 monitor.properties

The function of these files will be discussed below.

Monitor Mode

The monitoring extension supports different “monitoring modes” that control how
request data is captured and stored. Currently three modes are supported:

	history (Default) - Only historical request information is available. No live information is maintained.

	live - Only information about live requests is maintained.

	mixed - A combination of live and history. This mode is experimental.

The mode is set in the monitor.properties file.

Note

For the Virtual Machine GeoServer instance we are “live” mode.

History Mode

History mode persists information about all requests in an external database. It
does not provide any real time information. This mode is appropriate in cases
where a user is most interested in analyzing request history over a given time
period.

Live Mode

Live mode only maintains short lived information about requests that are
currently executing. It also maintains a small buffer of recent requests. No
external database is used with this mode and no information is persisted for
the long term.

This mode is most appropriate in cases where a user only cares about what a
server is doing in real time and is not interested about request history.

Mixed Mode

Mixed mode combines both live and history mode in that it maintains both real
time information and persists all request data to the monitoring database. This
mode however is experimental and comes with more overhead than the other two
modes. This is because mixed mode must perform numerous database transactions
over the life cycle of a single request (in order to maintain live information),
whereas history mode only has to perform a single database transaction for a
request.

This mode is most appropriate when both real time request information and
request history are desired. This mode is also most appropriate in a clustered
server environment in which a user is interested in viewing real time request
information about multiple nodes in a cluster.

Monitor Database

By default monitored request data is stored in an embedded H2 database located
in the monitoring directory. This can be changed by editing the
db.properties file:

default configuration is for h2
driver=org.h2.Driver
url=jdbc:h2:file:${GEOSERVER_DATA_DIR}/monitoring/monitoring

For example to store request data in an external PostgreSQL database:

driver=org.postgresql.Driver
url=jdbc:postgresql://localhost:5432/monitoring
username=bob
password=foobar

Warning

The above is just an example. Does not match the training users and environment.

Request Filters

By default not all requests are monitored. Those requests excluded include any web admin requests or any monitor HTTP API requests. These exclusions are configured in the filter.properties file:

/rest/monitor/**
/web
/web/**

These default filters can be changed or extended to filter more types of
requests. For example to filter out all WFS requests:

/wfs

How to determine the filter path

The contents of filter.properties are a series of ant-style patterns that
are applied to the path of the request. Consider the following request:

http://localhost:8083/geoserver/wms?request=getcapabilities

The path of the above request is /wms. In the following request:

http://localhost:8083/geoserver/rest/workspaces/topp/datastores.xml

The path is /rest/workspaces/topp/datastores.xml.

In general, the path used in filters is comprised of the portion of the URL
after /geoserver (including the preceding /) and before the query string ?:

http://<host>:<port>/geoserver/<path>?<queryString>

Note

For more information about ant-style pattern matching, see the Apache Ant manual [http://ant.apache.org/manual/dirtasks.html].

	Go to the Map Map Preview [http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.web.demo.MapPreviewPage] and open the geosolutions:Counties layer clicking on the OpenLayer link.

	Perform a few times zoom the map.

	Use also the GML preview for said layer

	Navigate to the Monitor/Reports section [http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.monitor.web.ReportPage]

	Click on OWS Request Summary to show a detailed chart like the following:

[image: ../../../../_images/monitor1.png]

Logging all requests on the file system

The history mode logs all requests into a database. This can put a very significant strain
on the database and can lead to insertion issues as the request table begins to host
millions of records.

As an alternative to the history mode it’s possible to enable the auditing logger, which will log
the details of each request in a file, which is periodically rolled. Secondary applications can
then process these log files and built ad-hoc summaries off line.

Configuration

The monitor.properties file can contain the following items to enable and configure file auditing:

	Go to the ${GEOSERVER_DATA_DIR}/monitoring and open the monitor.properties then append the following configuration:

audit.enabled=true
audit.path=${TRAINING_ROOT}
audit.roll_limit=20

	Replace ${TRAINING_ROOT} with the full path to the workshop root folder, and remember to always use forward slashes, /, in the path, regardless of the operating system. For example, on Windows the path might look like c:/data/Training_2.5.X-32

	Go to the Map Map Preview [http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.web.demo.MapPreviewPage] and open the geosolutions:states layer clicking on the OpenLayer link.

	Perform a few times zoom the map.

	Open the new created log file (named like geoserver_audit_yyyymmdd_nn.log) located at ${TRAINING_ROOT}.

Note

	audit.enable: is used to turn on the logger (it is off by default).

	audit.path: is the directory where the log files will be created.

	audit.roll_limit: is the number of requests logged into a file before rolling happens.

Note

The files are also automatically rolled at the beginning of each day.

Outputs and contents

The log directory will contain a number of log files following the geoserver_audit_yyyymmdd_nn.log
pattern. The nn is increased at each roll of the file. The contents of the log directory will look like:

geoserver_audit_20110811_2.log
geoserver_audit_20110811_3.log
geoserver_audit_20110811_4.log
geoserver_audit_20110811_5.log
geoserver_audit_20110811_6.log
geoserver_audit_20110811_7.log
geoserver_audit_20110811_8.log

Customizing the log contents

The log contents are driven by three FreeMarker templates. We can customize them to have the log file be a CSV file for example.

	On the file system navigate to the GeoServer data directory located at $GEOSERVER_DATA_DIR.

	In the monitoring directory create a new file named header.ftl (is used once when a new log file is created to form the first few lines of the file).

	Open header.ftl in the text editor of your choice and enter the following content:

start time,services,version,operation,url,response content type,total time,response length,error flag

	Create another file named content.ftl.

	Open content.ftl in the text editor of your choice and enter the following content:

${startTime?datetime?iso_utc_ms},${service!""},${owsVersion!""},${operation!""},"${path!""}${queryString!""}",${responseContentType!""},${totalTime},${responseLength?c},<#if error??>failed<#else>success</#if>

	Create a last file named footer.ftl, and leave its contents empty

	Run again a few requests, the log files should contain something like the following now:

start time,services,version,operation,url,response content type,total time,response lenght,error flag
2012-06-07T10:37:09.725Z,WMS,1.1.1,GetMap,"/geosolutions/wmsLAYERS=geosolutions:ccounties&STYLES=&FORMAT=image/png&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG:4269&BBOX=-106.17254516602,39.489453002927,-105.18378466798,40.054948608395&WIDTH=577&HEIGHT=330",image/png,59,30420,success
2012-06-07T10:37:10.075Z,WMS,1.1.1,GetMap,"/geosolutions/wmsLAYERS=geosolutions:ccounties&STYLES=&FORMAT=image/png&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG:4269&BBOX=-105.84010229493,39.543136352537,-105.34572204591,39.825884155271&WIDTH=577&HEIGHT=330",image/png,45,18692,success

How to measure performances with JMeter

In this submodule we are going to describe how to use the JMeter tool :

	Configuring JMeter for a simple test

	Configuring JMeter for a Multiscale test

	Configuring JMeter for testing Raster optimization

	Configuring JMeter for testing Vector data

	Configuring JMeter for testing Style optimization

	Configuring JMeter for testing GeoWebCache fullWMS support

	Configuring JMeter for testing WMS Resource Limits

	Configuring JMeter for testing Control Flow plugin

	Configuring JMeter for testing the Marlin renderer

Configuring JMeter for a simple test

Apache JMeter is an open source Java desktop application, built to verify functional behavior, perform load tests, and measure performance.

This section explains how to run performance tests using JMeter in order to evaluate the GeoServer performances when serving WMS requests.
The performance test aim to stress the server and evaluate the response time and throughput with an increasing number of simulated users
sending concurrent request to the server.

Note

Ideally, to avoid adding extra load to the server JMeter should run on a different machine.

Warning

If you have performed the exercises in the security section, please go back to the layer and
service security pages and open access to everybody, on all data and all services, before performing
the exercises in this section

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter:

[image: ../../../../../_images/jmeter2.png]
jMeter interface

	Add a new Thread Group with the mouse right click on Test Plan tree node:

[image: ../../../../../_images/jmeter3.png]
Adding a new Thread Group

	Add a new Loop Controller with the mouse right click on Thread Group tree node:

[image: ../../../../../_images/jmeter4.png]
Adding a new Loop Controller

	In the Thread Group panel set the number of thread for the test to 4 (this represents the number of simultaneous requests that are made to GeoServer) and the ramp-up period to 60. Also, check Forever on the Loop Count field.

[image: ../../../../../_images/jmeter14.png]
Setting the Thread Group

	Right click on the Loop Controller tree node and add a new HTTP Request element:

[image: ../../../../../_images/jmeter5.png]
Adding a new HTTP Request

	Add the following listeners by right clicking on Test Plan tree node: View results Tree, Summary Report, Graph results

[image: ../../../../../_images/jmeter7.png]
Adding a Listeners

	In the HTTP Request enter the following basic configuration:

	Field

	Value

	Server Name or IP

	localhost

	Port Number

	8083

	Path

	geoserver/ows

[image: ../../../../../_images/jmeter9.png]
HTTP Request host/port/path configuration

	From the training data root directory, open the data/jmeter_data/jmeter_request_params.txt, select and copy its contents in the clipboard, then click “Add from Clipboard” in the “HTTP request” panel to setup a sample GetMap request:

[image: ../../../../../_images/jmeter_request_params.png]
HTTP parameters configuration

At this point JMeter is configured to run a GeoServer performance test:

	Select on Thread Group tree node and then click on Run tool and select Start to starting the JMeter test.

[image: ../../../../../_images/jmeter13.png]
starting jMeter test

	Select View Results Tree to directly see the request informations produced and the request result:

[image: ../../../../../_images/jmeter15.png]
The View Results Tree panel

	Select Suymmary report to view the statistical information about the requests:

[image: ../../../../../_images/jmeter19.png]
The Aggregate Graph panel

	Select Graph Results to analyze the technical trend of the requests:

[image: ../../../../../_images/jmeter17.png]
The Spline Visualizer panel

Configuring JMeter for a Multiscale test

This chapter explains how to create a custom randomized Multiscale test with a set of multiple concurrent threads.

In the first paragraph is described how to generate a CSV file for randomized requests at different scales. In the second one is shown how to configure a new JMeter test
with multiple simultaneous threads.

Create CSV file

	Open the file gdal.bat under $TRAINING_ROOT folder inside the training home folder.

	Run:

cd %TRAINING_ROOT%\geoserver_data\data\boulder

gdalinfo srtm_boulder.tiff

	The output of the command will be something like this:

Driver: GTiff/GeoTIFF
Files: srtm_boulder.tiff
Size is 2520, 1800
Coordinate System is:
GEOGCS["WGS 84",
 DATUM["WGS_1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],
 AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4326"]]
Origin = (-105.700138888888890,40.300138888888888)
Pixel Size = (0.000277777777778,-0.000277777777778)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (-105.7001389, 40.3001389) (105d42' 0.50"W, 40d18' 0.50"N)
Lower Left (-105.7001389, 39.8001389) (105d42' 0.50"W, 39d48' 0.50"N)
Upper Right (-105.0001389, 40.3001389) (105d 0' 0.50"W, 40d18' 0.50"N)
Lower Right (-105.0001389, 39.8001389) (105d 0' 0.50"W, 39d48' 0.50"N)
Center (-105.3501389, 40.0501389) (105d21' 0.50"W, 40d 3' 0.50"N)
Band 1 Block=256x256 Type=Int16, ColorInterp=Gray
 Overviews: 1260x900, 630x450, 315x225, 158x113, 79x57, 40x29

	The information needed for create a Multiscale CSV file are:

	Tile Size

	256 x 256

	Pixel Size

	0.000277777777778

	Bounding Box

	((-105.7001389, -105.0001389), (39.8001389, 40.3001389))

	Run:

cd %TRAINING_ROOT%\data\jmeter_data

wms_request.py -count 100 -region -105.7 39.8 -105.0 40.3 -minres 0.00028 -maxres 0.00224 -minsize 256 256 -maxsize 1024 1024 > multiscale.csv

wms_request.py is a python script which generates randomized request at different bounding box and resolutions. The parameters are described in the following table:

	Parameter

	Description

	count

	Indicates the number of requests to generate

	region

	Indicates the maximum bounding box of each request

	minres/maxres

	Indicates the minimum and maximum value for the Pixel Size to request (Tipically it should be at least the minimum resolution)

	minsize/maxsize

	Indicates the minimum and maximum dimensions of the requested image (Tipically it should be at least as big as the tile size)

The CSV file is structured following the rule $width;$height;$bbox.

For example 290;444;-105.5904,39.910198,-105.48776,40.067338 indicates a request of size 290x444 and Bounding box [-105.5904,39.910198,-105.48776,40.067338].

JMeter must be configured for parsing the CSV file correctly by using the CSV Data Set Config element.

Configure JMeter

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter:

[image: ../../../../../_images/jmeter2.png]
jMeter interface

	Add 3 new Thread Group called 1, 2, 4

	For each Thread Group set the Number of Thread(users) field equal to the Thread Group name, the ramp-up period and Loop Count fields to 1.

[image: ../../../../../_images/jmeter18.png]
Setting the Thread Group

	In the Test Plan section, check the Run Thread Groups consecutively checkbox

	Add a new Loop Controller for each Thread Group object:

	Each Loop Controller should be configured following this schema:

	
	Thread Group

	
	1

	
	Loop Controller –> Loop Count

	
	100

	
	Thread Group

	
	2

	
	Loop Controller –> Loop Count

	
	50

	
	Thread Group

	
	4

	
	Loop Controller –> Loop Count

	
	50

	Right click on each Loop Controller tree node and add a new HTTP Request element with the same name of the Thread Group:

[image: ../../../../../_images/jmeter21.png]
Setting the HTTP Request

	In each HTTP Request add the following fields to the panel:

	Name

	Value

	Encode?

	Include Equals?

	bbox

	${bbox}

	unchecked

	checked

	height

	${height}

	unchecked

	checked

	width

	${width}

	unchecked

	checked

Which should look like in the picture

[image: ../../../../../_images/jmeter20.png]
HTTP Request panel configuration

	Uncheck the Follow Redirects and Use KeepAlive checkbox

	Right click on each Loop Controller tree node and add a new CSV Data Set Config element:

[image: ../../../../../_images/jmeter22.png]
Setting the CSV Data Set Config

	Configure the CSV Data Set Config element by adding the path of the CSV file created before and setting the variable definitions:

[image: ../../../../../_images/jmeter23.png]
Configuring the CSV Data Set Config

	From the Test Plan tree node add an HTTP Request Default element and enter the following basic configuration:

	Field

	Value

	Server Name or IP

	localhost

	Port Number

	8083

	Path

	geoserver/ows

It should look like this:

[image: ../../../../../_images/jmeter9.png]
HTTP Default Request host/port/path configuration

	From the training data root directory, open the data/jmeter_data/jmeter_request_params_2.txt, select and copy its contents in the clipboard, then click “Add from Clipboard” in the “HTTP request” panel to setup a sample GetMap request:

	Add the following listeners by right clicking on Test Plan tree node: “View results Tree”, “Summary Report”

	Add the following assertions by right clicking on Test Plan tree node: “Response Assertion”

[image: ../../../../../_images/jmeter24.png]
Adding Assertions

Note

Using Assertions is helpful because it avoids to continuously do a visual check on the results.

	Configure the “Response Assertion” following this table:

	Field

	Value

	Apply to

	Main sample only

	Response field to test

	Response Headers

	Pattern Matching Rules

	Contains

In the Pattern to test panel add:

Content-Type: image/png

The final result should look like in the picture:

[image: ../../../../../_images/jmeter25.png]
Configuring Response Assertion

At this point JMeter is configured to run a GeoServer performance test:

	Select the Test Plan tree node and select Run - Start from the top menu to start the JMeter test.

[image: ../../../../../_images/jmeter13.png]
starting jMeter test

	Select View Results Tree to directly see the request information produced and the requests results:

[image: ../../../../../_images/jmeter26.png]
The View Results Tree panel with a sample request

[image: ../../../../../_images/jmeter27.png]
Another request with different resolution and bounding box

	Select Summary report to view the statistical information about the requests:

[image: ../../../../../_images/jmeter28.png]
Suymmary report panel

Configuring JMeter for testing Raster optimization

The following section explains how the GeoServer performances improves with the optimization of raster files.

Optimization has already been discussed in the Introduction To Processing With GDAL sections, describing the most common techniques used.

Note

This section requires the layers published in the Adding an Image Mosaic, Introduction To Processing With GDAL and Advanced Mosaics Configuration sections.

Test the Unoptimized Mosaic

	Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file, creating a mosaic.jmx file

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter

	On the top left go to File –> Open and search for the new jmx file copied

	Disable the Thread Groups 8, 16, 32, 64 by right-clicking on them and selecting Disable.

	In the CSV Data Set Config element of the remaining thread groups, modify the path of the CSV file by setting the path for the file optimized.csv in the $TRAINING_ROOT/data/jmeter_data directory

	In the HTTP Request Default element modify the following parameters:

	Name

	Value

	layers

	geosolutions:boulder_bg

	srs

	EPSG:26913

At this point JMeter is configured to run a GeoServer performance test:

	Run the test

Note

Remember to run and stop the test a few times for having stable results

	You should see something like this:

[image: ../../../../../_images/jmeter29.png]
`View Results Tree` panel

	When the test is completed, Save the results in a text file and remove them from the console by clicking on Run –> Clear All on the menu

Test the Optimized Mosaic

	In the HTTP Request Default section modify the following parameter:

	Name

	Value

	layers

	geosolutions:boulder_bg_optimized

	Run the test again

	Compare the results of this test with the ones saved before. You should see that throughput is increased with the optimized Mosaic

Configuring JMeter for testing Vector data

The following section compares vector data preparation using Shapefile and PostGIS. For this example a Shapefile containing primary or secondary roads is used.

The purpose is to test the throughput between the shapefile and an optimized database containing the same data. The result will demonstrate that database optimization can provide a better
throughput than the one of the shapefile

Configuring the database

	Open the terminal and go to the %TRAINING_ROOT%

	Load the shapefile tl_2014_01_prisecroads located in %TRAINING_ROOT%\data\user_data into PostGIS with the following commands:

setenv.bat

createdb -U postgres -T postgis20 shape2

shp2pgsql -k -I "data\user_data\tl_2014_01_prisecroads\tl_2014_01_prisecroads.shp" public.pgroads | psql -U postgres -d shape2

Note

More information can be found at Loading a Shapefile into PostGIS

	On the %TRAINING_ROOT% run pgAdmin.bat

	Go to the table pgroads inside database shape2 and execute the following SQL script for creating an index on the MTFCC column:

CREATE INDEX mtfcc_idx ON pgroads ("MTFCC");

[image: ../../../../../_images/jmeter46.png]
Create a new index

The following index optimizes the access to the database when filtering on the MTFCC column.

Configuring GeoServer

	On your Web browser, navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/].

	Following the instructions on Adding a Postgis layer, configure the database shape2 in GeoServer and call it pgroads

Note

Note that the database Coordinate Reference System is EPSG:4269

	Configure the shapefile tl_2014_01_prisecroads used before in GeoServer following the instructions in Adding a Shapefile and call it allroads

Note

Note that the shapefile Coordinate Reference System is EPSG:4269

	Go to Styles and click on Add new Style

	On the bottom of the page, click on Choose File and select the SLD file called shproads in the $TRAINING_ROOT/data/jmeter_data directory

	Click on Upload and then on Submit. This new style supports scale dependency which is used as filter on the roads to display.

Configuring JMeter

	Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file creating a vector.jmx file.

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter

	On the top left go to File –> Open and search for the new jmx file copied

	In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file shp2pg.csv in the $TRAINING_ROOT/data/jmeter_data directory

	In the HTTP Request Default element modify the following parameters:

	Name

	Value

	layers

	geosolutions:allroads

	srs

	EPSG:4269

	styles

	shproads

Test the Shapefile

	Run the test. You should see something like this:

[image: ../../../../../_images/jmeter47.png]
Sample request on the Shapefile

Note

Remember to run and stop the test a few times for having stable results

	When the test is completed, Save the results in a text file.

	Remove the result from JMeter by clicking on Run –> Clear All on the menu

Test the Database

	In the HTTP Request Default element modify the following parameter:

	Name

	Value

	layers

	geosolutions:pgroads

	Run the test again. It should be noted that database throughput is greater than that of the Shapefile, because the new index created provides a faster access on the database, improving GeoServer performances

Configuring JMeter for testing Style optimization

The following section explains how GeoServer performances are improved when using optimized styles. Styling is an important feature for GeoServer, but requires some
attention in order to avoid slowing down the performances.

This tutorial is aimed to show how GeoServer performances change by choosing a different style for the same data set using JMeter.

Note

This example requires to have already completed the first 9 steps of the Creating a Base Map with a Layer Group section, Adding a Shapefile and Adding a Style sections .

Configuring GeoServer

	On your Web browser, navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/].

	Go to Styles and click on Add new Style

	On the bottom of the page, click on Choose File and select the SLD file called line_label in the $TRAINING_ROOT/data/jmeter_data directory

	Click on Upload and then on Submit. Now we have a style which supports labeling but has no control on the label conflicts and overlapping

	Return to the GeoServer Welcome Page [http://localhost:8083/geoserver/].

	Go to Layer Groups and click on test

	Add a new Layer to the Layer Group called bbuildings

[image: ../../../../../_images/jmeter36.png]
Add a new Layer to the Layer Group

	Change the associated styles by clicking on each style and choosing another one on the list. Use the following styles:

	Layer

	Style

	geosolutions:Mainrd

	line_label

	geosolutions:BoulderCityLimits

	polygon

	geosolutions:bplandmarks

	polygon

	geosolutions:bbuildings

	polygon

[image: ../../../../../_images/jmeter37.png]
Styles configuration

	Click on Save. With this configuration we have a Layer Group composed by 4 Layers with 4 bad styles associated. This will result in a low throughput, if compared to that of the test with optimized styles.

Configuring JMeter

	Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file and create a styles.jmx one

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter

	On the top left go to File –> Open and search for the new jmx file copied

	Disable Thread Group 8, 16, 32 and 64

	In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file style.csv in the $TRAINING_ROOT/data/jmeter_data directory

	In the HTTP Request Default element modify the following parameters:

	Name

	Value

	layers

	test

	srs

	EPSG:2876

Test with unoptimized styles

	Run the test. You should see something like this:

[image: ../../../../../_images/jmeter38.png]
View Results Tree panel with a bad styling

Note

Remember to run and stop the test a few times for having stable results

	When the test is completed, Save the results in a text file.

	Remove the result from JMeter by clicking on Run –> Clear All on the menu

Setting optimized styles

	Go to Layer Groups and click on test

	Change the associated styles by clicking on each style and choosing another one on the list. Use the following styles:

	Layer

	Style

	geosolutions:Mainrd

	mainrd

	geosolutions:BoulderCityLimits

	citylimits

	geosolutions:bplandmarks

	arealandmarks

	geosolutions:bbuildings

	buildings

[image: ../../../../../_images/jmeter39.png]
Styles configuration

	Click on Save. The new styles contain scale dependencies and label optimization, which will result in a better throughput.

Test with optimized styles

	Run again the test.

[image: ../../../../../_images/jmeter40.png]
View Results Tree panel with good styling

You may see that the throughput is greater than that of the first test. The use of scale dependencies reduces the layers to see at lower zoom levels while conflict resolution avoids to show multiple overlapping label at each zoom level.

Configuring JMeter for testing GeoWebCache fullWMS support

The following section compare GeoServer WMS with GeoWebCache fullWMS support. FullWMS is a new feature which allows GeoWebCache to act as a WMS endpoint, like GeoServer.
Using GeoWebCache, the server is able to cache the requested tiles in order to return them faster then GeoServer.

This example will show how to configure GeoWebCache with full WMS support and how to improve performance.

Configuring GeoServer/GeoWebCache

	On your Web browser, navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/].

	Go to Gridsets and click on Create a new gridest

	Call it EPSG_2876 and set EPSG:2876 as Coordinate Reference System

	Click on Compute from maximum extent of CRS and add 15 new Zoom Levels (from 0 to 14)by clicking on Add zoom level. It should look like this picture:

[image: ../../../../../_images/jmeter41.png]
Create a new Gridset

	Click on Save. Now this GridSet can be added to the Layer Group boulder for caching it with GeoWebCache

	Go to Layer Groups and click on boulder

	On the Available gridsets panel add the gridset EPSG_2876 from the list. Then click on Save.

[image: ../../../../../_images/jmeter42.png]
Add the new Gridset

Note

Remember to set Published zoom levels to Min and Max

Configuring JMeter

	Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file into gwc.jmx

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter

	On the top left go to File –> Open and search for the new jmx file copied

	Disable all the Thread Groups except for 8

	Disable the Content-Type Check

	In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file gwc.csv in the $TRAINING_ROOT/data/jmeter_data directory

	In the HTTP Request Default element modify the following parameters:

	Name

	Value

	layers

	boulder

	srs

	EPSG:2876

Test GeoServer WMS

	Run the test

Note

Remember to run and stop the test a few times for having stable results

	When the test is completed, Save the results in a text file.

	Remove the result from JMeter by clicking on Run –> Clear All on the menu

	Stop GeoServer

Test GeoWebCache fullWMS

	Go to $TRAINING_ROOT/data/gwc/geowebcache.xml and add the following snippet:

<gwcConfiguration>

 ...

 <fullWMS>true</fullWMS>
</gwcConfiguration>

Setting fullWMS to true allows GeoWebCache to use fullWMS support

	Restart GeoServer

	On the JMeter HTTP Request Default panel, change the Path from geoserver/ows to geoserver/gwc/service/wms in order to execute WMS requests directly to GeoWebCache, without passing from GeoServer

	Add a new parameter called hints which can have 3 values speed, default and quality. The first one should be used for having a faster response without concerning about image quality; the last one, instead, is slower but with a better quality; the second one is a good trade off between them. For the first test set hints to speed.

	Run the test

Note

At the first run, the throughput should be lower than that of GeoServer, because GeoWebCache has spent much time on generating the cached tiles.

	Remove the result from JMeter by clicking on Run –> Clear All on the menu

	Run the same test again.

Now the throughput should be improved, because GeoWebCache have already generated the tiles to cache and can reuse them. Image quality should be very poor because of the hints=speed configuration.

[image: ../../../../../_images/jmeter43.png]
Result from GeoWebCache fullWMS with hints=speed

	Run the same test with hints=default

[image: ../../../../../_images/jmeter44.png]
Result from GeoWebCache fullWMS with hints=default

	Run the same test with hints=quality

[image: ../../../../../_images/jmeter45.png]
Result from GeoWebCache fullWMS with hints=quality

It should be noted that changing the hints parameter changes the image quality, but the throughput is always greater than that of GeoServer WMS

Configuring JMeter for testing WMS Resource Limits

The following section explains how GeoServer performances are improved when setting the resource limits for WMS.

Preliminary Steps

	Open your Web browser and navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/].

	Go to Stores and select the storms datastore

	Change the following parameters:

	Name

	Value

	max connections

	1

	Connection timeout

	20000000

It should appear something like this:

[image: ../../../../../_images/jmeter30.png]
Change `storms` parameters

Now you have configured this store to enqueue all the requests in a single queue until they are not timed out.

Configure JMeter

	Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file and create limit.jmx

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter

	On the top left go to File –> Open and search for the new jmx file copied

	Disable all the Thread Groups except for the 64 one in order to create a test environment with multiple concurrent requests to be enqueued.

	In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file limits.csv in the $TRAINING_ROOT/data/jmeter_data directory

	In the HTTP Request Default element modify the following parameters:

	Name

	Value

	layers

	geosolutions:storm_obs

	srs

	EPSG:4326

Test without WMS Limits

	Run the test

Note

Remember to run and stop the test a few times for having stable results

	You should see something like this:

[image: ../../../../../_images/jmeter31.png]
View Results Tree

	When the test is completed, Save the results in a text file and remove them from the console by clicking on Run –> Clear All on the menu

Configure WMS Limits

	On your Web browser, navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/].

	Go to WMS and edit the Raster Rendering Options section:

	Name

	Value

	Max rendering time

	10

[image: ../../../../../_images/jmeter32.png]
Changing WMS limit configuration

With this option, GeoServer will cut off all the requests that need more than 10s to be rendered, making GeoServer more responsive. Note that this
will result in various error returned by GeoServer for those operations which are cut off.
You can choose another value to set. For having a good result you should take a value minor than the average response time of the first test.

Test with WMS Limits

	Run again the test. You should see multiple errors like this:

[image: ../../../../../_images/jmeter33.png]
Exceptions caused by maximum rendering limit exceeded

You may see that the throughput is increased because most of the timed out requests have been removed. With this kind of configuration you can control the responsiveness
of your GeoServer by removing stale requests instead of waiting for them.

Note

At the end of the test remove the limits and restore the previous configuration of the storms DataStore

Configuring JMeter for testing Control Flow plugin

This section explains how GeoServer performances are improved when using Control-Flow plugin.

This plugin avoid GeoServer to execute too many requests together, which could lead to bad performances, by reducing the number of concurrent operations to execute and appending the others to a queue. This behaviour improves GeoServer scalability.

Note

This example requires to have already completed Adding a ShapeFile and Adding a Style sections.

Configure JMeter

	Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file into controlflow.jmx

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter

	On the top left go to File –> Open and search for the new jmx file copied

	Disable View Results Tree section

	In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file controlflow.csv in the $TRAINING_ROOT/data/jmeter_data directory

	In the HTTP Request Default element modify the following parameters:

	Name

	Value

	layers

	geosolutions:Mainrd

	srs

	EPSG:2876

Test without Control Flow

	Run the test

Note

Remember to run and stop the test a few times for having stable results

	When the test is completed, Save the results in a text file.

You should notice that the throughput initially increases and then starts to decrease. This is associated to a bad scalability of the input requests. Remember which number of threads provides better throughput (it should be 8). This value indicates the maximum number of concurrent requests that the server can execute simultaneously.

[image: ../../../../../_images/jmeter34.png]
Decreased throughput (Note the results may be different in other machines)

	Remove the result from JMeter by clicking on Run –> Clear All on the menu

	Stop GeoServer

Configure Control Flow

	Go to $TRAINING_ROOT/data/plugins/not_installed and copy geoserver-2.6-SNAPSHOT-control-flow-plugin.zip zip file inside $TRAINING_ROOT/tomcat-6.0.36/instances/instance1/webapps/geoserver/WEB-INF/lib

	Unzip the content of geoserver-2.6-SNAPSHOT-control-flow-plugin.zip inside the same folder

	Go to $TRAINING_ROOT/geoserver_data and create a new file called controlflow.properties and add the following snippet

don't allow more than 8 WMS GetMap in parallel
ows.wms.getmap=8

This code snippet indicates that no more than 8 GetMap request can be executed simultaneously by the WMS service. Other informations about the configuration can be found in the next section

Note

If during your test you have found another number for the maximum throughput, you should set that value instead of 8

Test with Control Flow

	Restart GeoServer

	Run again the test.

You may see that the throughput is no more reduced after the control-flow configuration, because the input requests are scheduled by the control-flow plugin, improving GeoServer scalability.

[image: ../../../../../_images/jmeter35.png]
Stable throughput (Note the results may be different in other machines)

Configuring JMeter for testing the Marlin renderer

This section explains how GeoServer performances are improved when using the Marlin renderer.

The Oracle JDK and OpenJDK come with two different anti-aliased renderers:

	Oracle JDK uses Ductus, a fast native renderer that has scalability issues (good for desktop use, less so on the server side)

	OpenJDK uses Pisces, a pure java renderer that is not as fast as “Ductus”, but has good scalability (anecdotally, it becomes faster than Ductus above the 4 concurrent requests)

The Marlin [https://github.com/bourgesl/marlin-renderer] renderer is an improved version of Pisces that is as fast, if not faster, than Ductus, and scales up just as well as Pisces.

Configure JMeter

	Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file creating a marlin.jmx file

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter

	On the top left go to File –> Open and search for the new jmx file copied

	Disable View Results Tree section

	In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file controlflow.csv in the $TRAINING_ROOT/data/jmeter_data directory

	In the HTTP Request Default element modify the following parameters:

	Name

	Value

	layers

	boulder

	srs

	EPSG:2876

Test without Marlin

	Go and remove the contro

	Run the test

Note

Remember to run and stop the test a few times for having stable results

	When the test is completed, Save the results in a text file.

[image: ../../../../../_images/no_marlin.png]
Throughput without Marlin (Note the results may be different in other machines)

	Remove the result from JMeter by clicking on Run –> Clear All on the menu

	Stop GeoServer

Setup Marlin

	Stop GeoServer

	Download the Marlin rasterizer library at https://github.com/bourgesl/marlin-renderer/releases/download/v0.4.4/marlin-0.4.4.jar and save it in %TRAINING_ROOT%\data

	Open %TRAINING_ROOT%\setenv.bat and add the following lines to enable the Marlin renderer, right before the “Tomcat options for the JVM” section:

REM Marlin support
set JAVA_OPTS=%JAVA_OPTS% -Xbootclasspath/p:"%ROOT%\data\marlin-0.4.4.jar"
set JAVA_OPTS=%JAVA_OPTS% -Dsun.java2d.renderer=org.marlin.pisces.PiscesRenderingEngine

	Start GeoServer again

	Go to the map preview and open the boulder layer, you should see the following in the Tomcat console:

INFO: ===
INFO: Marlin software rasterizer = ENABLED
INFO: Version = [marlin-0.4.4]
INFO: sun.java2d.renderer = org.marlin.pisces.PiscesRenderingEngine
INFO: sun.java2d.renderer.useThreadLocal = true
INFO: sun.java2d.renderer.useRef = soft
INFO: sun.java2d.renderer.pixelsize = 2048
INFO: sun.java2d.renderer.subPixel_log2_X = 3
INFO: sun.java2d.renderer.subPixel_log2_Y = 3
INFO: sun.java2d.renderer.tileSize_log2 = 5
INFO: sun.java2d.renderer.useFastMath = true
INFO: sun.java2d.renderer.useSimplifier = false
INFO: sun.java2d.renderer.doStats = false
INFO: sun.java2d.renderer.doMonitors = false
INFO: sun.java2d.renderer.doChecks = false
INFO: sun.java2d.renderer.useJul = false
INFO: sun.java2d.renderer.logCreateContext = false
INFO: sun.java2d.renderer.logUnsafeMalloc = false
INFO: ===

Test with Marlin renderer

	Run again the test.

You may see that the throughput got significantly higher, especially at mid-high thread counts

[image: ../../../../../_images/marlin.png]
Throughput with Marlin (Note the results may be different in other machines)

Configuring the Control flow plugin

The control-flow module for GeoServer allows the administrator to control the amount of concurrent requests actually executing inside the server.
This kind of control is useful for a number of reasons:

	Performance: tests show that, with local data sources, the maximum throughput in GetMap requests is achieved when allowing at most 2 times the number of CPU cores requests to run in parallel.

	Resource control: requests such as GetMap can use a significant amount of memory. The WMS request limits allow to control the amount of memory used per request, but an OutOfMemoryError is still possible if too many requests run in parallel. By controlling also the amount of requests executing it’s possible to limit the total amount of memory used below the memory that was actually given to the Java Virtual Machine.

	Fairness: a single user should not be able to overwhelm the server with a lot of requests, leaving other users with tiny slices of the overall processing power.

The control flow method does not normally reject requests, it just queues up those in excess and executes them late. However, it’s possible to configure the module to reject requests that have been waited in queue for too long.

Rule syntax reference

The current implementation of the control flow module reads its rules from a controlflow.properties property file located in the GeoServer data directory.

Total OWS request count

The global number of OWS requests executing in parallel can be specified with:

ows.global=<count>

Every request in excess will be queued and executed when other requests complete leaving some free execution slot.

Per request control

A per request type control can be demanded using the following syntax:

ows.<service>[.<request>[.<outputFormat>]]=<count>

Where:

	<service> is the OWS service in question (at the time of writing can be wms, wfs, wcs)

	<request>, optional, is the request type. For example, for the wms service it can be GetMap, GetFeatureInfo, DescribeLayer, GetLegendGraphics, GetCapabilities

	<outputFormat>, optional, is the output format of the request. For example, for the wms GetMap request it could be image/png, image/gif and so on

A few examples:

don't allow more than 16 WCS requests in parallel
ows.wcs=16
don't allow more than 8 GetMap requests in parallel
ows.wms.getmap=8
don't allow more than 2 WFS GetFeature requests with Excel output format
ows.wfs.getfeature.application/msexcel=2

Per user control

This avoid a single user to make too many requests in parallel:

user=<count>

Where <count> is the maximum number of parallel requests a single user can execute in parallel. The user tracking mechanism is cookie based, so it will work fine for browsers but not as much for other kinds of clients. An IP based mechanism is not provided at the time, but it would have its own fallacies as well, as it would limit all the users sitting behind a single router to <count> requests (imagine the effect on a big public administration).

Timeout

A request timeout is specified with the following syntax:

timeout=<seconds>

where <seconds> is the number of seconds a request can stay queued waiting for execution. If the request does not enter execution before the timeout expires it will be rejected.

A complete example

Assuming the server we want to protect has 4 cores a sample configuration could be:

if a request waits in queue for more than 60 seconds it's not worth executing,
the client will likely have given up by then
timeout=60
don't allow the execution of more than 100 requests total in parallel
ows.global=100
don't allow more than 10 GetMap in parallel
ows.wms.getmap=10
don't allow more than 4 outputs with Excel output as it's memory bound
ows.wfs.getfeature.application/msexcel=4
don't allow a single user to perform more than 6 requests in parallel
(6 being the Firefox default concurrency level at the time of writing)
user=6

Running GeoNode under SSL

Enabling SSL will encrypt traffic between your GeoNode server and client browsers. This approach involves re-configuring Apache to serve on port 443, instead of port 80. Other approaches exist and should be added to this document.

Generate SSL Key & Certificate

The first step is to generate a DES key.:

for CommonName use GeoNode domain name or ip address as specified in GeoNode's SITEURL
openssl genrsa -des3 -out server.key 1024
openssl req -new -key server.key -out server.csr

generate new server.key without challenge password, or Apache will ask for password at startup
mv server.key server.key.tmp
openssl rsa -in server.key.tmp -out server.key

generate certificate
openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

Copy the key and certificate to the standard locations:

sudo cp server.crt /etc/ssl/certs/geonode.crt
sudo cp server.key /etc/ssl/private/geonode.key

It seems not necessary in standard GeoNode installations (via ppa) but if you plan to use other python or java applications,
it could be useful also add the certificate to the cacerts file for python and java:

sudo -s "cat server.crt >> /usr/lib/python2.7/dist-packages/httplib2/cacerts.txt"
sudo keytool -import -alias geonodessl -keystore /etc/ssl/certs/java/cacerts -file server.crt

Note: keytool will ask for a password and the standard password for the java cacerts file is changeit.

Apache Configuration

Enable the SSL module in Apache with the command:

sudo a2enmod ssl

Next as root edit the Apache geonode config file /etc/apache2/sites-available/geonode.conf. At the beginning of the file replace:

<VirtualHost *:80>

with:

<IfModule mod_ssl.c>
<VirtualHost _default_:443>

At the bottom of the file, replace:

</VirtualHost>

with:

 SSLEngine on
 SSLCertificateFile /etc/ssl/certs/geonode.crt
 SSLCertificateKeyFile /etc/ssl/private/geonode.key
 BrowserMatch "MSIE [2-6]" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0
 # MSIE 7 and newer should be able to use keepalive
 BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown
</VirtualHost>
</IfModule>

<VirtualHost *:80>
 Redirect permanent / https://<ipaddressOrDomainName>/
</VirtualHost>

Replace <ipaddressOrDomainName> with current value.

This tells Apache where to fine the key and certificate. There are also some additional lines to handle MSIE, taken from Apache’s default-ssl file.

Tomcat Configuration

As root edit the Tomcat server config file /etc/tomcat7/server.xml, and replace:

<Connector port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 URIEncoding="UTF-8"
 redirectPort="8443"
/>

with:

<Connector port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 URIEncoding="UTF-8"
 scheme="https"
 proxyName="<yourServersIPorDomainName>"
 proxyPort="443"
/>

This tells Tomcat that it is running behind an https proxy. If this is omitted Tomcat will try to redirect to http.

GeoNode Configuration

As root edit the geonode config file /etc/geonode/local_settings.py and change the SITEURL protocol to https:

SITEURL = 'https://<ipaddressOrDomainName>/'

GeoServer Configuration

As root edit the file /usr/share/geoserver/WEB-INF/web.xml and ensure the GEONODE_BASE_URL is specified as follows:

<context-param>
 <param-name>GEONODE_BASE_URL</param-name>
 <param-value>https://localhost/</param-value>
</context-param>

Also update proxyBaseUrl in the Geoserver global settings file /var/lib/geoserver/geonode-data/global.xml:

<proxyBaseUrl>https://XXX.XXX.XXX.XXX/geoserver/</proxyBaseUrl>

Replace XXX.XXX.XXX.XXX with your server internal address.

Restart

Finally restart Apache and Tomcat with:

sudo /etc/init.d/apache2 restart
sudo /etc/init.d/tomcat6 restart

This information was complied from a number of sources. The main links are listed below. Please contact the GeoNode list with any updates or corrections.

	https://confluence.atlassian.com/jira/connecting-to-ssl-services-117455.html

	https://confluence.atlassian.com/adminjiraserver072/integrating-jira-with-apache-using-ssl-828788158.html

	http://www.akadia.com/services/ssh_test_certificate.html

	https://help.ubuntu.com/lts/serverguide/httpd.html

	https://help.ubuntu.com/lts/serverguide/certificates-and-security.html

GeoSites: GeoNode Multi-Tenancy

GeoSites is a way to run multiple websites with a single instance of GeoNode. Each GeoSite can have different templates, apps, and data permissions but share a single database (useful for sharing users and data layers), GeoServer, and CSW. This is useful when multiple websites are desired to support different sets of users, but with a similar set of data and overall look and feel of the sites. Users can be given permission to access multiple sites if needed, which also allows administrative groups can be set up to support all sites with one account.

Master Website

A GeoSites installation uses a ‘master’ GeoNode website that has some additional administrative pages for doing data management. Layers, Maps, Documents, Users, and Groups can all be added and removed from different sites. Users can be given access to any number of sites, and data may appear on only a single site, or all of them. Additionally, if desired, any or all of the Django apps installed on the other sites can be added to the master site to provide a single administrative interface that gives full access to all apps. The master site need not be accessible from the outside so that it can be used as an internal tool to the organization.

Users created on a particular site are created with access to just that site. Data uploaded to a particular site is given permission on that site as well as the master site. Any further adjustments to site-based permissions must be done from the master site.

Database

The master site, and all of the individual GeoSites, share a single database. Objects, including users, groups, and data layers, all appear within the database but an additional sites table indicates which objects have access to which sites. The geospatial data served by GeoServer (e.g., from PostGIS) can exist in the database like normal, since GeoServer will authenticate against GeoNode, which will use it’s database to determine permissions based on the object, current user, and site.

GeoServer

A single GeoServer instance is used to serve data to all of the GeoSites.
Data that is common to all sites can be added to the master site which will appear in the generic ‘geonode’ workspace.

Settings Files and Templates

A key component in managing multiple sites is keeping data organized and using a structured series of settings files so that common settings can be shared and only site specific settings are separated out. It is also best to import the default GeoNode settings from the GeoNode installation. This prevents the settings from having to be manually upgraded if there is any default change the GeoNode settings.

Settings which are common to all GeoSites, but differ from the default GeoNode, are separated into a contrib/geosites/settings.py file. Then, each individual site has settings file which imports from the master site and will then only need to specify a small selection that make that site unique, such as:

	SITE_ID: Each one is unique, the master site should have a SITE_ID of 1.

	SITENAME

	SITEURL

	ROOT_URLCONF: This may be optional. The master site url.conf can be configured to automatically import the urls.py of all SITE_APPS, so a different ROOT_URLCONF is only needed if there are further differences.

	SITE_APPS: Containing the site specific apps

	App settings: Any further settings required for the above sites

	Other site specific settings, such as REGISTRATION_OPEN

A GeoSite therefore has three layers of imports, which is used for settings as well as the search path for templates. First it uses the individual site files, then the master GeoSite, then default GeoNode. These are specified via variables defined in settings:

	SITE_ROOT: The directory where the site specific settings and files are located (templates, static)

	PROJECT_ROOT: The top-level directory of all the GeoSites which should include the global settings file as well as template and static files

	GEONODE_ROOT: The GeoNode directory.

The TEMPLATE_DIRS, and STATICFILES_DIRS will then include all three directories as shown:

TEMPLATE_DIRS = (
 os.path.join(SITE_ROOT, 'templates/'),
 os.path.join(PROJECT_ROOT,'templates/'), # files common to all sites
 os.path.join(GEONODE_ROOT, 'templates/')
)

STATICFILES_DIRS = (
 os.path.join(SITE_ROOT, 'static/'),
 os.path.join(PROJECT_ROOT, 'static/'),
 os.path.join(GEONODE_ROOT, 'static/')
)

At the end of the post_settings.py the following variables will be set based on site specific settings:

STATIC_URL = os.path.join(SITEURL,’static/’)
GEONODE_CLIENT_LOCATION = os.path.join(STATIC_URL,’geonode/’)
GEOSERVER_BASE_URL = SITEURL + ‘geoserver/’
if SITE_APPS:
 INSTALLED_APPS += SITE_APPS

Templates and Static Files

As mentioned above for each website there will be three directories used for template and static files. The first template file found will be the one used so templates in the SITE_ROOT/templates directory will override those in PROJECT_ROOT/templates, which will override those in GEONODE_ROOT/templates.

Static files work differently because (at least on a production server) they are collected and stored in a single location. Because of this care must be taken to avoid clobbering of files between sites, so each site directory should contain all static files in a subdirectory with the name of the site (e.g., static_root/siteA/logo.png)

The location of the proper static directory can then be found in the templates syntax such as:

{{ STATIC_URL }}{{ SITENAME|lower }}/logo.png

Permissions by Site

By default GeoNode is publicly available. In the case of GeoSites, new data will be publicly available, but only for the site it was added to, and the master site (all data is added to the master site).

Activate geosites app

In order to use geonode in Multi-tenancy mode, follow these steps:
1. check in settings.py if ‘geonode.contrib.geosites’ in GEONODE_CONTRIB_APPS is rightly uncommented
2. add in settings.py ‘geonode.contrib.geosites’ in INSTALLED_APPS
3. run python manage.py syncdb

Adding New Sites

To add a new site follow the following steps:

	copy the directory site_template in your geonode-project folder and give it a name

	from geonode administration pannel add ‘new site’

	create a virtualhost in the webserver related to the new created site. Remember to setup the WSGIDeamonProcess with the name you gave to the folder created at point 1. and the path to the geosites directory. WSGIProcessGroup have to be pointed to the name you choose for the folder you created at point 1. Eventually, WSGIScriptAlias have to be set to the wsgi.py you have in your site folder.

	
	check the configuration files: local_settings.py, pre_settings.py, post_settings.py in /geonode-project as well as local_settings.py and settings.py in your site folder:

	
	in /geonode-project/local_settings.py set the variable SERVE_PATH. It has to point geosites folder.

	
	in the local_setting of the site folder insert the values to the following variables:

	
	SITE_ID

	SITE_NAME

	SITE_URL

	create static_root directory where you usually let the webserver serve webpages (e.g., /var/www) and give it grants to be accessed by the user www-data

	
	create an uploaded/layers and uploaded/thumbs folder in your geonode-project folder and give them grants as follow:

	sudo mkdir -p geonode-project/uploaded/thumbs
sudo mkdir -p geonode-project/uploaded/layers
sudo chmod -Rf 755 geonode-project/uploaded/thumbs
sudo chmod -Rf 755 geonode-project/uploaded/layers

	run python manage.py collectstatics - Pay attention on the folder where you are running the command and the folder structure of your geonode/geosites project, in case pass to the path the settings file by using –settings to the python command

	you can customize the look and feel of your site working on the css and html file you find in your template site directory. After a change, run again collectstatics command.

Reference documentation

In this section, you will find information about every component of GeoNode, such as GeoServer, GeoNode settings, security, etc.

Security and Permissions

GeoNode ad-hoc API

Localization

GeoNode Django Apps

JavaScript in GeoNode

Settings

Supported Browsers

GeoSites: GeoNode Multi-Tenancy

Security and Permissions

GeoNode has the ability to restrict the access on your layers, maps, and
documents to other users or group of users.

This section should help you to understand which restrictions are possible and
what to take care of while using them.

Generally permissions can be set on all your uploaded data. Here´s an overview:

	Users

	Superuser permissions

	Django admin interface permissions

	Groups

	Public

	Public (invite only)

	Private

	Layers

	View a layer

	Download a layer

	Change metadata for a layer

	Edit layer’s features

	Edit styles for a layer

	Manage a layer (update, delete, change permissions, publish/unpublish it)

	Maps

	View a map

	Download a map

	Change metadata for a map

	Manage a map (update, delete, change permissions, publish/unpublish it)

	Documents

	View a document

	Download a document

	Change metadata for a document

	Manage a document (update, delete, change permissions, publish/unpublish it)

To understand how this permissions can be set, you first have to know about the different kinds of users.

Permissions and GeoNode objects

Users

GeoNode has two types of users:

	Unregistered users (anonymous)

	Registered users

An unregistered user is someone who is just visiting the site, but doesn’t have any data uploaded yet. A registered user has
already done that. But there are even more kinds of registered users! A registered user can have one or more of those three status:

	Superuser

	Staff

	Active

A superuser is usually generated directly after the installation of GeoNode via the terminal. When creating a superuser through
the terminal it always has the status active and the status staff as well. It is also important to know that a superuser is a user that has all permissions without explicitly assigning them! That means that he is able to
upload and edit layers, create maps etc. and can not be restricted from that! So the superuser is basically the administrator, who knows and has access on everything.

The status staff only implies that a user with this status is able to attend the Django Admin Interface. Active has no special meaning, it only says that there is a user and it is available. Instead of deleting this user, you could just unset the status active, your user will still be remaining, but it won´t show up.

There are several options to create a user:

	From the terminal: Here you can only create a superuser

	From the GeoNode interface (when GeoNode registration are open): A normal user will be created by signing up to GeoNode. It only has the status active so far!

	From the GeoNode interface (when GeoNode registration are closed): A superuser will be able to invite a user

	From the Django administrative interface: a new user can be created as well as the status of an already existing user can be changed, e.g make a generic user a superuser.

Groups

In GeoNode you can assign permissions to groups, all the users that belong to the group will inherit its permissions.

If you are an administrator you can create a group in the dedicated tab and invite or assign users to it.
The group will be available in the permissions widget in geonode and you will be able to assign object permissions to it.

Layers

As mentioned above, a superuser or the layer owner or a user with management
permissions on the layer should be able to restrict
other users from the layer itself.

Generally there are the following types of permissions:

[image: ../_images/permissions.png]

These are permissions that is possible to assign to a GeoNode layer:

	Who can view the layer

	Who can download the layer

	Who can change the metadata of the layer

	Who can edit data of the layer

	Who can edit styles of the layer

	Who can manage the layer (update, delete, change permissions, publish/unpublish it)

Each of these permissions can be assigned to:

	Anyone (only for who can view and download)

	One or more users

	One or more groups

A user with all of these permissions in the layer detail page will have a button
to download the layer, a button to download its metadata, a button to change the
layer permissions and an edit button that will display links to:

	Edit metadata

	Edit styles

	Manage styles

	Replace the layer

	Remove the layer

This can also be seen here:

[image: ../_images/permissions2.png]

If the layer is vectorial the user will be able also to edit the layer’s
features in a GeoNode map (the “Edit” tool should be enabled).

Now take a closer look on to the section Edit Metadata. All the following things can be edited in the metadata section:

	Owner

	Title

	Date

	Data type

	Edition

	Abstract

	Purpose

	Maintenance frequency

	Keywords region

	Restrictions

	Restrictions other

	Language

	Category

	Spatial representation type

	Temporal extent start

	Temporal extent end

	Supplemental information

	Distribution URL

	Distribution description

	Data quality statement

	Keywords

	Point of contact

	Metadata author

	Attributes (those can though not be changed!)

Maps

Generally all the same applies to maps, but with fewer options:

	Who can view the map

	Who can download the map

	Who can change the metadata of the map

	Who can manage (delete, change permissions, publish/unpublish it, set map thumbnail)

The section Edit metadata is almost the same as for layers, with two more
options:

	Metadata XML

	Thumbnail

In Set map thumbnail the thumbnail of the map can be set.

Documents

The same permissions that can be used on layers can be used on the documents, with the exception of the edit data and edit styles permissions.

Require authentication to access GeoNode

By default, unregistered users cannot view maps, layers, and documents on your site without being authenticated. GeoNode comes
a security option that requires users to authenticate before accessing any page. To enable this option, set the LOCKDOWN_GEONODE
setting to true in your settings.py file. You can fine-tune which URL routes are white-listed (accessible by unregistered
users) by listing the routes in the AUTH_EXEMPT_URLS tuple. See the GeoNode Django Apps documentation for more information.

Publishing and unpublishing objects

By default GeoNode does not implement any kind of mechanism to publish/unpublish resources such as layer, maps and documents.

Setting the RESOURCE_PUBLISHING to True such a workflow is used, and by default
new uploaded resources are unpublished.

It is possible for any GeoNode staff member that has permissions on the
base/ResourceBase model to decide to publish/unpublish a layer, map or document.

The staff member can go to the resource base Django admin page, and publish or
unpublish the resource by checking or unchecking the is_published field:

[image: ../_images/unpublish_content.png]

When the resource is unpublished, it will be not available to any user,
including administrators, in the GeoNode site. If the unpublished resource is
a layer it will be considered in the GetCapabilities generated by GeoServer.

The unpublished resource will not be reachable by anyone using GeoNode search features.
The only way to access to it is by the Django admin site, from where it will be
eventually possible to publish again the resource by a staff member, or from
the layer details page, accessible by any user with the publish_resourcebase
permission on that layer.

GeoNode ad-hoc API

GeoNode provides a JSON API which currently supports the GET method. The API is also used as main search engine.

API endpoints

GeoNode provides some endpoints and filtering.

	“/api/base” query on the ResourceBase table and returns combined results of Maps, Layers Documents and Services

	“/api/layers” query the Layer table

	“/api/maps” query the Map table

	“/api/documents” query the Document table

	“/api/groups” query the GroupProfile table (which contains the Groups)

	“/api/profiles” query the Profile table (which is the geonode authentication table)

	“/api/categories” query the Category table

	“/api/keywords” query the Tag table

	“/api/featured” query the ResourceBase table by limiting the items to the ones flagged as “featured” (listed in home page)

API filtering

The API allow filtering by adding Django style model filters to the URL.

As an example, filtering by title corresponds to a URL like “/api/layers?title__contains=grid”
It’s also possible to filter by related tables like “/api/layers?keywords__slug__exact=the-keyword”

There are many possible filter, refer to the django [https://docs.djangoproject.com/en/1.8/ref/models/querysets/] filters guide.

API limit and pagination

It’s possible to limit the number of the results returned by the API by adding a limit parameter like “/api/layers?limit=10”
It’s also possible to specify an offset so that the first results will not be returned (together with the limit this makes a pagination logic), “/api/layers?offset=5”

So a query like “/api/layers?offset=5&limit=10” will return 10 results starting from the 6th found in the database.

API settings

You can configure how many results will be lists per page on the client (in the list pages and search page) by changing this line https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L643

And you can set the amount of data returned by default from the API (if the limit parameter is not set), the default is 0 which means no limit https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L646

Searching with Haystack

GeoNode is ready to use a complete full text search engine.
Note that haystack will be used only on the base, layers, maps and documents API.

Once activated the full text API is reachable by appending “search” to the URL, for example “/api/base/search?limit=0&offset=0”

Although the backend type is not mandatory, we suggest (for simplicity) to use Elasticsearch [https://www.elastic.co/products/elasticsearch/]:

To activate the search backend make sure that you have a running instance of Elasticsearch, then uncomment the following line in the geonode settings:

https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L219

And activate the search through the settings at the line:

https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L607

Also uncomment and correct the address of Elasticsearch if needed:
https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L612
https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L619

You can do some more customizations like:

	should the search skip the permissions filtering? https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L609

	should the search update the facets counts on every search you make or keep the standard behavior? https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L611

	How many results should the backend return by default? https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L620

Localization

To enable a new language in GeoNode you have to do the following:

	Install gettext:

sudo apt-get install gettext

	Create a directory named locale in the root of your project:

mkdir locale

	In the root of your project, run:

python manage.py makemessages -l fr

	Navigate to the GeoNode directory and do:

cd src/GeoNodePy/geonode/maps; django-admin.py makemessages -l fr
cd src/GeoNodePy/geonode; django-admin.py makemessages -l fr

Optional steps:

	Install django-rossetta:

http://code.google.com/p/django-rosetta/

	Install django-modeltranslation

	If you want to enable metadata in the other format too, make sure you have model translation installed and create a translations.py file like this:

from modeltranslation.translator import translator, TranslationOptions
from geonode.maps.models import Layer

class LayerTO(TranslationOptions):
 fields = (
 'title',
 'edition',
 'abstract',
 'purpose',
 'constraints_other',
 'data_quality_statement',
 'supplemental_information',
)

translator.register(FlatBlock, FlatBlockTO)
translator.register(Layer, LayerTO)

Developers Reference

Here you will find information about each and every component of GeoNode, for example GeoServer, GeoNode settings, security, etc.

GeoNode Django Apps

JavaScript in GeoNode

Settings

GeoSites: GeoNode Multi-Tenancy

GeoNode Django Apps

The user interface of a GeoNode site is built on top of the Django web
framework. GeoNode includes a few “apps” (reusable Django modules) to support
development of those user interfaces. While these apps have reasonable default
configurations, for customized GeoNode sites you will probably want to adjust
these apps for your specific needs.

geonode.base - GeoNode core functionality

Stores core functionality used throughout the GeoNode application.

Template Tags

num_ratings <object>

Returns the number of ratings an object has. Example usage:

{% load base_tags %}
{% num_ratings map as num_votes %}

<p>Map votes: {{num_votes}}.</p>

categories

Returns topic categories and the count of objects in each category.

geonode.documents - Document creation and management

Manages uploaded files that can be related to maps. Documents can be any type of file that is included in the
ALLOWED_DOCUMENTS_TYPES setting.

settings.py Entries

	ALLOWED_DOCUMENT_TYPES

	Default: ['doc', 'docx', 'xls', 'xslx', 'pdf', 'zip', 'jpg', 'jpeg', 'tif', 'tiff', 'png', 'gif', 'txt']

A list of acceptable file extensions that can be uploaded to the Documents app.

	MAX_DOCUMENT_SIZE

	Default: 2

The maximum size (in megabytes) that an upload will be before it gets rejected.

geonode.layers - Layer creation and geospatial data management

This Django app provides support for managing and manipulating single geospatial datasets known as layers.

Models

	Attribute - Feature attributes for a layer managed by the GeoNode.

	Layer - A data layer managed by the GeoNode

	Style - A data layer’s style managed by the GeoNode

Views

	Creating, viewing, browsing, editing, and deleting layers and their metadata

Template Tags

	featured_layers

	Returns the 7 newest layers.

	layer_thumbnail <layer>

	Returns the layer’s thumbnail.

manage.py Commands

	importlayers

	python manage.py importlayers

Brings a data file or a directory full of data files into a
GeoNode site. Layers are added to the Django database, the
GeoServer configuration, and the GeoNetwork metadata index.

	updatelayers

	python manage.py updatelayers

Scan GeoServer for data that has not been added to GeoNode.

geonode.maps - Map creation and geospatial data management

This Django app provides some support for managing and manipulating geospatial
datasets. In particular, it provides tools for editing, viewing, and searching
metadata for data layers, and for editing, viewing, and searching maps that
aggregate data layers to display data about a particular topic.

Models

	Map - A collection of data layers composed in a particular order to form a map

	MapLayer - A model that maintains some map-specific information related to a layer, such as the z-indexing order.

Views

The maps app provides views for:

	Creating, viewing, browsing, editing, and deleting Maps

These operations require the use of GeoServer to manage map rendering, as well
as GeoExt to provide interactive editing and previewing of maps and data layers.

There are also some URL mappings in the geonode.maps.urls module for easy
inclusion in GeoNode sites.

settings.py Entries

	OGC_SERVER

	Default: {} (Empty dictionary)

A dictionary of OGC servers and their options. The main
server should be listed in the ‘default’ key. If there is no ‘default’
key or if the OGC_SERVER setting does not exist GeoNode will raise
an Improperly Configured exception. Below is an example of the OGC_SERVER
setting:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 }
}

	BACKEND

	Default: "geonode.geoserver"

The OGC server backend to use. The backend choices are:

	'geonode.geoserver'

	BACKEND_WRITE_ENABLED

	Default: True

Specifies whether the OGC server can be written to. If False, actions that modify
data on the OGC server will not execute.

	LOCATION

	Default: "http://localhost:8080/geoserver/"

A base URL from which GeoNode can construct OGC service URLs.
If using GeoServer you can determine this by
visiting the GeoServer administration home page without the
/web/ at the end. For example, if your GeoServer administration app is at
http://example.com/geoserver/web/, your server’s location is http://example.com/geoserver.

	PUBLIC_LOCATION

	Default: "http://localhost:8080/geoserver/"

The URL used to in most public requests from GeoNode. This settings allows a user to write to one OGC server (the LOCATION setting)
and read from a separate server or the PUBLIC_LOCATION.

	USER

	Default: 'admin'

The administrative username for the OGC server as a string.

	PASSWORD

	Default: 'geoserver'

The administrative password for the OGC server as a string.

	MAPFISH_PRINT_ENABLED

	Default: True

A boolean that represents whether the MapFish printing extension is enabled on the server.

	PRINT_NG_ENABLED

	Default: True

A boolean that represents whether printing of maps and layers is enabled.

	GEONODE_SECURITY_ENABLED

	Default: True

A boolean that represents whether GeoNode’s security application is enabled.

	GEOGIT_ENABLED

	Default: False

A boolean that represents whether the OGC server supports GeoGig datastores.

	WMST_ENABLED

	Default: False

Not implemented.

	WPS_ENABLED

	Default: False

Not implemented.

	DATASTORE

	Default: '' (Empty string)

An optional string that represents the name of a vector datastore that GeoNode uploads
are imported into. In order to support vector datastore imports there also needs to be an
entry for the datastore in the DATABASES dictionary with the same name. Example:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 'DATASTORE': 'geonode_imports'
 }
}

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': 'development.db',
 },
 'geonode_imports' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'NAME': 'geonode_imports',
 'USER' : 'geonode_user',
 'PASSWORD' : 'a_password',
 'HOST' : 'localhost',
 'PORT' : '5432',
 }
 }

	GEOSERVER_CREDENTIALS

	Removed in GeoNode 2.0, this value is now specified in the OGC_SERVER settings.

	GEOSERVER_BASE_URL

	Removed in GeoNode 2.0, this value is now specified in the OGC_SERVER settings.

	CATALOGUE

	A dict with the following keys:

	ENGINE: The CSW backend (default is geonode.catalogue.backends.pycsw_local)

	URL: The FULLY QUALIFIED base URL to the CSW instance for this GeoNode

	USERNAME: login credentials (if required)

	PASSWORD: login credentials (if required)

pycsw is the default CSW enabled in GeoNode. pycsw configuration directives
are managed in the PYCSW entry.

	PYCSW

	A dict with pycsw’s configuration. Of note are the sections
metadata:main to set CSW server metadata and metadata:inspire
to set INSPIRE options. Setting metadata:inspire['enabled'] to true
will enable INSPIRE support. Server level configurations can be overridden
in the server section. See http://docs.pycsw.org/en/stable/configuration.html
for full pycsw configuration details.

	SITEURL

	Default: 'http://localhost:8000/'

A base URL for use in creating absolute links to Django views.

	DEFAULT_MAP_BASE_LAYER

	The name of the background layer to include in newly created maps.

	DEFAULT_MAP_CENTER

	Default: (0, 0)

A 2-tuple with the latitude/longitude coordinates of the center-point to use
in newly created maps.

	DEFAULT_MAP_ZOOM

	Default: 0

The zoom-level to use in newly created maps. This works like the OpenLayers
zoom level setting; 0 is at the world extent and each additional level cuts
the viewport in half in each direction.

geonode.proxy - Assist JavaScript applications in accessing remote servers

This Django app provides some HTTP proxies for accessing data from remote
servers, to overcome restrictions imposed by the same-origin policy used by
browsers. This helps the GeoExt applications in a GeoNode site to access various XML documents from OGC-compliant data services.

Views

	geonode.proxy.views.proxy

	This view forwards requests without authentication to a URL provided in the
request, similar to the proxy.cgi script provided by the OpenLayers project.

	geonode.proxy.views.geoserver

	This view proxies requests to GeoServer. Instead of a URL-encoded URL
parameter, the path component of the request is expected to be a path
component for GeoServer. Requests to this URL require valid authentication
against the Django site, and will use the default OGC_SERVER USER,
PASSWORD and LOCATION settings as defined in the maps application.

geonode.search - Provides the GeoNode search functionality.

This Django app provides a fast search functionality to GeoNode.

Views

	search_api- Builds and executes a search query based on URL parameters and returns matching results in requested format.

geonode.security - GeoNode granular Auth Backend

This app provides an authentication backend for use in assigning permissions to individual objects (maps and layers).

settings.py Entries

	LOCKDOWN_GEONODE

	Default: False

By default, the GeoNode application allows visitors to view most pages without
being authenticated. Set LOCKDOWN_GEONODE = True to require a user to
be authenticated before viewing the application.

	AUTH_EXEMPT_URLS

	Default: () (Empty tuple)

A tuple of URL patterns that the user can visit without being authenticated.
This setting has no effect if LOCKDOWN_GEONODE is not True. For example,
AUTH_EXEMPT_URLS = ('/maps',) will allow unauthenticated users to
browse maps.

Template Tags

	geonode_media <media_name>

	Accesses entries in MEDIA_LOCATIONS without requiring the view to explicitly
add it to the template context. Example usage:

{% include geonode_media %}
{% geonode_media "ext_base" %}

	has_obj_perm <user> <obj> <permission>

	Checks whether the user has the specified permission on an object.

{% has_obj_perm user obj "app.view_thing" as can_view_thing %}

geonode.people - User account registration and profile management

This app provides functionality related to user accounts and user profiles.

User authentication is based on django-allauth [https://django-allauth.readthedocs.io/en/latest/index.html], with some geonode-specific
customizations. Users can register to a geonode instance by either creating
a new account or by using one of their social providers, such as linkedin,
facebook, etc.

User invitations are leveraged via `django-invitations`_.

Adding authentication with a social provider

Configuring geonode user authentication with a social provider is a multi-step
process:

	Create an application on the provider’s developer site. For example, for

linkedin:

	Go to https://developer.linkedin.com/apps and select Create Application

	Proceed to create an application, referring to django-allauth’s
documentation [http://django-allauth.readthedocs.io/en/latest/providers.html#authorized-redirect-urls-oauth2] where needed. Be sure to select the r_basicprofile
and r_emailaddress application permissions. These will enable geonode
to access some information regarding the user’s linkedin public profile.
Once created, take note of the Client ID and Client Secret
parameters which linkedin assigns to your new application

	Follow the post-install [http://django-allauth.readthedocs.io/en/latest/installation.html#post-installation] instructions on django-allauth’s documentation.
These basically instruct you to:

	include the relevant app in geonode’s INSTALLED_APPS setting for the
social provider that you are using. For linkedin this means adding
allauth.socialaccount.providers.linkedin_oauth2.

	Access geonode’s admin interface and add a new Social App for the
provider. Add the previously gathered Client id and Secret key
parameters that were obtained when creating a linkedin application.

	Optionally add relevant value to geonode’s SOCIALACCOUNT_PROVIDERS
setting. Consult django-allauth’s provider-specific documentation for more
information on this setting

	Optionally add a profile extractor entry to geonode’s
SOCIALACCOUNT_PROFILE_EXTRACTORS setting. This setting is specific to
geonode and is not part of django-allauth. The expected value is a dictionary
with the provider’s id as key and the python path to a data
extractor class as the value. Example:

 # settings.py
 SOCIALACCOUNT_PROFILE_EXTRACTORS = {
 "linkedin_oauth2": "geonode.people.profileextractors.LinkedInExtractor"
 }

A profile extractor class can retrieve information from each social account
provider and use that to enhance a user's profile information on geonode.
Look into the ``geonode.people.profileextractors`` module on geonode's
source code for more information.

settings.py entries

	ACCOUNT_OPEN_SIGNUP

	Default: True

Whether the geonode site allows new users to register for an account. When
set to False new users cannot register, they must be created by a staff
member

	ACCOUNT_APPROVAL_REQUIRED

	Default: False

Whether new user registrations must be manually approved. When set to
True, the site’s staff must manually approve every new account. The
approval flow goes like this:

	User registers in the site (either with a local account or by using a social login);

	Staff users receive an email notification that a new user is requesting access;

	Staff users manually approve the user by using geonode’s administration interface;

	User receives an e-mail notification when the account has been approved;

	User can now login to the geonode site.

	ACCOUNT_ADAPTER

	Default: geonode.people.adapters.LocalAccountAdapter

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It allows specifying a custom class to handle authentication for local
accounts.

	ACCOUNT_CONFIRM_EMAIL_ON_GET

	Default: True

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It allows specifying the HTTP method used when confirming e-mail addresses.

	ACCOUNT_EMAIL_REQUIRED

	Default: True

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
Controls whehter the user is required to provide an e-mail address upon
registration

	ACCOUNT_EMAIL_VERIFICATION

	Default: optional

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].

	SOCIALACCOUNT_ADAPTER

	Default: geonode.people.adapters.SocialAccountAdapter

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It allows specifying a custom class to handle authentication for social
accounts.

	SOCIALACCOUNT_PROVIDERS

	Default: None

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It should be a dictionary with provider specific settings

	SOCIALACCOUNT_PROFILE_EXTRACTORS

	Default: None

A dictionary with provider ids as keys and path to custom profile extractor
classes as values.

Django’s error templates

GeoNode customizes some of Django’s default error templates.

500.html

If no custom handler for 500 errors is set up in urls.py, Django will call django.views.defaults.server_error which expects a 500.html file in the root of the templates directory. In GeoNode, we have put a template that does not inherit from anything as 500.html and because most of Django’s machinery is down when an INTERNAL ERROR (500 code) is encountered the use of template tags should be avoided.

3rd party apps

pinax.notifications

This application enables users to receive notifications from specific events within GeoNode. For user-specific configuration, see Setting notification preferences. For settings, see User notifications settings.

JavaScript in GeoNode

GeoNode provides a number of facilities for interactivity in the web browser built on top of several high-quality JavaScript frameworks:

	Bootstrap [http://getbootstrap.com/] for GeoNode’s front-end user interface and common user interaction.

	Bower [https://bower.io/] for GeoNode’s front-end package management.

	ExtJS [https://www.sencha.com/products/extjs/] for component-based UI construction and data access

	OpenLayers [http://openlayers.org/] for interactive mapping and other geospatial operations

	GeoExt [http://geoext.org/] for integrating ExtJS with OpenLayers

	Grunt [http://gruntjs.com/] for front-end task automation.

	GXP [https://github.com/boundlessgeo/gxp] for providing some higher-level application building facilities on top of GeoExt, as well
as improving integration with GeoServer.

	jQuery [http://jquery.com] to abstract JavaScript manipulation, event handling, animation and XMLHttpRequest.

GeoNode uses application-specific modules to handle pages and services that are unique to GeoNode. This framework includes:

	A GeoNode mixin [https://github.com/GeoNode/geonode/blob/master/geonode/static/geonode/js/extjs/GeoNode-mixin.js] class
that provides GeoExplorer with the methods needed to properly function in GeoNode. The class
is responsible for checking permissions, retrieving and submitting the CSRF token [https://docs.djangoproject.com/en/1.8/ref/csrf/],
and user authentication.

	A search module [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/search] responsible for the GeoNode’s site-wide search functionality.

	An upload and status module [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/upload] to support file uploads.

	Template files [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/templates] for generating commonly used HTML sections.

	A front-end testing module [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/tests] to test GeoNode JavaScript.

The following concepts are particularly important for developing on top of the
GeoNode’s JavaScript framework.

	Components - Ext components handle most interactive functionality in
“regular” web pages. For example, the scrollable/sortable/filterable table
on the default Search page is a Grid component. While GeoNode does use some
custom components, familiarity with the idea of Components used by ExtJS is
applicable in GeoNode development.

	Viewers - Viewers display interactive maps in web pages, optionally decorated
with Ext controls for toolbars, layer selection, etc. Viewers in GeoNode use
the GeoExplorer base class, which builds on top of GXP’s Viewer to provide
some common functionality such as respecting site-wide settings for
background layers. Viewers can be used as components embedded in pages, or
they can be full-page JavaScript applications.

	Controls - Controls are tools for use in OpenLayers maps (such as a freehand
control for drawing new geometries onto a map, or an identify control for
getting information about individual features on a map.) GeoExt provides
tools for using these controls as ExtJS “Actions” - operations that can be
invoked as buttons or menu options or associated with other events.

Settings

Here’s a list of settings available in GeoNode and their default values. This includes settings for some external applications that
GeoNode depends on.

Documents settings

Here’s a list of settings available for the Documents app in GeoNode.

ALLOWED_DOCUMENT_TYPES

Default: ['doc', 'docx', 'xls', 'xlsx', 'pdf', 'zip', 'jpg', 'jpeg', 'tif', 'tiff', 'png', 'gif', 'txt']

A list of acceptable file extensions that can be uploaded to the Documents app.

MAX_DOCUMENT_SIZE

Default: 2

Metadata settings

CATALOGUE

A dict with the following keys:

	ENGINE: The CSW backend (default is geonode.catalogue.backends.pycsw_local)

	URL: The FULLY QUALIFIED base URL to the CSW instance for this GeoNode

	USERNAME: login credentials (if required)

	PASSWORD: login credentials (if required)

pycsw is the default CSW enabled in GeoNode. pycsw configuration directives
are managed in the PYCSW entry.

PYCSW

A dict with pycsw’s configuration. Of note are the sections
metadata:main to set CSW server metadata and metadata:inspire
to set INSPIRE options. Setting metadata:inspire['enabled'] to true
will enable INSPIRE support. Server level configurations can be overridden
in the server section. See http://docs.pycsw.org/en/latest/configuration.html
for full pycsw configuration details.

MODIFY_TOPICCATEGORY

Default: False

Metadata Topic Categories list should not be modified, as it is strictly defined
by ISO (See: http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml
and check the <CodeListDictionary gml:id=”MD_MD_TopicCategoryCode”> element).

Some customization is still possible by changing the is_choice and the GeoNode
description fields.

In case it is absolutely necessary to add/delete/update categories, it is
possible to set the MODIFY_TOPICCATEGORY setting to True.

Maps settings

DEFAULT_MAP_BASE_LAYER

The name of the background layer to include in newly created maps.

DEFAULT_MAP_CENTER

Default: (0, 0)

A 2-tuple with the latitude/longitude coordinates of the center-point to use
in newly created maps.

DEFAULT_MAP_ZOOM

Default: 0

The zoom-level to use in newly created maps. This works like the OpenLayers
zoom level setting; 0 is at the world extent and each additional level cuts
the viewport in half in each direction.

MAP_BASELAYERS

Default:

MAP_BASELAYERS = [{
"source": {
 "ptype": "gxp_wmscsource",
 "url": OGC_SERVER['default']['PUBLIC_LOCATION'] + "wms",
 "restUrl": "/gs/rest"
 }
 },{
 "source": {"ptype": "gxp_olsource"},
 "type":"OpenLayers.Layer",
 "args":["No background"],
 "visibility": False,
 "fixed": True,
 "group":"background"
 }, {
 "source": {"ptype": "gxp_osmsource"},
 "type":"OpenLayers.Layer.OSM",
 "name":"mapnik",
 "visibility": False,
 "fixed": True,
 "group":"background"
 }, {
 "source": {"ptype": "gxp_mapquestsource"},
 "name":"osm",
 "group":"background",
 "visibility": True
 }, {
 "source": {"ptype": "gxp_mapquestsource"},
 "name":"naip",
 "group":"background",
 "visibility": False
 },{
 "source": {"ptype": "gxp_mapboxsource"},
 }, {
 "source": {"ptype": "gxp_olsource"},
 "type":"OpenLayers.Layer.WMS",
 "group":"background",
 "visibility": False,
 "fixed": True,
 "args":[
 "bluemarble",
 "http://maps.opengeo.org/geowebcache/service/wms",
 {
 "layers":["bluemarble"],
 "format":"image/png",
 "tiled": True,
 "tilesOrigin": [-20037508.34, -20037508.34]
 },
 {"buffer": 0}
]

}]

A list of dictionaries that specify the default map layers.

Specific settings for map API providers (if they are not set those base maps will not be available):

	ALT_OSM_BASEMAPS set this variable to True if you want additional OSM basemaps

	CARTODB_BASEMAPS set this variable to True if you want CartoDB basemaps

	STAMEN_BASEMAPS set this variable to True if you want stamen basemaps

	THUNDERFOREST_BASEMAPS set this variable to True if you want Thunderforest basemaps

	MAPBOX_ACCESS_TOKEN set this variable to your Mapbox public token

	BING_API_KEY set this variable to your BING Map Key value

GEONODE_CLIENT_LAYER_PREVIEW_LIBRARY

Default: "geoext"

The library to use for display preview images of layers. The library choices are:

	"leaflet"

	"geoext"

	"react"

More instructions can be found here<https://github.com/GeoNode/geonode-client/blob/master/README.md>

OGC_SERVER

Default: {} (Empty dictionary)

A dictionary of OGC servers and their options. The main
server should be listed in the ‘default’ key. If there is no ‘default’
key or if the OGC_SERVER setting does not exist GeoNode will raise
an Improperly Configured exception. Below is an example of the OGC_SERVER
setting:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 }
}

BACKEND

Default: "geonode.geoserver"

The OGC server backend to use. The backend choices are:

	'geonode.geoserver'

BACKEND_WRITE_ENABLED

Default: True

Specifies whether the OGC server can be written to. If False, actions that modify
data on the OGC server will not execute.

DATASTORE

Default: '' (Empty string)

An optional string that represents the name of a vector datastore that GeoNode uploads
are imported into. In order to support vector datastore imports there also needs to be an
entry for the datastore in the DATABASES dictionary with the same name. Example:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 'DATASTORE': 'geonode_imports'
 }
}

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': 'development.db',
 },
 'geonode_imports' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'NAME': 'geonode_imports',
 'USER' : 'geonode_user',
 'PASSWORD' : 'a_password',
 'HOST' : 'localhost',
 'PORT' : '5432',
 }
 }

GEOGIG_ENABLED

Default: False

A boolean that represents whether the OGC server supports GeoGig datastores.

GEONODE_SECURITY_ENABLED

Default: True

A boolean that represents whether GeoNode’s security application is enabled.

LOCATION

Default: "http://localhost:8080/geoserver/"

A base URL from which GeoNode can construct OGC service URLs.
If using GeoServer you can determine this by
visiting the GeoServer administration home page without the
/web/ at the end. For example, if your GeoServer administration app is at
http://example.com/geoserver/web/, your server’s location is http://example.com/geoserver.

MAPFISH_PRINT_ENABLED

Default: True

A boolean that represents whether the MapFish printing extension is enabled on the server.

PASSWORD

Default: 'geoserver'

The administrative password for the OGC server as a string.

PG_GEOGIG

Default: False

A boolean that represents whether GeoNode will use a Postgres database as a backend for GeoGig stores. When set to true, the DATASTORE field must be set to a Postgres database which will be used.

PRINT_NG_ENABLED

Default: True

A boolean that represents whether printing of maps and layers is enabled.

PUBLIC_LOCATION

Default: "http://localhost:8080/geoserver/"

The URL used to in most public requests from GeoNode. This settings allows a user to write to one OGC server (the LOCATION setting)
and read from a separate server or the PUBLIC_LOCATION.

USER

Default: 'admin'

The administrative username for the OGC server as a string.

WMST_ENABLED

Default: False

Not implemented.

WPS_ENABLED

Default: False

Not implemented.

TIMEOUT

Default: 10

The maximum time, in seconds, to wait for the server to respond.

SITEURL

Default: 'http://localhost:8000/'

A base URL for use in creating absolute links to Django views and generating links in metadata.

Proxy settings

PROXY_ALLOWED_HOSTS

Default: () (Empty tuple)

A tuple of strings representing the host/domain names that GeoNode can proxy requests to. This is a security measure
to prevent an attacker from using the GeoNode proxy to render malicious code or access internal sites.

Values in this tuple can be fully qualified names (e.g. ‘www.geonode.org’), in which case they will be matched against
the request’s Host header exactly (case-insensitive, not including port). A value beginning with a period can be used
as a subdomain wildcard: .geonode.org will match geonode.org, www.geonode.org, and any other subdomain of
geonode.org. A value of ‘*’ will match anything and is not recommended for production deployments.

PROXY_URL

Default /proxy/?url=

The URL to a proxy that will be used when making client-side requests in GeoNode. By default, the
internal GeoNode proxy is used but administrators may favor using their own, less restrictive proxies.

Search settings

DEFAULT_SEARCH_SIZE

Default: 10

An integer that specifies the default search size when using geonode.search for querying data.

API settings

API_LIMIT_PER_PAGE

Default: 20

Number of items returned by the API. 0 equals no limit

API_INCLUDE_REGIONS_COUNT

Default: False

Specifies if to include facets count for regions.

Security settings

AUTH_EXEMPT_URLS

Default: () (Empty tuple)

A tuple of URL patterns that the user can visit without being authenticated.
This setting has no effect if LOCKDOWN_GEONODE is not True. For example,
AUTH_EXEMPT_URLS = ('/maps',) will allow unauthenticated users to
browse maps.

LOCKDOWN_GEONODE

Default: False

By default, the GeoNode application allows visitors to view most pages without being authenticated. If this is set to True
users must be authenticated before accessing URL routes not included in AUTH_EXEMPT_URLS.

RESOURCE_PUBLISHING

Default: True

By default, the GeoNode application allows GeoNode staff members to
publish/unpublish resources.
By default resources are published when created. When this settings is set to
True the staff members will be able to unpublish a resource (and eventually
publish it back).

Social settings

SOCIAL_BUTTONS

Default: True

A boolean which specifies whether the social media icons and JavaScript should be rendered in GeoNode.

SOCIAL_ORIGINS

Default:

SOCIAL_ORIGINS = [{
 "label":"Email",
 "url":"mailto:?subject={name}&body={url}",
 "css_class":"email"
}, {
 "label":"Facebook",
 "url":"http://www.facebook.com/sharer.php?u={url}",
 "css_class":"fb"
}, {
 "label":"Twitter",
 "url":"https://twitter.com/share?url={url}",
 "css_class":"tw"
}, {
 "label":"Google +",
 "url":"https://plus.google.com/share?url={url}",
 "css_class":"gp"
}]

A list of dictionaries that is used to generate the social links displayed in the Share tab. For each origin, the name and URL format parameters are replaced by the actual values of the ResourceBase object (layer, map, document).

CKAN_ORIGINS

Default:

CKAN_ORIGINS = [{
 "label":"Humanitarian Data Exchange (HDX)",
 "url":"https://data.hdx.rwlabs.org/dataset/new?title={name}¬es={abstract}",
 "css_class":"hdx"
}]

A list of dictionaries that is used to generate the links to CKAN instances displayed in the Share tab. For each origin, the name and abstract format parameters are replaced by the actual values of the ResourceBase object (layer, map, document). This is not enabled by default. To enabled, uncomment the following line: SOCIAL_ORIGINS.extend(CKAN_ORIGINS).

TWITTER_CARD

Default:: True

A boolean that specifies whether Twitter cards are enabled.

TWITTER_SITE

Default:: '@GeoNode'

A string that specifies the site to for the twitter:site meta tag for Twitter Cards.

TWITTER_HASHTAGS

Default:: ['geonode']

A list that specifies the hashtags to use when sharing a resource when clicking on a social link.

OPENGRAPH_ENABLED

Default:: True

A boolean that specifies whether Open Graph is enabled. Open Graph is used by Facebook and Slack.

Upload settings

GEOGIG_DATASTORE_NAME

Default: None

A string with the default GeoGig datastore name. This value is only used if no GeoGig datastore name is provided
when data is uploaded but it must be populated if your deployment supports GeoGig.

UPLOADER

Default:

{
 'BACKEND' : 'geonode.rest',
 'OPTIONS' : {
 'TIME_ENABLED': False,
 'GEOGIG_ENABLED': False,
 }
}

A dictionary of Uploader settings and their values.

BACKEND

Default: 'geonode.rest'

The uploader backend to use. The backend choices are:

	'geonode.importer'

	'geonode.rest'

The importer backend requires the GeoServer importer extension to be enabled and is required for uploading data into
GeoGig datastores.

OPTIONS

Default:

'OPTIONS' : {
 'TIME_ENABLED': False,
 'GEOGIG_ENABLED': False,
}

TIME_ENABLED

Default: False

A boolean that specifies whether the upload should allow the user to enable time support when uploading data.

GEOGIG_ENABLED

Default: False

A boolean that specifies whether the uploader should allow the user to upload data into a GeoGig datastore.

User Account settings

THEME_ACCOUNT_CONTACT_EMAIL

Default: 'admin@example.com'

This email address is added to the bottom of the password reset page in case
users have trouble unlocking-locking their account.

ACCOUNT_OPEN_SIGNUP

Default: True

Whether the geonode site allows new users to register for an account. When
set to False new users cannot register, they must be created by a staff
member

ACCOUNT_APPROVAL_REQUIRED

Default: False

Whether new user registrations must be manually approved. When set to
True, the site’s staff must manually approve every new account. The
approval flow goes like this:

	User registers in the site (either with a local account or by using a social login);

	Staff users receive an email notification that a new user is requesting access;

	Staff users manually approve the user by using geonode’s administration interface;

	User receives an e-mail notification when the account has been approved;

	User can now login to the geonode site.

ACCOUNT_ADAPTER

Default: geonode.people.adapters.LocalAccountAdapter

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It allows specifying a custom class to handle authentication for local
accounts.

ACCOUNT_CONFIRM_EMAIL_ON_GET

Default: True

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It allows specifying the HTTP method used when confirming e-mail addresses.

ACCOUNT_EMAIL_REQUIRED

Default: True

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
Controls whehter the user is required to provide an e-mail address upon
registration

ACCOUNT_EMAIL_VERIFICATION

Default: optional

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].

SOCIALACCOUNT_ADAPTER

Default: geonode.people.adapters.SocialAccountAdapter

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It allows specifying a custom class to handle authentication for social
accounts.

SOCIALACCOUNT_PROVIDERS

Default: None

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It should be a dictionary with provider specific settings

SOCIALACCOUNT_PROFILE_EXTRACTORS

Default: None

A dictionary with lowercase provider names as keys and path to custom
profile extractor classes as values.

User notifications settings

Note

PINAX_* settings are relevant if you have pinax.notifications app added to INSTALLED_APPS.

Note

user configuration is described Setting notification preferences.

Note

Full list of Pinax-notifications app settings is available in Pinax notifications docs [https://pinax-notifications.readthedocs.io/en/latest/settings/].

PINAX_NOTIFICATIONS_QUEUE_ALL

Default: False

A boolean that specifies if user notifications should be queued and send outside main web application process. If set to True, additional sending script, python manage.py emit_notices should be called periodically.

PINAX_NOTIFICATIONS_BACKENDS

Default:

[
("email", "pinax.notifications.backends.email.EmailBackend"),
]

List of backends (channels) that delivers messages to receipients.

Download settings

DOWNLOAD_FORMATS_METADATA

Specifies which metadata formats are available for users to download.

Default:

DOWNLOAD_FORMATS_METADATA = [
 'Atom', 'DIF', 'Dublin Core', 'ebRIM', 'FGDC', 'ISO',
]

DOWNLOAD_FORMATS_VECTOR

Specifies which formats for vector data are available for users to download.

Default:

DOWNLOAD_FORMATS_VECTOR = [
 'JPEG', 'PDF', 'PNG', 'Zipped Shapefile', 'GML 2.0', 'GML 3.1.1', 'CSV',
 'Excel', 'GeoJSON', 'KML', 'View in Google Earth', 'Tiles',
]

DOWNLOAD_FORMATS_RASTER

Specifies which formats for raster data are available for users to download.

Default:

DOWNLOAD_FORMATS_RASTER = [
 'JPEG', 'PDF', 'PNG' 'Tiles',
]

Contrib settings

EXIF_ENABLED

Default: False

A boolean that specifies whether the Exif contrib app is enabled. If enabled, metadata is generated from Exif tags when documents are uploaded.

GEOTIFF_IO_ENABLED

Default: False

A boolean that specifies whether the GeoTIFF.io contrib feature is enabled. If enabled, an ‘Analyze with GeoTIFF.io’ button is added to the layer_detail page.

GEOTIFF_IO_BASE_URL

Default: https://app.geotiff.io

A string that specifies what instance of GeoTIFF.io should be opened when the ‘Analyze with GeoTIFF.io’ button is clicked.

NLP_ENABLED

Default: False

A boolean that specifies whether the NLP (Natural Language Processing) contrib app is enabled. If enabled, NLP (specifically MITIE) is used to infer additional metadata from uploaded documents to help fill metadata gaps.

NLP_LOCATION_THRESHOLD

Default: 1.0

A float that specifies the threshold for location matches.

NLP_LIBRARY_PATH

Default:: '/opt/MITIE/mitielib'

A string that specifies the location of the MITIE library

NLP_MODEL_PATH

Default:: '/opt/MITIE/MITIE-models/english/ner_model.dat'

A string that specifies the location of the NER (Named Entity Resolver). MITIE comes with English and Spanish NER models. Other models can be trained.

SLACK_ENABLED

Default: False

A boolean that specifies whether the Slack contrib app is enabled. If enabled, GeoNode will send messages to the slack channels specified in SLACK_WEBHOOK_URLS when a document is uploaded, metadata is updated, etc. Coverage of events is still incomplete.

SLACK_WEBHOOK_URLS

A list that specifies the URLs to post Slack messages to. Each URL is for a different channel. The default URL should be replaced when slack integration is enabled.

Default:

SLACK_WEBHOOK_URLS = [
 "https://hooks.slack.com/services/T000/B000/XX"
]

Amazon Web Services Settings

S3_STATIC_ENABLED

Default: False

A boolean that specifies whether GeoNode’s static files will be served through an S3 bucket. Set through the environment variable S3_STATIC_ENABLED.

S3_MEDIA_ENABLED

Default: False

A boolean that specifies whether GeoNode’s media files will be served through an S3 bucket. Set through the environment variable S3_MEDIA_ENABLED.

AWS_BUCKET_NAME

The name of the S3 bucket GeoNode will pull static and/or media files from. Set through the environment variable S3_BUCKET_NAME.

AWS_STORAGE_BUCKET_NAME

The name of the S3 bucket GeoNode will pull static and/or media files from. Set through the environment variable S3_BUCKET_NAME.

AWS_ACCESS_KEY_ID

The access key for the S3 bucket GeoNode will pull static and/or media files from. Set through the environment variable AWS_ACCESS_KEY_ID.

AWS_SECRET_ACCESS_KEY

The secret access key for the S3 bucket GeoNode will pull static and/or media files from. Set through the environment variable AWS_SECRET_ACCESS_KEY.

AWS_QUERYSTRING_AUTH

Default: False

Generate an S3 auth querystring.

GeoSites: GeoNode Multi-Tenancy

GeoSites is a way to run multiple websites with a single instance of GeoNode. Each GeoSite can have different templates, apps, and data permissions but share a single database (useful for sharing users and data layers), GeoServer, and CSW. This is useful when multiple websites are desired to support different sets of users, but with a similar set of data and overall look and feel of the sites. Users can be given permission to access multiple sites if needed, which also allows administrative groups can be set up to support all sites with one account.

Master Website

A GeoSites installation uses a ‘master’ GeoNode website that has some additional administrative pages for doing data management. Layers, Maps, Documents, Users, and Groups can all be added and removed from different sites. Users can be given access to any number of sites, and data may appear on only a single site, or all of them. Additionally, if desired, any or all of the Django apps installed on the other sites can be added to the master site to provide a single administrative interface that gives full access to all apps. The master site need not be accessible from the outside so that it can be used as an internal tool to the organization.

Users created on a particular site are created with access to just that site. Data uploaded to a particular site is given permission on that site as well as the master site. Any further adjustments to site-based permissions must be done from the master site.

Database

The master site, and all of the individual GeoSites, share a single database. Objects, including users, groups, and data layers, all appear within the database but an additional sites table indicates which objects have access to which sites. The geospatial data served by GeoServer (e.g., from PostGIS) can exist in the database like normal, since GeoServer will authenticate against GeoNode, which will use it’s database to determine permissions based on the object, current user, and site.

GeoServer

A single GeoServer instance is used to serve data to all of the GeoSites. To keep data organized each site specifies a default workspace (DEFAULT_WORKSPACE) that GeoServer will use to partition the data depending on which site uploaded the data. The workspaces themselves don’t have any impact on permissions, since data can be added and removed from different sites, however it provides at least some organization of the data based on the initial site.

Data that is common to all sites can be added to the master site which will appear in the generic ‘geonode’ workspace.

Settings Files and Templates

A key component in managing multiple sites is keeping data organized and using a structured series of settings files so that common settings can be shared and only site specific settings are separated out. It is also best to import the default GeoNode settings from the GeoNode installation. This prevents the settings from having to be manually upgraded if there is any default change the GeoNode settings.

Settings which are common to all GeoSites, but differ from the default GeoNode, are separated into a master_settings.py file. Then, each individual site has settings file which imports from the master site and will then only need to specify a small selection that make that site unique, such as:

	SITE_ID: Each one is unique, the master site should have a SITE_ID of 1.

	SITENAME

	SITEURL

	ROOT_URLCONF: This may be optional. The master site url.conf can be configured to automatically import the urls.py of all SITE_APPS, so a different ROOT_URLCONF is only needed if there are further differences.

	SITE_APPS: Containing the site specific apps

	App settings: Any further settings required for the above sites

	Other site specific settings, such as REGISTRATION_OPEN

A GeoSite therefore has three layers of imports, which is used for settings as well as the search path for templates. First it uses the individual site files, then the master GeoSite, then default GeoNode. These are specified via variables defined in settings:

	SITE_ROOT: The directory where the site specific settings and files are located (templates, static)

	PROJECT_ROOT: The top-level directory of all the GeoSites which should include the global settings file as well as template and static files

	GEONODE_ROOT: The GeoNode directory.

The TEMPLATE_DIRS, and STATICFILES_DIRS will then include all three directories as shown:

TEMPLATE_DIRS = (
 os.path.join(SITE_ROOT, 'templates/'),
 os.path.join(PROJECT_ROOT,'templates/'), # files common to all sites
 os.path.join(GEONODE_ROOT, 'templates/')
)

STATICFILES_DIRS = (
 os.path.join(SITE_ROOT, 'static/'),
 os.path.join(PROJECT_ROOT, 'static/'),
 os.path.join(GEONODE_ROOT, 'static/')
)

At the end of the settings_global.py the following variables will be set based on site specific settings:

STATIC_URL = os.path.join(SITEURL,’static/’)
GEONODE_CLIENT_LOCATION = os.path.join(STATIC_URL,’geonode/’)
GEOSERVER_BASE_URL = SITEURL + ‘geoserver/’
if SITE_APPS:
 INSTALLED_APPS += SITE_APPS

Templates and Static Files

As mentioned above for each website there will be three directories used for template and static files. The first template file found will be the one used so templates in the SITE_ROOT/templates directory will override those in PROJECT_ROOT/templates, which will override those in GEONODE_ROOT/templates.

Static files work differently because (at least on a production server) they are collected and stored in a single location. Because of this care must be taken to avoid clobbering of files between sites, so each site directory should contain all static files in a subdirectory with the name of the site (e.g., static/siteA/logo.png)

The location of the proper static directory can then be found in the templates syntax such as:

{{ STATIC_URL }}{{ SITENAME|lower }}/logo.png

Permissions by Site

By default GeoNode is publicly available. In the case of GeoSites, new data will be publicly available, but only for the site it was added to, and the master site (all data is added to the master site).

Adding New Sites

A management command exists to easily create a new site. This will create all the needed directories, as well as a site specific settings file. The command may also create a website configuration file.

GeoNode Django Apps

The user interface of a GeoNode site is built on top of the Django web
framework. GeoNode includes a few “apps” (reusable Django modules) to support
development of those user interfaces. While these apps have reasonable default
configurations, for customized GeoNode sites you will probably want to adjust
these apps for your specific needs.

geonode.base - GeoNode core functionality

Stores core functionality used throughout the GeoNode application.

Template Tags

num_ratings <object>

Returns the number of ratings an object has. Example usage:

{% load base_tags %}
{% num_ratings map as num_votes %}

<p>Map votes: {{num_votes}}.</p>

categories

Returns topic categories and the count of objects in each category.

geonode.documents - Document creation and management

Manages uploaded files that can be related to maps. Documents can be any type of file that is included in the
ALLOWED_DOCUMENTS_TYPES setting.

settings.py Entries

	ALLOWED_DOCUMENT_TYPES

	Default: ['doc', 'docx', 'xls', 'xslx', 'pdf', 'zip', 'jpg', 'jpeg', 'tif', 'tiff', 'png', 'gif', 'txt']

A list of acceptable file extensions that can be uploaded to the Documents app.

	MAX_DOCUMENT_SIZE

	Default: 2

The maximum size (in megabytes) that an upload will be before it gets rejected.

geonode.layers - Layer creation and geospatial data management

This Django app provides support for managing and manipulating single geospatial datasets known as layers.

Models

	Attribute - Feature attributes for a layer managed by the GeoNode.

	Layer - A data layer managed by the GeoNode

	Style - A data layer’s style managed by the GeoNode

Views

	Creating, viewing, browsing, editing, and deleting layers and their metadata

Template Tags

	featured_layers

	Returns the 7 newest layers.

	layer_thumbnail <layer>

	Returns the layer’s thumbnail.

manage.py Commands

	importlayers

	python manage.py importlayers

Brings a data file or a directory full of data files into a
GeoNode site. Layers are added to the Django database, the
GeoServer configuration, and the GeoNetwork metadata index.

	updatelayers

	python manage.py updatelayers

Scan GeoServer for data that has not been added to GeoNode.

geonode.maps - Map creation and geospatial data management

This Django app provides some support for managing and manipulating geospatial
datasets. In particular, it provides tools for editing, viewing, and searching
metadata for data layers, and for editing, viewing, and searching maps that
aggregate data layers to display data about a particular topic.

Models

	Map - A collection of data layers composed in a particular order to form a map

	MapLayer - A model that maintains some map-specific information related to a layer, such as the z-indexing order.

Views

The maps app provides views for:

	Creating, viewing, browsing, editing, and deleting Maps

These operations require the use of GeoServer to manage map rendering, as well
as GeoExt to provide interactive editing and previewing of maps and data layers.

There are also some URL mappings in the geonode.maps.urls module for easy
inclusion in GeoNode sites.

settings.py Entries

	OGC_SERVER

	Default: {} (Empty dictionary)

A dictionary of OGC servers and their options. The main
server should be listed in the ‘default’ key. If there is no ‘default’
key or if the OGC_SERVER setting does not exist GeoNode will raise
an Improperly Configured exception. Below is an example of the OGC_SERVER
setting:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 }
}

	BACKEND

	Default: "geonode.geoserver"

The OGC server backend to use. The backend choices are:

	'geonode.geoserver'

	BACKEND_WRITE_ENABLED

	Default: True

Specifies whether the OGC server can be written to. If False, actions that modify
data on the OGC server will not execute.

	LOCATION

	Default: "http://localhost:8080/geoserver/"

A base URL from which GeoNode can construct OGC service URLs.
If using GeoServer you can determine this by
visiting the GeoServer administration home page without the
/web/ at the end. For example, if your GeoServer administration app is at
http://example.com/geoserver/web/, your server’s location is http://example.com/geoserver.

	PUBLIC_LOCATION

	Default: "http://localhost:8080/geoserver/"

The URL used to in most public requests from GeoNode. This settings allows a user to write to one OGC server (the LOCATION setting)
and read from a separate server or the PUBLIC_LOCATION.

	USER

	Default: 'admin'

The administrative username for the OGC server as a string.

	PASSWORD

	Default: 'geoserver'

The administrative password for the OGC server as a string.

	MAPFISH_PRINT_ENABLED

	Default: True

A boolean that represents whether the MapFish printing extension is enabled on the server.

	PRINT_NG_ENABLED

	Default: True

A boolean that represents whether printing of maps and layers is enabled.

	GEONODE_SECURITY_ENABLED

	Default: True

A boolean that represents whether GeoNode’s security application is enabled.

	GEOGIT_ENABLED

	Default: False

A boolean that represents whether the OGC server supports GeoGig datastores.

	WMST_ENABLED

	Default: False

Not implemented.

	WPS_ENABLED

	Default: False

Not implemented.

	DATASTORE

	Default: '' (Empty string)

An optional string that represents the name of a vector datastore that GeoNode uploads
are imported into. In order to support vector datastore imports there also needs to be an
entry for the datastore in the DATABASES dictionary with the same name. Example:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 'DATASTORE': 'geonode_imports'
 }
}

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': 'development.db',
 },
 'geonode_imports' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'NAME': 'geonode_imports',
 'USER' : 'geonode_user',
 'PASSWORD' : 'a_password',
 'HOST' : 'localhost',
 'PORT' : '5432',
 }
 }

	GEOSERVER_CREDENTIALS

	Removed in GeoNode 2.0, this value is now specified in the OGC_SERVER settings.

	GEOSERVER_BASE_URL

	Removed in GeoNode 2.0, this value is now specified in the OGC_SERVER settings.

	CATALOGUE

	A dict with the following keys:

	ENGINE: The CSW backend (default is geonode.catalogue.backends.pycsw_local)

	URL: The FULLY QUALIFIED base URL to the CSW instance for this GeoNode

	USERNAME: login credentials (if required)

	PASSWORD: login credentials (if required)

pycsw is the default CSW enabled in GeoNode. pycsw configuration directives
are managed in the PYCSW entry.

	PYCSW

	A dict with pycsw’s configuration. Of note are the sections
metadata:main to set CSW server metadata and metadata:inspire
to set INSPIRE options. Setting metadata:inspire['enabled'] to true
will enable INSPIRE support. Server level configurations can be overridden
in the server section. See http://docs.pycsw.org/en/stable/configuration.html
for full pycsw configuration details.

	SITEURL

	Default: 'http://localhost:8000/'

A base URL for use in creating absolute links to Django views.

	DEFAULT_MAP_BASE_LAYER

	The name of the background layer to include in newly created maps.

	DEFAULT_MAP_CENTER

	Default: (0, 0)

A 2-tuple with the latitude/longitude coordinates of the center-point to use
in newly created maps.

	DEFAULT_MAP_ZOOM

	Default: 0

The zoom-level to use in newly created maps. This works like the OpenLayers
zoom level setting; 0 is at the world extent and each additional level cuts
the viewport in half in each direction.

geonode.proxy - Assist JavaScript applications in accessing remote servers

This Django app provides some HTTP proxies for accessing data from remote
servers, to overcome restrictions imposed by the same-origin policy used by
browsers. This helps the GeoExt applications in a GeoNode site to access various XML documents from OGC-compliant data services.

Views

	geonode.proxy.views.proxy

	This view forwards requests without authentication to a URL provided in the
request, similar to the proxy.cgi script provided by the OpenLayers project.

	geonode.proxy.views.geoserver

	This view proxies requests to GeoServer. Instead of a URL-encoded URL
parameter, the path component of the request is expected to be a path
component for GeoServer. Requests to this URL require valid authentication
against the Django site, and will use the default OGC_SERVER USER,
PASSWORD and LOCATION settings as defined in the maps application.

geonode.search - Provides the GeoNode search functionality.

This Django app provides a fast search functionality to GeoNode.

Views

	search_api- Builds and executes a search query based on URL parameters and returns matching results in requested format.

geonode.security - GeoNode granular Auth Backend

This app provides an authentication backend for use in assigning permissions to individual objects (maps and layers).

settings.py Entries

	LOCKDOWN_GEONODE

	Default: False

By default, the GeoNode application allows visitors to view most pages without
being authenticated. Set LOCKDOWN_GEONODE = True to require a user to
be authenticated before viewing the application.

	AUTH_EXEMPT_URLS

	Default: () (Empty tuple)

A tuple of URL patterns that the user can visit without being authenticated.
This setting has no effect if LOCKDOWN_GEONODE is not True. For example,
AUTH_EXEMPT_URLS = ('/maps',) will allow unauthenticated users to
browse maps.

Template Tags

	geonode_media <media_name>

	Accesses entries in MEDIA_LOCATIONS without requiring the view to explicitly
add it to the template context. Example usage:

{% include geonode_media %}
{% geonode_media "ext_base" %}

	has_obj_perm <user> <obj> <permission>

	Checks whether the user has the specified permission on an object.

{% has_obj_perm user obj "app.view_thing" as can_view_thing %}

geonode.people - User account registration and profile management

This app provides functionality related to user accounts and user profiles.

User authentication is based on django-allauth [https://django-allauth.readthedocs.io/en/latest/index.html], with some geonode-specific
customizations. Users can register to a geonode instance by either creating
a new account or by using one of their social providers, such as linkedin,
facebook, etc.

User invitations are leveraged via `django-invitations`_.

Adding authentication with a social provider

Configuring geonode user authentication with a social provider is a multi-step
process:

	Create an application on the provider’s developer site. For example, for

linkedin:

	Go to https://developer.linkedin.com/apps and select Create Application

	Proceed to create an application, referring to django-allauth’s
documentation [http://django-allauth.readthedocs.io/en/latest/providers.html#authorized-redirect-urls-oauth2] where needed. Be sure to select the r_basicprofile
and r_emailaddress application permissions. These will enable geonode
to access some information regarding the user’s linkedin public profile.
Once created, take note of the Client ID and Client Secret
parameters which linkedin assigns to your new application

	Follow the post-install [http://django-allauth.readthedocs.io/en/latest/installation.html#post-installation] instructions on django-allauth’s documentation.
These basically instruct you to:

	include the relevant app in geonode’s INSTALLED_APPS setting for the
social provider that you are using. For linkedin this means adding
allauth.socialaccount.providers.linkedin_oauth2.

	Access geonode’s admin interface and add a new Social App for the
provider. Add the previously gathered Client id and Secret key
parameters that were obtained when creating a linkedin application.

	Optionally add relevant value to geonode’s SOCIALACCOUNT_PROVIDERS
setting. Consult django-allauth’s provider-specific documentation for more
information on this setting

	Optionally add a profile extractor entry to geonode’s
SOCIALACCOUNT_PROFILE_EXTRACTORS setting. This setting is specific to
geonode and is not part of django-allauth. The expected value is a dictionary
with the provider’s id as key and the python path to a data
extractor class as the value. Example:

 # settings.py
 SOCIALACCOUNT_PROFILE_EXTRACTORS = {
 "linkedin_oauth2": "geonode.people.profileextractors.LinkedInExtractor"
 }

A profile extractor class can retrieve information from each social account
provider and use that to enhance a user's profile information on geonode.
Look into the ``geonode.people.profileextractors`` module on geonode's
source code for more information.

settings.py entries

	ACCOUNT_OPEN_SIGNUP

	Default: True

Whether the geonode site allows new users to register for an account. When
set to False new users cannot register, they must be created by a staff
member

	ACCOUNT_APPROVAL_REQUIRED

	Default: False

Whether new user registrations must be manually approved. When set to
True, the site’s staff must manually approve every new account. The
approval flow goes like this:

	User registers in the site (either with a local account or by using a social login);

	Staff users receive an email notification that a new user is requesting access;

	Staff users manually approve the user by using geonode’s administration interface;

	User receives an e-mail notification when the account has been approved;

	User can now login to the geonode site.

	ACCOUNT_ADAPTER

	Default: geonode.people.adapters.LocalAccountAdapter

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It allows specifying a custom class to handle authentication for local
accounts.

	ACCOUNT_CONFIRM_EMAIL_ON_GET

	Default: True

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It allows specifying the HTTP method used when confirming e-mail addresses.

	ACCOUNT_EMAIL_REQUIRED

	Default: True

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
Controls whehter the user is required to provide an e-mail address upon
registration

	ACCOUNT_EMAIL_VERIFICATION

	Default: optional

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].

	SOCIALACCOUNT_ADAPTER

	Default: geonode.people.adapters.SocialAccountAdapter

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It allows specifying a custom class to handle authentication for social
accounts.

	SOCIALACCOUNT_PROVIDERS

	Default: None

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It should be a dictionary with provider specific settings

	SOCIALACCOUNT_PROFILE_EXTRACTORS

	Default: None

A dictionary with provider ids as keys and path to custom profile extractor
classes as values.

Django’s error templates

GeoNode customizes some of Django’s default error templates.

500.html

If no custom handler for 500 errors is set up in urls.py, Django will call django.views.defaults.server_error which expects a 500.html file in the root of the templates directory. In GeoNode, we have put a template that does not inherit from anything as 500.html and because most of Django’s machinery is down when an INTERNAL ERROR (500 code) is encountered the use of template tags should be avoided.

3rd party apps

pinax.notifications

This application enables users to receive notifications from specific events within GeoNode. For user-specific configuration, see Setting notification preferences. For settings, see User notifications settings.

JavaScript in GeoNode

GeoNode provides a number of facilities for interactivity in the web browser built on top of several high-quality JavaScript frameworks:

	Bootstrap [http://getbootstrap.com/] for GeoNode’s front-end user interface and common user interaction.

	Bower [https://bower.io/] for GeoNode’s front-end package management.

	ExtJS [https://www.sencha.com/products/extjs/] for component-based UI construction and data access

	OpenLayers [http://openlayers.org/] for interactive mapping and other geospatial operations

	GeoExt [http://geoext.org/] for integrating ExtJS with OpenLayers

	Grunt [http://gruntjs.com/] for front-end task automation.

	GXP [https://github.com/boundlessgeo/gxp] for providing some higher-level application building facilities on top of GeoExt, as well
as improving integration with GeoServer.

	jQuery [http://jquery.com] to abstract JavaScript manipulation, event handling, animation and XMLHttpRequest.

GeoNode uses application-specific modules to handle pages and services that are unique to GeoNode. This framework includes:

	A GeoNode mixin [https://github.com/GeoNode/geonode/blob/master/geonode/static/geonode/js/extjs/GeoNode-mixin.js] class
that provides GeoExplorer with the methods needed to properly function in GeoNode. The class
is responsible for checking permissions, retrieving and submitting the CSRF token [https://docs.djangoproject.com/en/1.8/ref/csrf/],
and user authentication.

	A search module [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/search] responsible for the GeoNode’s site-wide search functionality.

	An upload and status module [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/upload] to support file uploads.

	Template files [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/templates] for generating commonly used HTML sections.

	A front-end testing module [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/tests] to test GeoNode JavaScript.

The following concepts are particularly important for developing on top of the
GeoNode’s JavaScript framework.

	Components - Ext components handle most interactive functionality in
“regular” web pages. For example, the scrollable/sortable/filterable table
on the default Search page is a Grid component. While GeoNode does use some
custom components, familiarity with the idea of Components used by ExtJS is
applicable in GeoNode development.

	Viewers - Viewers display interactive maps in web pages, optionally decorated
with Ext controls for toolbars, layer selection, etc. Viewers in GeoNode use
the GeoExplorer base class, which builds on top of GXP’s Viewer to provide
some common functionality such as respecting site-wide settings for
background layers. Viewers can be used as components embedded in pages, or
they can be full-page JavaScript applications.

	Controls - Controls are tools for use in OpenLayers maps (such as a freehand
control for drawing new geometries onto a map, or an identify control for
getting information about individual features on a map.) GeoExt provides
tools for using these controls as ExtJS “Actions” - operations that can be
invoked as buttons or menu options or associated with other events.

Settings

Here’s a list of settings available in GeoNode and their default values. This includes settings for some external applications that
GeoNode depends on.

Documents settings

Here’s a list of settings available for the Documents app in GeoNode.

ALLOWED_DOCUMENT_TYPES

Default: ['doc', 'docx', 'xls', 'xlsx', 'pdf', 'zip', 'jpg', 'jpeg', 'tif', 'tiff', 'png', 'gif', 'txt']

A list of acceptable file extensions that can be uploaded to the Documents app.

MAX_DOCUMENT_SIZE

Default: 2

Metadata settings

CATALOGUE

A dict with the following keys:

	ENGINE: The CSW backend (default is geonode.catalogue.backends.pycsw_local)

	URL: The FULLY QUALIFIED base URL to the CSW instance for this GeoNode

	USERNAME: login credentials (if required)

	PASSWORD: login credentials (if required)

pycsw is the default CSW enabled in GeoNode. pycsw configuration directives
are managed in the PYCSW entry.

PYCSW

A dict with pycsw’s configuration. Of note are the sections
metadata:main to set CSW server metadata and metadata:inspire
to set INSPIRE options. Setting metadata:inspire['enabled'] to true
will enable INSPIRE support. Server level configurations can be overridden
in the server section. See http://docs.pycsw.org/en/latest/configuration.html
for full pycsw configuration details.

MODIFY_TOPICCATEGORY

Default: False

Metadata Topic Categories list should not be modified, as it is strictly defined
by ISO (See: http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml
and check the <CodeListDictionary gml:id=”MD_MD_TopicCategoryCode”> element).

Some customization is still possible by changing the is_choice and the GeoNode
description fields.

In case it is absolutely necessary to add/delete/update categories, it is
possible to set the MODIFY_TOPICCATEGORY setting to True.

Maps settings

DEFAULT_MAP_BASE_LAYER

The name of the background layer to include in newly created maps.

DEFAULT_MAP_CENTER

Default: (0, 0)

A 2-tuple with the latitude/longitude coordinates of the center-point to use
in newly created maps.

DEFAULT_MAP_ZOOM

Default: 0

The zoom-level to use in newly created maps. This works like the OpenLayers
zoom level setting; 0 is at the world extent and each additional level cuts
the viewport in half in each direction.

MAP_BASELAYERS

Default:

MAP_BASELAYERS = [{
"source": {
 "ptype": "gxp_wmscsource",
 "url": OGC_SERVER['default']['PUBLIC_LOCATION'] + "wms",
 "restUrl": "/gs/rest"
 }
 },{
 "source": {"ptype": "gxp_olsource"},
 "type":"OpenLayers.Layer",
 "args":["No background"],
 "visibility": False,
 "fixed": True,
 "group":"background"
 }, {
 "source": {"ptype": "gxp_osmsource"},
 "type":"OpenLayers.Layer.OSM",
 "name":"mapnik",
 "visibility": False,
 "fixed": True,
 "group":"background"
 }, {
 "source": {"ptype": "gxp_mapquestsource"},
 "name":"osm",
 "group":"background",
 "visibility": True
 }, {
 "source": {"ptype": "gxp_mapquestsource"},
 "name":"naip",
 "group":"background",
 "visibility": False
 },{
 "source": {"ptype": "gxp_mapboxsource"},
 }, {
 "source": {"ptype": "gxp_olsource"},
 "type":"OpenLayers.Layer.WMS",
 "group":"background",
 "visibility": False,
 "fixed": True,
 "args":[
 "bluemarble",
 "http://maps.opengeo.org/geowebcache/service/wms",
 {
 "layers":["bluemarble"],
 "format":"image/png",
 "tiled": True,
 "tilesOrigin": [-20037508.34, -20037508.34]
 },
 {"buffer": 0}
]

}]

A list of dictionaries that specify the default map layers.

Specific settings for map API providers (if they are not set those base maps will not be available):

	ALT_OSM_BASEMAPS set this variable to True if you want additional OSM basemaps

	CARTODB_BASEMAPS set this variable to True if you want CartoDB basemaps

	STAMEN_BASEMAPS set this variable to True if you want stamen basemaps

	THUNDERFOREST_BASEMAPS set this variable to True if you want Thunderforest basemaps

	MAPBOX_ACCESS_TOKEN set this variable to your Mapbox public token

	BING_API_KEY set this variable to your BING Map Key value

GEONODE_CLIENT_LAYER_PREVIEW_LIBRARY

Default: "geoext"

The library to use for display preview images of layers. The library choices are:

	"leaflet"

	"geoext"

	"react"

More instructions can be found here<https://github.com/GeoNode/geonode-client/blob/master/README.md>

OGC_SERVER

Default: {} (Empty dictionary)

A dictionary of OGC servers and their options. The main
server should be listed in the ‘default’ key. If there is no ‘default’
key or if the OGC_SERVER setting does not exist GeoNode will raise
an Improperly Configured exception. Below is an example of the OGC_SERVER
setting:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 }
}

BACKEND

Default: "geonode.geoserver"

The OGC server backend to use. The backend choices are:

	'geonode.geoserver'

BACKEND_WRITE_ENABLED

Default: True

Specifies whether the OGC server can be written to. If False, actions that modify
data on the OGC server will not execute.

DATASTORE

Default: '' (Empty string)

An optional string that represents the name of a vector datastore that GeoNode uploads
are imported into. In order to support vector datastore imports there also needs to be an
entry for the datastore in the DATABASES dictionary with the same name. Example:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 'DATASTORE': 'geonode_imports'
 }
}

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': 'development.db',
 },
 'geonode_imports' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'NAME': 'geonode_imports',
 'USER' : 'geonode_user',
 'PASSWORD' : 'a_password',
 'HOST' : 'localhost',
 'PORT' : '5432',
 }
 }

GEOGIG_ENABLED

Default: False

A boolean that represents whether the OGC server supports GeoGig datastores.

GEONODE_SECURITY_ENABLED

Default: True

A boolean that represents whether GeoNode’s security application is enabled.

LOCATION

Default: "http://localhost:8080/geoserver/"

A base URL from which GeoNode can construct OGC service URLs.
If using GeoServer you can determine this by
visiting the GeoServer administration home page without the
/web/ at the end. For example, if your GeoServer administration app is at
http://example.com/geoserver/web/, your server’s location is http://example.com/geoserver.

MAPFISH_PRINT_ENABLED

Default: True

A boolean that represents whether the MapFish printing extension is enabled on the server.

PASSWORD

Default: 'geoserver'

The administrative password for the OGC server as a string.

PG_GEOGIG

Default: False

A boolean that represents whether GeoNode will use a Postgres database as a backend for GeoGig stores. When set to true, the DATASTORE field must be set to a Postgres database which will be used.

PRINT_NG_ENABLED

Default: True

A boolean that represents whether printing of maps and layers is enabled.

PUBLIC_LOCATION

Default: "http://localhost:8080/geoserver/"

The URL used to in most public requests from GeoNode. This settings allows a user to write to one OGC server (the LOCATION setting)
and read from a separate server or the PUBLIC_LOCATION.

USER

Default: 'admin'

The administrative username for the OGC server as a string.

WMST_ENABLED

Default: False

Not implemented.

WPS_ENABLED

Default: False

Not implemented.

TIMEOUT

Default: 10

The maximum time, in seconds, to wait for the server to respond.

SITEURL

Default: 'http://localhost:8000/'

A base URL for use in creating absolute links to Django views and generating links in metadata.

Proxy settings

PROXY_ALLOWED_HOSTS

Default: () (Empty tuple)

A tuple of strings representing the host/domain names that GeoNode can proxy requests to. This is a security measure
to prevent an attacker from using the GeoNode proxy to render malicious code or access internal sites.

Values in this tuple can be fully qualified names (e.g. ‘www.geonode.org’), in which case they will be matched against
the request’s Host header exactly (case-insensitive, not including port). A value beginning with a period can be used
as a subdomain wildcard: .geonode.org will match geonode.org, www.geonode.org, and any other subdomain of
geonode.org. A value of ‘*’ will match anything and is not recommended for production deployments.

PROXY_URL

Default /proxy/?url=

The URL to a proxy that will be used when making client-side requests in GeoNode. By default, the
internal GeoNode proxy is used but administrators may favor using their own, less restrictive proxies.

Search settings

DEFAULT_SEARCH_SIZE

Default: 10

An integer that specifies the default search size when using geonode.search for querying data.

API settings

API_LIMIT_PER_PAGE

Default: 20

Number of items returned by the API. 0 equals no limit

API_INCLUDE_REGIONS_COUNT

Default: False

Specifies if to include facets count for regions.

Security settings

AUTH_EXEMPT_URLS

Default: () (Empty tuple)

A tuple of URL patterns that the user can visit without being authenticated.
This setting has no effect if LOCKDOWN_GEONODE is not True. For example,
AUTH_EXEMPT_URLS = ('/maps',) will allow unauthenticated users to
browse maps.

LOCKDOWN_GEONODE

Default: False

By default, the GeoNode application allows visitors to view most pages without being authenticated. If this is set to True
users must be authenticated before accessing URL routes not included in AUTH_EXEMPT_URLS.

RESOURCE_PUBLISHING

Default: True

By default, the GeoNode application allows GeoNode staff members to
publish/unpublish resources.
By default resources are published when created. When this settings is set to
True the staff members will be able to unpublish a resource (and eventually
publish it back).

Social settings

SOCIAL_BUTTONS

Default: True

A boolean which specifies whether the social media icons and JavaScript should be rendered in GeoNode.

SOCIAL_ORIGINS

Default:

SOCIAL_ORIGINS = [{
 "label":"Email",
 "url":"mailto:?subject={name}&body={url}",
 "css_class":"email"
}, {
 "label":"Facebook",
 "url":"http://www.facebook.com/sharer.php?u={url}",
 "css_class":"fb"
}, {
 "label":"Twitter",
 "url":"https://twitter.com/share?url={url}",
 "css_class":"tw"
}, {
 "label":"Google +",
 "url":"https://plus.google.com/share?url={url}",
 "css_class":"gp"
}]

A list of dictionaries that is used to generate the social links displayed in the Share tab. For each origin, the name and URL format parameters are replaced by the actual values of the ResourceBase object (layer, map, document).

CKAN_ORIGINS

Default:

CKAN_ORIGINS = [{
 "label":"Humanitarian Data Exchange (HDX)",
 "url":"https://data.hdx.rwlabs.org/dataset/new?title={name}¬es={abstract}",
 "css_class":"hdx"
}]

A list of dictionaries that is used to generate the links to CKAN instances displayed in the Share tab. For each origin, the name and abstract format parameters are replaced by the actual values of the ResourceBase object (layer, map, document). This is not enabled by default. To enabled, uncomment the following line: SOCIAL_ORIGINS.extend(CKAN_ORIGINS).

TWITTER_CARD

Default:: True

A boolean that specifies whether Twitter cards are enabled.

TWITTER_SITE

Default:: '@GeoNode'

A string that specifies the site to for the twitter:site meta tag for Twitter Cards.

TWITTER_HASHTAGS

Default:: ['geonode']

A list that specifies the hashtags to use when sharing a resource when clicking on a social link.

OPENGRAPH_ENABLED

Default:: True

A boolean that specifies whether Open Graph is enabled. Open Graph is used by Facebook and Slack.

Upload settings

GEOGIG_DATASTORE_NAME

Default: None

A string with the default GeoGig datastore name. This value is only used if no GeoGig datastore name is provided
when data is uploaded but it must be populated if your deployment supports GeoGig.

UPLOADER

Default:

{
 'BACKEND' : 'geonode.rest',
 'OPTIONS' : {
 'TIME_ENABLED': False,
 'GEOGIG_ENABLED': False,
 }
}

A dictionary of Uploader settings and their values.

BACKEND

Default: 'geonode.rest'

The uploader backend to use. The backend choices are:

	'geonode.importer'

	'geonode.rest'

The importer backend requires the GeoServer importer extension to be enabled and is required for uploading data into
GeoGig datastores.

OPTIONS

Default:

'OPTIONS' : {
 'TIME_ENABLED': False,
 'GEOGIG_ENABLED': False,
}

TIME_ENABLED

Default: False

A boolean that specifies whether the upload should allow the user to enable time support when uploading data.

GEOGIG_ENABLED

Default: False

A boolean that specifies whether the uploader should allow the user to upload data into a GeoGig datastore.

User Account settings

THEME_ACCOUNT_CONTACT_EMAIL

Default: 'admin@example.com'

This email address is added to the bottom of the password reset page in case
users have trouble unlocking-locking their account.

ACCOUNT_OPEN_SIGNUP

Default: True

Whether the geonode site allows new users to register for an account. When
set to False new users cannot register, they must be created by a staff
member

ACCOUNT_APPROVAL_REQUIRED

Default: False

Whether new user registrations must be manually approved. When set to
True, the site’s staff must manually approve every new account. The
approval flow goes like this:

	User registers in the site (either with a local account or by using a social login);

	Staff users receive an email notification that a new user is requesting access;

	Staff users manually approve the user by using geonode’s administration interface;

	User receives an e-mail notification when the account has been approved;

	User can now login to the geonode site.

ACCOUNT_ADAPTER

Default: geonode.people.adapters.LocalAccountAdapter

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It allows specifying a custom class to handle authentication for local
accounts.

ACCOUNT_CONFIRM_EMAIL_ON_GET

Default: True

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It allows specifying the HTTP method used when confirming e-mail addresses.

ACCOUNT_EMAIL_REQUIRED

Default: True

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
Controls whehter the user is required to provide an e-mail address upon
registration

ACCOUNT_EMAIL_VERIFICATION

Default: optional

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].

SOCIALACCOUNT_ADAPTER

Default: geonode.people.adapters.SocialAccountAdapter

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It allows specifying a custom class to handle authentication for social
accounts.

SOCIALACCOUNT_PROVIDERS

Default: None

This is a django-allauth setting [https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration].
It should be a dictionary with provider specific settings

SOCIALACCOUNT_PROFILE_EXTRACTORS

Default: None

A dictionary with lowercase provider names as keys and path to custom
profile extractor classes as values.

User notifications settings

Note

PINAX_* settings are relevant if you have pinax.notifications app added to INSTALLED_APPS.

Note

user configuration is described Setting notification preferences.

Note

Full list of Pinax-notifications app settings is available in Pinax notifications docs [https://pinax-notifications.readthedocs.io/en/latest/settings/].

PINAX_NOTIFICATIONS_QUEUE_ALL

Default: False

A boolean that specifies if user notifications should be queued and send outside main web application process. If set to True, additional sending script, python manage.py emit_notices should be called periodically.

PINAX_NOTIFICATIONS_BACKENDS

Default:

[
("email", "pinax.notifications.backends.email.EmailBackend"),
]

List of backends (channels) that delivers messages to receipients.

Download settings

DOWNLOAD_FORMATS_METADATA

Specifies which metadata formats are available for users to download.

Default:

DOWNLOAD_FORMATS_METADATA = [
 'Atom', 'DIF', 'Dublin Core', 'ebRIM', 'FGDC', 'ISO',
]

DOWNLOAD_FORMATS_VECTOR

Specifies which formats for vector data are available for users to download.

Default:

DOWNLOAD_FORMATS_VECTOR = [
 'JPEG', 'PDF', 'PNG', 'Zipped Shapefile', 'GML 2.0', 'GML 3.1.1', 'CSV',
 'Excel', 'GeoJSON', 'KML', 'View in Google Earth', 'Tiles',
]

DOWNLOAD_FORMATS_RASTER

Specifies which formats for raster data are available for users to download.

Default:

DOWNLOAD_FORMATS_RASTER = [
 'JPEG', 'PDF', 'PNG' 'Tiles',
]

Contrib settings

EXIF_ENABLED

Default: False

A boolean that specifies whether the Exif contrib app is enabled. If enabled, metadata is generated from Exif tags when documents are uploaded.

GEOTIFF_IO_ENABLED

Default: False

A boolean that specifies whether the GeoTIFF.io contrib feature is enabled. If enabled, an ‘Analyze with GeoTIFF.io’ button is added to the layer_detail page.

GEOTIFF_IO_BASE_URL

Default: https://app.geotiff.io

A string that specifies what instance of GeoTIFF.io should be opened when the ‘Analyze with GeoTIFF.io’ button is clicked.

NLP_ENABLED

Default: False

A boolean that specifies whether the NLP (Natural Language Processing) contrib app is enabled. If enabled, NLP (specifically MITIE) is used to infer additional metadata from uploaded documents to help fill metadata gaps.

NLP_LOCATION_THRESHOLD

Default: 1.0

A float that specifies the threshold for location matches.

NLP_LIBRARY_PATH

Default:: '/opt/MITIE/mitielib'

A string that specifies the location of the MITIE library

NLP_MODEL_PATH

Default:: '/opt/MITIE/MITIE-models/english/ner_model.dat'

A string that specifies the location of the NER (Named Entity Resolver). MITIE comes with English and Spanish NER models. Other models can be trained.

SLACK_ENABLED

Default: False

A boolean that specifies whether the Slack contrib app is enabled. If enabled, GeoNode will send messages to the slack channels specified in SLACK_WEBHOOK_URLS when a document is uploaded, metadata is updated, etc. Coverage of events is still incomplete.

SLACK_WEBHOOK_URLS

A list that specifies the URLs to post Slack messages to. Each URL is for a different channel. The default URL should be replaced when slack integration is enabled.

Default:

SLACK_WEBHOOK_URLS = [
 "https://hooks.slack.com/services/T000/B000/XX"
]

Amazon Web Services Settings

S3_STATIC_ENABLED

Default: False

A boolean that specifies whether GeoNode’s static files will be served through an S3 bucket. Set through the environment variable S3_STATIC_ENABLED.

S3_MEDIA_ENABLED

Default: False

A boolean that specifies whether GeoNode’s media files will be served through an S3 bucket. Set through the environment variable S3_MEDIA_ENABLED.

AWS_BUCKET_NAME

The name of the S3 bucket GeoNode will pull static and/or media files from. Set through the environment variable S3_BUCKET_NAME.

AWS_STORAGE_BUCKET_NAME

The name of the S3 bucket GeoNode will pull static and/or media files from. Set through the environment variable S3_BUCKET_NAME.

AWS_ACCESS_KEY_ID

The access key for the S3 bucket GeoNode will pull static and/or media files from. Set through the environment variable AWS_ACCESS_KEY_ID.

AWS_SECRET_ACCESS_KEY

The secret access key for the S3 bucket GeoNode will pull static and/or media files from. Set through the environment variable AWS_SECRET_ACCESS_KEY.

AWS_QUERYSTRING_AUTH

Default: False

Generate an S3 auth querystring.

Supported Browsers

GeoNode is known to work on all modern web browsers. This list includes (but is not limited to):

	Google Chrome [http://www.google.com/chrome/].

	Apple Safari [https://www.apple.com/safari/].

	Mozilla Firefox [https://www.mozilla.org/en-US/firefox/new/].

	Microsoft Edge [https://developer.microsoft.com/en-us/microsoft-edge/].

	Microsoft Internet Explorer.

The vast majority of GeoNode developers do their work with Google Chrome.

Internet Explorer

Versions of Microsoft Internet Explorer older than 10 exhibit known issues when used to browse a GeoNode site. As such a message is displayed warning the user that they should upgrade their browser.

[image: ../_images/ie_message.png]

Testing on Internet Explorer

When working on front end code, developers should take care to test carefully with Microsoft Internet Explorer to ensure that the features they are working on do indeed work correctly and on this browser. It is good practice to test on all browsers available, but the use of modern front end libraries like bootstrap and jQuery make it much more likely code will work across browsers seamlessly.

In order to test on Internet Explorer, developers can use the Modern IE [https://www.modern.ie/en-us] site to download virtual machines for use in Oracle VM Virtual Box [https://www.virtualbox.org/].

[image: ../_images/modern_ie.png]

Once the VM is downloaded, follow the instructions to configure it in your VirtualBox setup.

[image: ../_images/virtualbox.png]

After the VM is setup, you can access your development instance of GeoNode by visiting the IP address of your host machine or on the bridged interface (usually 10.0.2.2) and begin your testing.

GeoSites: GeoNode Multi-Tenancy

GeoSites is a way to run multiple websites with a single instance of GeoNode. Each GeoSite can have different templates, apps, and data permissions but share a single database (useful for sharing users and data layers), GeoServer, and CSW. This is useful when multiple websites are desired to support different sets of users, but with a similar set of data and overall look and feel of the sites. Users can be given permission to access multiple sites if needed, which also allows administrative groups can be set up to support all sites with one account.

Master Website

A GeoSites installation uses a ‘master’ GeoNode website that has some additional administrative pages for doing data management. Layers, Maps, Documents, Users, and Groups can all be added and removed from different sites. Users can be given access to any number of sites, and data may appear on only a single site, or all of them. Additionally, if desired, any or all of the Django apps installed on the other sites can be added to the master site to provide a single administrative interface that gives full access to all apps. The master site need not be accessible from the outside so that it can be used as an internal tool to the organization.

Users created on a particular site are created with access to just that site. Data uploaded to a particular site is given permission on that site as well as the master site. Any further adjustments to site-based permissions must be done from the master site.

Database

The master site, and all of the individual GeoSites, share a single database. Objects, including users, groups, and data layers, all appear within the database but an additional sites table indicates which objects have access to which sites. The geospatial data served by GeoServer (e.g., from PostGIS) can exist in the database like normal, since GeoServer will authenticate against GeoNode, which will use it’s database to determine permissions based on the object, current user, and site.

GeoServer

A single GeoServer instance is used to serve data to all of the GeoSites. To keep data organized each site specifies a default workspace (DEFAULT_WORKSPACE) that GeoServer will use to partition the data depending on which site uploaded the data. The workspaces themselves don’t have any impact on permissions, since data can be added and removed from different sites, however it provides at least some organization of the data based on the initial site.

Data that is common to all sites can be added to the master site which will appear in the generic ‘geonode’ workspace.

Settings Files and Templates

A key component in managing multiple sites is keeping data organized and using a structured series of settings files so that common settings can be shared and only site specific settings are separated out. It is also best to import the default GeoNode settings from the GeoNode installation. This prevents the settings from having to be manually upgraded if there is any default change the GeoNode settings.

Settings which are common to all GeoSites, but differ from the default GeoNode, are separated into a master_settings.py file. Then, each individual site has settings file which imports from the master site and will then only need to specify a small selection that make that site unique, such as:

	SITE_ID: Each one is unique, the master site should have a SITE_ID of 1.

	SITENAME

	SITEURL

	ROOT_URLCONF: This may be optional. The master site url.conf can be configured to automatically import the urls.py of all SITE_APPS, so a different ROOT_URLCONF is only needed if there are further differences.

	SITE_APPS: Containing the site specific apps

	App settings: Any further settings required for the above sites

	Other site specific settings, such as REGISTRATION_OPEN

A GeoSite therefore has three layers of imports, which is used for settings as well as the search path for templates. First it uses the individual site files, then the master GeoSite, then default GeoNode. These are specified via variables defined in settings:

	SITE_ROOT: The directory where the site specific settings and files are located (templates, static)

	PROJECT_ROOT: The top-level directory of all the GeoSites which should include the global settings file as well as template and static files

	GEONODE_ROOT: The GeoNode directory.

The TEMPLATE_DIRS, and STATICFILES_DIRS will then include all three directories as shown:

TEMPLATE_DIRS = (
 os.path.join(SITE_ROOT, 'templates/'),
 os.path.join(PROJECT_ROOT,'templates/'), # files common to all sites
 os.path.join(GEONODE_ROOT, 'templates/')
)

STATICFILES_DIRS = (
 os.path.join(SITE_ROOT, 'static/'),
 os.path.join(PROJECT_ROOT, 'static/'),
 os.path.join(GEONODE_ROOT, 'static/')
)

At the end of the settings_global.py the following variables will be set based on site specific settings:

STATIC_URL = os.path.join(SITEURL,’static/’)
GEONODE_CLIENT_LOCATION = os.path.join(STATIC_URL,’geonode/’)
GEOSERVER_BASE_URL = SITEURL + ‘geoserver/’
if SITE_APPS:
 INSTALLED_APPS += SITE_APPS

Templates and Static Files

As mentioned above for each website there will be three directories used for template and static files. The first template file found will be the one used so templates in the SITE_ROOT/templates directory will override those in PROJECT_ROOT/templates, which will override those in GEONODE_ROOT/templates.

Static files work differently because (at least on a production server) they are collected and stored in a single location. Because of this care must be taken to avoid clobbering of files between sites, so each site directory should contain all static files in a subdirectory with the name of the site (e.g., static/siteA/logo.png)

The location of the proper static directory can then be found in the templates syntax such as:

{{ STATIC_URL }}{{ SITENAME|lower }}/logo.png

Permissions by Site

By default GeoNode is publicly available. In the case of GeoSites, new data will be publicly available, but only for the site it was added to, and the master site (all data is added to the master site).

Adding New Sites

A management command exists to easily create a new site. This will create all the needed directories, as well as a site specific settings file. The command may also create a website configuration file.

WorldMap

By using the WorldMap optional application, GeoNode is extended with the following additional features:

	
	a customized GeoExplorer viewer

	
	the table of contents is hierarchical with layer categories. When a layer is added a new category containing the layer is added to the table of contents. If the category is already in the table of contents, then the layer is added to it. By default the category is the same as the layer’s topic category, but that can be renamed by right clicking on it

	the “Add Layers” dialog comes with a “Search” tab which uses Hypermap Registry (Hypermap) as a catalogue of remote and local layers. Hypermap is a requirement when using the WorldMap contrib application

	a gazetteer application: it is possible to add a given layer to a gazetteer. The gazetteer can be checked using the map client. When a layer is part of the gazetter it is possible to include it in a general gazetteer or in a specific project one. It is possible to search place names in the gazetteer by date range, in which case it is necessary to specify the layer attributes for the start and end depict dates

Installation

Requirements

We are assuming a Ubuntu 16.04.1 LTS development environment, but these instructions can be adapted to any recent Linux distributions:

Install Ubuntu dependencies
sudo apt-get update
sudo apt-get install python-virtualenv python-dev libxml2 libxml2-dev libxslt1-dev zlib1g-dev libjpeg-dev libpq-dev libgdal-dev git default-jdk postgresql postgis

Install Java 8 (needed by latest GeoServer 2.13)
sudo apt-add-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer

Virtual environment creation and installation of Python packages

Create and activate the virtual environment:

cd ~
virtualenv --no-site-packages env
. env/bin/activate

Now install GeoNode from source code:

git clone -b https://github.com/geonode/geonode.git
cd geonode
pip install -r requirements.txt
pip install pygdal==1.11.3.3
pip install -e .
paver setup
paver sync

Set the following environment variables as needed (change SITE_NAME and SERVER_IP s needed. Also HYPERMAP_REGISTRY_URL and SOLR_URL may be different). Even better, create a file and source it:

export USE_WORLDMAP=True
export SITE_NAME=worldmap
export SERVER_IP=128.31.22.73
export PG_USERNAME=worldmap
export PG_PASSWORD=worldmap
export PG_WORLDMAP_DJANGO_DB=worldmap
export PG_WORLDMAP_UPLOADS_DB=wmdata
export OWNER=$PG_USERNAME
export ALLOWED_HOSTS="localhost, $SERVER_IP, "
export GEOSERVER_LOCATION=http://localhost:8080/geoserver/
export GEOSERVER_PUBLIC_LOCATION=http://$SERVER_IP/geoserver/
export SOLR_URL =http://localhost:8983/solr/hypermap/select/
export HYPERMAP_REGISTRY_URL =http://localhost:8001
export MAPPROXY_URL=http://localhost:8001

You can install GeoNode WorldMap in two different ways:

	By installing GeoNode itself

	By using the recommended way of a geonode-project

GeoNode/WorldMap without a geonode-project

Copy the included local_settings.py file and customize it to your needs:

cp local_settings.py.worldmap.sample local_settings.py

GeoNode/WorldMap with a geonode-project

You will use a geonode-project in order to separate the customization of your instance from GeoNode.

Create your geonode project by using the WorldMap geonode-project as a template (https://github.com/cga-harvard/geonode-project). Rename it to something meaningful (for example your web site name):

cd ~
django-admin startproject $SITE_NAME --template=https://github.com/cga-harvard/geonode-project/archive/master.zip -epy,rst
cd $SITE_NAME

Create a local_settings.py by copying the included template:

cp $SITE_NAME/local_settings.py.sample $SITE_NAME/local_settings.py
make build
paver setup

Start the Server

Start GeoNode with Worldmap using pavement:

python manage.py runserver 0.0.0.0:8000
paver start_geoserver

To upload layers you can login with the default GeoNode administrative account:

user: admin
password: admin

Configuring instance for production

Please follow best practices suggested by GeoNode documentation:

http://docs.geonode.org/en/master/tutorials/advanced/geonode_production/

Remember to add the ip of your server in ALLOWED_HOSTS in the local_settings.py file:

ALLOWED_HOSTS = ['localhost', '128.31.22.73',]

Hypermap Registry

GeoNode with the WorldMap contribute module requires a Hypermap Registry (Hypermap) running instance.

You can install Hypermap by following these instructions (use the “Manual Installation” section): https://github.com/cga-harvard/HHypermap/blob/master/_docs/developers.md

Note that you can bypass Java 8 installation as it was installed previously. As a search engine you should install Solr, as we haven’t tested Elasticsearch with WorldMap so far. Create a specific virtual environment for Hypermap in order not to interfere with the GeoNode/WorldMap virtual environment.

After installing Hypermap, start it on a different port than 8000, for example:

python manage.py runserver 0.0.0.0:8001

In another shell start the Celery process as well:

cd HHypermap
celery -A hypermap worker --beat --scheduler django -l info

Test the stack

Now that GeoNode/WorldMap and Hypermap are both running, test the stack by uploading a layer.

Login in GeoNode (admin/admin) and upload a shapefile from this page: http://localhost:8000/layers/upload

Make sure the shapefile is correctly displayed in GeoNode by going to the layer page.

Now login in Hypermap (admin/admin) and go to the admin services page: http://localhost:8001/admin/aggregator/service/ Add a service like this:

	Title: My GeoNode WorldMap SDI

	Url: http://localhost:8000/

	Type: GeoNode WorldMap

Go to the Hypermap service page and check it the service and the layer is there:
http://localhost:8001/registry/

In order to have layers in the search engine (Solr) there are two options:

	from task runner press the “Index cached layers” button

	schedule a task in celery

We recommend the second option, which can be configured in the next section.

Schedule Celery tasks

Go to the Periodic Task administrative interface: http://localhost:8001/admin/django_celery_beat/periodictask/

Create the following two tasks:

Index Cached Layer Task

This task will sync the layers from the cache to the search engine. Layers are sent in the cache every time they are saved:

	Name: Index Cached Layer

	Task (registered): hypermap.aggregator.tasks.index_cached_layers

	Interval: every 1 minute (or as needed)

Check Worldmap Service

This task will do a check of all of WorldMap service:

	Name: Check WorldMap Service

	Task (registered): hypermap.aggregator.tasks.check_service

	Interval: every 1 minute (or as needed)

	Arguments: [1] # 1 is the id of the service. Change it as is needed

Now upload a new layer in GeoNode/WorldMap and check if it appears in Hypermap and in Solr (you may need to wait for the tasks to be executed)

Update Last GeoNode WorldMap Layers

If your GeoNode/WorldMap instance has many layers, it is preferable to runt the check_service not so often, as it can be time consuming, and rather use the update_last_wm_layers.

As a first thing, change the interval for the check_service task you created for GeoNode/WorldMap to a value such as “one day” or “one week”.

Then create the following periodic task:

	Name: Sync last layers in WorldMap Service

	Task (registered): hypermap.aggregator.update_last_wm_layers

	Interval: every 1 minute

	Arguments: [1] # 1 is the id of the service. Change it as is needed

Organizational

Project Information

This is information on existing projects, contributing to GeoNode (code, documentation, translation, …) and the community itself.

About GeoNode - What is GeoNode, the big picture.

Roadmap Process - How GeoNode can move ahead into the future.

Community Resources - Lots of links, think of it like your personal GeoNode bookmarks.

Community Bylaws - Some rules to keeps us stronger.

GeoNode Projects [http://geonode.org/gallery/] - Who else is doing cool stuff with GeoNode.

GNIPS [https://github.com/GeoNode/geonode/wiki/GeoNode-Improvement-Proposals] GeoNode Improvement Proposals.

Contributing

Helping out the GeoNode project is great and by contributing we all benefit and here is how:

Contributing to GeoNode is the best way to help out and here we show you how.

GeoNode Patch Review Process is where code review happens, explained for developers.

Patch Review criteria for extending GeoNode.

How to contribute to GeoNode’s translation and update an existing language or add a new one.

How to contribute to GeoNode’s Documentation is outlined how to get started writing documentation.

How to write Documentation a work in progress outlining well ..how to write documentation.

How to Translate the Documentation describes how to translate the documentation.

Table of Content

	Roadmap Process

	Community Resources
	Main Links

	Community Contact

	Github Project Links

	Demo Sites

	Testing and Packaging

	Important Forks

	Downstream Github Projects

	Additional Modules

	Public Sites

	Community Bylaws
	Committers

	GeoNode Improvement Proposals (GNIPS)

	Project Steering Committee

	Contributing to GeoNode
	Participate in the Discussion

	Report Problems on the Issue Tracking System

	Write Documentation

	Provide Translations

	Write Code

	Further Reading

	GeoNode Patch Review Process
	Goals

	Review Criteria

	Process

	Core Committers

	Becoming a Core Committer

	Patch Review criteria

	How to contribute to GeoNode’s translation
	Edit translations using Transifex

	Translate on local machine from github

	Only for transifex maintainers
	For main Geonode localization files

	How to add a new language

	How to contribute to GeoNode’s Documentation
	Create an account on GitHub

	Fork a repository

	Edit files

	Add images

	Pull Request

	How to write Documentation
	Sphinx Syntax
	Basic markup

	Sections, subtitles and titles

	Page labels

	Linking

	Lists

	List-tables

	Notes and warnings

	Images

	External files

	Reference files and paths

	Reference commands

	Reference an element in a GUI

	Menu traversal

	Show Source

	How to Translate the Documentation
	Translate using Github Locally

Roadmap Process

The GeoNode Roadmap Process is designed to complement the more technical GeoNode Improvement Proposals (GNIPS) and strives to make it easier for the various organizations invested in GeoNode to collaborate on features of common interest.

It is based on the roadmap items developed at the GeoNode Summit held in May 2011.

Overall, the process for adding items to the collective roadmap is as follows:

	Organizational partner has an intent to add a feature to the roadmap.

	Organizational partner communicates with the organizational partners list [https://groups.google.com/a/opengeo.org/forum/#!forum/geonode-org/] about the change to gauge interest and determine who else is committed to making it happen.

	Organizational partner creates a feature specification on the wiki to further flesh out the idea.

	Organizational partner finds a committer on the developer list [https://groups.google.com/a/opengeo.org/forum/#!forum/geonode-dev/] to shepherd the roadmap item through the GeoNode Improvement Proposals (GNIPS [https://github.com/GeoNode/geonode/wiki/GeoNode-Improvement-Proposals]).

Each roadmap item will go through four stages:

	Descriptive Stage (under discussion/”Active”)

	Technical Stage

	Development Stage

	Released

After communicating on the organizational partners list [https://groups.google.com/a/opengeo.org/forum/#!forum/geonode-org] the roadmap items enters the Descriptive Stage and must have a wiki page that lays out the description, user stories, and other interested parties. Optionally, the roadmap item will also include an idea of the difficulty and goals as well as any wireframes, technical diagrams, or prior art.

A roadmap item enters the Technical Stage once a committer has been found to shepherd the roadmap item through the GNIPS [https://github.com/GeoNode/geonode/wiki/GeoNode-Improvement-Proposals] process, then the wiki page must contain a clear sense of the technical assumptions, requirements or dependencies, and suggested implementation. Some roadmap items may need to be divided into multiple independent GNIP proposals.

Once it passes through the Improvement Proposals process, a roadmap item enters the Development Stage on its way to Release.

[[RoadMap-Items]]

Community Resources

Here you will find many links to resources on GitHub, external sites using GeoNode. Think of like your GeoNode Bookmarks.

Main Links

These 3 top links are the GeoNode landing pages and will take you to all other information on GeoNode.

	Main home page and blog http://geonode.org

	Documentation http://docs.geonode.org

	GitHub Code https://github.com/GeoNode

Community Contact

Contact members and ask questions

	
	Mailing Lists

	
	Users List http://lists.osgeo.org/cgi-bin/mailman/listinfo/geonode-users

	Developers List http://lists.osgeo.org/cgi-bin/mailman/listinfo/geonode-devel

	IRC irc://irc.freenode.net/geonode

	Webchat: http://webchat.freenode.net/?channels=#geonode

	
	Social Media

	
	Blog http://geonode.org/blog/

	Twitter https://twitter.com/geonode

	Google+ https://plus.google.com/u/0/100587124776656797019

Github Project Links

	Main GitHub page https://github.com/GeoNode/geonode

	Master Branch https://github.com/GeoNode/geonode/tree/master

	Issue Tracker https://github.com/GeoNode/geonode/issues

	Pull Requests https://github.com/GeoNode/geonode/pulls

	geonode.org Homepage Code https://github.com/geonode/geonode.github.com (published to http://geonode.org)

	Localisation using Transifex https://www.transifex.com/geonode/geonode/

Demo Sites

	Demo GeoNode Site http://demo.geonode.org/

	UI/UX Review Site https://sites.google.com/a/opengeo.org/geonode-ui/

Testing and Packaging

	
	Testing

	
	Travis-CI https://travis-ci.org/#!/GeoNode/geonode

	Openhub https://www.openhub.net/p/geonode

	
	Packages

	
	PyPI https://pypi.python.org/pypi/GeoNode

	
	Launchpad

	
	https://launchpad.net/~geonode

	https://launchpad.net/~geonode/+archive/release

	https://launchpad.net/~geonode/+archive/testing

	https://launchpad.net/~geonode/+archive/snapshots

Important Forks

Full List here https://github.com/GeoNode/geonode/network/members

Hint

Look at the branches in these Forks

	https://github.com/cga-harvard/cga-worldmap

	https://github.com/jj0hns0n/geonode

	https://github.com/ingenieroariel/geonode

	https://github.com/gfdrr/geonode

Downstream Github Projects

	https://github.com/aifdr/tsudat2

	https://github.com/aifdr/riab

	https://github.com/gem/

	https://github.com/MapStory/mapstory

	https://github.com/CIGNo-project/CIGNo

	https://github.com/ROGUE-JCTD/rogue_geonode

	https://github.com/boundlessgeo/exchange

	Many More …

Additional Modules

	https://github.com/simod/geonode-documents

	https://github.com/GFDRR/geonode-registry

Public Sites

	CIGNo network: CNR - ISMAR Node http://cigno.ve.ismar.cnr.it/

	… Many Many More

Community Bylaws

Committers

The GeoNode community is divided into two groups - users and committers. There are no requirements or responsibilities to be a GeoNode user. To be a committer, you must be voted in by the existing committers (2 +1’s and no -1’s; a committer must initiate the vote.) Non-committers are encouraged to engage in discussions on the mailing lists, code review, and issue reports to qualify them to be voted in as committers. Committers (or PRIMARY AUTHORS) can be found in the [AUTHORS file](https://github.com/GeoNode/geonode/blob/master/AUTHORS)

Committers must:

	Make useful contributions to the project in the form of commits at least once in a 6-month period, else they fall back to “committer emeritus” status. A committer emeritus has no special involvement in the project, but may request committer privileges from the current body of committers.

	Review code contributions, which may come from other committers or from users. Users must submit code externally to the main GeoNode repository (ie as a patch or a github pull request); committers can do this as well if they see review as particularly important (for example, a patch might affect a particularly crucial component of GeoNode, or a committer might be working in a part of the code that he is relatively unfamiliar with.) A review should result in either (a) instructions on how to bring the code to a more acceptable condition or (b) merging the changes in and notifying the submitter that this has been done.

	Committers also have the option to “self-review” and commit changes directly. It is at the discretion of individual committers when this is appropriate, but it should be rare - we encourage committers to only use this option when they deem a change extremely safe.

GeoNode Improvement Proposals (GNIPS)

GNIPS If a committer thinks a proposed change to the software is particularly destabilizing or far-reaching, that committer can upgrade the ticket for that change to a GeoNode Improvement Proposal (GNIP). GNIP tickets are an opportunity for committers and users alike to provide feedback about the design of a proposed feature or architectural change. The proposal should be iteratively edited in response to community feedback.

To upgrade an issue to a GNIP, an active committer should give the ticket the ‘GNIP’ label in the issue tracker, and announce the issue on the developer mailing list.

If a ticket has a GNIP label, its patch can’t be committed unless it also has the ‘Approved’ label. To be approved, it must pass community vote (see below).

When the GNIP is announced, other committers should review and provide feedback in the issue comments. Feedback should take the form of:

	+1 (with optional comment)

	-1, with mandatory rationale and suggestion for a better approach. The suggestion may be omitted if the objection doesn’t have a straightforward solution - we don’t want to withhold feedback just because problems with a proposal are hard to solve.

After receiving feedback, the proposal’s author should discuss the feedback on the list if necessary and adjust the proposal in response.

A proposal can be Approved when there are 3 +1 responses (including the author’s implicit approval) and no -1 responses from committers; and no feedback is offered in 3 days. If a proposal fails to receive multiple +1 responses within 5 days of the request for feedback it is rejected and the issue should be closed (but the author is free to draft similar proposals in the future.) Any committer may reverse or withdraw votes on a proposal until the proposal is closed.

If a user would like to submit a GNIP, they are welcome to write it as a ticket but should find an active committer willing to promote it to GNIP status.

Project Steering Committee

In the event that a revision to these bylaws becomes necessary, authority for that decision lies with the currently presiding Project Steering Committee (PSC). The PSC at any time is made up of the top 7 committers over the past 365 days, by number of commits.

GNIPS: https://github.com/GeoNode/geonode/wiki/GeoNode-Improvement-Proposals

Contributing to GeoNode

Warning

This section is freely adapted from the official GitHub guides [https://guides.github.com].

If you are interested in helping us to make GeoNode, there are many ways to do so.

Participate in the Discussion

GeoNode has a mailing list (http://geonode.org/communication/#mailing-lists) where users can ask and answer questions about the software.
There are also IRC chats on Gitter where users (https://gitter.im/GeoNode/general) and developers (https://gitter.im/GeoNode) can discuss GeoNode in real time.
Sometimes users also post interesting tips for managing sites running GeoNode.
If you want to help out with GeoNode, one easy way is to sign up for the mailing list and help answer questions.

Report Problems on the Issue Tracking System

Informative bug reports are a key part of the bug fixing process, so if you do run into a problem with GeoNode, please don’t hesitate to report it on our bug tracker, available online at https://github.com/GeoNode/geonode/issues.
Useful information for bug reports includes:

	What were you doing when the bug occurred?
Does the problem occur every time you do that, or only occasionally?

	What were you expecting to happen?
What happened instead?

	What version of the software are you using?
Please also note any changes from the default configuration.

	If there is a data file involved in the bug (such as a Shapefile that doesn’t render properly), please consider including it in the bug report.
Be aware that not all data files are freely distributable.

To help GeoNode address the issue, you can tag the ticket with one or more labels
that you can find on the side column.

Write Documentation

GeoNode’s documentation can always use improvement - there are always more questions to be answered.
For managing contributions to the manual, GeoNode uses a process similar to that used for managing the code itself.
The documentation is generated from source files in the docs/ directory within the GeoNode source repository.
See http://www.sphinx-doc.org for more information on the documentation system GeoNode uses.

If you want to learn more about contributing to the documentation, please go ahead to the “How to contribute to GeoNode’s Documentation [http://docs.geonode.org/en/latest/organizational/contribute/contribute_to_documentation.html#contrib-docu]”.
GeoNode also have some guidelines to help with writing once you are set up “How to write Documentation [http://docs.geonode.org/en/latest/organizational/contribute/documentation_guidelines.html#doc-guidelines]”.

Provide Translations

If GeoNode doesn’t provide a user interface in your native language, consider contributing a new translation.
To get started here are the instructions “How to contribute to GeoNode’s Translation [http://docs.geonode.org/en/latest/organizational/contribute/contribute_to_translation.html]”.

Write Code

Of course since GeoNode is an open source project which encourages contributions of source code as well.
If you are interested in making small changes, you can find an open ticket on https://github.com/GeoNode/geonode/issues, hack away, and get started on the “Patch Review Process [http://docs.geonode.org/en/latest/organizational/contribute/review_criteria.html]”.

Further Reading

Contributing to Open Source on GitHub

Work With GitHub Issues and Pull Requests

Roadmap Process

Contributing to Open Source on GitHub

Warning

This section is freely adapted from the official GitHub guides [https://guides.github.com].

A great way to get involved in open source is to contribute to the existing projects you’re using.

A Typical GitHub Project Structure

The Community

Projects often have a community around them, made up of other users in different (formal or informal) roles:

	Owner is the user or organization that created the project has the project on their account.

	Maintainers and Collaborators are the users primarily doing the work on a project and driving the direction. Oftentimes the owner and the maintainer are the same. They have write access to the repository.

	Contributors is everyone who has had a pull request merged into a project.

	Community Members are the users who often use and care deeply about the project and are active in discussions for features and pull requests.

Readme

Nearly all GitHub projects include a README.md file. The readme provides a lay of the land for a project with details on how to use, build and sometimes contribute to a project.

License

A LICENSE file, well, is the license for the project. An open source project’s license informs users what they can and can’t do (e.g., use, modify, redistribute), and contributors, what they are allowing others to do.

Documentation and Wikis

Many larger projects go beyond a readme to give instructions for how people can use their project. In such cases you’ll often find a link to another file or a folder named docs in the repository.

[image: ../../_images/docs-folder.png]

Alternatively, the repository may instead use the GitHub wiki to break down documentation.

[image: ../../_images/d3-wiki.png]

Issues

Issues are a great way to keep track of tasks, enhancements, and bugs for your projects. They’re kind of like email—except they can be shared and discussed with the rest of your team. Most software projects have a bug tracker of some kind. GitHub’s tracker is called Issues, and has its own section in every repository.

[image: ../../_images/navigation-highlight.png]

For more information on how Issues work, see the section “Work With GitHub Issues and Pull Requests”

Pull Requests

If you’re able to patch the bug or add the feature yourself, make a pull request with the code.
Be sure you’ve read any documents on contributing, understand the license and have signed a CLA if required.

Once you’ve submitted a pull request, the maintainer(s) can compare your branch to the existing one and decide whether or not to incorporate (pull) your changes.

For more information on how Pull Requests work, see the section “Work With GitHub Issues and Pull Requests”

Work With GitHub Issues and Pull Requests

Warning

This section is freely adapted from the official GitHub guides [https://guides.github.com].

Issues

An Issue is a note on a repository about something that needs attention. It could be a bug, a feature request, a question or lots of other things. On GitHub you can label, search and assign Issues, making managing an active project easier.

For example, let’s take a look at Bootstrap’s Issues section [https://github.com/twbs/bootstrap/issues]:

[image: ../../_images/listing-screen.png]

GitHub’s issue tracking is special because of our focus on collaboration, references, and excellent text formatting. A typical issue on GitHub looks a bit like this:

[image: ../../_images/example-issue.png]

	A title and description describe what the issue is all about.

	Color-coded labels help you categorize and filter your issues (just like labels in email).

	A milestone acts like a container for issues. This is useful for associating issues with specific features or project phases (e.g. Weekly Sprint 9/5-9/16 or Shipping 1.0).

	One assignee is responsible for working on the issue at any given time.

	Comments allow anyone with access to the repository to provide feedback.

Open an Issue

	Click the Issues tab from the sidebar.

[image: ../../_images/navigation-highlight.png]

	Click New Issue.

	Give your Issue a title and description: Add a new Logo to GeoNode custom.

[image: ../../_images/issue.png]

Click Submit new Issue when you’re done. Now this issue has a permanent home (URL) that you can reference even after it is closed.

Issues Pro Tips

	Check existing issues for your issue. Duplicating an issue is slower for both parties so search through open and closed issues to see if what you’re running into has been addressed already.

	Be clear about what your problem is: what was the expected outcome, what happened instead? Detail how someone else can recreate the problem.

	Link to demos recreating the problem on things like JSFiddle or CodePen.

	Include system details like what the browser, library or operating system you’re using and its version.

	Paste error output or logs in your issue or in a Gist. If pasting them in the issue, wrap it in three backticks: ``` so that it renders nicely.

Branching

Branching is the way to work on different parts of a repository at one time.

When you create a repository, by default it has one branch with the name master. You could keep working on this branch and have only one, that’s fine. But if you have another feature or idea you want to work on, you can create another branch, starting from master, so that you can leave master in its working state.

When you create a branch, you’re making a copy of the original branch as it was at that point in time (like a photo snapshot). If the original branch changes while you’re working on your new branch, no worries, you can always pull in those updates.

[image: ../../_images/branching.png]

At GeoNode developers use branches for keeping bug fixes and feature work separate from master (production) branch. When a feature or fix is ready, the branch is merged into master through a Pull Request.

To create a new branch

	Go to the project folder and create a new branch

$ cd /home/geonode/geonode_custom/
$ sudo git branch add_logo
$ sudo git checkout add_logo

[image: ../../_images/checkout.png]

	Check that you are working on the correct branch: add_logo.

$ cd /home/geonode/geonode_custom/
$ git branch

[image: ../../_images/correct_branch.png]

	Push the new branch to GitHub.

$ cd /home/geonode/geonode_custom/
$ sudo git push origin add_logo

[image: ../../_images/push_branch.png]

Make a commit

On GitHub, saved changes are called commits.

Each commit has an associated commit message, which is a description explaining why a particular change was made. Thanks to these messages, you and others can read through commits and understand what you’ve done and why.

	Add a new logo to your custom GeoNode as described in the section Theming your GeoNode project

	Stash the new files into the working project using git add

$ cd /home/geonode/geonode_custom/
$ sudo git add geonode_custom/static
$ git status

[image: ../../_images/commit_logo.png]

	Commit the changes providing a commit messages and push them into your branch : add_logo.

$ cd /home/geonode/geonode_custom/
$ sudo git commit -m "Adding a new logo to the custom GeoNode"
$ sudo git push origin add_logo

[image: ../../_images/push_logo.png]

Pull Requests

Pull Requests are the heart of collaboration on GitHub. When you make a pull request, you’re proposing your changes and requesting that someone pull in your contribution - aka merge them into their branch. GitHub’s Pull Request feature allows you to compare the content on two branches. The changes, additions and subtractions, are shown in green and red and called diffs (differences).

As soon as you make a change, you can open a Pull Request. People use Pull Requests to start a discussion about commits (code review) even before the code is finished. This way you can get feedback as you go or help when you’re stuck.

By using GitHub’s @mention system in your Pull Request message, you can ask for feedback from specific people or teams.

Create a Pull Request for changes to the Logo

	Click the Pull Request icon on the sidebar, then from the Pull Request page, click the green New pull request button.

[image: ../../_images/gh_pullrequest.gif]

	Select the branch you made, add_logo, to compare with master (the original).

[image: ../../_images/gh_pr_select_branch.png]

	Look over your changes in the diffs on the Compare page, make sure they’re what you want to submit.

[image: ../../_images/gh_pr_compare.png]

	When you’re satisfied that these are the changes you want to submit, click the big green Create Pull Request button.

[image: ../../_images/create-pr.png]

	Give your pull request a title and since it relates directly to an open issue, include “fixes #” and the issue number in the title. Write a brief description of your changes.

[image: ../../_images/pr-form.png]

When you’re done with your message, click Create pull request!

Merge your Pull Request

It’s time to bring your changes together – merge your add_logo branch into the master (the original) branch.

Click the green button to merge the changes into master.
Click Confirm merge.
Go ahead and delete the branch, since its changes have been incorporated, with the Delete branch button in the purple box.

[image: ../../_images/merge-button.png]

If you revisit the issue you opened, it’s now closed! Because you included “fixes #1” in your Pull Request title, GitHub took care of closing that issue when the Pull Request was merged!

Roadmap Process

The GeoNode Roadmap Process is designed to complement the more technical GeoNode Improvement Proposals and strives to make it easier for the various organizations invested in GeoNode to collaborate on features of common interest.

It is based on the roadmap items developed at the GeoNode Summit held in May 2011.

Overall, the process for adding items to the collective roadmap is as follows:

	Organizational partner has an intent to add a feature to the roadmap.

	Organizational partner communicates with the organizational partners list [https://groups.google.com/a/opengeo.org/forum/#!forum/geonode-org/] about the change to gauge interest and determine who else is committed to making it happen.

	Organizational partner creates a feature specification on the wiki to further flesh out the idea.

	Organizational partner finds a committer on the developer list [https://groups.google.com/a/opengeo.org/forum/#!forum/geonode-dev/] to shepherd the roadmap item through the GeoNode Improvement Proposals.

Each roadmap item will go through four stages:

	Descriptive Stage (under discussion/”Active”)

	Technical Stage

	Development Stage

	Released

After communicating on the organizational partners list [https://groups.google.com/a/opengeo.org/forum/#!forum/geonode-org/] the roadmap items enters the Descriptive Stage and must have a wiki page that lays out the description, user stories, and other interested parties. Optionally, the roadmap item will also include an idea of the difficulty and goals as well as any wireframes, technical diagrams, or prior art.

A roadmap item enters the Technical Stage once a committer has been found to shepherd the roadmap item through the GeoNode Improvement Proposals process, then the wiki page must contain a clear sense of the technical assumptions, requirements or dependencies, and suggested implementation. Some roadmap items may need to be divided into multiple independent GNIP proposals.

Once it passes through the GeoNode Improvement Proposals process, a roadmap item enters the Development Stage on its way to Release.

GeoNode Patch Review Process

This document outlines the code review process for GeoNode code.
Each commit proposed for inclusion in GeoNode should be reviewed by at least one developer other than the author.
For pragmatic reasons, some developers, referred to in this document as core committers, may commit directly to the GeoNode repository without waiting for review.
Such changes are still subject to review, and may be reverted if they fail any of the [[Review Criteria]].

A related process is [[Improvement Proposals]].
While patch review protects code quality in the GeoNode project at a small granularity, the Improvement Proposal process is intended to promote coordinated design and feedback for larger modifications such as new features or architectural changes.

Goals

By requiring a review of code coming into GeoNode, we aim to maintain code quality within the GeoNode project while still allowing contributions from the GeoNode community.

Review Criteria

Patch reviews should adhere to the standards set in the [[Review Criteria]], a [[Project Steering Committee]] approved set of criteria for the inclusion of new code.

Process

For contributors who do not have commit access to the GeoNode repository, the review process is as follows:

	Find or create a ticket describing the feature or bug to be resolved.

	Create changes to GeoNode code addressing the ticket.

	Publish those changes and request a review from the GeoNode committers.
The recommended format is a GitHub [pull request](https://help.github.com/articles/about-pull-requests/).
If you are unable or unwilling to provide a change as a branch on GitHub, please consult the developer’s list for advice.

	At least one GeoNode committer should review the submitted changes.
If he finds the patch acceptable, the changes will be pulled into GeoNode.
If problems are found, then he should list them clearly in order to allow the original author to update the submission (at which point we return to point 2 in this process.)
In the case of a feature idea which is simply not suitable for inclusion as core GeoNode functionality, the patch may be rejected outright.

Note: If after a few days your patch has not been reviewed by any GeoNode committer, please feel free to bring it up either in the mailing list or the IRC channel. The GeoNode community (and it’s committers) try to respond quickly and give adequate feedback to maintain the interest of new potential members. However, sometimes other responsibilities prevent us from responding quickly.

Core Committers

It is assumed that core committers are familiar with the quality guidelines and capable of producing acceptable patches without the need for waiting on review.
Therefore, core committers may make changes without requesting review first (although they are welcome to request review for code if they feel it is appropriate.)
For commits made without prior review, committers should review the changes and revert them if they are in violation of the project quality guidelines.

Becoming a Core Committer

In order for a developer to become a core committer, he must demonstrate familiarity with the quality guidelines for the GeoNode project by producing at least two patches which successfully pass review and are merged without requiring modification.
A candidate for core committer-ship must be nominated by a member of the [[Project Steering Committee]], and approved via Apache consensus voting among PSC members.

Patch Review criteria

When a patch is rejected in the Patch Review Process, it should be given a valid review.

This review should point out issues with the patch where it fails to meet one or more of the following criteria.

	Major new features must be approved by the Improvement Process

GeoNode needs to be coherent software despite the diverse interests driving its development. Therefor, major new features need to first be approved according to the [[Improvement Process]].

If a patch fails by this criterion, then its developer is welcome to go through the improvement process to get approval. Otherwise, they can refactor their patch into a GeoNode extension.

	Patches need sufficient documentation

We strive to keep GeoNode well-documented. If a patch contributes significant functionality to GeoNode that requires documentation to be understood, the patch review is an opportunity to hold the developer accountable for providing the adequate documentation.

	New functionality needs to be internationalized

We strive to build GeoNode in a way that can be used in many different localities, by all languages. While there is no localization requirement for GeoNode besides providing default English text, new user-facing features need to be sufficiently internationalized so that others can write translations.

	Design consistency

We strive to keep the default user interface for GeoNode appealing for new users and developer’s approaching the project. If a patch significantly diminishes the user experience of the software, then a patch may be rejected with a review of how to improve it.

Note

Good design can sometimes be in the eye of the beholder. Developer’s are encouraged to consult the community and/or a designer about the user interface design of their patches, and to be humble in their design criticisms of others.

	Code should be covered by automated tests

To make development easier for others and guarantee software quality, we strive to have good automated test coverage in GeoNode. Patches may fail a review for having insufficient unit and/or integration tests.

Reviews saying that a patch has insufficient tests should offer actionable advice on how to improve those tests. This advice could be to improve code coverage. It may also be a list of possible cases that currently lack tests.

	Patches should not have known bugs

A patch may be rejected for having a known bug, (e.g.) one discovered by reading the code or testing it at the time of review.

	Patches should meet GeoNode’s code style guidelines

New patches should meet GeoNode’s code style guidelines. We follow different conventions per language:

	In Java we use the GeoTools/GeoServer convention, essentially the [conventions recommended by Oracle](http://www.oracle.com/ technetwork/ java/codeconvtoc-136057.html) modified to make the recommended line length 100 columns instead of 80 to accommodate the long identifiers commonly used in GeoTools code. The GeoServer project provides an [Eclipse configuration](http://docs.geoserver.org/stable/en/developer/eclipse-guide/index.html#eclipse-preferences) which helps to stick to this convention.

	In Python we use the conventions enumerated in [PEP8](https://www.python.org/dev/peps/pep-0008/). Many editors have plugins available to assist with conformance to this convention.

	In JavaScript we use the OpenLayers conventions, described on the [OpenLayers wiki](http://trac.osgeo.org/openlayers/wiki/CodingStandards).

How to contribute to GeoNode’s translation

Everyone is welcome to contribute to the GeoNode’s translation. There are two different ways to translate the GeoNode user interface: you can use the Transifex [https://www.transifex.com/geonode/geonode/] web application or you can edit the translation files on your local machine using Git and send Pull Requests (PR) to the GeoNode repository.

Edit translations using Transifex

The first workflow for contributing to GeoNode’s translation is by using Transifex. In this step you will see how to update the translations directly on the Transifex website.

	Create account

Go to https://www.transifex.com and, click Try it for free and enter the needed information to create your free account

[image: ../../_images/transifex_homepage.png]

	Join our project

After activating the link you’ve got in your email, you will be asked whether you want to start a new project or to join an existing project

[image: ../../_images/transifex_join_project.png]

Click join an existing project and type geonode into the search bar. Select the GeoNode project from the GeoNode organization (not the other ones!). You will be directed to the GeoNode project site on transifex. To join the team, click on the Join team button, then click on the language you want to add a translation in.

	Wait for permission to update translations from translation leader (email)

	Start a translation

Click on the Translate button, then select the language where you want to add a translation

[image: ../../_images/transifex_start.png]

You’ll see two main translation areas: javascript and master. Choose the one you want to add a translation and you’ll see an interface like this

[image: ../../_images/transifex_interface.png]

Click untranslated and add your translation like shown below

[image: ../../_images/transifex_add_translation.png]

When you stop translating, do not forget to hit the green save button at the top right!

	See the strings translated in GeoNode

In order to see the strings translated in your GeoNode instance, you will need to synchronize your GeoNode instance with what it is in Transifex. For this purpose the best workflow it is to wait that a Transifex maintainer (see below section) will pull the files from Transifex, run the makemessages and compilemessages and finally send a PR to the GeoNode official repository.
Or you can follow the following step, which uses github and does not require the help from a Transifex maintainer.

Translate on local machine from github

The second workflow for contributing to GeoNode’s translation is by translating the files on your local machine and send the translation to the GeoNode official repository in GitHub with pull requests.

Using this option it is assumed that you have a local Geonode GitHub repository forked.

Note

It is recommended to first create a new branch e.g. translation in your repository for your translations.

	As a first step, generate all of the needed .pot files (any time the master documentation changes):

$ cd docs
$ sphinx-build -b gettext . i18n/pot

	Run the pre_translate.sh script to generate/merge (update) all of the .po files for each language:

$ sh i18n/scripts/pre_translate.sh

	Do a pull from Transifex to get latest translations:

$ tx pull -a

	Now edit the .po files you need, make the translations and then run the post_translate.sh script:

$ vi i18n/it/LC_MESSAGES/index.po
$ sh i18n/scripts/post_translate.sh

	Now you have to push the changed .po files and the appropriate .pot file (can be found in geonode/docs/i18n/pot) to your remote repository using:

$ git commit
$ git push

	Now make a pull request and GeoNode will push your changes to Transifex and include them in its official repository.

Only for transifex maintainers

Note

This section is only for the maintainers of a transifex group!

For main Geonode localization files

These files are generated using standard django-admin tools : makemessages and compilemessages command line tools.

At first make sure to install Transifex client and configure your .transifexrc with our credentials as:

[https://www.transifex.com]
username = YOURUSERNAME
token =
password = PUTYOURPW
hostname = https://www.transifex.com

To prepare the PR in your branch, execute following steps.
First go to the [yourpath]/geonode/geonode/ subdirectory and get all translations from transifex.com and force their replacement:

$ tx pull -a -s -f

Then update the messages in the po and compile the corresponding mo:

$ geonode makemessages --all
$ geonode makemessages -d djangojs --all
$ geonode compiliemessages

Now you can send the PR to GeoNode GitHub repository.

Finally update resources on transifex.com:

$ tx push -s -t

How to add a new language

To add a new language, click on Request language on the right top of the Transifex webpage.

[image: ../../_images/transifex_request_language.png]

How to contribute to GeoNode’s Documentation

If you feel like adding or changing something in the GeoNode documentation you are very welcome to do so. The documentation always needs improvement as the development of the software is going quite fast.

In order to contribute to the GeoNode documentation you should:

	Create an account on GitHub

	Fork the GeoNode repository

	Edit the files in the /docs directory

	Submit pull requests

All these things can generally be done on the web, you won’t need to download anything. But if you want to add images to the documentation you will have to do some more initial steps, because this can’t
be done on the web. To learn about how images can be added to your documentation and which additional steps have to be done, read the section Add images.

The general steps are explained in more detail below.

Create an account on GitHub

The first step is to create an account on GitHub. Just go to Github [https://github.com], find a username that suits you, enter your email and a password and hit Sign up for GitHub.
Now you’ve signed in, you can type geonode into the searching area at the top of the website. On top of the search results you will find the repository GeoNode/geonode. By clicking on it you will be entering the repository and will be able to see all the folders and files that are needed for GeoNode.
The files needed for the documentation can be found in /docs.

Fork a repository

In order to make changes to these files, you first have to fork the repository. On the top of the website you can see the following buttons:

[image: organizational/contribute/img/fork_repo.PNG]
Click on the button Fork at the top right and the geonode repository will be forked. You should now be able to see your repository your_name/geonode.
If you want to read more about how to fork a repository go to https://help.github.com/articles/fork-a-repo.

Edit files

To make some changes to already exiting files or to create new files, go to your GitHub account. Under repositories you will find the geonode repository that you have forked. Click on it and you will again see all the folders and files GeoNode needs.

[image: organizational/contribute/img/repository_geonode.PNG]
Click on the folder docs and search for the file that you want to edit. If you found it, click on it and you will be able to see the content of this file.

[image: organizational/contribute/img/index_txt.PNG]
To make changes to this file, hit the button edit on the right top. You can now make your changes or add something to the existing content.

[image: organizational/contribute/img/index_edit.PNG]
As you can see now, the documentation is written in reStructeredText, a lightweight markup language. To learn how to use it you should read the documentation that can be found here http://docutils.sourceforge.net/docs/user/rst/quickref.html.
By hitting the preview button you will be able to see how your text it is going to look like on the web. To save your changes, click on Commit Changes at the bottom of the site. Now you’ve saved the changes in your repository, but the original geonode repository still doesn’t know anything about that!
In order to tell them that you have made some changes you have to send a pull request (as described below).

To see your modifications for validation purpose just make sure you installed sphinx tools as:

pip install sphinx
pip install sphinx_rtd_theme

Just go to the docs subdirectory and use the make command with the html option, after you can open the result in your browser as:

cd [yourpath]/geonode/docs
make html
#you can open the index.html in _build subdirectory

Create a new branch

If you are planning bigger changes on the structure of the documentation it is recommended to create a new branch and make your edits here.
A new branch can be created by clicking on the button branch: master as shown here.

[image: organizational/contribute/img/create_branch_example.PNG]
Just type the name of your new branch, hit enter and your branch will be created. To learn more about branches it is recommended to take a look here https://git-scm.com/book/en/Git-Branching-What-a-Branch-Is.

Note

Before you start editing make sure that you are in the right branch!

Create a new folder/file

If you want to add a completely new issue to the documentation, you have to create a new file (and maybe even folder).
As you will see there is no possibility to create an empty folder. You always have to create a new file as well! This can be
done here

[image: ../../_images/create_file.png]
If you click on create new file here you can first change into another folder by typing the foldername followed by /. If this folder
doesn’t exist until now, one will be created. To create a new file in this folder just type filename.txt into the box and hit enter.
A short example on how to manage this is given here http://i.stack.imgur.com/n3Wg3.gif.

[image: organizational/contribute/img/create_file_test.PNG]
Now a black box will appear where you can add your comments. To save the file, hit the green Commit New File button at the bottom.

Add images

This section is about adding images to your documentation. Providing that you’ve read and done the steps described above
you can now follow those further steps.

Install and set up Git

To add images to your documentation you have to get your repository onto your local machine. So far you only had your repository on the web.
To be able to work on your local machine as well, you have to install git. To do so, type:

sudo apt-get install git

(Usually git has already been installed during geonode installation)

Before you go further you should do some setup steps (can be found here: https://help.github.com/articles/set-up-git).

Clone repository

We assume you have already forked the geonode repository. If not, please do so following _link and return back if ready.

Until now your repository only exists on the web! To get your forked repository on to your machine, you have to clone it.
To do so, open a terminal, go to the folder where you want the project to be and type:

git clone https://github.com/your_username/geonode.git my_geonode

Now change the active directory to the newly cloned geonode directory using:

cd my_geonode

To keep track of the original repository (the geonode repository where you forked from), you need to add a remote named upstream. Therefore type:

git remote add upstream https://github.com/GeoNode/geonode.git

By typing:

git fetch upstream

Changes not present in your local repository will be pulled in without modifying your files.

Add folder with images

Warning

If you’ve already made some changes and commits to your repository on the web (during cloning the repository and now), you have to update your repository on the local machine!

Therefore you have to run the following commands:

git fetch origin

git merge

Or instead you could use:

git pull

Your repository should now be up to date!
For more information on those commands go to https://git-scm.com/docs.

Note

If you’ve created a new branch, and you want to add the new folder to this branch, make sure you are working on this branch!

Typing:

git status

will show you the current branch. To change this you have to run this command (your_branch is the name of the branch you want to change in):

git checkout your_branch

Now you can easily add a new folder containing images to your repository. Go to the repository on your local machine and decide where you want your new folder containing the images to be (e.g in docs_example).
There create a new folder (e.g. images) and add the images manually. Once you’ve done this, open a terminal and direct to to the folder docs_example.
To add the folder images including all content to the repository, type:

git add images

If this command doesn’t work, check your path, maybe it is incorrect!

Remark: In order to commit and push the folder, it must not be empty!

The next step is to commit the folder/files:

git commit -m 'Message'

Instead of ‘Message’ write something like ‘add images’.
To push the files to the repository type:

git push

Now you are able to see the folder on the web as well!

Include images

To include the images in to your documentation, you have to add the following lines to your file:

.. image:: images/test_img.png

Note

Be aware that everytime you commit something on the web, you have to make git pull on your machine, to keep it up to date!

Pull Request

If you are done with your changes, you can send a pull request. This means, that you let the core developers know that you have done some changes and you would like them to review. They can hit accept and your changes will go in to the main line.
The pull request can be found here.

[image: organizational/contribute/img/pull_request.PNG]

How to write Documentation

GeoNode uses reStructuredText with Sphinx [http://www.sphinx-doc.org] . Writing style should follow the same policies as GeoServer does in their Documentation Style Guide [http://docs.geoserver.org/latest/en/docguide/style.html]

Sphinx Syntax

	This page contains syntax rules, tips, and tricks for using Sphinx and reStructuredText. For more information, please see:

	
	RST Quick Reference [http://docutils.sourceforge.net/docs/user/rst/quickref.html#section-structure]

	Comprehensive guide to reStructuredText [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html]

	Sphinx reStructuredText Primer [http://www.sphinx-doc.org/rest.html]

Basic markup

A reStructuredText document is written in plain text. Without the need for complex formatting, one can be composed simply, just like one would any plain text document. For basic formatting, see this table:

	Format

	Syntax

	Output

	Italics

	italics (single asterisk)

	italics

	Bold

	bold (double asterisk)

	bold

	Monospace

	`` monospace `` (double back quote)

	monospace

Sections, subtitles and titles

Use sections to break up long pages and to help Sphinx generate tables of contents.

The top of the page (i.e. the title) should have an equals sign (=) above and below:

==============
Camel Spotting
==============

Level 2 section headers should have an equals sign (=) below the section name with same length as name:

I am a level 2 header
=====================

Level 3 sections should have a single minus symbol (-):

I am a level 3 header

Level 4 sections should have a single dot, period symbol (.):

I am a level 4 header
.....................

Level 5 sections should have a single dot, period symbol (.):

I am a level 5 header
+++++++++++++++++++++

Page labels

Ensure every page has a label. For example if the page is named foo_bar.txt then the page should have the label at the top of the file (line1)

.. _foo_bar:

Other pages can then link to that page by using the following code:

:ref:`foo_bar`

Linking

Links to other pages should never be titled as “here”. Sphinx makes this easy by automatically inserting the title of the linked document.

Using the following code:

:ref:`linking`

And here is the link in action Linking to use the link place this code some where in your open file:

.. _linking:

To insert a link to an external website:

`Text of the link <http://docs.geoserver.org/latest/en/docguide/style.html>`_

The resulting link would look like this: Text of the link [http://example.com]

Lists

There are two types of lists, bulleted lists and numbered lists.

A bulleted list looks like this:

	An item

	Another item

	Yet another item

This is accomplished with the following code:

* An item
* Another item
* Yet another item

A numbered list looks like this:

	First item

	Second item

	Third item

This is accomplished with the following code:

#. First item
#. Second item
#. Third item

Note that numbers are automatically generated, making it easy to add/remove items.

List-tables

Bulleted lists can sometimes be cumbersome and hard to follow. When dealing with a long list of items, use list-tables. For example, to talk about a list of options, create a table that looks like this:

	Shapes

	Description

	Square

	Four sides of equal length, 90 degree angles

	Rectangle

	Four sides, 90 degree angles

This is done with the following code:

.. list-table::
 :widths: 20 80
 :header-rows: 1

 * - Shapes
 - Description
 * - Square
 - Four sides of equal length, 90 degree angles
 * - Rectangle
 - Four sides, 90 degree angles

Notes and warnings

To emphasize something Sphinx has two ways, a note and a warning. They work the same, and only differ in their coloring. You should use notes and warnings sparingly, however, as adding emphasis to everything makes the emphasis less effective.

Here is an example of a note:

Note

This is a note.

This note is generated with the following code:

.. note:: This is a note.

Similarly, here is an example of a warning:

Warning

Beware of dragons.

This warning is generated by the following code:

.. warning:: Beware of dragons.

Images

Add images to your documentation when possible. Images, such as screen shots, are a very helpful way of making documentation understandable. When making screenshots, try to crop out unnecessary content (browser window, desktop, etc). Avoid scaling the images, as the Sphinx theme automatically resizes large images. It is also helpful to include a caption underneath the image.

[image: ../../_images/logo1.png]
The GeoNode logo as shown on the homepage.

This image is generated by the following code:

.. figure:: img/logo.png
 :align: center

 The GeoNode logo as shown on the homepage.

In this example, the image file exists in the same directory as the source page. If this is not the case, you can insert path information in the above command.

External files

Text snippets, large blocks of downloadable code, and even zip files or other binary sources can all be included as part of the documentation. To include files as part of the build process, use the following syntax:

:download:`An external file <README>`

The result of this code will generate a standard link to an external file

Reference files and paths

Use the following syntax to reference files and paths:

:file:`myfile.txt`

This will output: myfile.txt.

You can reference paths in the same way:

:file:`path/to/myfile.txt`

This will output: path/to/myfile.txt.

For Windows paths, use double backslashes:

:file:`C:\\myfile.txt`

This will output: C:\myfile.txt.

If you want to reference a non-specific path or file name:

:file:`{your/own/path/to}/myfile.txt`

This will output: your/own/path/to/myfile.txt

Reference commands

Reference commands (such as make) with the following syntax:

:command:`make`

Reference an element in a GUI

Use the following syntax to direct a user to click a link or look to a certain area of the GUI:

:guilabel:`Main Menu`

This will output: Main Menu.

Menu traversal

Direct a user through a menu with the following syntax:

:menuselection:`Start Menu --> Programs --> Geonode`

This will output Start Menu ‣ Programs ‣ Geonode.

Show Source

Every page in the GeoNode documentation has a link for Show Source under the Table of Contents on the right side of the page. This allows for easy reverse engineering of unfamiliar markup. When in doubt, look at the source!

How to Translate the Documentation

All documentation is written in English as the master language but can be translated into your native language.
This write up will show you how to translate the documentation. There are different methods to translate the
documentation and here we list a few.

Translate using Github Locally

Here we assume you have GitHub running locally and that you are familiar with the command line.

	Get latest version from GitHub:

$ git pull

	Get latest version from Transifex
(it should be synced with Github, but just in case):

$ tx pull -a

	Edit your files
for example (if using vi):

$ vi i18n/it/LC_MESSAGES/index.po

	Build the documentation
now, before committing and pushing, build the doc to see if everything worked smoothly:

$ make html LANG=it

	Push changes
if everything worked well, push the changes:

$ tx push -s -t

 Python Module Index

 _ |
 g

 		 	

 		
 _	

 	
 	
 _geoserver_adv_config	
 Learn how to set the advanced GeoServer configuration.

 		 	

 		
 g	

 	[image: -]
 	
 geoserver	

 	
 	
 geoserver.add_geotiff	
 Learn how to adding a GeoTiff.

 	
 	
 geoserver.add_shp	
 Learn how to adding a Shapefile.

 	
 	
 geoserver.add_sqllayers	
 Learn how to add a SQL Parametric View based Layer.

 	
 	
 geoserver.add_style	

 	
 	
 geoserver.add_wfscascade	
 Learn how to add a WFS Cascade Layer.

 	
 	
 geoserver.add_wmscascade	
 Learn how to add a WMS Cascade Layer.

 	
 	
 geoserver.adding_base_types	
 Learn how to adding base types.

 	
 	
 geoserver.adding_data	
 Learn how to add data to GeoServer.

 	
 	
 geoserver.advanced_gdal	
 Learn how to delivery Raster Data.

 	
 	
 geoserver.creating_setting	
 Learn how to creating and setting a new GeoServer data directory.

 	
 	
 geoserver.crs_handling	

 	
 	
 geoserver.data_format	

 	
 	
 geoserver.db_pooling	

 	
 	
 geoserver.example1	

 	
 	
 geoserver.example2	

 	
 	
 geoserver.example3	

 	
 	
 geoserver.gs_data_dir	
 Learn how to managing GeoServer data directory.

 	
 	
 geoserver.gsproduction	

 	
 	
 geoserver.imagemosaic_footprint	

 	
 	
 geoserver.introducing_rest	
 Learn how to use the GeoServer REST module.

 	
 	
 geoserver.jmeter	
 Learn how to set the advanced GeoServer configuration.

 	
 	
 geoserver.mosaic_pyramid	

 	
 	
 geoserver.parameters	

 	
 	
 geoserver.postgis_lay	
 Learn how to adding a Postgis layer.

 	
 	
 geoserver.pretty_maps	
 Styling in real world units

 	
 	
 geoserver.processing	

 	
 	
 geoserver.raster_data	
 Learn advanced tecquinques for the delivery of Raster Data with GeoServer.

 	
 	
 geoserver.rest	
 Learn how to use GeoServer REST interface.

 	
 	
 geoserver.shp_postgis	
 Learn how to loading a Shapefile into Postgis.

 	
 	
 geoserver.structure	
 Learn the structure of the GeoServer Data Directory.

 	
 	
 geoserver.using_rest	
 Learn how to use the GeoServer REST module.

 	
 	
 geoserver.vector_data	
 Learn advanced tecquinques for the delivery of Vectorial Data with GeoServer.

Index

 _
 | G

_

 	
 	_geoserver_adv_config (module)

G

 	
 	geoserver.add_geotiff (module)

 	geoserver.add_shp (module)

 	geoserver.add_sqllayers (module)

 	geoserver.add_style (module)

 	geoserver.add_wfscascade (module)

 	geoserver.add_wmscascade (module)

 	geoserver.adding_base_types (module)

 	geoserver.adding_data (module)

 	geoserver.advanced_gdal (module)

 	geoserver.creating_setting (module)

 	geoserver.crs_handling (module)

 	geoserver.data_format (module)

 	geoserver.db_pooling (module)

 	geoserver.example1 (module)

 	geoserver.example2 (module)

 	geoserver.example3 (module)

 	
 	geoserver.gs_data_dir (module)

 	geoserver.gsproduction (module)

 	geoserver.imagemosaic_footprint (module)

 	geoserver.introducing_rest (module)

 	geoserver.jmeter (module)

 	geoserver.mosaic_pyramid (module)

 	geoserver.parameters (module)

 	geoserver.postgis_lay (module)

 	geoserver.pretty_maps (module), [1], [2], [3]

 	geoserver.processing (module)

 	geoserver.raster_data (module)

 	geoserver.rest (module)

 	geoserver.shp_postgis (module)

 	geoserver.structure (module)

 	geoserver.using_rest (module)

 	geoserver.vector_data (module)

How to translate GeoNode’s Documentation

	As a first step, generate all of the needed .pot files (any time the master documentation changes):

cd docs
sphinx-build -b gettext . i18n/pot

	Run the pre_translate.sh script to generate/merge (update) all of the .po files for each language:

$ sh i18n/scripts/pre_translate.sh

	Do a pull from Transifex to get latest translations:

$ tx pull -a

	Now edit the .po files you need, make the translations and then run the post_translate.sh script:

$ vi i18n/it/LC_MESSAGES/index.po
$ sh i18n/scripts/post_translate.sh

	Do a push to Transifex to update translations:

$ tx push -s -t

	Finally build your html or pdf, and you should get the localized versions as well:

$ make html LANG=it

Custom Installation Guide

Use this if you want to know how to manually deploy GeoNode or if you want to
deploy it on a server
which is not fresh. Otherwise please use the Quick Installation Guide .
The manual installation is intended for those who are comfortable with Linux
system administration.

Note

Here is the link to our Quick Installation Guide .

Recommended Minimum System Requirements

For deployment of GeoNode on a single server,
the following are the bare minimum system requirements:

	6GB of RAM, including swap space.

	2.2GHz processor. (Additional processing power may be required for multiple
concurrent styling renderings)

	1 GB software disk usage.

	Additional disk space for any data hosted with GeoNode and tiles cached with
GeoWebCache.
For spatial data, cached tiles, and “scratch space” useful for
administration, a decent baseline size for GeoNode deployments is 100GB.

	64-bit hardware recommended.

Installing Dependencies

Some external software must be installed before you can install GeoNode.
The GeoNode package contains both the Java and Django web application code for
GeoNode, but requires some external software installed to complete the GeoNode
platform.

This includes:

	A Python interpreter

	A Java Runtime Environment (JRE)

	Apache Tomcat servlet container

	Python development libraries

	PostgreSQL database

	The GDAL, GEOS, and OGR geospatial software libraries

For detailed information on dependencies please refer to the section Dependencies.

For convenience, appropriate commands to retrieve these dependencies on Ubuntu
14.04 LTS are listed below:

$ sudo apt-get install \
 apache2 \
 gcc \
 gdal-bin \
 gettext \
 git-core \
 libapache2-mod-wsgi \
 libgeos-dev \
 libjpeg-dev \
 libpng-dev \
 libpq-dev \
 libproj-dev \
 libxml2-dev \
 libxslt-dev \
 openjdk-7-jre \
 patch \
 postgresql \
 postgis \
 postgresql-9.3-postgis-scripts \
 postgresql-contrib \
 python \
 python-dev \
 python-gdal \
 python-imaging \
 python-pastescript \
 python-psycopg2 \
 python-support \
 python-urlgrabber \
 python-virtualenv \
 tomcat7 \
 unzip \
 zip

Note

Before you copy the command into the terminal and run it, check the
versions, you might have to adjust them!

Note

Be sure that you’ve installed all the required dependencies before
you go further with the installation of GeoNode.

Please choose between one of the two methods to finish the
installation-configuration of GeoNode:

	Configure using the ubuntu config file.
This is the recommended way, using the provided .sh scripts

	Configure manually, doing each step by hand as opposed to using the .sh scripts

In the end you will have the same running instance of Geonode.

Configure Manually

Download Code

Download the code using git.

download code from github
$ git clone https://github.com/GeoNode/geonode.git

change into the folder called geonde
$ cd geonode

Installs django etc.
$ sudo pip install -e . --upgrade --no-cache

Downloads geoserver.war
$ sudo paver setup

Now if you like to see if all is working so far type:

starts everything with default configs! NOT for production!
$ sudo paver start

stops all and you can continue with complete install
$ sudo paver stop

This will start GeoNode at http://localhost:8000/ with the default configurations, using Jetty as the servlet container and SQLite as the database.

Note

If running the paver start command produces an “Address already in use” exception for port 8080, try running the paver stop command and then paver start again. If the exception still occurs then another web server is already bound to that port. If this is a fresh Ubuntu install then Tomcat was automatically started when you installed the package and you can safely stop it with sudo service tomcat7 stop.

Also GeoNode won’t start without using the command above.
To change this, the following configurations of the used components have to be done.

Configure

Complete steps to configure Geonode include the stack:

	Servlet Container

	Apache Tomcat for GeoServer

	Static File Server

	Apache httpd

	Python/WSGI Container

	mod_wsgi

	Django Database

	PostgreSQL

Configure Postgresql and Postgis

At this point, GeoNode uses sqlite3 as the default db.
The following steps will show you how to make geonode to use postgresql and
postgis.

Create geonode user and database

First of all a user called geonode (with password geonode),
as well as a database called geonode has to be created.

To create the user:

$ sudo -u postgres createuser -P geonode

Now you will be asked to enter a password.
This must be geonode (you can change it if you want to, but be aware that you
have to edit the local_settings.py if you do so!)

To create the databases (the geonode one and the spatial for shapefile imports):

$ sudo -u postgres createdb -O geonode geonode
$ sudo -u postgres createdb -O geonode geonode_data
$ sudo su postgres
$ psql -d geonode_data -c 'CREATE EXTENSION postgis;'
$ psql -d geonode_data -c 'GRANT ALL ON geometry_columns TO PUBLIC;'
$ psql -d geonode_data -c 'GRANT ALL ON spatial_ref_sys TO PUBLIC;'
$ exit

This creates databases called geonode and geonode_data
(which automatically has the postgis extension as well!)
with owner geonode.

Change authentication method

In the PostgreSQL config path, /etc/postgresql/9.3/main, you should find the
file pg_hba.conf.
This file has to be edited in order to allow the geonode user to have access to
the database. Therefore change the directory to this file and open it:

$ cd /etc/postgresql/9.3/main
$ sudo vi pg_hba.conf

At this point, the file should contain the following default settings:

[image: ../../../_images/pg_hba_detail.png]

Then change the authentication method of the following entry from peer to trust:

#TYPE DATABASE USER METHOD
local all all md5

After changing this file, the postgres service has to be restarted.
This is essential, because otherwise the changed configurations won’t be considered!

To restart the postgresql server type

$ sudo service postgresql restart

Note

service could be also called postgresql-9.1 or postgresql-9.2
depending on your installation

Additional entry:

#Type DATABASE USER ADDRESS METHOD
host geonode geonode 127.0.0.1/32 md5

Setup local settings

The next step is to set the local settings.

In the directory ../geonode/geonode a file called
local_settings.py.sample exists.
It includes all the settings to change the default db from sqlite3 to
postgresql.
Rename the file to local_settings.py.

$ sudo mv geonode/local_settings.py.sample geonode/local_settings.py

Uncomment line 10 and modify line 12 as follows:

'ENGINE': 'django.contrib.gis.db.backends.postgis',
'NAME': 'geonode_data',

Note

If you do not use geonode as password for your database,
then you have to edit the local_settings.py and change your password in
this part of the file.

Add the following as a directive:

ALLOWED_HOST = ['domain or IP']

Synchronize db

To synchronize the database, run the Django command migrate

$ python manage.py migrate

Django configurations

The Django frontend can be served in various ways,
one of the most performant is Apache httpd with mod_wsgi installed.

You will also need a web server capable of simply serving static files;
if you are using Apache httpd it can serve this purpose as well.

Note

The Django project has further documentation on how to serve Django
applications at https://docs.djangoproject.com/en/1.8/howto/deployment/ .

Before the web server will be configured, some other steps are needed to execute.

Create new superuser

A new Django superuser has to be created

$ python manage.py createsuperuser

You will be asked to enter a username, an email address and a password.

Create local static files

The collectstatic command will create a new folder static_root.

$ python manage.py collectstatic

Enable geonode upload function

An empty folder called uploaded must be created

$ sudo mkdir -p /home/user/geonode/geonode/uploaded

If using the Apache web server, change owner to www-data

$ sudo chown www-data -R /home/user/geonode/geonode/uploaded

Webserver configurations (Apache and mod_wsgi)

Make apache to load the mod_wsgi module

If you’ve done the installation from above,
you should already have a httpd.conf file that includes one line:

LoadModule wsgi_module /path/to/modules/mod_wsgi.so

Note

If you do not already have this,
then please add this line to httpd.conf now!

Beside this module you also have to enable the proxy module.
This can be done very easily using

$ sudo a2enmod proxy_http

We have to create one more configuration file for geonode.
Go to the folder sites-available and create a file called geonode:

$ cd /etc/apache2/sites-available
$ sudo gedit geonode

This file should include the following, but don´t forget to adjust the paths!

WSGIDaemonProcess geonode python-path=/home/user/geonode:/home/user/.venvs/geonode/lib/python2.7/site-packages user=www-data threads=15 processes=2

<VirtualHost *:80>
 ServerName http://localhost
 ServerAdmin webmaster@localhost
 DocumentRoot /home/user/geonode/geonode

 ErrorLog /var/log/apache2/error.log
 LogLevel warn
 CustomLog /var/log/apache2/access.log combined

 WSGIProcessGroup geonode
 WSGIPassAuthorization On
 WSGIScriptAlias / /home/user/geonode/geonode/wsgi.py

 <Directory "/home/user/geonode/geonode/">
 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 IndexOptions FancyIndexing
 </Directory>

 Alias /static/ /home/user/geonode/geonode/static/
 Alias /uploaded/ /home/user/geonode/geonode/uploaded/

 <Proxy *>
 Order allow,deny
 Allow from all
 </Proxy>

 ProxyPreserveHost On
 ProxyPass /geoserver http://localhost:8080/geoserver
 ProxyPassReverse /geoserver http://localhost:8080/geoserver

</VirtualHost>

Enable the new site

$ sudo a2ensite geonode

This command will create a file geonode in the folder sites-enabled.

Now reload apache

$ sudo service apache2 reload

If you now type localhost into your web browser, the geonode webpage will appear.
You can now login with your newly created superuser account.
But if you visit the Django admin interface,
you will only see the content of this webpage without any design.
To change this, you have to change the following entry in our geonode
configuration file:

$ sudo gedit /etc/apache2/sites-available/geonode

Change this entry:

Alias /static/ /home/user/geonode/geonode/static/

to:

Alias /static/ /home/user/geonode/geonode/static_root/

Now reload apache2

again using sudo service apache2 reload and visit localhost/admin.
Now you should be able to see this:

[image: ../../../_images/admin_interface.PNG]

Change permissions of folders

$ sudo chown www-data:www-data /home/user/geonode/geonode/static/
$ sudo chown www-data:www-data /home/user/geonode/geonode/uploaded/
$ sudo chown www-data:www-data /home/user/geonode/geonode/static_root/
$ sudo service apache2 reload

Configure application server

The GeoServer web application must be served using a Java Servlet container;
two popular and free containers are Jetty and Tomcat.
Jetty is used as default in your GeoNode installation.
Typically a Java web application (WARs) can be deployed by simply copying the
.war file into the appropriate place.
So if you are going to use Tomcat instead, then copy the geoserver.war file
into Tomcat’s webapps directory, as shown in the steps below.

Deploy your geoserver with Tomcat

To do so we need Tomcat installed and not running.
So if you’ve got Tomcat running at the moment, stop it:

$ sudo /etc/init.d/tomcat7 stop

You can find the geoserver.war in the folder downloaded in your geonode directory:

geonode/downloaded/geoserver.war

Now copy this file into the webapps folder of tomcat:

$ sudo mv geonode/downloaded/geoserver.war /var/lib/tomcat7/webapps/

By starting tomcat it will unpack the geoserver.war and create a new directory
tomcat/webapps/geoserver:

$ sudo /etc/init.d/tomcat7 start

Let’s try to visit http://localhost:8080/geoserver or localhost/geoserver.
You will now see the GeoServer homepage:

[image: ../../../_images/geoserver_webpage.PNG]

Warning

Geoserver is not a Vanilla Geoserver install, please use the
geoserver.war that comes with geonode.
In the future we might use a Vanilla Geoserver, it is being discussed.

GeoNode’s GeoServer integration requires some specific extensions to help
GeoNode in managing GeoServer layers.
GeoNode releases include a GeoServer WAR archive with these extensions
pre-installed.
However, some manual configuration may still be needed in case of not standard
installation.

Configure GeoServer

Configure GeoServer with the location of the GeoNode site, used for
authentication (so that GeoServer can recognize logins from the main site).
This setting defaults to http://localhost:8000/, so if you are running the
GeoNode Django application on a different port, or on a different server from
the one running GeoServer, then you will need to change this in two places.

Firstly, by adding a block
of XML to WEB-INF/web.xml within the unpacked application directory, like
so:

<context-param>
 <param-name>GEONODE_BASE_URL</param-name>
 <param-value>http://localhost/</param-value>
</context-param>

The <param-value> tag should enclose the URL to the Django application
homepage.

And secondly, update the value of the baseUrl tag in
data/security/auth/geonodeAuthProvider/config.xml:

<org.geonode.security.GeoNodeAuthProviderConfig>
 <id>-54fbcd7b:1402c24f6bc:-7fe9</id>
 <name>geonodeAuthProvider</name>
 <className>org.geonode.security.GeoNodeAuthenticationProvider</className>
 <baseUrl>http://localhost/</baseUrl>
</org.geonode.security.GeoNodeAuthProviderConfig>

Note

While we intend to provide a detailed, accurate explanation of the
installation process, if you run into problems with the process
described in this document, please don’t hesitate to let the GeoNode
team know so we can keep it up to date.

Configure using the Ubuntu config file

This is a semi-automatic configuration, involving two .sh scripts.

Download the code using git.

download code from github
$ git clone https://github.com/GeoNode/geonode.git
$ cd geonode

	Installer configuration file (located in ``package/support/config-ubuntu.sh``)
This is the first thing to edit.

	The installer script (located in ``package/install.sh``)
Second thing to edit.

	First open the package/support/config-ubuntu.sh installer configuration file.
Now provide the details of your installation,
such as where your web server looks for documents.

	Second, open install.sh and configure to your needs.

Note

you might have to change the postgresql and postgis versions in
this file, according to the versions you use!

Once edited (if necessary) run the ./install.sh file with the following commands:

change into the folder called "package"
$ cd package

run the install.sh with the ubuntu config.sh
$ sudo ./install.sh support/config-ubuntu.sh

call geonode binary django-admin.py create django super user
$ geonode createsuperuser

create the IP address to your public address
$ sudo geonode-updateip -p yourpublicaddress

if geoserver and geonode are not on the same machine then also add the local geonode address
$ sudo geonode-updateip -p yourpublicaddress -l yourlocaladdress

GeoNode can now be accessed at http://localhost

Dependencies

The following command will install all the needed dependencies:

$ sudo apt-get install python python-support python-dev python-virtualenv openjdk-6-jre tomcat7 postgresql-9.1 postgresql-contrib-9.1 gcc patch zip python-imaging gdal-bin libgeos-dev python-urlgrabber python-pastescript gettext postgresql-contrib postgresql-9.1-postgis libpq-dev unzip libjpeg-dev libpng-dev python-gdal libproj-dev python-psycopg2 apache2 libapache2-mod-wsgi git-core gettext libxml2-dev libxslt1-dev

Beware that in case of use of PostgreSQL 9.2 as described in install_postgresql and install_postgis all the postgres and postgis references must be removed from the above command.

Installing GeoNode

This section will guide you through the steps necessary to install GeoNode. Basically there are three different ways for you to install GeoNode. Depending on your purpose, you can choose between those. If you just want to test Geonode or just want a completely configured GeoNode, then try the Quick Installation Guide. If you intend to use Geonode with some already installed components, then use the Custom Installation Guide guide. This installation will give you full control over the components and you will be able to configure the components the way you need them. If you instead want to do some development, use the Install GeoNode for Development guide.

	Quick Installation Guide

	How to install GeoNode on Linux, Mac OS X and Windows.

	Install GeoNode for Development

	How to install GeoNode for development (for Developers) and prepare your development environment.

	Custom Installation Guide

	How to install GeoNode manually.

	Dependencies

	How to satisfy GeoNode’s dependencies

Examine an existing style

	From the GeoServer Welcome Page [http://localhost:8083/geoserver] navigate to Style.

[image: ../../../../_images/style1.png]
Navigating to Style configuration

	From the style list select the citylimits style

[image: ../../../../_images/styling_vector1.png]
The styles list

	Inside the Style Editor we have the following style:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld"
 xmlns:sld="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:gml="http://www.opengis.net/gml"
 version="1.0.0">
 <sld:UserLayer>
 <sld:LayerFeatureConstraints>
 <sld:FeatureTypeConstraint/>
 </sld:LayerFeatureConstraints>
 <sld:UserStyle>
 <sld:Name>BoulderCityLimits</sld:Name>
 <sld:Title/>
 <sld:IsDefault>1</sld:IsDefault>
 <sld:FeatureTypeStyle>
 <sld:Name>group 0</sld:Name>
 <sld:FeatureTypeName>Feature</sld:FeatureTypeName>
 <sld:SemanticTypeIdentifier>generic:geometry</sld:SemanticTypeIdentifier>
 <sld:SemanticTypeIdentifier>simple</sld:SemanticTypeIdentifier>
 <sld:Rule>
 <sld:Name>Filled</sld:Name>
 <sld:MinScaleDenominator>75000</sld:MinScaleDenominator>
 <sld:PolygonSymbolizer>
 <sld:Fill>
 <sld:CssParameter name="fill">#7F7F7F</sld:CssParameter>
 <sld:CssParameter name="fill-opacity">0.5</sld:CssParameter>
 </sld:Fill>
 <sld:Stroke>
 <sld:CssParameter name="stroke">#7F7F7F</sld:CssParameter>
 <sld:CssParameter name="stroke-opacity">0.5</sld:CssParameter>
 <sld:CssParameter name="stroke-width">2.0</sld:CssParameter>
 </sld:Stroke>
 </sld:PolygonSymbolizer>
 <sld:TextSymbolizer>
 <sld:Label>
 <ogc:Literal>Boulder</ogc:Literal>
 </sld:Label>
 <sld:Font>
 <sld:CssParameter name="font-family">Arial</sld:CssParameter>
 <sld:CssParameter name="font-size">14.0</sld:CssParameter>
 <sld:CssParameter name="font-style">normal</sld:CssParameter>
 <sld:CssParameter name="font-weight">normal</sld:CssParameter>
 </sld:Font>
 <sld:LabelPlacement>
 <sld:PointPlacement>
 <sld:AnchorPoint>
 <sld:AnchorPointX>
 <ogc:Literal>0.0</ogc:Literal>
 </sld:AnchorPointX>
 <sld:AnchorPointY>
 <ogc:Literal>0.5</ogc:Literal>
 </sld:AnchorPointY>
 </sld:AnchorPoint>
 <sld:Rotation>
 <ogc:Literal>0</ogc:Literal>
 </sld:Rotation>
 </sld:PointPlacement>
 </sld:LabelPlacement>
 <sld:Fill>
 <sld:CssParameter name="fill">#000000</sld:CssParameter>
 </sld:Fill>
 <sld:VendorOption name="maxDisplacement">200</sld:VendorOption>
 <sld:VendorOption name="Group">true</sld:VendorOption>
 </sld:TextSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
</sld:StyledLayerDescriptor>

Note

The most important section are:

	The <Rule> tag combines a number of symbolizers (we have also the possibility to define the OGC filter) to define the portrayal of a feature.

	The <PolygonSymbolizer> styles polygons and contain styling information about their border (stroke) and their fill.

	The <TextSymbolizer > specifies text labels and their style:

	<Label> Specifies the content of the text label

	 Specifies the font information for the labels.

	<LabelPlacement> Sets the position of the label relative its associate feature.

	<Fill> Determines the fill color of the text label.

	VendorOption maxDisplacement Controls the displacement of the label along a line. Normally GeoServer would label a polygon in its centroid, provided the location is not busy with another label and that the label is not too big compare to the polygon, or not label it at all otherwise. When the maxDisplacement is set, the labeller will search for another location within maxDisplacement pixels from the pre-computed label point.

	VendorOption Group Sometimes you will have a set of related features that you only want a single label for. The grouping option groups all features with the same label text, then finds a representative geometry for the group.

	The <MaxScaleDenominator> and <MinScaleDenominator> are used to apply a particular SLD rule to a specific scale. The above SLD makes sure that the Boulder border disappear once we zoom in enough to see the city details. An alternative approach could be to keep the layer showing, but switch it to a different style, for example a think red line, so that the details of the city are not disturbed by the polygon fill.

	Now from the style list select the rivers style.

	Inside the Style Editor we have the following style:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld"
 xmlns:sld="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:gml="http://www.opengis.net/gml"
 version="1.0.0">
 <sld:UserLayer>
 <sld:LayerFeatureConstraints>
 <sld:FeatureTypeConstraint/>
 </sld:LayerFeatureConstraints>
 <sld:UserStyle>
 <sld:Name>Hydrology Line</sld:Name>
 <sld:Title/>
 <sld:FeatureTypeStyle>
 <sld:Rule>
 <sld:Name>default rule</sld:Name>
 <sld:MaxScaleDenominator>75000</sld:MaxScaleDenominator>
 <sld:LineSymbolizer>
 <sld:Stroke>
 <sld:CssParameter name="stroke-width">0.5</sld:CssParameter>
 <sld:CssParameter name="stroke">#06607F</sld:CssParameter>
 </sld:Stroke>
 </sld:LineSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
</sld:StyledLayerDescriptor>

Note

This is a very simple Line style. Take into account the LineSymbolizer that styles lines. Lines are one-dimensional geometry elements that contain position and length.
Lines can be comprised of multiple line segments.

The outermost tag is the <Stroke> tag. This tag is required, and determines the visualization of the line:

	stroke Specifies the solid color given to the line, in the form #RRGGBB. Default is black (#000000).

	stroke-width Specifies the width of the line in pixels. Default is 1.

In this case MaxScaleDenominator is used to make sure that the rivers start showing up when we are zoomed in enough, and in particular as the city borders disappear

Create a simple style for points

	From the GeoServer Welcome Page [http://localhost:8083/geoserver] navigate to Style.

[image: ../../../../_images/style1.png]
Navigating to Style configuration

	Click New

[image: ../../../../_images/style2.png]
Adding a new style

	Enter “landmarks” in the Name field.

[image: ../../../../_images/styling_vector2.png]
Creating a new style

	In the SLD Editor enter the following XML:

<StyledLayerDescriptor xmlns="http://www.opengis.net/sld" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0.0" xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd">
 <NamedLayer>
 <Name>landmarks</Name>
 <UserStyle>
 <Name>landmarks</Name>
 <Title>Point Landmarks</Title>
 <FeatureTypeStyle>
 <Rule>
 <Name>default</Name>
 <Title>Landmarks</Title>
 <PointSymbolizer>
 <Graphic>
 <Mark>
 <WellKnownName>triangle</WellKnownName>
 <Fill>
 <CssParameter name="fill">#009900</CssParameter>
 <CssParameter name="fill-opacity">0.2</CssParameter>
 </Fill>
 <Stroke>
 <CssParameter name="stroke">#000000</CssParameter>
 <CssParameter name="stroke-width">2</CssParameter>
 </Stroke>
 </Mark>
 <Size>12</Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

Note

Take into account:

	
	WellKnownName The name of the common shape. Options are circle, square, triangle, star, cross, or x. Default is square.

	
	fill Specifies how the symbolizer should be filled. Options are a <CssParameter name="fill"> specifying a color in the form #RRGGBB, or <GraphicFill> for a fill made with a repeated graphic.

	fill-opacity Determines the opacity (transparency) of symbolizers. Values range from 0 (completely transparent) to 1 (completely opaque). Default is 1.

	Then click Save button.

	Open the geosolutions:bptlandmarks vector layer, but this time associate the style as a “Additional Style”:

[image: ../../../../_images/styling_vector_add_style.png]
Open the Layers Preview

	Click on the Save button.

	Preview the geosolutions:bptlandmarks layer, which with the default style should be empty due to scale dependencies.
Then click the option button at the top left of the map and select the landmarks style in the style drop down:

[image: ../../../../_images/styling_vector4.png]
Open the Layers Preview

Charting

GeoServer can produce maps with charts through the chart extension. Bundled with GeoServer is an open source version of the (deprecated) Google Chart API [https://developers.google.com/chart/image/] called Eastwood Charts [http://www.jfree.org/eastwood/].

You can display bar or pie charts (Most Google Charts except for Google-o-meter and spider charts are supported by the Eastwood library but the same does not apply to the corresponding GeoServer extension) for each feature on your map. You can control colors or labels. You can use percentages that are in your data attributes or compute percentages from counts on the fly.

How Charting Works

The Charting Extension makes usage of a URL inside the <ExternalGraphic> element of SLD documents. The URL used follows the Google Chart API syntax, but the chart is generated internally in GeoServer, hence no call to external services made removing any privacy or security concern and providing maximum performance. All the information about the chart that you want, such as chart data, size, colors, and labels, are part of the URL.

Inside the URL we can use variable substitution for using the attributes of the underlying features that are read from the datasource allowing us to create stunning dynamic charts using our own data.

An example of a chart created using an <ExternalGraphic> element is shown here below:

<ExternalGraphic>
 <OnlineResource
 xlink:href="http://chart?cht=p&chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS}&chf=bg,s,FFFFFF00" />
 <Format>application/chart</Format>
</ExternalGraphic>

All URLs start with https://chart? followed by the parameters that specify chart data and appearance. Parameters are name=value pairs, separated by an ampersand character (&), and parameters can be in any order, after the ?. All charts require at minimum the following parameters: cht (chart type), chd (data), and chsv (chart size). However, there are many more parameters for additional options, and you can specify as many additional parameters as the chart supports.

We are now going to see examples and explanation for the various types of charts supported. First of all we will start with the standard features support by all the charts.

Standard Features

All Chart URLs have the following format:

https://chart?cht=<chart_type>&chd=<chart_data>&chs=<chart_size>&...more_parameters...

The standard parameters as part of the above URL have the following meaning:

	The cht parameter allows us to control the type of charts; as an example cht=p can be used for a 2D (flat) Pie.

	The chs parameter allows us to control the size of charts; as an example chs=500x200 specifies the chart size (width x height), in pixels. As an alternative we can use the <Size> element of external graphics (we’ll show an example in the following.

	The chd parameter allows us to control the chart data; as an example chd=t:60,40 can be used to provide tabular data to the diagram rendering system. We can use variable substitution and other GeoServer mechanisms to pass data sources value as the chart data. A typical example would be something like chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS}& where MALE, PERSONS and FEMALE are attribute of GeoServer data sources.

	The chl parameter allows us to control the label of charts; as an example chl=Male|Female can be used to label a chart.

Pie Charts

Quoting Wikipedia,

“A pie chart (or a circle graph) is a circular chart divided into sectors, illustrating numerical proportion. In a pie chart, the arc length of each sector (and consequently its central angle and area), is proportional to the quantity it represents.”

Let us know create a sample map using the Pie Charts element leveraging on the the data provided with the training. Afterwards we will review the various options.

To print dynamic charts on a map using a Pie symbol over the United Stats map add a new style called statespies by adding the SLD provided below as indicated in this picture.

[image: ../../../../_images/dyn_symb1.png]
Creating a new Dynamic Style

In the SLD Editor enter the following XML:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
 xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd"
 xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <NamedLayer>
 <Name></Name>
 <UserStyle>
 <Name>Pie charts</Name>
 <FeatureTypeStyle>
 <Rule>
 <PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill">#AAAAAA</CssParameter>
 </Fill>
 <Stroke />
 </PolygonSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 <FeatureTypeStyle>
 <Rule>
 <PointSymbolizer>
 <Geometry>
 <ogc:Function name="centroid">
 <ogc:PropertyName>the_geom</ogc:PropertyName>
 </ogc:Function>
 </Geometry>
 <Graphic>
 <ExternalGraphic>
 <OnlineResource
 xlink:href="http://chart?cht=p&chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS}&chf=bg,s,FFFFFF00" />
 <Format>application/chart</Format>
 </ExternalGraphic>
 <Size>
 <ogc:Add>
 <ogc:Literal>20</ogc:Literal>
 <ogc:Mul>
 <ogc:Div>
 <ogc:PropertyName>PERSONS</ogc:PropertyName>
 <ogc:Literal>20000000.0</ogc:Literal>
 </ogc:Div>
 <ogc:Literal>60</ogc:Literal>
 </ogc:Mul>
 </ogc:Add>
 </Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

In order to have the states layer use this style with no additional indications, modify the default style of the states layer using the user interface to point to the newly created statespies.

[image: ../../../../_images/dyn_symb2.png]
Changing the default style of the states layer

Now go to the Layer Preview to view the new style in action.

[image: ../../../../_images/dyn_symb3.png]
Previewing the states layer with the statespies applied

Pie Chart Options

Let us quickly analyse the components of the ExternalGraphic call, which follow the rules of a Google Charts API call:

Pie Chart Types

The cht parameter allows us to control the type of pie. Supported options are as follows:

	cht=p for a 2D (flat) Pie

	cht=p3 for a 3D (flat) Pie

	cht=pc is not supported.

Pie Chart Data

chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS} the chart data is expressed in “text” format, and in particular, the first value is the result of 100 * MALE / PERSONS, where MALE and PERSONS are two attributes of feature being rendered

Pie Chart Background

chf=bg,s,FFFFFF00: we state that the chart background fill is solid, white and transparent. In articular, the color is expressed as RRGGBBAA, where AA is the alpha component, which controls transparency. In particular 0 is fully transparent, 255 is fully opaque

Pie Chart Size

The size of the chart is controlled using the usual <Size> element of external graphics, an in particular, it’s setup so that it’s proportional to the PERSONS attribute via the expression: 20 + (PERSONS / 20,000,000) * 60.

Pie Chart Colors

We can specify the colors of all values, each value, or some values using the chco parameter. This override the usage of the default Background Fills chf parameter, hence it is optional.

Syntax is as follows:

chco=<color_slice_1>,<color_slice_2>

for specifying individual colors for slices and

chco=<color_1>|<color_2>

for specifying a gradient to be applied to the slices.

where color is in RRGGBB hexadecimal format [https://developers.google.com/chart/image/docs/chart_params#gcharts_rgb].

Pie Chart Labels

We can specify labels for individual pie chart slices using the chl parameter.

The syntax is a follows:

chl=<label_value>| ... |<label_value>

Pie Chart Rotation

Pie Chart Rotation can be achieved via the chp parameter. By default, the first series is drawn starting at 3:00, continuing clockwise around the chart.

The syntax is as follows:

chp=<radians>

Additional information on creating pie charts can be found on the official pie charts documentation [https://developers.google.com/chart/image/docs/gallery/pie_charts]

A more comprehensive example can be found here below:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
 xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd"
 xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <NamedLayer>
 <Name></Name>
 <UserStyle>
 <Name>Pie charts</Name>
 <FeatureTypeStyle>
 <Rule>
 <PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill">#ffffff</CssParameter>
 </Fill>
 <Stroke />
 </PolygonSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 <FeatureTypeStyle>
 <Rule>
 <PointSymbolizer>
 <Geometry>
 <ogc:Function name="centroid">
 <ogc:PropertyName>the_geom</ogc:PropertyName>
 </ogc:Function>
 </Geometry>
 <Graphic>
 <ExternalGraphic>
 <OnlineResource
 xlink:href="http://chart?cht=p&chf=bg,s,FFFFFF00&chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS}&chl=MALE|FEMALE&chs=200x100&chco=0000ff,ff0000&chtt=M+F" />
 <Format>application/chart</Format>
 </ExternalGraphic>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

The resulting image can be found here below:

[image: ../../../../_images/dyn_symb4.png]

Bar Charts

Quoting Wikipedia,

“A bar chart or bar graph is a chart with rectangular bars with lengths proportional to the values that they represent. The bars can be plotted vertically or horizontally. A vertical bar chart is sometimes called a column bar chart.”

Let us know create a sample map using the Bar Charts element leveraging on the the data provided with the training. Afterwards we will review the various options.

To print dynamic charts on a map using a Bar symbol over the United Stats map add a new style called statesbars by adding the SLD provided below as indicated in this picture.

[image: ../../../../_images/dyn_symb5.png]
Creating a new Dynamic Style with Bar Charts

In the SLD Editor enter the following XML:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
 xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd"
 xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <NamedLayer>
 <Name></Name>
 <UserStyle>
 <Name>Pie charts</Name>
 <FeatureTypeStyle>
 <Rule>
 <PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill">#ffffff</CssParameter>
 </Fill>
 <Stroke />
 </PolygonSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 <FeatureTypeStyle>
 <Rule>
 <PointSymbolizer>
 <Graphic>
 <Geometry>
 <ogc:Function name="centroid">
 <ogc:PropertyName>the_geom</ogc:PropertyName>
 </ogc:Function>
 </Geometry>
 <ExternalGraphic>
 <OnlineResource
 xlink:href="http://chart?cht=bvg&chf=bg,s,FFFFFF00&chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS}" />
 <Format>application/chart</Format>
 </ExternalGraphic>
 <Size>
 <ogc:Add>
 <ogc:Literal>20</ogc:Literal>
 <ogc:Mul>
 <ogc:Div>
 <ogc:PropertyName>PERSONS</ogc:PropertyName>
 <ogc:Literal>20000000.0</ogc:Literal>
 </ogc:Div>
 <ogc:Literal>60</ogc:Literal>
 </ogc:Mul>
 </ogc:Add>
 </Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

Bar Chart Options

Let us quickly analyse the components of the ExternalGraphic call, which follow the rules of a Google Charts API call:

Bar Chart Types

The cht parameter allows us to control the type of pie. Supported options are as follows:

	cht=bvg for simple 2D vertical Bars layed out as groups.

	cht=bhg for simple 2D horizontal Bars layed out as groups.

	cht=bvs for simple 2D vertical Bars layed out as stacks.

	cht=bvo is not supported.

Bar Chart Data

chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS} the chart data is expressed in “text” format, and in particular, the first value is the result of 100 * MALE / PERSONS, where MALE and PERSONS are two attributes of feature being rendered. This type of sequence is good for grouped bar charts. Values for successive groups are separated by |. Values within the same group are separated by comma.

Bar Chart Colors

Note

Note that by default, all series are displayed in the same color; if you don’t specify different colors for different series, it will be hard to distinguish that there are multiple series in your chart.

You can specify the colors of individual bars, individual series, or multiple series using the chco parameter. If you don’t specify a different color for each series, all series will be the same color. Syntax is as follows:

chco=<series_1_color>, ..., <series_n_color>

or

chco=<series_1_bar_1>|<series_1_bar_2>|...|<series_1_bar_n>,<series_2>,...,<series_n>

where color is in RRGGBB hexadecimal format [https://developers.google.com/chart/image/docs/chart_params#gcharts_rgb].

Bar Chart Background

chf=bg,s,FFFFFF00: we state that the chart background fill is solid, white and transparent. In particular, the color is expressed as RRGGBBAA, where AA is the alpha component, which controls transparency. In particular 0 is fully transparent, 255 is fully opaque.

Bar Chart Size

The size of the chart is controlled using the usual <Size> element of external graphics, an in particular, it’s setup so that it’s proportional to the PERSONS attribute via the expression: 20 + (PERSONS / 20,000,000) * 60.

Bar Chart Labels

Bar charts support standard axis labels, but labels along the base of the bars are assigned to individual bars, rather than spread out along the bar chart. (To spread out labels evenly, use the chxp parameter as described below.) If you specify axis labels but don’t specify custom labels along the bar axis, the bar labels will be the index number of each bar or group of bars. You can customize axis labels using the chxl parameter.

The syntax is a follows:

chl=<label_value>| ... |<label_value>

Additional information on creating pie charts can be found on the official bar chart documentation [https://developers.google.com/chart/image/docs/gallery/bar_charts]

A more comprehensive example can be found here below:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
 xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd"
 xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <NamedLayer>
 <Name></Name>
 <UserStyle>
 <Name>Pie charts</Name>
 <FeatureTypeStyle>
 <Rule>
 <PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill">#dddddd</CssParameter>
 </Fill>
 <Stroke />
 </PolygonSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 <FeatureTypeStyle>
 <Rule>
 <PointSymbolizer>
 <Graphic>
 <ExternalGraphic>
 <OnlineResource
 xlink:href="http://chart?chxt=x,y&chxl=0:|M|F&cht=bvg&chco=0000ff,ff0000&chf=bg,s,FFFFFF00&chd=t:${100 * MALE / PERSONS}|${100 * FEMALE / PERSONS}&chs=200x200&chtt=M+F" />
 <Format>application/chart</Format>
 </ExternalGraphic>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

The resulting image can be found here below:

[image: ../../../../_images/dyn_symb6.png]

Patterns and Hatches

	Go and edit the configuration of the bplandmarks layer, enter the publish tab and associate the cemetery_mark and cemetery_graphics styles as “Additional styles” for the layer, then press “Save”

[image: ../../../../_images/sld_create0.png]

	From the Welcome Page [http://localhost:8083/geoserver] navigate to Styles.

Note

You have to be logged in as Administrator in order to activate this function.

	Select “cemetery_graphics” from the list

[image: ../../../../_images/sld_create1.png]
Patterns filling SLD

	In the SLD Editor you will see the following XML:

<?xml version="1.0" encoding="UTF-8"?>
 <sld:StyledLayerDescriptor
 xmlns="http://www.opengis.net/sld"
 xmlns:sld="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:xlink="http://www.w3.org/1999/xlink" version="1.0.0">
 <sld:UserLayer>
 <sld:UserStyle>
 <sld:Name>tl 2010 08013 arealm</sld:Name>
 <sld:Title/>
 <sld:FeatureTypeStyle>
 <sld:Rule>
 <sld:Name>cemeteries</sld:Name>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>MTFCC</ogc:PropertyName>
 <ogc:Literal>K2582</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <sld:MaxScaleDenominator>500000.0</sld:MaxScaleDenominator>
 <sld:PolygonSymbolizer>
 <sld:Fill>
 <sld:GraphicFill>
 <sld:Graphic>
 <sld:ExternalGraphic>
 <sld:OnlineResource
 xlink:type="simple"
 xlink:href="./img/landmarks/area/grave_yard.png" />
 <sld:Format>image/png</sld:Format>
 </sld:ExternalGraphic>
 </sld:Graphic>
 </sld:GraphicFill>
 </sld:Fill>
 </sld:PolygonSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
 </sld:StyledLayerDescriptor>

[image: ../../../../_images/sld_create2.png]
Filling with patterns

Note

The above SLD defines a <PolygonSymbolizer> with a <GraphicFill> pointing to a png ./img/landmarks/area/grave_yard.png in the GeoServer data directory, which will be used by GeoServer as pattern to fill the polygon.

	Like before, select now “cemetery_mark” from the list

[image: ../../../../_images/sld_create1b.png]
True Type Font filling SLD

	In the SLD Editor you will see the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor
xmlns="http://www.opengis.net/sld"
xmlns:sld="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.org/1999/xlink" version="1.0.0">

 <sld:UserLayer>
 <sld:Name>cemeteries</sld:Name>
 <sld:UserStyle>
 <sld:Name>tl 2010 08013 arealm</sld:Name>
 <sld:Title/>
 <sld:FeatureTypeStyle>

 <sld:Rule>
 <sld:Name>cemeteries</sld:Name>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>MTFCC</ogc:PropertyName>
 <ogc:Literal>K2582</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <sld:MaxScaleDenominator>500000.0</sld:MaxScaleDenominator>
 <sld:PolygonSymbolizer>
 <sld:Fill>
 <sld:CssParameter name="fill">#D3FFD3</sld:CssParameter>
 <sld:CssParameter name="fill-opacity">0.5</sld:CssParameter>
 </sld:Fill>
 <sld:Stroke>
 <sld:CssParameter name="stroke">#6DB26D</sld:CssParameter>
 </sld:Stroke>
 </sld:PolygonSymbolizer>
 <sld:PolygonSymbolizer>
 <sld:Fill>
 <sld:GraphicFill>
 <sld:Graphic>
 <sld:Mark>
 <sld:WellKnownName>ttf://Wingdings#0x0055</sld:WellKnownName>
 <sld:Stroke>
 <sld:CssParameter name="stroke">#6DB26D</sld:CssParameter>
 </sld:Stroke>
 </sld:Mark>
 <sld:Size>16</sld:Size>
 </sld:Graphic>
 </sld:GraphicFill>
 </sld:Fill>
 <sld:VendorOption name="graphic-margin">8</sld:VendorOption>
 </sld:PolygonSymbolizer>

 </sld:Rule>

 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
</sld:StyledLayerDescriptor>

[image: ../../../../_images/sld_create2b.png]
Filling with TTF fonts

Note

The above SLD defines a <PolygonSymbolizer> with a <GraphicFill> looking for a specific Windings character which will be used by GeoServer as pattern to fill the polygon. The graphic-margin VendorOption is used to add some space around symbols.

	Lets now take a look at another way to fill polygons using patterns, the Hatches. From the Welcome Page [http://localhost:8083/geoserver] navigate to Styles and select “wetlands” from the list.

Note

You may switch to the second page in order to find the style.

[image: ../../../../_images/sld_create5.png]
Wetlands style with some hatches

<?xml version="1.0" encoding="UTF-8"?>
 <sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld" xmlns:sld="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml" version="1.0.0">
 <sld:UserLayer>
 <sld:LayerFeatureConstraints>
 <sld:FeatureTypeConstraint/>
 </sld:LayerFeatureConstraints>
 <sld:UserStyle>
 <sld:Name>Wetlands regulatory area</sld:Name>
 <sld:Title/>
 <sld:FeatureTypeStyle>
 <sld:Rule>
 <sld:Name>default rule</sld:Name>
 <sld:MaxScaleDenominator>10000.0</sld:MaxScaleDenominator>
 <sld:PolygonSymbolizer>
 <sld:Fill>
 <sld:GraphicFill>
 <sld:Graphic>
 <sld:Mark>
 <sld:WellKnownName>shape://times</sld:WellKnownName>
 <sld:Fill/>
 <sld:Stroke>
 <sld:CssParameter name="stroke">#ADD8E6</sld:CssParameter>
 <sld:CssParameter name="stroke-width">1.0</sld:CssParameter>
 </sld:Stroke>
 </sld:Mark>
 <sld:Size>
 <ogc:Literal>8.0</ogc:Literal>
 </sld:Size>
 </sld:Graphic>
 </sld:GraphicFill>
 <!--
 <sld:CssParameter name="fill">#7CE3F8</sld:CssParameter>
 <sld:CssParameter name="fill-opacity">0.5</sld:CssParameter>
 -->
 </sld:Fill>
 </sld:PolygonSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
 </sld:StyledLayerDescriptor>

	Comment out the following line in order to see the polygons at lower zoom levels too:

<!-- sld:MaxScaleDenominator>10000.0</sld:MaxScaleDenominator -->

	Click Submit to add the new SLD.

	To see how the styles work, make sure the default style of the Wetlands_regulatory_area feature type is set to wetlands.

[image: ../../../../_images/sld_create6.png]
Changing the default style of the Wetlands_regulatory_area feature type to wetlands

	Use the Map Preview [http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.web.demo.MapPreviewPage] to preview the new style.

[image: ../../../../_images/sld_create7.png]
Previewing the bplandmarks layer with the hatches applied

	On the previous example we used times as hatches mark. GeoServer makes available different kinds of hatches marks:

[image: ../../../../_images/sld_create7a.png]
Different types of hatches marks.

Dashes

	Lets now familiarize a bit with Dashes. We are going to see how it’s possible to draw several kind of dashes to represent different types of trails or roads.

	From the Welcome Page [http://localhost:8083/geoserver] navigate to Styles.

Note

You have to be logged in as Administrator in order to activate this function.

	Select “trails” from the list

[image: ../../../../_images/sld_create8.png]
Dashes SLD

	In the SLD Editor you will see the following XML:

<?xml version="1.0" encoding="UTF-8"?>
 <sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld" xmlns:sld="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml" version="1.0.0">
 <sld:UserLayer>
 <sld:LayerFeatureConstraints>
 <sld:FeatureTypeConstraint/>
 </sld:LayerFeatureConstraints>
 <sld:UserStyle>
 <sld:Name>Trails</sld:Name>
 <sld:Title/>
 <sld:FeatureTypeStyle>
 <sld:Rule>
 <sld:MaxScaleDenominator>75000</sld:MaxScaleDenominator>
 <sld:LineSymbolizer>
 <sld:Stroke>
 <sld:CssParameter name="stroke">#6B4900</sld:CssParameter>
 <sld:CssParameter name="stroke-width">0.1</sld:CssParameter>
 <sld:CssParameter name="stroke-dasharray">2.0 </sld:CssParameter>
 </sld:Stroke>
 </sld:LineSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
 </sld:StyledLayerDescriptor>

[image: ../../../../_images/sld_create8a.png]
Simple dash-array

Note

The above SLD defines a <LineSymbolizer> with a <Stroke> using the CSS property stroke-dasharray to represent the trails like a simle gray dash.

Note

Encodes a dash pattern as a series of numbers separated by spaces. Odd-indexed numbers (first, third, etc) determine the length in pxiels to draw the line, and even-indexed numbers (second, fourth, etc) determine the length in pixels to blank out the line. Default is an unbroken line. Starting from version 2.1 dash arrays can be combined with graphic strokes to generate complex line styles with alternating symbols or a mix of lines and symbols.

	The Style above is the default one for the layer geosolutions:Trails. Lets have a look at a bit more complex example. From the Welcome Page [http://localhost:8083/geoserver] navigate to Styles and select “trails2” from the list

[image: ../../../../_images/sld_create8b.png]
Trails2 Style

	In the SLD Editor you will see the following XML:

<?xml version="1.0" encoding="UTF-8"?>
 <sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld" xmlns:sld="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml" version="1.0.0">
 <sld:UserLayer>
 <sld:LayerFeatureConstraints>
 <sld:FeatureTypeConstraint/>
 </sld:LayerFeatureConstraints>
 <sld:UserStyle>
 <sld:Name>Trails</sld:Name>
 <sld:Title/>
 <sld:FeatureTypeStyle>
 <sld:Rule>
 <sld:MaxScaleDenominator>75000</sld:MaxScaleDenominator>
 <sld:LineSymbolizer>
 <sld:Stroke>
 <sld:GraphicStroke>
 <sld:Graphic>
 <sld:Mark>
 <sld:WellKnownName>circle</sld:WellKnownName>
 <sld:Fill>
 <sld:CssParameter name="fill">#AA0000</sld:CssParameter>
 </sld:Fill>
 </sld:Mark>
 <sld:Size>
 <ogc:Literal>6</ogc:Literal>
 </sld:Size>
 </sld:Graphic>
 </sld:GraphicStroke>
 <sld:CssParameter name="stroke-dasharray">6 18</sld:CssParameter>
 </sld:Stroke>
 </sld:LineSymbolizer>
 <sld:LineSymbolizer>
 <sld:Stroke>
 <sld:CssParameter name="stroke">#AA0000</sld:CssParameter>
 <sld:CssParameter name="stroke-dasharray">10 14</sld:CssParameter>
 <sld:CssParameter name="stroke-dashoffset">14</sld:CssParameter>
 </sld:Stroke>
 </sld:LineSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
 </sld:StyledLayerDescriptor>

Note

We may notice two interesting things in this style, two <LineSymbolizer> the first one defining a circle Mark with a simple dasharray and the second one a simple stroke defining also a dashoffset. The latter specifies the distance in pixels into the dasharray pattern at which to start drawing. Default is 0.

	Open the geosolutions:Trails layers and add trails2 as an additional style, then go to the Layer Preview to see it in action

[image: ../../../../_images/sld_create8e.png]

Warning

You have to zoom in from the layer preview in order to see the lines due to the MaxScaleDenominator

Roads and labelling roads

	From the Welcome Page [http://localhost:8083/geoserver] navigate to Styles ‣ mainrd in order to edit the mainrd SLD.

Note

You have to be logged in as Administrator in order to activate this function.

	In the SLD Editor find the sld:TextSymbolizer associated to the ogc:PropertyName LABEL_NAME

[image: ../../../../_images/sld_create9.png]
Road style

Note

The style defines a and an <Halo> in order to render the value of the property LABEL_NAME for that layer. The interesting part is at the bottom where several <VendorOption> are specified. Those options are GeoServer specific and allows us to have better and nicer result by tweaking the label renderer behaviour.

	Option

	Description

	Type

	followLine

	The followLine option forces a label to follow the curve of the line.

<VendorOption name="followLine">true</VendorOption>

To use this option place the following in your <TextSymbolizer>. It is required to use <LinePlacement> along with this option to ensure that all labels are correctly following the lines:

<LabelPlacement>
 <LinePlacement/>
</LabelPlacement>

	boolean

	repeat

	The repeat option determines how often GeoServer labels a line. Normally GeoServer would label each line only once, regardless of their length. Specify a positive value to make it draw the label every repeat pixels.

<VendorOption name="repeat">100</VendorOption>

	number

	group

	Sometimes you will have a set of related features that you only want a single label for. The grouping option groups all features with the same label text, then finds a representative geometry for the group.

Roads data is an obvious example - you only want a single label for all of main street, not a label for every piece of main street.

[image: ../../../../_images/group_not.gif]

When the grouping option is off (default), grouping is not performed and each geometry is labelled (space permitting).

[image: ../../../../_images/group_yes.gif]

With the grouping option on, all the geometries with the same label are grouped together and the label position is determined from ALL the geometries.

	Point Set
first point inside the view rectangle is used.

	Line Set
lines are (a) networked together (b) clipped to the view rectangle (c) middle of the longest network path is used.

	Polygon Set
polygons are (a) clipped to the view rectangle (b) the centroid of the largest polygon is used.

<VendorOption name="group">yes</VendorOption>

Warning

Watch out - you could group together two sets of features by accident. For example, you could create a single group for Paris which contains features for Paris (France) and Paris (Texas).

	enum{yes/no}

	maxDisplacement

	The maxDisplacement option controls the displacement of the label along a line. Normally GeoServer would label a line at its center point only, provided the location is not busy with another label, and not label it at all otherwise. When set, the labeller will search for another location within maxDisplacement pixels from the pre-computed label point.

When used in conjunction with repeat, the value for maxDisplacement should always be lower than the value for repeat.

<VendorOption name="maxDisplacement">10</VendorOption>

	number

Another important thing to notice in this style is the road casing, that is, the fact each road segment is painted by two overlapping strokes of different color and size.

Placing the strokes in the two separate feature type styles is crucial:

	with the symbolizers in two separate FeatureTypeStyle element all roads are painted with the large stroke, and then again with the thin, lighter one.

	if instead the two symbolizers were placed in the same FeatureTypeStyle element the result would be different, and not pleasing to see, since the renderer would take the first road, paint with the large and thin strokes in
sequence, then move to the next one and repeat until the end

[image: ../../../../_images/nofts.png]
Road casing with a single FeatureTypeStyle element

Geometry transformations

This section show how to GeoServer provides a number of filter functions that can actually manipulate geometries by transforming them into something different: this is what we call geometry transformations in SLD.

Extracting vertices

	Using skills learned in the adding styles section, create a new style named mainrd_transform using the following SLD:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
 xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd">
 <NamedLayer>
 <Name>Roads and vertices</Name>
 <UserStyle>
 <FeatureTypeStyle>
 <Rule>
 <LineSymbolizer>
 <Stroke />
 </LineSymbolizer>
 <PointSymbolizer>
 <Geometry>
 <ogc:Function name="vertices">
 <ogc:PropertyName>the_geom</ogc:PropertyName>
 </ogc:Function>
 </Geometry>
 <Graphic>
 <Mark>
 <WellKnownName>circle</WellKnownName>
 <Fill>
 <CssParameter name="fill">#FF0000</CssParameter>
 </Fill>
 </Mark>
 <Size>6</Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

Note

The vertices function returns a multi-point made with all the vertices of the original geometry

	Using skills learned in the adding styles section, modify the styling of the Mainrd layer and add mainrd_transform as an alternate style (hint, select the mainrd_transform style in the first list below “available styles” and then use the right arrow to move it in the “selected styles”):

[image: ../../../../_images/tx_secondary_style.png]
Adding the mainrd_transform style as a secondary style for Mainrd

	Use the Preview link to display the Mainrd layer, then open the options box and choose the alternate style from the drop down:

[image: ../../../../_images/sld_transform2.png]
Extracting and showing the vertices out of a geometry

Line buffer

	Using skills learned in the geoserver.addstyle section, create a new style mainrd_buffer using the following SLD

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd">
 <NamedLayer>
 <Name>Roads and vertices</Name>
 <UserStyle>
 <FeatureTypeStyle>
 <Rule>
 <PolygonSymbolizer>
 <Geometry>
 <ogc:Function name="buffer">
 <ogc:PropertyName>the_geom</ogc:PropertyName>
 <ogc:Literal>200</ogc:Literal>
 </ogc:Function>
 </Geometry>
 <Fill>
 <CssParameter name="fill">#7F7F7F</CssParameter>
 <CssParameter name="fill-opacity">0.3</CssParameter>
 </Fill>
 </PolygonSymbolizer>
 <LineSymbolizer>
 <Stroke />
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

Note

The buffer function builds a polygon of all the points that are withing the specified distance from the original geometry.

	As done previously, modify the styling of the Mainrd layer and add mainrd_buffer as an alternate style:

[image: ../../../../_images/tx_secondary_style_buffer.png]
Adding the mainrd_buffer style as a secondary style for Mainrd

	Use the Map Preview [http://localhost:8083/geoserver/mapPreview.do] to preview the new style.

[image: ../../../../_images/sld_transform1.png]
Extracting start and end point of a line

Styling point data

Point data in SLD can be depicted with PointSymbolizer and labelled with TextSymbolizer.
This section describe an existing, realistic style, available in the data directory that depicts the point landmarks layer (bptlandmarks) with icons and labels.

The dataset

The bptlandmarks layer (Boulder point landmarks) contains the location of significant point entities such as malls, schools, airports and the like. The attribute structure is reported in the GeoServer page for such layer [http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.web.data.resource.ResourceConfigurationPage&name=bptlandmarks&wsName=geosolutions]:

[image: ../../../../_images/pt_attribute_table.png]
Point landmarks attribute structure

The style will use the MTFCC code to categorize the various points in the different types (e.g., schools have MTFCC = K2543, and eventually use FULLNAME for the label.
This results in the following map [http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:bptlandmarks&styles=line,&bbox=-105.688,39.914,-105.06,40.261&width=597&height=330&srs=EPSG:4269&format=application/openlayers]:

[image: ../../../../_images/pt_landmark_map.png]
Point landmarks in Boulder

The complete style we’ll be referring to is named point_landmark, you can have a look at the full style in the GeoServer style editor [http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.wms.web.data.StyleEditPage&name=point_landmark]:

[image: ../../../../_images/pt_landmark_style.png]
Point landmarks style

Point symbolizers

A point symbolizer depicts a symbol by means of a Mark or a External Graphic.
The former is a built-in vector symbol that can be stroked and filled at the styler will, but only a handful of such symbols are available, whilst the latter can be a user provided image or SVG graphic.

The point landmark styles use the Open Street Map icons for most of the locations. The images have been added inside the data directory, inside styles/im, since this allows to refer them by relative path:

[image: ../../../../_images/icons.png]
Point landmarks style

Given the above symbols a point symbolizer looks as follows:

<sld:PointSymbolizer>
 <sld:Graphic>
 <sld:ExternalGraphic>
 <sld:OnlineResource xlink:type="simple" xlink:href="./img/landmarks/school.png" />
 <sld:Format>image/png</sld:Format>
 </sld:ExternalGraphic>
 </sld:Graphic>
 <VendorOption name="labelObstacle">true</VendorOption>
 </sld:PointSymbolizer>

The icon is depicted on the screen as-is, at its natural resolutions.
The labelObstacle vendor parameter, specific to GeoServer, makes sure the point is icon is treated as a label obstacle [http://docs.geoserver.org/2.2.2/user/styling/sld-extensions/label-obstacles.html], that is, makes sure no label will ever be depicted over the point.

Text symbolizers for points

The text symbolizer associates a label with a point using an attribute value as the label source.
The following symbolizer is used to label schools:

<sld:TextSymbolizer>
 <sld:Label>
 <ogc:PropertyName>FULLNAME</ogc:PropertyName>
 </sld:Label>
 <sld:Font>
 <sld:CssParameter name="font-family">Arial</sld:CssParameter>
 <sld:CssParameter name="font-size">12.0</sld:CssParameter>
 <sld:CssParameter name="font-style">normal</sld:CssParameter>
 <sld:CssParameter name="font-weight">normal</sld:CssParameter>
 </sld:Font>
 <sld:LabelPlacement>
 <sld:PointPlacement>
 <sld:AnchorPoint>
 <sld:AnchorPointX>
 <ogc:Literal>0.5</ogc:Literal>
 </sld:AnchorPointX>
 <sld:AnchorPointY>
 <ogc:Literal>1.0</ogc:Literal>
 </sld:AnchorPointY>
 </sld:AnchorPoint>
 <sld:Displacement>
 <sld:DisplacementX>
 <ogc:Literal>0.0</ogc:Literal>
 </sld:DisplacementX>
 <sld:DisplacementY>
 <ogc:Literal>-10.0</ogc:Literal>
 </sld:DisplacementY>
 </sld:Displacement>
 <sld:Rotation>
 <ogc:Literal>0.0</ogc:Literal>
 </sld:Rotation>
 </sld:PointPlacement>
 </sld:LabelPlacement>
 <sld:Halo>
 <sld:Radius>
 <ogc:Literal>1.5</ogc:Literal>
 </sld:Radius>
 <sld:Fill>
 <sld:CssParameter name="fill">#FFFFFF</sld:CssParameter>
 </sld:Fill>
 </sld:Halo>
 <sld:Fill>
 <sld:CssParameter name="fill">#000033</sld:CssParameter>
 </sld:Fill>
 <sld:Priority>200000</sld:Priority>
 <sld:VendorOption name="autoWrap">100</sld:VendorOption>
 </sld:TextSymbolizer>

Highlights about the above style:

	Uses FULLNAME as the label source

	Uses a Arial 12pt font

	Places the label below the point, and offsets it by 10 pixel to the south

	Applies a white halo to make it stand out of the background map

	Sets its priority to 200000 (high, important) to make sure the label is depicted in preference to others

	Uses the autoWrap option to make it wrap on the next line if it’s larger than 100 pixels
(the full list of labelling vendor options is available in the GeoServer user guide [http://docs.geoserver.org/latest/en/user/styling/sld/reference/labeling.html]).

Using Rules to assign a different styling to each point

A Rule is a SLD construct allowing the style editor to control scale dependencies and filter data so that only certain data is depicted using the symbolizers contained in the rule.

The rule for the school points looks as follows:

<sld:Rule>
 <sld:Name>school</sld:Name>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>MTFCC</ogc:PropertyName>
 <ogc:Literal>K2543</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <sld:MaxScaleDenominator>100000</sld:MaxScaleDenominator>
 <sld:PointSymbolizer>
 <!-- same as above -->
 </sld:PointSymbolizer>
 <sld:TextSymbolizer>
 <!-- same as above -->
 </sld:TextSymbolizer>
 </sld:Rule>

Highlights about the above rule:

	makes sure the symbolizers are applied only to the features whose MTFCC = K2543

	shows the symbols only when the scale denominator is below 100000 (e.g., shows them at 1:10000, but not at 1:2000000).

Using dynamic symbolizers to reduce the style size

The overall point_landmark style has 8 different rules using different symbols for each type and amounts to almost 550 lines of XML. The same style could be written in a much more compact way if we could store the symbol name in some attribute and expand it in the external graphic URL.

Standard SLD 1.0 does not allow for that, but GeoServer supports extensions to it known as dynamic symbolizers that allow for generic CQL expressions to be embedded in the URL.
The data directory already contains a secondary layer, bptlandmarks_2876, which is using a different projection and has a IMAGE attribute containing the file names.

The style can then be reduced to a single rule using the following point symbolizer:

<sld:PointSymbolizer>
 <sld:Graphic>
 <sld:ExternalGraphic>
 <sld:OnlineResource xlink:type="simple" xlink:href="./img/landmarks/${IMAGE}" />
 <sld:Format>image/png</sld:Format>
 </sld:ExternalGraphic>
 </sld:Graphic>
 <VendorOption name="labelObstacle">true</VendorOption>
</sld:PointSymbolizer>

Here is the overall style:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor
xmlns="http://www.opengis.net/sld"
xmlns:sld="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.org/1999/xlink" version="1.0.0">

 <sld:UserLayer>
 <sld:LayerFeatureConstraints>
 <sld:FeatureTypeConstraint/>
 </sld:LayerFeatureConstraints>
 <sld:UserStyle>
 <sld:Name>tl 2010 08013 pointlm</sld:Name>
 <sld:Title/>
 <sld:FeatureTypeStyle>
 <sld:Rule>
 <sld:Name>landmarks</sld:Name>
 <ogc:Filter>
 <ogc:Not>
 <ogc:PropertyIsNull>
 <ogc:PropertyName>IMAGE</ogc:PropertyName>
 </ogc:PropertyIsNull>
 </ogc:Not>
 </ogc:Filter>
 <sld:MaxScaleDenominator>100000</sld:MaxScaleDenominator>
 <sld:PointSymbolizer>
 <sld:Graphic>
 <sld:ExternalGraphic>
 <sld:OnlineResource xlink:type="simple" xlink:href="./img/landmarks/${IMAGE}" />
 <sld:Format>image/png</sld:Format>
 </sld:ExternalGraphic>
 </sld:Graphic>
 <VendorOption name="labelObstacle">true</VendorOption>
 </sld:PointSymbolizer>
 <sld:TextSymbolizer>
 <sld:Label>
 <ogc:PropertyName>FULLNAME</ogc:PropertyName>
 </sld:Label>
 <sld:Font>
 <sld:CssParameter name="font-family">Arial</sld:CssParameter>
 <sld:CssParameter name="font-size">12.0</sld:CssParameter>
 <sld:CssParameter name="font-style">normal</sld:CssParameter>
 <sld:CssParameter name="font-weight">normal</sld:CssParameter>
 </sld:Font>
 <sld:LabelPlacement>
 <sld:PointPlacement>
 <sld:AnchorPoint>
 <sld:AnchorPointX>
 <ogc:Literal>0.5</ogc:Literal>
 </sld:AnchorPointX>
 <sld:AnchorPointY>
 <ogc:Literal>1.0</ogc:Literal>
 </sld:AnchorPointY>
 </sld:AnchorPoint>
 <sld:Displacement>
 <sld:DisplacementX>
 <ogc:Literal>0.0</ogc:Literal>
 </sld:DisplacementX>
 <sld:DisplacementY>
 <ogc:Literal>-14.0</ogc:Literal>
 </sld:DisplacementY>
 </sld:Displacement>
 <sld:Rotation>
 <ogc:Literal>0.0</ogc:Literal>
 </sld:Rotation>
 </sld:PointPlacement>
 </sld:LabelPlacement>
 <sld:Halo>
 <sld:Radius>
 <ogc:Literal>1.5</ogc:Literal>
 </sld:Radius>
 <sld:Fill>
 <sld:CssParameter name="fill">#FFFFFF</sld:CssParameter>
 </sld:Fill>
 </sld:Halo>
 <sld:Fill>
 <sld:CssParameter name="fill">#000033</sld:CssParameter>
 </sld:Fill>
 <sld:Priority>200000</sld:Priority>
 <sld:VendorOption name="autoWrap">100</sld:VendorOption>
 </sld:TextSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
</sld:StyledLayerDescriptor>

And here is a map [http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:bptlandmarks&styles=line,&bbox=-105.688,39.914,-105.06,40.261&width=597&height=330&srs=EPSG:4269&format=application/openlayers] using this alternate style:

[image: ../../../../_images/pt_landmark_ds.png]
Point landmarks using dynamic symbolizers

Styling in real world units

By default SLD interprets all sizes expressed in the style sheet (e.g., line widths, symbol sizes) as being pixels on the map.

It is however possible to make the style sheet use real world units, e.g., meters or feet, by specifying the desired unit of measure as an attribute of the symbolizer. The supported unit of measure are:

	meter

	foot

	pixel

The following line style uses a line width of 40 meters:

<LineSymbolizer uom="http://www.opengeospatial.org/se/units/metre">
 <Stroke>
 <CssParameter name="stroke">#000033</CssParameter>
 <CssParameter name="stroke-width">40</CssParameter>
 </Stroke>
</LineSymbolizer>

Setting up a uom based style in GeoServer

	Create a new style named line40m using the following SLD:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
 xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"
 xmlns="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <NamedLayer>
 <Name>line40m</Name>
 <UserStyle>
 <Title>40 meter wide line</Title>
 <FeatureTypeStyle>
 <Rule>
 <LineSymbolizer uom="http://www.opengeospatial.org/se/units/metre">
 <Stroke>
 <CssParameter name="stroke">#000033</CssParameter>
 <CssParameter name="stroke-width">40</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

	Associate the line40m to MainRd as a secondary style:

[image: ../../../../_images/secondary-line-uom.png]
Adding the line40m style as a secondary style for Mainrd

	Preview the MainRd layer and switch to the line40m style:

[image: ../../../../_images/uom-zoom1.png]
A uom based line, zoomed out

	Zoom in and out and observe how the width of the line on screen varies by changing the zoom level

[image: ../../../../_images/uom-zoom2.png]
Zooming in on the same line

Install GDAL for Development

In order to install GDAL (1.10.0+) in developing mode, in a virtual environment, on Ubuntu 12.04 the following steps may be required. If you have already tried any of the approaches suggested elsewhere, it is recommended that, unless you know that this may affect other software, you do a full purge of any existing GDAL-related packages.

	Install GDAL in your host environment

$ pip install psycopg2 owslib --upgrade
$ sudo add-apt-repository ppa:ubuntugis/ubuntugis-unstable
$ sudo apt-get update
$ sudo apt-get install -y libgdal-dev libevent-dev python-dev build-essential
$ sudo apt-get install -y libgdal1h libgdal-dev python-gdal

	Test that GDAL is installed in your host environment

$ deactivate geonode
$ python -c "from osgeo import gdal; print gdal.__version__"

Warning

Take note of the GDAL Version

	Assuming that your geonode directory is installed directly off of your home directory, download and configure GDAL

$ workon geonode
$ cd /home/geonode/dev
$ export CPLUS_INCLUDE_PATH=/usr/include/gdal
$ export C_INCLUDE_PATH=/usr/include/gdal

$ pip install pygdal==1.11.2.1 # select the right version

	Test that GDAL is installed in your virtual environment

$ workon geonode
$ python -c "from osgeo import gdal; print gdal.__version__"

Install GeoNode for Development

In order to install Geonode 2.0 in developing mode on Ubuntu 12.04 the following steps are required:

Note

For Windows: (install_win_devmode)

Summary of the installation steps

	Retrieve latest apt-get list

	Install build tools and libraries

	Install dependencies (Python, Postgresql and Java) and supporting tools

	Add Node.js PPA and other tools required for static development

	Set up a virtual environment (virtualenv)

	Clone geonode from GitHub and install it in the virtual environment

	Run paver to get install GeoServer and start the development servers

	Compile and Start the server

	Start Geonode instance

	To stop the server

	Next create a Django superuser for your GeoNode

Note

The following steps have to be executed in your terminal. The steps have to be done as a root user, therefore don´t forget to type sudo in front!

Warning

Don’t forget to stop the GeoNode Production services if enabled

service apache2 stop
service tomcat7 stop

	If possible log as root user, open a terminal and cd /home/geonode/dev

	Retrieve latest apt-get list

$ sudo apt-get update

	Install build tools and libraries

$ sudo apt-get install -y build-essential libxml2-dev libxslt1-dev libpq-dev zlib1g-dev

	Install dependencies

Python native dependencies

$ sudo apt-get install -y python-dev python-imaging python-lxml python-pyproj python-shapely python-nose python-httplib2 python-pip python-software-properties

Install Python Virtual Environment

$ sudo pip install virtualenvwrapper

Postgresql

Note

The following steps must be executed only if you don’t have PostgreSQL and PostGIS already installed on your system (see Install GeoNode Application)

$ sudo apt-get install postgresql-9.3-postgis-2.1 postgresql-9.3-postgis-scripts

Change postgres UNIX password

$ sudo passwd -u postgres # change password expiry infromation

$ sudo passwd postgres # change unix password for postgres

Create geonode role and database

$ su postgres
$ createdb geonode_dev
$ createdb geonode_dev-imports
$ psql
 postgres=#
 postgres=# \password postgres
 postgres=# CREATE USER geonode_dev WITH PASSWORD 'geonode_dev'; # should be same as password in setting.py
 postgres=# GRANT ALL PRIVILEGES ON DATABASE "geonode_dev" to geonode_dev;
 postgres=# GRANT ALL PRIVILEGES ON DATABASE "geonode_dev-imports" to geonode_dev;
 postgres=# \q

$ psql -d geonode_dev-imports -c 'CREATE EXTENSION postgis;'
$ psql -d geonode_dev-imports -c 'GRANT ALL ON geometry_columns TO PUBLIC;'
$ psql -d geonode_dev-imports -c 'GRANT ALL ON spatial_ref_sys TO PUBLIC;'

$ exit

Edit PostgreSQL configuration file

sudo gedit /etc/postgresql/9.3/main/pg_hba.conf

Scroll to the bottom of the file and edit this line

"local" is for Unix domain socket connections only
local all all peer

As follows

"local" is for Unix domain socket connections only
local all all trust

Restart PostgreSQL to make the changes effective

sudo service postgresql restart

Java dependencies

Note

The following steps must be executed only if you don’t have a Java JDK or JRE already installed on your system (see Install GeoNode Application)

$ sudo apt-get install -y openjdk-6-jdk --no-install-recommends

supporting tools

$ sudo apt-get install -y ant maven2 git gettext

	Set up a virtual environment

Here is where Geonode will later be running.

Add the virtualenvwrapper to your new environment.

$ cd /home/geonode/dev

$ export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python
$ export WORKON_HOME=/home/geonode/dev/.venvs
$ source /usr/local/bin/virtualenvwrapper.sh
$ export PIP_DOWNLOAD_CACHE=$HOME/.pip-downloads

On Ubuntu, you can add the above settings to your .bashrc file and reload the settings running

$ echo export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python >> ~/.bashrc
$ echo export WORKON_HOME=/home/geonode/dev/.venvs >> ~/.bashrc
$ echo source /usr/local/bin/virtualenvwrapper.sh >> ~/.bashrc
$ echo export PIP_DOWNLOAD_CACHE=$HOME/.pip-downloads >> ~/.bashrc

$ source ~/.bashrc

Set up the local virtual environment for Geonode

$ mkvirtualenv geonode
$ workon geonode # or $ source /home/geonode/dev/.venvs/geonode/bin/activate

This creates a new directory where you want your project to be and creates a new virtualenvironment

	Get the code

To download the latest geonode version from GitHub, the command clone is used

Note

If you are following the GeoNode training, skip the following command.
You can find the cloned repository in /home/geonode/dev

$ git clone https://github.com/GeoNode/geonode.git

	Add Node.js PPA and other tools required for static development

This is required for static development

Note

If you are following GeoNode’s training, nodejs is already installed in the
Virtual Machine skip the first three command and jump to cd geonode/geonode/static

$ sudo add-apt-repository -y ppa:chris-lea/node.js
$ sudo apt-get update
$ sudo apt-get install -y nodejs
$ cd geonode/geonode/static
$ npm install --save-dev

If the last command does not work, you can run it manually like this:

$ npm install bower --save-dev
$ npm install grunt-cli --save-dev
$ npm install grunt-contrib-jshint --save-dev
$ npm install grunt-contrib-less --save-dev
$ npm install grunt-contrib-concat --save-dev
$ npm install grunt-contrib-copy --save-dev
$ npm install grunt-text-replace --save-dev
$ npm install grunt-contrib-uglify --save-dev
$ npm install grunt-contrib-cssmin --save-dev
$ npm install grunt-contrib-watch --save-dev

Every time you want to update the static files after making changes to the sources, go to geonode/static and run ‘grunt production’.

	Install GeoNode in the new active local virtualenv

$ cd /home/geonode/dev
$ pip install pip --upgrade
$ pip install -e geonode --use-mirrors

$ cd geonode

If the install fails because of an error related to pyproj not being verified (happens on pip 1.5), use the following:

$ pip install -e geonode --use-mirrors --allow-external pyproj --allow-unverified pyproj

	Create local_settings.py

Add the local_settings.py to your GeoNode installation

$ cd /home/geonode/dev/geonode
$ cp geonode/local_settings.py.sample geonode/local_settings.py
$ gedit geonode/local_settings.py

Add the following lines to the local_settings.py

...

SITEURL = "http://localhost:8000/"

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'geonode_dev',
 'USER': 'geonode_dev',
 'PASSWORD': 'geonode_dev',
 },
 # vector datastore for uploads
 'datastore' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 #'ENGINE': '', # Empty ENGINE name disables
 'NAME': 'geonode_dev-imports',
 'USER' : 'geonode_dev',
 'PASSWORD' : 'geonode_dev',
 'HOST' : 'localhost',
 'PORT' : '5432',
 }
}

OGC (WMS/WFS/WCS) Server Settings
OGC_SERVER = {
 'default' : {
 'BACKEND' : 'geonode.geoserver',
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'PUBLIC_LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 'MAPFISH_PRINT_ENABLED' : True,
 'PRINT_NG_ENABLED' : True,
 'GEONODE_SECURITY_ENABLED' : True,
 'GEOGIG_ENABLED' : False,
 'WMST_ENABLED' : False,
 'BACKEND_WRITE_ENABLED': True,
 'WPS_ENABLED' : False,
 'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.path.abspath(os.path.join(PROJECT_ROOT, os.pardir)),
 # Set to name of database in DATABASES dictionary to enable
 'DATASTORE': 'datastore',
 }
}

CATALOGUE = {
 'default': {
 # The underlying CSW implementation
 # default is pycsw in local mode (tied directly to GeoNode Django DB)
 'ENGINE': 'geonode.catalogue.backends.pycsw_local',
 # pycsw in non-local mode
 # 'ENGINE': 'geonode.catalogue.backends.pycsw_http',
 # GeoNetwork opensource
 # 'ENGINE': 'geonode.catalogue.backends.geonetwork',
 # deegree and others
 # 'ENGINE': 'geonode.catalogue.backends.generic',

 # The FULLY QUALIFIED base url to the CSW instance for this GeoNode
 'URL': '%scatalogue/csw' % SITEURL,
 # 'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
 # 'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',

 # login credentials (for GeoNetwork)
 'USER': 'admin',
 'PASSWORD': 'admin',
 }
}

...

	Compile and Start the server for the first time

Align the database structure

$ cd /home/geonode/dev/geonode
$ python manage.py migrate

Warning

If the start fails because of an import error related to osgeo, then please consult the Install GDAL for Development.

The last step is to compile GeoServer and setup

$ paver setup

	Now we can start our geonode instance

Warning

Don’t forget to stop the GeoNode Production services if enabled

service apache2 stop
service tomcat7 stop

$ paver start

Visit the geonode site by typing http://localhost:8000 into your browser window.

If you are using a different IP address (e.g 1.1.1.1), then start paver using the command below.

$ paver start -b 1.1.1.1:8000

Warning

If the start fails because of an import error related to osgeo, then please consult the Install GDAL for Development.

	To stop the server

Press Ctrl-C on your keyboard to stop the server

Then type:

$ paver stop # to stop all django, geoserver services

	Next create a Django superuser for your GeoNode

Create a superuser so you can log on to your local geonode installation at http://localhost:8000

$ python manage.py createsuperuser

Start working on Geonode the next day after install

With every restart of your machine, you have to restart geonode as well. That means, you will not be able to open http://localhost:8000 directly after starting your machine new. In order to be able to use geonode now, you have to activate your virtualenv and to start the development servers.

Note

username is the name of your machine and personal folder!

	Activate virtualenv

To activate your virtualenv you just need to type

$ workon geonode

or

$ source /home/geonode/dev/.venvs/geonode/bin/activate

Note

Be careful with the path, it might not be the same for you!

	Start the server

Warning

Don’t forget to stop the GeoNode Production services if enabled

service apache2 stop
service tomcat7 stop

$ cd geonode
$ paver start_geoserver
$ paver start_django

Now you are able to access http://localhost:8000 again.

Note

Remember that you have to do these steps each time you restart your machine!!

Hint

Now you’ve followed these installation instructions, geonode is running in development mode. This also means that you are using all the default settings of geonode. If you want to change them, e.g use Tomcat instead of Jetty, or Postgresql instead of sqlite3, you may follow the steps from the section Configure Manually in GeoNode (v2.8) installation on Ubuntu 16.04.

Install GeoNode for Development (Windows)

In order to install Geonode 2.0 in developing mode on Windows 2008r2 the following steps are required:

	Install dependencies (Python and Java) and supporting tools

	Set up a virtual environment (virtualenv)

	Clone geonode from GitHub and install it in the virtual environment

	Run paver to get install GeoServer and start the development servers

Note

The following steps have to be executed in your terminal where there is a “>”. The path will differ depending on installation.

	Install Dependencies. All should be found in binary. Only 32 bit versions have been tested.

	Latest Python 2.7.x Windows build https://www.python.org/download/releases/2.7.7/

	Setuptools http://www.lfd.uci.edu/~gohlke/pythonlibs/#setuptools

	Install core components of GDAL http://www.gisinternals.com/sdk/PackageList.aspx?file=release-1600-gdal-1-11-mapserver-6-4.zip gdal-111-1600-core.msi

> easy_install virtualenv

	Install Java for GeoServer. If you already have java installed 32 or 64 bit versions work.

	http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

	Ant and Maven are optional for custom builds of GeoServer

	Install Supporting tools

	Git https://git-scm.com/downloads

	gettext (not tested yet)

	Install node and tools for static development (not tested yet)

	https://nodejs.org/download/

	In the command prompt do the following: Will we need to be admins?

> npm install -y -g bower

> npm install -y -g grunt-cli

	
	Get the GeoNode Code using Git.

	Open the Git bash or use your command prompt depending on how git was installed
This command will download the latest version of GeoNode. For the most recent stable version type number 2.

git clone https://github.com/GeoNode/geonode.git

git clone -b 2.0.x https://github.com/GeoNode/geonode.git

	
	Install all Dependencies in a new virtual environment

	In the command prompt, navigate to where you want your python to be installed.

virtualenv geonode

Note

Command not found? Try adding your python scripts folder to the path environment variable. In most cases it is C:Python27Scripts. You will need to start a fresh command prompt to register the variables. See next common error message to add the C:Python27 path

Note

Errors about no package found and running python from the command prompt gives command not found, then add C:Python27 to your path environment variable.

Initialize the virtual environment by navigating to your-virtualenv-directory/Scripts/activate

After you activate the virtual environment, run the following:

> pip install paver

Navigate to your geonode code install and run

> paver win_install_deps

Back to the parent directory

> cd ..

pip install -e geonode -–use-mirrors

cd geonode

	Set up the GeoServer with command

> paver setup

	Now we can start our geonode instance

> paver start -–java_path="C:\path\to\java\java.exe"

Visit the geonode site by typing http://localhost:8000 into your browser window.

Warning

If the start fails because of an import error related to osgeo, then ensure that the GDAL_LIBRARY_PATH is set in the Windows path.

Warning

If you get GEOSversion function not found, then need to need to change line 71 in geonodeLibsite-packagesShapely-1.3.0-py2.7-win32.eggshapelygeos.py from _lgeos = CDLL(“geos.dll”) to _lgeos = CDLL(“geos_c.dll”). See issue https://github.com/Toblerity/Shapely/issues/136

	To stop the server

Press Ctrl-C on your keyboard to stop the server

> paver stop # to stop all django, geoserver services

	Next create a Django superuser for your GeoNode

Create a superuser so you can log on to your local geonode installation at http://localhost:8000

> python manage.py createsuperuser

Create and Prepare the nyc Example DataBase

This small section contains a step-by-step guide for the creation and population of an database containing few geospatial tables of New York City:

	giant_polygon

	poi

	poly_landmarks

	tiger_roads

	Log as postgres system user

$ su - postgres

	Create the role bob with password postgres

$ psql -c "CREATE ROLE bob LOGIN ENCRYPTED PASSWORD 'md565170a859842ceb2930dc2fa1454af9d' CREATEDB VALID UNTIL 'infinity';"

	Create the database nyc with the geospatial extensions

$ createdb nyc
$ psql -d nyc -c 'CREATE EXTENSION postgis;'
$ psql -d nyc -c 'GRANT ALL ON geometry_columns TO PUBLIC;'
$ psql -d nyc -c 'GRANT ALL ON spatial_ref_sys TO PUBLIC;'

	Restore the tables into the database from the dump

$ psql -d nyc < /tmp/nyc.dump

	Test that everything is OK by connecting to the database and listing the tables

$ psql nyc
\dt

Setup Using Ansible

Using Ansible [http://www.ansible.com/] we can automate the installation and
configuration of GeoNode on local or remote machines. If you never used Ansible
before take a look at the Running Ansible scripts section of the documentation
or Ansible official documentation [https://docs.ansible.com/ansible/index.html].

GeoNode setup with Ansible

The Virtual Machines we provided for the training come with Ansible preinstalled.
In the geo user home folder (/home/geo/) you will find a simple Ansible playbook
we wrote for demonstration along with some resource files used by the playbook itself.

To start the installation with Ansible open a terminal and navigate to the ansible
folder inside geo’s home folder:

cd /home/geo/ansible

Then run the playbook using the ansible-playbook command:

ansible-playbook playbook.yml

Ansible will run through the instructions in the playbook and setup GeoNode on your
local machine.

Ansible will print information about each step executed. The whole setup is going
to take a few minutes.

At the end of the execution of the playbook all you need to do is set GeoNode
administrator’s password:

cd /home/geonode/geonode
python manage.py changepassword sysadmin

System Preparation & Prerequisites

VM configuration

Reccomended VM parameters

Listed below you will find the recommended parameters for the GeoNode Virtual Machine
for both development and production environments.

	
	Recommended
minimal config

	Prod
(recommended config)

	CPU

	4 CPU / core

	4-8 CPU / core

	RAM

	6 GB

	16 GB

	Hard disk

	30GB

	100GB - 1TB

For testing purposes:
- 1 CPU with 2 cores
- RAM: 4GB
- Disk space: 30GB

This configuration is not enough for a minimal production environment,
adding more CPUs or cores is required.

Download a layer filtered by attributes

In GeoNode it is possible to download parts of a layer using a Query Builder. The Query Builder provides a step by step graphical environment, where the user is able to select attributes existing in the layer (e.g. population of an area) and set numerical or text filters.

The filters can be chained together either by an AND or an OR operator. Moreover when building the Query statements, the user can retrieve all the available values for each attribute. This is particularly useful, when the user wants to filter data based on numbers, locations etc. which he/she is not familiarized.

[image: ../../../_images/layer_filtering.png]

Access the Layer Filtering:

	select ‘Layers’ from the main menu.

	choose the desired layer by clicking on its title.

	click the button ‘Download Layer’ (on the upper right part of the screen)

	choose “Data” tab and select the button: ‘Do you want to filter it?’

	use the filtering functionality to build the CQL Query.

	pick up one of the format you want to download the layer

 _images/sources_spatialfiles.png
2. Configure the data source

[E—
[rowse

_images/sources_target.png
3. Specify the target for the import
Workspace.

opengeo [+

Store.

posgis [+

_images/sources_sqlserver.png
2. Configure the data source

Connection type *
Default[+.
Host* Port*
localhost 4866
Database * Schema
Username * Password

» Connection pooling
» Advanced

_images/sqlserver_start.png
New data source
Choose the type of data source you wish to configure

Vector Data Sources

ofles and exposes I 2 3 data store

3 Mirosoft SQL Server - Mcrosoft SQU Server
3 Mcrosoft SQL Server (NDI) - Mcrosoft SQL Server (ND1)

3P0St6IS (D) - PoStGIS Database (NOT)
3 Properties - Allows access to Java Property fles contaiing Feature nformstion
@ Shapefie - ESRI(tm) Shapefies (*shp)

_images/sqlserver_conf.png
New Vector Data Source

Adda new vector data source

Mirosoft QL Server (DI)
Mirosoft SQL Sever (DY)
Basic Stare Info
Worlcpace *

tost v

Data Source Name *

=

@ Enstled

Connection Parameters

ndiReferenceName *
Jovesconplenvidctsciserver

_images/sqlviews_addsqllayer.png
New Layer
Add a new layer

s storms

Add tayer from [geosolut
You can create a new feature type by manually configuring the attribute names and types. Create new feature type.
On databases you can also create a new feature type by configuring a native SQL statemen]
Here is a list of resources contained in the store 'storms'. Click on the layer you wish to configure.

. Search]

ane
Publish again

_images/sqlviews_addlayer.png
» GeoServer

Layers

) Wmmm oy cossaner

e st v (R
- | O T
[y T s 5 =

Doy oo sonowe R . e
= == v ==
e T — o
- = e =
i SRR — — . .
Bu = = v ==
e B e e = v ==
B R . -

_images/sqlviews_parametricsql_params.png
Edit SQL view
Update the definition of the SQL view and its metadata

View Name

[storm_track_intenval

SQL statement

SELECT date_part ('vear'::text,
tl.cbs_datetime) AS obs_year, tl.storm_num,
t1.storm name, ti.wind, t2.wind AS wind_end,
tl.press, t2.press AS press_end,
t1.0bs_datetine, t2.0bs_datetime AS
obs_datetime_end, st_mekeline (tl.geom,
t2.geom) AS geom
FROM storm_obs tl
JOIN (SELECT storm_obs.id,
storm_cbs.storm num, storm_obs.storm_name,
stomm_obs.wind, storm_obs.press,
storm_obs.obs_datetims, storm_obs.geem

FROM storm_obs) t2 ON
(t1.0bs_datetime + '06:00:00" ::interval)
©£2.0bs_datetime AND t1.storm name::text
£2.5t0mm_name: :text
WHERE

_images/sqlviews_parametricsql_guess_params.png
SQL view parameters.
Guess parameters from SQL

Add new parameter

Remove selected

O Name Default value Validation regular expression
[|MAX_OBS_YEAR 2020 ~IWw\d\s]+$
O |MIN_OBS_YEAR 0 ~Iw\d\s]+$

_images/sqlviews_parametricsql_preview.png
Scale = 1 70M 527343, 26.89453
Click on the map to get feature info

_static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 GeoNode’s Documentation

 		
 About GeoNode

 		
 Online demo

 		
 Geospatial data storage

 		
 Data mixing, maps creation

 		
 GeoNode as a building block

 		
 Convinced! Where do I sign?

 		
 Tutorials

 		
 Reference documentation

 		
 Organizational

 		
 Project Information

 		
 Contributing

 		
 Table of Content

 		
 Roadmap Process

 		
 Community Resources

 		
 Community Bylaws

 		
 Contributing to GeoNode

 		
 GeoNode Patch Review Process

 		
 Patch Review criteria

 		
 How to contribute to GeoNode’s translation

 		
 How to contribute to GeoNode’s Documentation

 		
 How to write Documentation

 		
 How to Translate the Documentation

_images/ecw0.png
Edit Raster Data Source

Description

Eaw
ECW/ Coverage Format.

Basic Store Info

Workspace *

geosolutions [+

Data Source lame *
Terracolor_Sydney_AU_15m
o

Enabled

Connection Parameters

URL*

dataluser_dataltc_sydney_au_scwiTerracolor_Sydney_

_images/ecw3.png
Results 1 to 18 (out of 18 ftems) \ Search

Type Name Title Common Formats _ All Formats
J geosolutions:bbuidings Boulder buidings OpenLayers KML GHL | Select one
M geosolutionsiblakes t::::' ae""dn:’;:” POVOOME o etayers kL GHL | Select one
M geosolutions:BoulderCityLimits BoulderCityLimics OpenLayers KML GHL | Select one
M geosolutions:bplandmarks Boulder polygonal andmarks Openlayers KML GHL | Select one
@ geosoltionsibptiandmarks Poit ndmarks OpenLayers KML GML | Select ane
@ geosoltions:bptiandmarks 2876 pointim OpenLayers KML GML | Select ane
W geosolutionsibrivers 5”:: :’;‘:;::” fneat OpenLayers KL GML | Select one
1 geosolutionsibstreets Boulder strests OpenLayers KML GHL | Select one
M geosolutions:Parcels Parcels OpenLayers KML GHL | Select one
1 geosolutions: Trais Trais OpenLayers KML GHL | Select one
3 geosolutions:Wetlands_requistory_area Wetiands_reguiatory_area Openlayers KHL GML | Select one
B geosolutionsistm stm Opentayers KL Select one
J geosolutions:WorldCountries countries OpenLayers KML GHL | Select one
M geosolutionsistates states OpenLayers KML GHL | Select one
B geosolutionsiwind wind Opentayers KL Select one
B geosolutionsiwind2 wind2 Opentayers KL Select one

boulder

Results 1 o 18 (out of 18 items)

OpenLayers KiL

Select one

_images/ecw1.png
Edit Layer

Edt layer data and publshing
geosolutions:Terracolor_Sydney_AU_15m
Configure the resource and publishing information for the curent fayer

Data | Publishing | Dimensions | Tie Caching

Basic Resource Info

Name
Terracolor_Syaney_AU_15m
Title
Terracolor_Syaney_AU_15m
Abstract

Keywords

Current Keywords
wes. N
ECW

Terracolor_Syaney_AU_15m

Metadata finks

No metadata inks so far

[Addlink] Note only FGDC and Tc211 metadata bnks show up in WHS 1.1.1 capabiltes

Coordinate Reference Systems

Native SRS
EPSG4328 EPSGIWGS 84...

Decinred SRS,

_images/edit_and_download_layer.png
Download Layer
Edit Layer

Download Metadata

_images/ecw4.png

_images/edit_map.png
Download Map
Edit Map

View Map

_images/edit_and_manage.png
Edit Layer

Metadata

Edit

Styles
Edit

Manage

Py

Thumbnail

Set

O

Layer
Replace

Edit data

Remove

Close

_images/editrulebasic.png
Name: Symbol:

Foints of Interest L4

Symbol: circle

size: 10

Style: solid
T
width: 1

P — -

_images/editprofilelink.png
Edit profile

Change password

Upload new layers

Create anew map

My Activities

_images/editrulelink.png
® Untited 1

@ Ads @ Remove | Et| §f Dupicate

_images/download_kmz.png
HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH [fHEN-]

HAITI_ADMINISTRAT |V FEEE E=

@ (BHOF- ¢t s==ID8 TLES >
e . Al X
ta Cruz i sur
@B@ ohes |GOOGLE EARTH
Bayama/ KML >
o
5 2 PNG >
CRGEIONE L Spantagdo cuba
c i\
2K Cormandasar’ . Consanza
® Ylm;s fato Mayor
E s foxie ey Ymgu,
S ey santo ntoomingo_ €
% o
i
gen

EL] 1:4367821 ¥

T Courteny o et (5 i

@ Info trributes [Share % Ratings ~ # Gomments MAPS USING THIS LAYER

_images/download_kml.png
HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH [fHEN-1]

HAITI_ADMINISTRATIV Hmmee s

@ Bt s==1B8 TILES >
e R 5 VIEW IN GOOGLE EARTH >
CiR : oo
Bayamo/ § KML >
o ¢

RUEORE bp
A o Verpcaie
ST e P
S] H0ES yombsa et uayar
gilo e e
tego B o
fonteso Bay i e gtioDeminee 2=
J Gacanons G2
gen edoniied
ETS 14367821
ies Coutsy f Heotiuee (5, dmin
@ info trributes [Share % Ratings ~ ® Gomments MAPS USING THIS LAYER

eoserver/wms/kmiZlayers=it.geosolutions%3Ahaiti_administrative&mode ~download

_images/dyn_symb1.png
- Logged in as admin. “
GeoServer

Style Editor

Edit the current SLD style. The editor can provide syntax highlight and be brought to full screen. Click on the "validate" button to verify the style
(8 Server Status is a valid SLD document.

=3 Contact Information

@ Global Settings.

I JAu settings Name

@ About Geoserver

Server

statespiepss.
Services Copy from existing style
@ owc Choose One c
=i Copy
@ wes
gWFS ®OB|0 e SV 2@
i "~ [F7xal version="1.0" encoding="150-885¢ 5|
o[t edLayerbescraptor version1.0.0
Data 5| Txdi s schemaLocat ion="http://wew.opengis..net/sld http://schenas.opengis..net/s1d/L.0.0/Styl
3| xnlne=http://www.opengis.net/sld" RLns:oge="hEtp: //www.opengis.net/ogc”
Workspaces S| AUns xTinieatinitn: /e -v3.ora 1985/ XLink xaLns: XEin-hEtp: /w3, 07 2001 /XH.Schema -
(@ stores <NamedLayer>
HaneocNane>
Layers <UserStyle>
Layer Groups Sneopie charts</Nanes
<FeatureTypestyle
D styles Eetue]
5 <Polygonsymbolizers
Security it
B ussis Sssraranster na SHAAAAAAS/CssParaneter
(3 Data security SStroke />
B Service security {/;‘/“leyqnnsymbuhu»
3 Catalog security </FestureTypestyles
FeatureTypestyles
S— Siles
<Pointsymbolizer>
<Graphic>
Layer Preview Erternalcraphics
SonlineResource
Wik :hrefa-http://chart 7cht=psanp; chi=t :${100 * MALE / PERSONS}, ${100 +
<Fornat>application/chart</Fornat>
bt nirm b

_images/downloadformats.png
LEER

\/ I l Download Layer~ JA Download Meta

JPEG >

PDF >

” PNG >
ZIPPED SHAPEFILE >

GML20 >

GML3A1 >

csv >

EXCEL >

GEOJSON >

KL >

VIEW IN GOOGLE EARTH >

TLES >

11436783,

_images/dyn_symb3.png
53.03742, 40.66125

Scale = 1:45M

_images/dyn_symb2.png
GeoServer

Logged in as admin. m

server
& server status

22 Contact Information
@ Global Settings.

2 settings

© About Geoserver

Services

@ owc
(3 wes
& wrs
3 wus

Data
[Workspaces
J Stores
9 Layers
@ Layer Groups
D styles

Security

& users

(3 Data security
B Service security
2 catalog security

Demos

Layer Preview

geosolutions:states

Configure the resource and publishing information for the current layer

pata | Puhlishingﬁ‘

Basic Settings
Name

states

Enabled

HTTP Settings
[Response Cache Headers
Cache Time (seconds)

WFS Settings
Per-Request Feature Limit

[
um number of decimals

= 1

Default Title

Default style

SHatespiepss |

_images/dyn_symb5.png

_images/dyn_symb4.png
FEMALE

MLLEQ

MF

rgmgi

_images/ecw.png
Raster Data Sources

8 ArcGrid - Arc Grid Coverage Format

8 ERDASImG - Erdas Imagine Coverage Format
B GeoTIFF - Tagged Image File Format with Geographic information
8 Gtopo30 - Gtopo30 Coverage Format

8 ImageMosaic - Image mosaicking plugin

8 ImagePyramid - Image pyramidal plugin

8 JP2ECW - JP2K (ECW) Coverage Format

8 JP2K (Direct) - JP2K (Direct) Coverage Format

B P2MSID - JP2K (MISID) Coverage Format

8 MrSID - MrSID Coverage Format.

8 NITF - NITF Coverage Format

_images/dyn_symb6.png

_images/google_ssl_007.png
81 Frimplkeystore ey - Portecle - o

File Tools Examine Help

Glalo)glg8 e

BT Import Trusted Certificate X

@ ac Lookin: [Simp -] @Ea
@ g

= geosenver

Exmi

& apache.crt
3 google.cert

& google-apis.cert

File Name: [uoogle.cert

Files of Tyne: (503 Certifcate Files (*.cer”cr”.ceri per) =

Import cancel

Keystore yne: JKS, provider. SUN, size: 3 enfries

_images/google_ssl_006.png
8 portecte

File Tools Examine Help

Gls

Alias Name Last Modified

Password for Keystore 'keystore key' X
Enter Password:
ok || cancel

No keystore loaded

_images/google_ssl_009.png
8T Fasmpikeystore key - Portecle - o

File] Certficate Details far ‘google.cert’

[l
a Version
= Subject
=l

Isster

Seral Number
Valid From

Valid Unil

Public Key
Signature Algoriim
SHA Fingerprint

MDS Fingerprint:

Cerificate 1 of 1

&

Ch=accounts google.com,

Google Inc, L=Mountain View, ST=Californi
CN=Google Intemet Authority 62, 0=Google Inc, C=US

7843 FCEF 470D D514

0ct19, 2016 7:16:57 PM CEST.

Jan 11,2017 6:13.00 PM CET

RSA (2,048 bits)

SHAZSBWINRIA

BEBTFA4GIBCATEFABSAL36E B0BA1 BEEATATIIC

9FAT.BE:28.CDAZTIET FDI4C B4 F 21 E44TEEE

Extensions || PEM Encoding

oK

Keystore type: JKS, provider: SUN, size: 3 entries.

_images/google_ssl_008.png
8T Faempkeystore key - Portecle

File Tools Examine Help

Gj=| 08858 ®

Last Modified

Alias Name

0ct28, 2016 11:20:59 AM CEST
0ct28, 2016 11:08.08 AM CEST
Sep 23, 2015 32618 PM CEST

& ~googleapis com (google intermet authoriy 52)
& accounts.google com (google internet authority 42)
& geonode-dev-server

Import Trusted Certficate X

® Could not establish a trust path for the certficate.
“The certficate information will now be displayed afler
which you may confirm whether or notyou rust the

cerifcate,

oK

[Keystore tyne: JKS, provider: SUN, size: 3 enfries

_images/google_ssl_011.png
8T Fatmpkeystore key - Portecle

File Tools Examine Help

Gj=| 08858 e
Last Modified

Allas Name
[E "googleapis.com (google internet authority g2) Oct 28,2016 11:20:50 AM CEST
& accounts.google com (google internet authority 42) Oct 28,2016 11:09:00 AM CEST
& geonode-dev-server Sep 23, 2016 3:26:18 PM CEST

Trusted Certificate Entry Alias X

Enter Alias:) (google intemet authority 62)

ok || cancel

Keystore type: JKS, provider: SUN, size: 3 entries.

_images/google_ssl_010.png
8T Fatmpkeystore key - Portecle

File Tools Examine Help

Gj=| 08858 ®

Alias Name

Last Modified

(& ~googleapis com (google intermet authoriy 52)
& accounts.google com (google internet authority g2)
& geonode-dev-server

0ct28, 2016 11:20:59 AM CEST
0ct28, 2016 11:08.08 AM CEST
Sep 23, 2015 32618 PM CEST

Import Trusted Certficate

Do you want to acceptthe certifcate as trusted?

es

X

Keystore type: JKS, provider: SUN, size: 3 entries.

_images/google_ssl_013.png
BT Fatmpikeystorekey* - Portecle

Eile] Tools Evarine _Help

[New Keystore. cun
S open Keystore File.. ci0
S Open CA Certs Keystare cii-r

B

e Keystore s
=3 1 keystore key
© Bt

Last Modified

authority 62)

0ct28, 2016 11:20:59 AM CEST

Sep 23, 2015 32618 PM CEST

Save the Inaded keystore to disk

_images/google_ssl_012.png
8T Fatmpikeystore key* - Portecle

File Tools Examine Help

1888/

Gla

Alias Name

Last Modified

@ ~g0ogleapis.com (google internet authoriy 52)

& geonode-dev-server

& accounts.google com (google internet authority g2)

0ct28, 2016 11:20:59 AM CEST
0ct28, 2016 12:36:45 PM CEST
Sep 23, 2015 32618 PM CEST

Import Trusted Certficate

o

X

Keystore type: JKS, provider: SUN, size: 3 entries.

_images/group10.png
Bounds.
HinX, Hiny. Haxx Haxy
2.943.771.9805851] 1,170,043, 152052 | 3,140,453 387552 1,352.572.813349

‘Coordinate Reference System
EPSG2276 Find.._ | epse:a0s3,

Generate Bounds

@ Add Layer Group,

_images/group1.png
GeoServer
Server Status

‘Summary of server configuration and s

Contact Information
[AT Settings

© About GeoServer Locks “
Services Connections 1
@ ewc Memory Usage E
@& wes

& wrs IVM Version L
@‘””57 Native JAT t
Data Native JAT Imagel0

5 Workspaces IAT Maximum Memory L
3 stores

~ =
v

Number of JAI Tile Threads 7

Security
8 oo JAL Tile Thread Priority F
3 Data security Resource Cache
B senvice security
3 catalog security Update Sequence: 60
pemos GeoServer

E— E=

GeoServer

_images/google_ssl_005.png
& porecle

File Tools Examine Help

ala

Alias Name

Last Modified

BT Open Keystor Fie

Lookin: | tmp

Saeosener [reauestumt
(=P

&2 apache.t

& googie cert

& aoogte-apis cert

) kepstore ke
[metana

File Name: [keystore.key

Files of Type: |All Files.

Open

cancel

No keystore Ioaded

_images/github_home.jpg
@ o secioeaconmand O @ Explore Gist Blog Help B lionnson [F

X ®
I Jiohnson - ProTip™ You can submit your own service hooks by forking github-services. N News Feed
News Feed Pul Requests Issues stars
[L e
\genleroariel commented on issue GeoNode/geonode#461 Y
our Repositories (45) [Lagual)
' Not critical, since the new uploader will replace this. L 5

Find a Reposory.

g 2 Al Ropostories Publc Private Sources Forks

" Ingenieroariel commented on issue GeoNode/geonode#759

' Downgrading from critical [iohnson/geonode

B johnson/mapstory

_images/gn_up_0001.png
© ™ geosolutions@geonode-2: ~/geonode

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://waw.gnu.org/licenses/>.

#
A

inport os

PROJECT_ROOT = os.path.abspath(os.path.dirnane(__file_))

SITEURL =

"http://localhost:8000/"

DATABASES = {
‘default': {
'ENGINE': 'django.db.backends.postgresql_psycopg2',

'NAME': 'geonode’,
'USER': 'geonode’,
'PASSHORD' : 'geonode’,
1,
vector datastore for uploads
'datastore’ : {
'ENGINE': 'django.contrib.gis.db.backends.postgis’
'ENGINE': '', # Empty ENGINE name disables
'NAME': 'geonode_data’
'USER' : 'geonode’,
'PASSWORD' : 'geonode’
'HOST' : 'localhost’,

'PORT' : '5432',

_images/github_project.png
@ o secropeaconmand O @ Explore Gist Blog Help BB ionnson B X B

jiohnsOn / my_geonode emmmmc=s I Pull Request ~GSUnwatch - % Star 0 } Fork 0
Code Network PulRequests 0 lssues o wid Graphs. Settings

My GeoNode Project — Read more —

@ CloneinMac > ZIP | HTTP | SSH | GitRead-Only | gitegithub. con:jjohnson/my_geonode.git 22 | ReadsWite access

P banch: master - Files Commits Branches 1 Tags
my_geonode / & ® 1 commit
Initial add project structure
B8 formson autnored ustnow latest comit 2248813021 B3
i my_geonode just now Initial add project structure [jjohnsOn]
2 README.rst just now Initial add project structure [jjohnsOn]
B manage.py just now Initial add project structure [jjohnsOn]

B setup.py just now Initial add project structure [jOhns0n]

_images/gn_up_0003.png
' /home /geosolutions/geonode/geonode/uploaded "

_explicit_settings set([' CASCADE_WORKSPACE', 'AWS_S3_BUCKET_DOMAT
E', 'UPLOADER', 'LANGUAGE_CODE', 'LICENSES', 'MANAGERS', 'DOWNLOAD_FORMATS_METADATA', 'BR
ALIZER', 'DEFAULT_MAP_CENTER', 'REGISTRATION_OPEN', 'ALLOWED_HOSTS', 'OGC_SERVER', 'DOWNL
NDERS', 'NOTIFICATION_QUEUE_ALL', 'S3_MEDIA_ENABLED', 'CELERY_IMPORTS', 'SOCIAL_BUTTONS',
ME', 'DATABASES', '_DEFAULT_STATICFILES_DIRS', 'ACCOUNT_APPROVAL_REQUIRED', 'DEBUG_STATIC
GUAGES', 'MEDIA_ROOT', 'STAMEN_BASEMAPS®, 'GEOSERVER_LOCATION', "CACHES', 'CKAN_ORIGINS',
_OSM_BASEMAPS', 'ROOT_URLCONF', 'CATALOGUE', 'LOCKDOWN_GEONODE', 'MISSING_THUMBNAIL', 'MI
[ATION_FALLBACK_LANGUAGES', 'DEFAULT_MAP_CRS', 'THESAURI', ' DEFAULT_LANGUAGES', 'TASTYPI
LT_ANONYMOUS_DOWNLOAD_PERMISSION', 'CELERY_DEFAULT_EXCHANGE', 'OAUTH2_PROVIDER', 'CELERY_
_EAGER', 'MODIFY_TOPICCATEGORY', 'NLP_ENABLED', 'GUARDIAN_GET_INIT_ANONYMOUS_USER', 'PYCS
HE_TIME', 'SITEURL', 'STATIC_ROOT', 'GEONODE_APPS', 'LEAFLET_CONFIG', 'DOWNLOAD_FORMATS_V
_ACCESS_KEY', 'ACCOUNT_EMATL_CONFIRMATION_EMAIL', 'AWS_QUERYSTRING_AUTH', 'LOGIN_URL', 'S
GATES_EXCEPTIONS', 'CELERY_IGNORE_RESULT', 'AUTH_USER_MODEL', 'HAYSTACK_SEARCH', 'AUTHENT
LT_SECRET_KEY', 'SERVICE_UPDATE_INTERVAL', 'CELERY_RESULT_BACKEND', 'API_INCLUDE_REGIONS_
T', 'LOGGING', 'CELERY_SEND_EVENTS', 'EXIF_ENABLED', 'NOSE_ARGS', 'NLP_MODEL_PATH', 'INTE
EMAPS', 'SOCTAL_ORIGINS', 'MAP_BASELAYERS', 'USE_L10N', 'GEONODE_CONTRIB_APPS', 'NLP_LOCA

PASSWORD_CHANGE', 'DEFAULT_ANONYMOUS_VIEW_PERMISSION', 'AGON_RATINGS_CATEGORY_CHOICES',
T TUDES! O MATYETAATTAN TANCIAFE MAMIT ET IDECAIDAE DRI TCHTNA! I BDAYY bl T leTTE +n

MEDIA_ROOT

_images/gn_up_0002.png
Logged in a

GeoServer

Server Status

Summary of server configuration and status

About & Status.

Server Status
[=) Geoserver Logs
=) Contact Information

Acti
© About Geoserver - .
£ Process status Data directory Jhome/geosolutions/geonode/geoserver/data

Locks 0 Fre

Dpata

_images/google_earth.png
Google Earth

2=

sign in

Hispaniola Plain

x: pizza near NYC A :
b Guantaname,,

Make sure 3D Buildings
layer is checked
v /& Temporary Places %
» Vi it.geosolutions:haiti_a...

v /& My Places b Greater Antilles Ridge = £ aai ’
4 =z : .
bk

4% Centre
s X San Juan
arth Gallery o
@ I ey Dtsfiass Saq Juan;de lal Maguana '
» VI Borders and Labels * i
Bl Places Port-auzPrince (B
> 1= Photos Tk
== Roads /! " 1 Bdoruco
3 3D Buildings Independencia . 8%
Ocean 7 7 g . e e
L Weather K s SUd-Eot - T
% Gallery R & '
© Global Awareness < ©2013 €nes/Spot Image A %%
[More © 2013 Google =
US Dept of State Geographer > 7
Data SIO, NOAA, U.S. Navy, NGA, GEBCO ’ (1003[(earth
»

Tour Guide 19°30'28.93" N 73°13'12.79"W elev -2100 ft eye alt 243.80 mi

_images/gn_up_0004.png
<« c @ geonode.org, - O search I
Index of /geoserver/latest geoserver 2.12.xwar N
T et — 239 o 1438 .0 M/sc0)
[1CO] Name Last modified Size Des¢

Show All Downloads

[PARENTDIR] Parent Directory -
[1 data-2.9.x-oauth2.zij 2017-06-09 09:34 120K

[1 data-2.9. Ip 2017-09-28 15:23 101K
[1 data-2.10.x.zip 2017-10-02 10:18 118K
[1 data-2.12.x.7ip 2018-03-21 15:03 154K
[1 data.zip 2017-06-09 09:34 101K
[1 geonode-geoserver-ext-2.7.4-geoserver-plugin.zip 2017-06-09 09:34 166K
[1 geonode-geoserver-ext-2.9.x-geoserver-plugin.zip 2017-09-28 15:23 164K
[1 geonode-geoserver-ext-2.9.x-oauth2-geoserver-plugin.zip 2017-06-09 09:34 165K
[1 geonode-geoserver-ext-2.10.x-geoserver-plugin.zip 2017-10-02 10:18 165K
[1 geonode-geoserver-ext-2.12 x-geoserver-plugin.zip 2018-03-21 15:03 165K
[1 geoserver-2.9.x-oauth2.war 2017-06-09 09:34 133M
[1 geoserver-2.9.x.war 2017-09-28 15:23 123M
[1 geoserver-2.10.x.war 2017-10-02 10:18 135M
[1 geoserver-2.12 x.war 2018-03-21 15:03 148M
[1 geoserver.war 2017-06-09 09:34 103M

Apache/2.4.7 (Ubuntu) Server at build.geonode.org Port 80

_images/google_ssl_003.png
& Farmprgoogle.cert - Notepad-++

File Edit Search View Encoding Language Setfings Macra Run Plugins Window 7

=

sl @ 8] LEIERIE=TER]

[google.cett £

~———"BEGIN CERTIFICATE-
MIIEOTCCA4nGAWIBAGT TeEPE70CH1RQUDQYIKG 2 ThveNAQELBQAUS TELHAKGATUE
BRNCYVHXE ARBONVE Lo TCkelvb2 s 25 Jbmilx I TA) BONVE ANTHEdvb2 ds ZSEIbnR L
S 14CBEAXRab 3 pdHkgRz TWHhCNNTTx HDESHTEXN U3 Whe NN Te wHTENTC K Nz ky
U3BLHQSUCQYDYQQGEUIVUZETHBEGA1 UEC AVRQZ FSalZvenSp YTEVMBQGA UEBuuN
TUS 1bnRhaV4gVnl 10zETHBEGAL UECGWKR2 97225 L TE 1uY 2ECHBOGALUEAWH TY U]
PIVAHNUZ29vZ2 % LLitivh TCCAS TDQY Ko Z ThveNAQEBBQADGUEP ADCCAQOCITED
AKT1x4DYCSTNCHypBUAT06 7 Wb 7LLEkGESQICUVAVF fLr XnG3 PATCE L LUVATE
RODNSA79118gnI0XgB/ XyFGx381HR/ Hoglavh 1CTEghiotvhlisxy Y/ hSSethen
12GGOXCHVEx 119%PORVFva7ala0LS ut NeE 27T4Her) 3 00UF TV o AQNGAKGUAE Tap
POSQFuyUGHKINN6OpvY6ayBERU/ 402KNVCaZUuTul2bPehB2 IXIKELKNISTYZRE
Y53 IuFLint++/ 1pHQS49xeyviB4pSz44at hBulgENhgEE T 7e TS S TPUNF 30913 nhaT
IDSa1PHRZPpsink1IFBZ+KECAVEARAOCANCUYGF IHBOGA1UAI QQUHBQGCCSGAQUR
BUNBBOGrBGEFBQCDA] A1 BGNVHREEL j ASGHNEYZNVAUSOCYSHh2 9nbGUuT2 St ghUy
LnBhcnRuZXTuTiSkenSpZCS Ib20waly Ky YEEQUHAQEEXDEANCSGCCSGAQUFEZAC
BhSOAHRYO1BVCGpLidvh2ds 255 Ib20VROLBRE TuY3JDHCSGCCSGAQUFBZABRAT
AHRVO18vY2xpZUS0c 2EZ29v 22 LLnlivhS9v TaNHEOGL 1UADGOUBBS £3 NI/ aub
E2238GRDr +B1Le 11y TANBGNVHRUBATEEA] LANESGAL U [UQYNBaAFEr dBhYBVPZ0
£%051ba7 Thy6UOEVHCEGA1UATAQaHBGuD AYRK BB ARUEQIF ATATBGZNgQuBAg Ty
MAYDVRNFRCImT 731 0CONTYY £ ARRNrD YT, Rr A Snh2 Gnis Gl Y2911, A0 T Olle: vy

Normal tex length : 1692 lines : 27 Ln:1 Col:1 Sel:0[0 Dos\Windows

UTF-8

NS

_images/google_ssl_001.png
Loading 'screen' into random state - done
COMNECTED (00000188)

depth=3 C = US, O = Equifax, OU = Equifax Secure Certificate huthority
verify return:i

depth=z € = US, 0 = GeoTrust Inc., CN = GeoTrust Global C

verify return:i

depth=1 € = US, 0 = Google Inc, CN = Google Internet Authority G:
verify recur

depth=0 C = US, ST = California, L = Hountain View, O = Google Inc, CN = accounts.google.com
verify recur

Certificate chain
alifornia/L=Hountain View/0=Google Inc/CN=accounts.google.com
Google Inc/CN=Google Internet kuthority G2

Google Inc/CN=Google Internet kuthority G2

+/C=U8/0=Ge0Trust Inc./CN=GeoTrust Global Ch

US/0=GeoTrust Inc./CH=GeoTrust Global Ch

Equifax/OU=Equifax Secure Certificate Authority

Server certificate
BEGIN CERTIFICATE
HITEOTCCAdngkulBAGTIEPSTOCH1RQUDQYIKOZ ThveNAQELBQAUS TELHAKGALUE
BRUCYVIXE 2 AREGNVE Lo TCkalvh2 ds ZSBIbmlld T3 BolVE LU THEGvh2 ds ZSBIhnRL
15 LACBBAXRoR3 JpdHkgRz TvHhC T T HDESHTC 3 U3 VheNNTe vl TEX NTex Hz hy
1B UQSUCQYDVOQGEIVIZE THBEGA 1UEC AUKQZ F sl ZyenS p Y TEVHBQG A1 UE Bl
TS 1bnRhaVAGVIL 1dZETHBEG A UECGUKRZ 8V 22 1 TE LuYZECHBOGA UE AUUTYUN
P3VuKNUZ29vZ2 X 1 Lilivh TCCAS TuDQYIKo 2 Thve N AQEBBQADGGEP ADCCAQOCTGER
AR71x4DYCSTHCHeypEUAG 7067 TLLIKGESQICUVAVF £LE KnG3 PATEE 1 LHVATKAF
RODRSA79T18gnO0XGB/ yFgx38 1HR/ Hoglavh LCTEgh 10t vhANSX Y/ hsSethen
12GGOXCHVEx 119xPOnVFva7ala0LS ut NeE 27T4Her) 3 00UF TV o+ AQNGAKGUGE Tap
POSQF UG-+ KINNEOpvy 6aySERY/ 40=KNVCaZUuTul ZhPehE 2 IXKELKNIS 1T 2Rz
S3mFLit+/ 1pH0S45 e yviB4pS z44at KEuIGENhGES 7o TSSTPUIF 3 J9 13 nhdT
IDSa1PHEZPpsink1IFBZ+KECAVEARAOCAUCUGDF I HBOGA1UAT QQUHBQGCCSGAQUR
BulBBggrBgEFEQeD A} A1 BGNVHREEL j AsghNhY2NvdVS0cySnb2 SnbGUuY2 9t ghl

_images/gh_pullrequest.gif
<> Code

2 contributors.

@ Issues
11 Pull Requests
commit b13774eesf E e
todeysem | puge

aday ago

14 days ago

_images/gh_pr_select_branch.png
pod
Compare and review just about anything

Branches, tags, commit ranges, and time ranges. In the same repository and across forks.

EXAMPLE COMPARISONS
add_logo 7 minutes ago

® master@{1day}...master 24 hours ago

_images/group_yes.gif

_images/group_not.gif

_images/homepage-monitoring-link.png
O amin v

Profile
Recent Activity

Inbox

come —

GeoServer
N open source platform for sharing geospatial data and maps.

1y questions about the software or service, join our mailing list.

Help

Started »

Logout

_images/homepage-admin-link.png
Profile
Recent Activity

Inbox
Welcome —
GeoServer
GeoNode is an open source platform for sharing geospatial data and maps.
If you have any questions about the software or service, join our mailing list. Monitoring

\ Get tarted»

’ Help

Logout

_images/icons.png
4 airport.p.16.png

m amenity_prison.p.20.png

(ampirg.n.lﬁ.prg

+ christian3p.14.png

==/ gate2.png

T museum.p.16.png

A peak.png

& picnic.p.16.png

&Y, school.png

% shop_supermarket.p.16.png
¥ theatre.p.20.png

nwalking.n.lz.png

_images/homepage.png
R - o

‘THE UNIVERSITY OF THE WEST INDIES
AT ST. AUGUSTINE, TRINIDAD AND TOBAGO

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH | fHEN-]

Explore Layers
Explore Maps

UWI's GeoNode is setup for students and faculty to collaboratively create and

sshare maps for their class projects. It is maintained by the UWI Geographical
Society.

For more information about the UWI Geographical society, visit our website

_images/importer_link.png
- Layer Groups
D styles

_images/ie_message.png
3} GeoNode Lavers

You are using an outdated browser that is not supported by
GeoNode.

Please use a modern browser like Morilla Firefox, Google Chrome or Safari,

mailing list.
Getting Started

O Q &

No Layers No Maps 1 User

_images/info2.png
5 .

Scale = 1: 470K -105.10514, 39.91187

« Type: bplandmarks (id: bpiandmarks.2);
o STATEFP: 08

COUNTYFP: 013

ANSICODE

AREAID: 110707447699

FULLNAWE: Rocky Mountain Natl Pk

MTFCC: K2181

ALAND: 107636350

AWATER; 1075466

INTPTLAT: +40,2132445

INTPTLON: -105.6068521

_images/info1.png
°

Scale = 1 : 470K
BPLANDMARKS

FID STATEFP COUNTYFP ANSICODE

bplandmarks.2 08

013

-105.56515, 40.23262

AREAID FULLNAME MTFCC ALAND AWATER INTPTLAT INTPTLON
110707447699 Rocky Mountain Natl Pk k2181 107636350 1075466 +40.2132445 -105.6068521,

_images/group11.png
& pecorsoon
Rossic ot L A e
5 Addto Curentivep

bouider
Bouder Reset

B BoulderCi ¢ pemnue

0 conies
0 Loes 23 TP

/ Mavd | A Exportn

Parcels

test

 Tralls

_images/group2.png
Layer Groups

Define and manage layer groupings

© i new layer group
© Remove seiacted laver aroup(s)

Resuits 1 to 1 (out of 1 items)

I bouider

Resuits 1 to 1 (out of 1 items)

_images/group12.png
F0SS46 2011 stying examples
B bouder
Boulder buidings
01 Lakes and other polygonal water entites
BouderCityLimits
Boulder polygonalancmarks
pointin
Boulder streets
Parcels

/ Rivers and other inear water entites
e
“ Trals
Vietands regulstory_area
0 countes
Ween

. poi

_images/group3-2.png

_images/group3-1.png
New Layer Group
Add 2w layer grouing

Tide

Abstract

_images/group5.png
Layers
© addLayer
© Add Layer Group,

Layer Default Style Style Remove
1 ‘geosolutions:Mainrd r mainrd]

Tl ‘geosolutions:BouiderCityLimits r citylimits]

T geosolutions:bplandmarks r arealandmarks C

Resuits 0 to 0 (out of 0 tems)

_images/group4.png
Find.

Generate Bounds

© addLayer..
Layers

Choose new layer
blakes
BoudsCityLmits
bplandmarks
bptiandmarks
bptiandmarks 2576

brivers

No autharty URLS 50 far

Add new authority URL

Layer Identifiers
No layr dentifers o fa

Add new layer identiier
ey ity

bstrests

Wetlands_reguiatory_area
stm

P
<

bouider shapefies
o shapefies
bouider shapeties
bouider_shapefies
bouider shapefies
bcuie_shupeties
bouider shapefies
o shapefies
bcuir_shapefies
bouider_shapefies
bouider sapefies
i _shapefies
=

Jr——

ososolutior
eosclutir
easolutir
ososalutir
easolutor
easclutir
oeosolutir
easalutir
easolutior
sosolutior
easalutor
ceasolutin

_images/group8.png
&3 Decoration

_images/group7.png
Layer Groups

Define and manage layer groupings

© i new layer group
© Remove seiacted laver aroup(s)

Resits 1 to 2 (out of 2 items)

I bouider

T test

Resits 1 to 2 (out of 2 items)

_images/group9.png
FOSS4G 2011 stylng examples
bauicer
Bauider buidings

B SouierCityLinits

0 countes

1 Lakes and other polygonal water entites

-/ Mainrd

Parces

test

Teaile

_images/postgis_lay2b.png
Primary key metadata table

Session startup SQL

Session close-up SQL

() preparedstatements

Max open prepared statements

50

O encode functions
@ Support on the fiy geometry simplification
O create database

create database params

_images/postgis_lay2.png
New Vector Data Source

‘Add 2 new vector data source

Postals.
POSEGIS Database.

Basic Store Info

Workspace *
‘geosolutions [v
Data Source Name *

shape.
.

Enabled

Connection Parameters

host*

localhost

valdate connections
Test while idle

Evictor run periodicity

300

300

Evictor tests per run

B

_images/gdal_publish.jpg
Edit Layer

Edit layer data and publshing

geosolutions:c3008957_nes_20

Configure the resource and publshing informaton for the current ayer
Data | publishing | Dimensions | Tile Caching |

Basic Resource Info

flame
[€3008957_nes_20
Title
[€3008957_nes_20
Abstract

Keywords

Current Keywords
wes N

s
-

c3008957_nes_20

Hew Keyword

Vocabulary

‘Add Keyword

Metadata finks

No metadata Inks so far

Note only FGDC and TC211 metadata links show up in WM 1.1.1 capabilties

Coordinate Reference Systems

Native SRS
'EPSG 26915 EPSG:NADS3 / UTM zone 15N,

_images/postgis_lay5.png
Edit Layer

ity it anc st

geosolutions:main_roads

P —
outa | Pt |

Basic Resource Info

[maiosts
e
man_msts
Abstract

Keywords

Caen: eyworss
]
man_rosc

| [Reois selected

NewKeyword

Vocobulary

Add Kevord

_images/gdal_preview.jpg
B geosolutions:c3008957_nes_20 €3008957_nes_20 OpenLayers KL Select one

_images/postgis_lay4.png
New Layer
addarewiorr

Yacancreate e et typ by manialy e the ottt nanesand ypes. Creote new feature type..
O dtsbsss s con oo et o sty b cenfutg ke S sateent.Configure e S0 view..
Foro 316 o rosmrces coreaad o sore S’ ik th o 10U W 3 corfgre

Rt 101 Gurof § pee)

o posds

- R 1 ot)

_images/ge_feature_info.png
i GeoNode M soinl @

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH [fHEN-1]

H A | T | Download Layer~ [l Download Metadata ~

@ BHor-ts==la

]
haiti_administrative.1160

haiti_administrative
ADMIN_LEVE: 4

2043 GeoEye
13 DigitalGlobe

Atributes ~ #*Share % Ratings ® Comments

_images/postgis_lay7.png
Feature Type Details

Property. Tyve Nilable: MinMax Dccurences
abel e sing e o
the_geam Miiinesting e ot

Reload featire type .

&

_images/gdal_sources.png
Raster Data Sources

8 ArcGrid - Arc Grid Coverage Format
@ DTED - DTED Coverage Format

@ EHdr - EHdr Coverage Format

@ ERDASImG - Erdas Imagine Coverage Format

@ GeoTIFF - Tagged Image File Format with Geographic information
@ Gtopo30 - Gtopo30 Coverage Format

@ ImageMosaic - Image mosaicking plugin

@ ImagePyramid - Image pyramidal plugin

@ P2K (Direct) - JP2K (Direct) Coverage Format

8 [P2MISID - [P2K (MrSID) Coverage Format

B MrSID - MrSID Coverage Format.

@ NITF - NITF Coverage Format
@ Worldimage - A raster file accompanied by a spatial data file

_images/postgis_lay6.png
Metadata links.
No metadata nks 5o far
AR rote onk FGOC and TC211 metadsts ks shom o 1 WP 1.1.1 capabites

Coordinate Reference Systems.
Natie sk

4 sus

] £ NACE AR Colrada ot (5,

SRS handlng \ Set the Declared CRS to

T — .

Force declared EPSG:2876 and after use the
Bounding Boxes links to autopopulate the
g o o bounding boxes

Compute rom data

Lat/Lon Bounding Box

108 3271087527 30.85957551 060, 10, 15953745:
Compute rom natve boues

_images/ge_layer.png
312 GeoNode

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH BRE

HAITI_ADMINISTRATIVH

.

- e R ey
EBCO.

— -

3 TerraMetrics
Image UsS. Geological Survey

Google
S

@info MAPS USING THIS LAYER

_images/postgis_start.png
New data source

Chose the type ofdata souce you wih to confiure

Vector Data Sources

3 Drectory of spatd s (hapefs) - Takes a drectary of shapsflss and sxposes it 3 3 dta store

e S atcen 10 Tva Fiopery fles containg Festure formaton
3 Shapefie - ESRI(tm) Shapefies (*.shp)

_images/ge_geoexplorer.png
GeoNode
HOME LAYERS MAPS

[Hvap~

X
4 Overlays

Pnait_administrative

4 Baso Maps
Oing Aerial wih Labols
fapQuest Imagery
MapQuest Openstrostiap
Oopenstreatiap

ONo background

DOCUMENTS

PEOPLE

=W - o

SEARCH

Data,SI0, NOAA, U'S:NaVy, NGA, GEBCO
©2013-Cnes/Spot Image

Google-earth
<

n

_images/postgis_lay8.png
Layers

Vg the ayers b publshed by Geoserver
© addanewresaurce
© Remove sebcodresources

) Resite o2 ok o 220m)

« searen
[Type Workspace store Layerhame Enabled? Native SRS
eosolutons shapeman_soads v esazers

<][> |Resubs 1to2 (out of 22ems)

_images/fw_tiledovgdalinfo.png
Driver: GTiff/GeoTIFF
Files: 13tde815295_200803 0x6000m_cl.tif
Size is 2500, 2500

Orervievs; 150

-+ 1250x125

oy e e e e e— g

_images/postgis_conf.png
Edit Vector Data Source

6t an existing vetor dotasource

Posts1s (nD1)
PostIS Database (NDI)

Basic Store Info

Workspace *
tost v
Dts Source Name *

=
Description
Enatled

Connection Parameters
fndieferenceName *
Java complenvidbcipostares

schema

Exposs prary kers

ey met

Session startup SQL

Session ose-up SQL

@ Loosebbox
@ Esinated estends
prepsredstatemerts

encods functions

_images/fw_tiledgdalinfo.png
Driver: GTiff/GeoTIFF

Files: retiled/13tde815295 200803 0x6000m cl.tif
Size is 2560, 2500

12x512| Type=Byte, ColorInterp=Red
12x512| Type=Byte, ColorInterp=Green
12x512| Type=Byte, ColorInterp=Blue

_images/point_of_contact.png
Point Of Contact

Metadata Author

bobby (None)

bobby (None)

_images/gdal_addraster.jpg
Add Raster Data Source

Description

MrSID.
MrSID Coverage Format

Basic Store Info

Workspace *

geosolutions [+

Data Source lame *

c3008957_nes_20
e

Enabled

Connection Parameters

URL*

Gataluser_data\c3008957_nes_201c3008957_nes_20.

_images/fw_warpedgdalinfo.png

_images/postgis_lay1.png
New data source

Choose the type of data source you wish to configure

Vector Data Sources

G Directory of spatial files - Takes a directory of spatial data files and exposes it as a data store
LFosGIS - PostGlS Database)
| [GPostals (JNDI) - PostGIS Database (JNDI)

[Properties - Allows access to Java Property files containing Feature information

i Shapefile - ESRI(tm) Shapefiles (*.shp)

(£ web Feature Server - The WFSDataStore represents a connection to a Web Feature Server. This
published by the server, and the abilty to perform transactions on the server (when supported / a

Raster Data Sources

8 ArcGrid - Arc Grid Coverage Format
8 DTED - DTED Coverage Format

8 EHdr - EHdr Coverage Format

8 ERDASIMg - Erdas Imagine Coverage Format

B GeoTIFF - Tagged Image File Format with Geographic information

_images/gdal_openlayer.jpg
Scale =1: 107K 799417.92188, 3333469.64063
Click on the map to get feature info

_images/parameters1.png
Resource consumption

Max rendering memory (KB)

65536
Max rendering time (s)

60

Max rendering errors (count)

1000

_images/footprint_mosaic_none.png
Scale = 1: 22M 22.58355, 31.54150

_images/permission.png
Permissions
‘Who can view it?

& Anyone

The following users:

Choose users...

The following groups:

Choose groups...

The following groups:

Choose groups...

Who can edit data for this layer?
Who can edit styles for this layer?

Who can manage it? (update, delete, change
permissions, publish/unpublish it)

_images/peoplepage.png
GeoNode Ll O iohnsmith

admin

‘admin@geonode org
5Layers

0 Maps

0 Documents

jiohnson
jjohnson@opengeo org
0 Layers

0 Maps

0 Documents

_images/footprint_normal.png

_images/permissions2.png
Edit Layer

_images/footprint_mosaic_prop.png
Scale = 1: 22M 18.96267, 4387511
Click on the map to get feature info

_images/permissions.png
Set permissions for this layer

Who can view it?

©J Anyone

The following users: | hobby |

The following groups: | analysts | [x mappers |

Who can download it?
O Anyone

The following users: [admin || x bobby |
‘The following groups: [analysts |

Who can change metadata for it?
Who can edit data for this layer?
Who can edit styles for this layer?

Who can manage it? (update, delete, change permissions,
publish/unpublish it?)

Cancel

_images/fw_basegdalinfo.png
Driver: GTiff/GeoTIFF

Files: 13tde815295 200803 0x6000m cl.tif

Size is 2560, 2500

500x16 Type=Byte, ColorInterp=Red
500x16 Type=Byte, ColorInterp=Green
Band 3 Block=2560x16 Type=Byte, ColorInterp=Blue

_images/pg_hba_detail.png
Database administrative login by Unix domain socket
local all postgres peer

TYPE DATABASE USER ADDRESS METHOD

s for Unix domain socket connections only

all all peer
TPva Tocal connections
host all all 127.0.0.1/32 nds
IPv6 local connections:
host all all /128 mds

_images/forbidden.png
Si¢ GeoNode

LOG IN TO AN EXISTING ACCOUNT

Username
Password

() Remember Me

Ere— Login

_images/permissions_django_admin.png
@ Active

‘Designates whether tis user should be treated as acive. Unselecttis instead of deleting accounts.

@ Staff status
Desinates whether the user can og into this adrin st

@ Superuser status
Designates that this user has all permissions without explicity assigning them.

_images/followconfirm.png
3¢ GeoNode

HOME LAYERS MAPS DOCUMENTS

Follow admin?

_images/palette7.png

_images/vector8.png
Feature Type Details

Property Type Nllable
the_geom Mukiesiving e
LaBEL NAME g e

Relosd Fesurs type ..

Save Button
-

Min/Max Occurences
ot
o

_images/firebug-net.png
S ——

GeoNode

WELCOME

GeoNode is an open source platform for sharing geospatial data and maps. If

Explore Layer|
you have any questions about the software or service, join our mailing list.

Nesd help Geting Startea” Explore Map;

EST LAYERS LATEST MAPS

irrigated_areas San Diego School
Districts Map

from admin, 10 hours, 13 minutes ago

No absract provided

0 views | Average rating f ¥ f % No Image Avallable

S| Clar ekt | AL MWL C55 5 o (g s Meda

reflect?! it. lutions:iri areas&width=159&helght=63&format=i 0
alpha.dev.geonode.org 4.1KB 54.235.204.189:80 1245
alpha.dev.geonode.org 985 B 54.235.204.189:80 1255
alpha.dev.geonode.org 2.4 KB 54.235.204.189:80 1245
alpha.dev.geonode.org 2.9 KB 54.235.204.189:80

GET facebook.pni alpha.dev.geonode.org 2.7 KB 54.235.204.189:80

GET twitterpng alpha.dev.geonode.org 2.9 KB 54.235.204.189:80 306ms.

GET google_plus. alpha.dev.geonode.org 2.7 KB 54.235.204.189:80 M ums

GET arrows_gr_sn alpha.dev.geonode.org 1.2 KB 54.235.204.189:80 B s24ms

GET select2.png alpha.dev.geonode.org 396 B 54.235.204.189:80 B s62ms

10 requests. 24.3KB (12.8 KB from cache)

_images/palette6.png

_images/vector7.png
Bounding Boxes
Native Bounding Box

Minx Miny Maex My

atmarete [1amow0n a0 12190005

Carpue o dta

Lat/Lon Bounding Box Use the links to
Min X Min ¥ Maxx Maxy autopopulate the
10807 RVETT 30 5038010315105, 15053508 4 DOATT A1

‘Compute from native bound: W——————— boundlng boxes.
Feature Type Details

Property e Nalabie Min M Occrences
thegeom Mbinasing B o

e v s e o

_images/footprint_cut.png

_images/palette9.png

_images/footprint_behav.png
Coverage Parameters
Accurate resolution computation
Talse

AllowMultithreading

Talse

Backgroundvalues

Filter

MaxdllowedTies

A
MergeBehavior

FLAT
OutputTransparentColor

SORTING

SUGGESTED_TILE_SIZE
512512

USE_JAI_IMAGEREAD
ftue

_images/palette8.png

_images/footprint_mosaic.png
Seale = 1: 22 28.01486, 49.64588
Click on the map to get feature info

_images/footprint_cut_inset.png

_images/pt_landmark_style.png
2¢ @m= 1ot

v
<sld:Rotation>
<ogc:Literal>0.0</ogc: Literal>
</s1d:Rotation>
</51d:PointPlacenent>
</51d:LabelPlacenent>
<sld:Fill>
<s1d:CssParaneter name="fill">#000033</51d: CssParaneter>
</s1d:Fill>
<s1d:Priority>200000</s1d: Priority>
<s1d: VendorOption name="autoNrap*>100</51d: VendorOption>
</51d: Textsynbolizer>
</s1d:Rule>

<sld:Rule>
<s1d:Nane>school</s1d: Name>
<ogc:Filter
<ogc:PropertyTsEqualTox
<ogc:PropertyNane>MTFCC</0gc : PropertyNane>
<ogc:LiteralKBSM8</ogc: Literal>
</ogc:PropertyIsEqualTo>
</ogc:Filter
<s1d: MaxscaleDenoninator>10000</s1d: MaxScaleDenoninator>
<Vendor0ption name="1abel0bstacle">true</VendorOption>
<sld:Pointsynbolizers
<s1d:Graphic>
<sld:ExternalGraphic>
<sld:OnlineResource xlink: type="sinple" xlink:href=
<s1d:Fornat>inage/pnge/sld:Fornat>
</51d: ExternalGraphic>

/ing/landnarks/school.png* />

_images/pt_landmark_map.png
A
Baid Min

&
Poorman H

Tram HI

= —

Centennial Ir HS

LN
. &
Mt Sanitas. Foothill Elem 1
i
& puiezen | W
=
d m bl
G Fin ™ prapahn Vilage

Shopping Center

B =
a Schoal
a Univ ofColorado

Flagstaff Mtn Baseline Jr HS

r
a 1 £l

_images/get1.png
P SEvice Seoaky
[3 catalog security

Demos

Layer Preview <@

_images/publishmap1.png
Publish HMap

MapSize |gge v Meight 4y Width 5o

Your map s ready to be pubshed to the webl Simply copy the foloning
HTML to embed the map in your websie:

<iframe style="border: none;" height="400" widt’
src="http://ec2-50-19-158-121.compute-
1.amazonaws.com/maps/1/embed"> </frame>

T T~

_images/geotiff_sources.png
Raster Data Sources

8 ArcGrid - Arc Grid Coverage Format
@ DTED - DTED Coverage Format

@ EHdr - EHdr Coverage Format

8 ERDASImG - Erdas Imagine Coverage Format

@ GeoTIFF - Tagged Image File Format with Geographic information

@ Gtopo30 - Gtopo30 Coverage Format.
@ ImageMosaic - Image mosaicking plugin

@ ImagePyramid - Image pyramidal plugin

@ JP2K (Direct) - JP2K (Direct) Coverage Format

@ JP2MrSID - JP2K (MrSID) Coverage Format

@ MrSID - MrSID Coverage Format

@ NITF - NITF Coverage Format

@ Worldimage - A raster file accompanied by a spatial data file

_images/publishmap.png
Publish HMap

MapSize |gge v Meight 4y Width 5o

Your map s ready to be pubshed to the webl Simply copy the foloning
HTML to embed the map in your websie:

<iframe style="border: none;" height="400" widt’
src="http://ec2-50-19-158-121.compute-
1.amazonaws.com/maps/1/embed"> </frame>

T T~

_images/get3.png
B 4 4 0. 40,
1105.01027440349257 105 040417,40.340257 10504083240 340258 105 042632.40.340261
“105.042023,40.349262 -105.044341,40.34926 -105.045742,40.349208 -105.047122,40.349267
7105.048500,10:34927 -105.649967,10.316274 105 051703,40.340273 105.052039,10.340273
105.052679,40.349272 -105.052942,40.340272 -105.054221,40.349271 105.056357,40.34928

105.036625,40.34928 -105.03672,46.340281
<Jgml:coordinates>
</gmlLinearRing>
<Jgml:outerBoundaryls>
<tgmi:Polygon>
<Jgml:polygonMember>
</gml:MultiPolygon>
<Igeosolutions:the,goom>

<geosolutions:INTPTLON10>-105.4821300</geosolutions:INTPTLON10>
<lgeasolutions:Countles>
<Jgml:featureMomber>

- <gml:polygonMomber>
g potygons

_images/publishmaplink1.png
[Siso | e (@
Pubisn mp
E savemap

4 Overlays

_images/get2.png
W om W X o

N

geosolutions:srtm

geosolutionsistates

geosolutions:bpiandmarks

geosolutions:batreets.

‘geosolutions:Counties

geosolutions:Parceis

geosolutions:BouiderCiyLimits

ceosolutions-Trails.

[<< <)[2][> [>~ Resuits1to18 (outof 18 tems)

states

point landmarks:

Boulder strests

Counties of Colorado

BoulderciyLimits

Trails

| search

Opentayers KiL
OpenLayers KHL GML

Opentayers KiL GML

OpenLayers KL GHL

OpenLayers KL GML

Opentayers KiL ML

OpenLavers KML GML

Selectone
ET—
Select one =
[select one: =
e Tr—
| select one |
[selectone B

[select one "

_images/publishmaplink.png
[Siso | e (@
Pubisn mp
E savemap

4 Overlays

_images/get5.png
<Keywords/> SRS
<SRS>EPSG:4269</SRS> <——
<LatLongBoundingBox minx="-109.06" miny="36.992" maxx="-102.041"
maxy="41.003"/>
<[FeatureType> ¥ \ Bounding box
- <FeatureType>
<Name>geosolutions:blakes</Name>
<Title>Lakes and other polygonal water entities</Title>
<Abstract/>
<Keywords/>
<SRS>EPSG:4269</SRS>
<LatLongBoundingBox minx
maxy="40.262"/>
<[FeatureType>

_images/push_logo.png
geo(@geonode: /home/geonode/geonode_customs sudo git commit -m “Adding a new logo to the custom LeoNode
[add_logo ava1da1] Adding a new logo to the custom GeoNode

2 files changed, 6 insertions(+)

create mode 100644 geonode_custon/static/ing/UWI-logo.IPG

geo@geonode: /home/geonode/geonode_custom$ sudo git push origin add_logo
Username for 'https://github.com': afabiani

Password for 'https://afabiani@github.con':

Counting objects: 14, done.

Compressing objects: 100% (7/7), done.

Writing objects: 106% (8/8), 9.28 KiB | 0 bytes/s, done

Total 8 (delta 2), reused © (delta 0)

To https://github.con/afabiani/geonode_custom.git

4fbs9e2..a9a1dal add_logo -> add_logo
geo@geonode : /home /geonode /geonode_customs |

_images/get4.png
- <WFS_Capabilities version="1.0.0" xsi:schemaLocation="http://www.opengis net/wfs
http:/fiocalhost:8080/geoserver/schemas/wfs/1.0.0/WFS capabilities xsd">
— <Service>
<Name>My GeoServer WES</Name>
<Title>GeoSolutions GeoServer workshop WFS</Title>
- <Abstract>
‘This is the reference implementation of WFS 1.0.0 and WS 1.1.0, supports all WFS operations
including transactions.
</Abstract>
<Keywords>WFS, WMS, GEOSERVER</Keywords>
<OnlineResource>http:/flocalhost:8080/geoserverfwis</OnlineResource>
<Fees>NONE</Fees>
<AccessConstraints>NONE</AccessConstraints>
</Service>
- <Capability>
- <Request>
- <GetCapabilities>
—<DCPType>
~<HTTP>
<Get onlineResource="http:/localhost:8080/geoserver/wfs?request=GetCapabilities*/>
</HTTP>
</DCPType>
~<DCPType>
- <HTTP>
<Post onlineResource="http:/localhost:8080/geoserver/iis'/>
</HTTP>
</DCPType>
</GotCapabilities>
- <DescribeFeatureType>
- <SchemaDescriptionLanguage>
<XMLSCHEMA/>
</SchemaDescriptionLanguage>
- <DCPType>
- <HTTP>
<Get onlineResource=

‘hitpi/localhost:8080/geoserver/wfs?request=DescribeFeatureType"/>

_images/push_branch.png
igeo@geonode: /home /geonode /geonode_custom$ sudo git push origin add_logo
Username for 'https://github.com': afabiant

Password for 'https://afabiani@github.com':

Total 6 (delta 8), reused 6 (delta @)

To https://github.com/afabiant/geonode_custom.git

* [new branch] add_logo -> add_logo

laeo@aeonode : /home /aeonode /aconode customs B

_images/gh_pr_compare.png
BIN NEEEE geonode_custon/static/ ing/Udl-10go. TG

1
2
3

+.navbar-brang {
+ widtn: 373px;
+ heignt: 79px;
+ background: transparent url("../ing/Wil-logo.

_images/pyramid2.png
Add Raster Data Source

Description

ImagePyramid
Image pyramidal plugin

Basic Store Info
Workspace *

geosolutions [~

Data Source Name *
bm_pyramid
Description
bm_pyramid

¥ Enabled

Connection Parameters
uRL*

fle:datauser_datalbmpyramid

_images/get6.png
- <xsd:schema elementFormDefault="qualified" targetNamespace="http://www.geo-solutions.it
Iworkshop">
<xsd:import namespace:
Igeoserver/schemas/gml/2.
- <xsd:complexType name=
- <xsd:complexContent>
— <xsd:extension base="gml:AbstractFeatureType">
- <xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="0" name="the_geom" nillable="true"
type="gml:MultiPolygonPropertyType'/>
<xsd:element maxOccurs="1" minOccurs="0" name:
type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="COUNTYFP10" nillable="true"
type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="COUNTYNS10" nillable="true"
type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="GEOID10" nillable="true"
type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="NAME10" nillable="true"
type="xsd:string"/>
lement maxOccurs="1" minOccurs="0" name="NAMELSAD10" nillable="true"
type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="LSAD10" nillable="true"
type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs:
type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs:
type="xsd:string"/>

ttp://www.opengis net/gml’ schemaLocation="http:/localhost:8080
2/feature xsd'/>
‘CountiesType">

"STATEFP10" nillable="true"

‘name="CLASSFP10" nillable="true"

‘name="MTFCC10" nillable='

_images/pyramid1.png
Raster Data Sources.

B Arcrid - Avc Grid Coverage Format
8 OTED - DTED Coverage Formt
B ot - e Coverage Format
8 ERDASIMg - Erdas Imagine Coverage Format
8 GeoTIFF - Tagged image File Format with Geographi informaton
B Gtopos0 - Gtopo30 Coverage Fomat

Imagemossc

8 72K (Orect) - P2 (Drct) Coverage Format
B 720510 - JP2K (MrSID) Coverage Format

B HSID - NSID Coverage Formt

B I - NIT Coverage Format

B ordimage - A raster le accompanied by a spatial data le

_images/geoserver_srs.png
[(Add Keyword |

Metadata links

No metadata links so far
["Add link | Note only FGDC and TC211 metadata links show up in WMS 1.1.1 capabillies

Coordinate Reference Systems

Native SRS

Declared SRS
EPSG:3978

SRS handling

EPSG:NADS3 / Canada Atlas Lambert...

Force declared

Bounding Boxes

Native Bounding Box
MinX MinY Maxx Maxy
13627965 |-323,704.125 |1,751462.75 |63,159.9765625
Compute from data

Lat/Lon Bounding Box

MinX MinY Maxx Maxy

78.0029900468|43.4629255550¢| -71.8184077161] 47.79032394627
Compute from native bounds

Feature Type Details

Property Type Nillable Min/Max Occurences
qid Integer false n

area ‘BigDecimal true 0/1

perimeter Bigbecimal true o1

oncart_ ‘BigDecimal true 0/1

_images/geoserver_publish_layers.png
GeoServer
New Layer

Add a new layer

About & Status

(2 server status
Geoserver Logs
Contact Information
© About Geoserver

‘You can create 2 new feature type by manually configuring the attribute names and types. Create new feature type...
On databases you can also crezte 2 new feature type by configuring 2 native SQL statement. Configure new SQL view...
Here s a it of resources contained in the store “workshop’. Clck on the layer you wish to configure

Data Resuts 1t0'5 (out of 5 tems)
Layer Preview

Import Data
Workspaces
3 Stores ontdrainage Publish
a L e e
@ Loyer Groups

cotrnone oien
ey L e e
& wes

Results 1o 5 (out of 5 items)

Settings
(& Global

o

I Coverage Access
Security

& settings

U Authentication
B bocowarde

_images/pt_landmark_ds.png
=

Whitier Elem
= School
Maplton Elem
School m
Souider Courty
Courhouse
cyHa &
SouiderHgh
S
=
Fratrons Elem @
Sl
=
=

Univ of Colorado

_images/geotiff_addstores.png
This GeoServer belongs to GeoSolutions.

21 Layers © Add layers
21 Stores © Add stores

1 Workspaces © Create workspaces

_images/preview3.png

_images/geoserver_admin1.png
GeoNode - Tr:

ing [Running] - Oracle VM VirtualBox - 8 x

File

Machine

View Input Devices Help
Welcome - Mozilla Firefox

@ Geoserver: Welcome %

v | [Q search e 9 3 AS

€ @ localhost/geoserver/web

Welcome
About & Status Welcome.
L Server Status
Geoserver Logs
23 Contact Information ‘This GeoServer belongs to . Service Capabil
- 0 Layers © Add layers. 100
110
Data 0 Stores © Add stores 111
e e 1 Workspaces © create workspaces 11
. 201
[orkspaces wre
) stores /A Please read the file jvar/lib/tomcat7/webapps/geoserver/data/security
[Layers /masterpw.info and remove it afterwards. This file is a security risk. Loo
110
@ Layer Groups Toe
@ styles /i, The default user/group service should use digest password encoding. 0
i wns
Services /A, The administrator password for this server has not been changed from the 111
& wes default. It is highly recommended that you change it now. Change it 1.3.0
: wes
& wrs @ strong cryptography available 1.0.0
$ s
This GeoServer instance is running version 2.7-SNAPSHOT. For more information 1.0.0
Settings. please contact the administrator. WMs-C
111
@ Global WS
B 100
I Coverage Access
Tile Caching
Tile Layers
@ caching Defaults .
 Gridsets
= Disk Quota
GeoGig
@ GeoGig Repositories
@ Remotes Security
Security
F settings J

BO® &= @ @ @ @ Right Ctrl

_images/preview4.png
Boulder
Mountain Park

_images/preview3b.png
L A

O I IR R

geosolutions:sitm
‘geosolutions:BoulderCityLimits
geosolutions:bplandmarks
geosolutionsiblakes
geosolutionsibrivers

geosolutions: Trals
‘geosolutions:Wetknds_regulatory_area
geosolutions:Parcels
geosolutions:bbuidings
jeosolutions:bstreets

geosolutions:bptiandmarks_2876

parcels

streets

point_landmark_

_images/geoserver_layer_params.png
GeoServer
Edit Layer

Edit layer data and publishing

geonode:ontdrainage

Configure the resource and publishing information for the current layer

Data | Publishing | Dimensions |

Basic Resource Info

Workspaces Nome

\% stores ‘ontdrainage

0 Layer Groups Title

T [ondrainage

Serviees Abstract

& wes

Settings

(& Global

o)
[T Coverage Access
- Keywords

Seaurity Current Keywords.

& settings ‘ontdrainage

U Authentication features

2 o Remove selected
& Users, Groups, Roles

Data New Keyword
-

_images/preview_shapefile2.png
Scale — 1: 740K 3046920.86926, 1281152.19562

_images/geoserver_global_settings.png
GeoServer

About & Status

(8 server status

[5) Geoserver Logs

a3 Contact Information
© About GeoServer

Dpata

Layer Preview
d import Data
5 orkspaces
(@ stores

[Layers

@ Layer Groups
D styles

Services
& wms
(@ wes
& wrs
(& wes

Settings
@ Global
B

I Coverage Access

Tile Caching

H Tile Layers
@ caching Defaults

_ M Gridsets

_images/preview_shapefile1.png
Layer Preview

List of all layers configured in GeoServer and provides previews in various formats for each.

[<< /[<1[1][=][>~ Results 1020 (out of 0 matches from 20 items)

1 geosolutions:Mainrd Mainrd OpenLayers KML GML Select one -
[<< [<1[1][=][>~ Results 1020 (out of 0 matches from 20 items)

_images/geoserver_new_store.png
GeoServer

Logged nascamin. | 8 Lagout |

About & Status
(2 Server Status

=) Geoserver Logs

| Contact Information

8 Giobal
Fun
B Coverage Access

Security

P s

@ muthenicaton

3 Pasoworts

2 Users, Groups, Roles
(& pata

B sevices

Demos

New data source

Choose the type of data source you wish to configure

Vector Data Sources

(63 CsV - Comma delimited text file
13 Dirctory of spatial fles (shapefiles) - Takes a directory of shapefiles and exposes it a5 a data store
63 PostGIS - PoStGIS Database
5 PostGIS (NDI) - PoStGIS Database (INDI)
1 Propertis - Allows access to Java Property fies containing Feature information
3 Shapefile - ESRI(tm) Shapefiles (*.shp)
(£ Web Feature Server - The WFSDataStore represents a connection to a Web Feature Server. This connection provides access to the
Features published by the server, and the abilty to perform transactions on the server (when supported / allowed).

Raster Data Sources

8 ATcGrid - Arc Grid Coverage Format
8 GeofTIFF - Tagged Image File Format with Geographic information
8 Gtopo30 - Gtopo30 Coverage Format

@ ImageMosac - Image mosaicking plugin

@ WorldImage - A raster file accompanied by 2 spatial data file

Other Data Sources

(8w - Cascades 2 remote Web Map Service

_images/profilelink.png
O Logout 3@

_images/geoserver_layers.png
GeoServer

About & Status
(8 Server Status
(=] GeoServer Logs

4 Contact Information
@ About GeoServer

Data

Layer Preview
Import Data
=) Workspaces
O stores

9 Layers

@0 Layer Groups

Services
& wes

Settings
(8 Global

(=8

[Coverage Access

Security

settings
Authentication

) Passwords

& Users, Goups, Roles

@ Datn

Layers

Manage the layers being published by GeoServer
© Add 2 new resource

© Remove selected resources

Logged in as admin.

& Logout

11> >> | Results 1 to 11 (out of 11 items) L Search

O Type Workspace Store Layer Name sty [
O © geonode Adult Dey_Cere Adult_Dey_Care v EPSG:2230
O o geonode casinos casinos v £PSG:2230
O 1 geonode san_andres_y_providencia_administrtive san_andres_y_providencia_administretive EPSG:4326
O 1 geonode san_andres y_providencia_coastline san_andres_y_providencia_coastiine v EPSG:4326
O 1 geonode sen_endres y_providencia_highway ~ san_endres_y_providencia_highwey </ EPSG:4326
O © geonode san_endres_y_providencia_location san_andres_y_providencia_location v EPSGi4326
O M geonode san_endres_y_providencia_naturel san_andres_y_providencia_naturel v EPSG:4326
O © geonode san_endres y_providencia_poi San_endres_y_providencia_poi v EPSGi4326
O M geonode san_endres_y_providencia_water san_endres_y_providencia_water v EPSG:4326
O o geonode single_point single_point v EPSGi4326
O @ geonode workshop ontdreinage v EPSG:3978
<< /(<[1]/ >][>> | Results 1 to 11 (out of 11 items)

“\

_images/profileedit.png
Edit Your Profile

Change your avatar

First name
John

Last name
Smith

Email address

mail@example.com

Organization Name
Smith & Co.

name of the responsible organization

Profile
Manager of geospatial data for Smith & Co.

introduce yourself

B

e

_images/geoserver_proxy_url.png
Global Settings

Settings that 2pply to the entire server.

Verbose Messages
() Verbose Exception Reporting

' Enable Global Services

Number of Decimals.
8

Character Set
g P

Proxy Base URL
http:/ /example.com/geoserver/

Logging Profile
'DEFAULT_LOGGING. properties
GEOSERVER_DEVELOPER_LOGGING.properties.

_images/pt_attribute_table.png
Feature Type Details

Property Type Nillable Min/Max Occurences
the_geom Point true on
sTaTERP String true o
counTvee String true on
ANSICODE String true o
POINTID String true on
FULLNAME String true o

MTFCC String true o1

_images/geoserver_postgis_params.png
GeoServer

About & Status
(2 Server Status
=] Geoserver Logs

=3 Contact Information
@ About GeoServer

Data
Layer Preview
Import Data
5 Workspaces
@ stores

9 Layers

@ Loyer Groups

Services
& wes.

Settings
& Global

o
B Coverage Access

Security

& s

@ authenicaton
Pp—

B Users, Groups, Roles
(3 Data

B services

Demos

New Vector Data Source

Add 2 new vector data source

PoStGIS
PoSIGIS Database

Basic Store Info
Workspace *

(aeonode 1)

 Enabled

Connection Parameters
host *

localhost

port *

5432

database

workshop

schema

public

workshop

_images/profilepage.png
GeoNode

Type Title: Date johnsmith

Actions

Edit profile information
Account Settings
Change password
Upload new layers
Create a new map

Manage Connections

Following
Blocking
Following

Followers

_images/geonode_dev_mode.png
{
2:{GeoNode noata v maps v avout v

Welcome

GeoNode is an open source platform for sharing geospatial data and maps.

If you have any questions about the software or service, join our mailing list.
Need help? Getting Started

Search for Data.

Advanced Search

Discover the available datasets.

_images/preview1.png
About & Status
[E——

7] Gesserver ogs

21 Contact Informaton

@ About GeoServer

Data

I8 LaverPrvien g

Workspaces

5 stres

o Ly

8 Layer Groups
@ stjes

_images/geonode_component_architecture.png

_images/pr-form.png
Create a new pull request by comparing changes across two branches. If you need to, you can also compare across fork

0 base master~ compare: add_logo ~ |+ Able to merge. These branches can be automatically merged.

.
L J Adding a new logo to the custom GeoNode

Write | Preview 3 Styling with Markdown is supported

Leave a comment

Attach files by dragging & dropping, selecting them, or pasting from the clipboard.

_images/geoserver_admin.png
GeoServer

Welcome

Welcome

About & Status
(8 Server Status

=] Geoserver Logs

| Contact Information

“This GeoServer belongs to . Service Capabilities

wes
o e 10 Layers © Add layers 1
owa wsem omees e
Layer Preview 3 Workspaces © Create workspaces 100
Import Data 110
=
B e P e 200
F /Users/jjohnson/ projects/geonode/geoserver data/security/masterpw.info and remove it wws
Ly afterwards. This file is security risk. L1
@ Layer Groups & o
Services /i The default user/group service should use digest password encoding. wes
100
& wes i\ The administrator password for this server has ot been changed from the default, It i
Settings highly recommended that you change it now. Change It
Eoms [Y——
1 Covernge pcces “This GeoServer instance s running version 2.2. For more information please contact the
Securty administrator.
& settings
W Authentication
(3 Passwords
& Users, Groups, Roles
(3 pata
B services

Demos

_images/geonode_signin.png
GeoNode - Tr:

File Machine View Input Devices Help
Firefox Web Browser

é ‘Welcome! - example.com - Mozilla Firefox

Welcom ample.com x

€ @ localhost

B
3

=]
B

- -

«

4

¢

]

() Remember Me

il

O ¥

_images/007_socialaouth.png
Default Application Permissions

~ 1_basicprofile %l_emailaddras
w_share

_images/008_socialaouth.png
Default Application Permissions

| 1_basicprofile
w_share

OAuth 2.0

Authorized Redirect URLS:

hitp/geonade.geo-solutions.itaccountlinkedin_oauth/login/call | €Q)

hitp/geonade.geo-solutions itaccountlinkedinflogin/calback | €

_images/005_socialaouth.png
Create a New Application

Company Name: "
GeoSolutions SAS. v

GeoSolutions SAS.
IGAD
Create a new Company

_images/006_socialaouth.png
My Applications

Create a New Application

Company Name:*
GeoSolutions SAS. v

Application Name:*

GeoNode org

Application Descriptior

GeoNode OAuth? Provider

Application Logo:*

GeoNode lect File to Upload

Application Use:

Groups and Collaboration v

Website URL:

httpiigeonode geo-solutions it

Business Emai

alessio fabiani@geo-solutions it

Business Phone:".

12345678

have read and agree to the Linkedin API Terms of Use.

o Cancel

_images/011_socialaouth.png
Home > Social Accounts > Social applications

Select social application to change
v]|Go| 0 of 2 selecte

Action: | ccceeceee

Facebook

[m] Linl(@jlln

2 social applications

0o

_images/012_socialaouth.png
Change social application

Provider:

Client id:

Secret key:

LinkedIn v

LinkedIn

App ID, or consumer key

API secret, client secret, or consumer secret

_images/009_socialaouth.png
niip-iigeonode.geo-solutions. liaccountiinkedin/logi

OAuth 1.0a

Default "Accept” Redirect URL:

Default "Cancel” Redirect URL:

.- JE

_images/uom-zoom1.png

_images/010_socialaouth.png
Authentication Keys

Cllntsore:. QD

Default Application Permissions

_images/unpublish_content.png
@ s published
‘Shoud tis resaurce be publshed and searchable?

_images/oauth019.png
Available

Selected

basic
geonodeAnonymousFiter
geonodeCookieFitter

EEEE

geonode-oauth2
rermernberme
form
anonyrmous

_images/updateprofilelink.png
address of the electronic mailbox of the responsible organization or individual
Keywords

A space or comma-separated list of keywords

Update profile

_images/oauth018.png
Filter Chains
© add service chan
© Add HTHL chain

b wen fwelof**, fgwerest/web) ™,/

weblogin i_spring_secuity_check, fi_spring_security_check/,/

weblogout fi_spring_security_logout,fi_spring_security_logout/,

rest Jrestj**
gwe Jawcjresti**
default ”~

> > Results 106 (out of 6 items)

_images/uom-zoom2.png

_images/013_socialaouth.png
facebook for developers] Prodotti Documenti Strumentieassistenza Novita Video Coca Q Analytics | Lemieapp v

Ricerca appicazion + Aoy

avp

sgianar

IGAD GeoNode TestApp
Stat: ® Infase di svippo Stat: @ Atva

© Facebook Login
Utimo sggomamento: 20 ug, 2015 0401 pm

© AP Pages

_images/oauth021.png
Available = Selected

=
geonodeAnanymousFiter o~ [basic
geonadeCookieFilter " geonode-oauth?

1| anonymous
[LL [anony

_images/upload_layer.png
Upload Layers

Permissions
Who can view 2

@ Anyone

The following users:

or select them one by one: Choose users...

Choose Files | No filechasen The following groups:

Choose groups...

Files to be uploaded

Select the charset or leave default Who can download 2

| UTF-8/Unicode 3

Who can change metadata for it?
(S Upload files Who can edit data for this layer?
Who can edit styles for this layer?

Who can manage it? (update, delete, change
permissions, publish/unpublish it)

_images/014_socialaouth.png
Crea un nuovo ID app

Inizia lntegrazione di Facebook nella tua app o nel sito Web

Nome visualizzato

IHP-WINS-DEV

Indirizzo e-mail di contatto

alessio fabiani@gmail.com

Procedendo, accett le Normative della Piattaforma Facebook Annulla w

_images/oauth020.png
Eanththad O LELREIVEL JELSEIVEL.aUH
geonodeAuthProvider orggeonode. secity. Geoa

<< < (1> [>> Resdts1to3 (out of 3 items)

Provider Chain

Available -

geonodeAuthProvider =

_images/upload2.png
IEGEIERERY L1000 LAvens |
UPLOAD LAYERS e sttt

© Anyone) Any registered user
Only users who can edit

1
i Drop files here b oo canaat it
1

© Any registered user
Only the following users or groups:
or select them one by one:

Nofile chosen

Choose one or more users.

'Who can manage and edit this data?

Choose one or more users.

FILES TO BE UPLOAD!

SAN_ANDRES_Y_PROVIDENCIA_POI ESRISHAPEFILE

+ san_andres_y_providencia_poidbf Remove.
+ san_andres_y_providencia_poiprj Remove.
« san_andres_y_providencia_poishp Remove.
+ san_andres_y_providencia_poishx Remove.
Select the charset or leave default
UTF-8/Unicode v

_images/oauth012.png
Security Settings

Configure secuity settings

Acive rol service

geonode REST role service ¥
default

) Encrypt web admin URL parameters

Passuord encryption

Weak PBE v /A No strang cryptography aval

save | Cancel

_images/ubuntu_vm_setup_6.png
Oracle VM VirtualBox Manager - @

File Machine Help

{& @ v E’ - $es Details | (@D Snapshots

New ~ Settings d Sstart

S —
®
LIS ET Name: Ubuntu

Operating System: Ubuntu (32-bit)

System Ubuntu

Base Memory: 4096 MB

Boot Order: Floppy. Optical, Hard Disk

Acceleration: VT-x/AMD-V, Nested Paging, PAE/NX,
KVM Paravirtualization

Display
Video Memory: 12M8
Remote Desktop Server: Disabled
Video Capture: Disabled
Storage

Controller: IDE
IDE Secondary Master: [Optical Drive] Empty
Controller: SATA
SATA Port O: Ubuntu.vdi (Normal, 30,00 GB)

B Audio

Host Driver: PulseAudio
Controller: ICH AC97

& Network
Adapter 1: Intel PRO/100O MT Desktop (NAT)
& uss

USB Controller: OHCI, EHCI
Device Filters: 0 (0 active)

Shared folders

None
@ Description

None

_images/oauth011.png
Security

& sejtinas
U a

ntication

‘Configure global security settings

& Users, Groups, Roles
b=,

_images/ubuntu_vm_setup_5.png
Please choose a virtual optical disk file

B (n- N

Location: ‘ubunlu—14.04.3—desklo|7l3BS.EO

Places. Name

Modified A
Q search 5) VBoxGuestAdditions_5.0.4.is0 58,8MB mercoledi
@ Recently Used | (3] ubuntu-12.04.5-desktop-i386.iso 792,7MB_ mercoledi
ly op-i
B9 alpa B ubuntu
ubuntu-14.04.3-custom-amd64.iso 14GB martedi
[& Desktop
5) ubuntu-12.04.5-desktop-amd6a.iso 794,8MB 28/09/2015
L File System P
@np ubuntu-14.04.3-desktop-amd64.iso 11GB 28/09/2015
5) ubuntu-15.04-desktop-amd64.iso 12GB 10/07/2015
(& FACTORY_.I p-
archlinux-2015.07.01-dualiso 677,4MB 10/07/2015
[& Documents
&3 Music [5) Cent0S-7-x86_64-Minimal-1503-0Liso 666,9MB 01/04/2015
[Pictures
& Videos
[Downloads

All virtual optical disk files v
Open

_images/oauth014.png
Authentication Filters

4] Aéﬁ new
© REbve selected

_images/ubuntu_vm_setup_8.png
ing] - Oracle VM VirtualBox - @ x

File Machine View Input Devices Help

© Install

Welcome

Bahasa Indonesia
Bosanski

Catala

Cestina

Cymraeg

Dansk

Deutsch

Eest e

Espanol Try Ubuntu Install Ubuntu
Esperanto —
Euskara
Francais

Gaeilge Orif you're ready, you can install Ubuntu alongside (or instead of) your current operating system. This
Galego shouldn't take too long.

You can try Ubuntu without making any changes to your computer, directly from this CD.

Hrvatski
islenska Youmay wish to read the

BO& @ E0EE @G @ Right Crl

_images/oauth013.png
Security
& settings
U Authentication
Palords
& Us{ Authentication providers and et

(# Data

_images/ubuntu_vm_setup_7.png
Ubuntu [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

Ubuntu 14.04

BRF P 0= @ @S @ Right Ctrl

_images/oauth016.png
New Authentication Filter

Create and configure 3 new Authentication Fiter

I2EE - Delegates to servist container for authentication
uthenticates by lacking up for a valid Ge

Gentipde OLTH2

_images/oauth015.png
Authentication Filters
© add new
© Remove selected

<<

Name. Type
anonymous Anonymous authentication
basic Basic HTTP authertication
farm Form authentication

geonode-oauthz
geonodeAnonymousFiter
geonodeCookieFiter

rememberme

Authentication using a Geohiode OAuth2
org.geonode. secrity. Geohode AnonymousProcessingFiter
org.geonode. security. GeohiodeCookisProcessingFiter

Remember me authentication

< 10> >> Results 1ta7 (out of 7 items)

_images/ubuntu_vm_setup_9.png
ing] - Oracle VM VirtualBox i o o

File Machine View Input Devices Help

© Install

Preparing to install Ubuntu

For best results, please ensure that this computer:

of has atleast 6.5 GB available drive space

o is connected to the Internet

Download updates while installing

Ubuntu uses third-party software to play Flash, MP3 and other media, and to work with some graphics and wi-fi hardware. Some of this
software is proprietary. The software is subject to license terms included with its documentation.

Install this third-party software
Fluendo MP3 plugin includes MPEG Layer-3 audio decoding technology licensed From Fraunhofer lis and Technicolor SA.

Continuk,

BO& P E0EE @G @ Right Ctrl

_images/oauth017.png
Authentication using a GeoNode OAuth2 geonode-oauth2

Authenticates by looking up for a vaid Geohode OALth2 access_token key sent as URL parameter

Name
geonode-oauth2

©OAuth2 provider connection

Enable Redirect Authentication EntryPoint

Login Authentication EndPoint
/i_spring_oauth?_geonode_login

Logout Authentication EndPoint
ii_spring_oauth_geonode_logout

Force Access Token URI HTTPS Secured Protocol

Access Token URT

_images/015_socialaouth.png
EOJEPRAIN o 76ss06103770004 -+ Viuszza Arscs

f—
()

inpesiazens Riepilogo
IHP-WINS-DEV o

Versone deraPln 1Dapp
2 I

Cnave segreta

_images/018_socialaouth.png
Change social application

Provider: Facebook ¥

Name: Facebook

Client id: L

App ID, or consumer key

Secretkey: NG

API secret, client secret, or consumer secret

_images/019_socialaouth.png
&R 1HP-WINS-DEV

Dashboard

Impo@mnm

Avanzate

_images/016_socialaouth.png
IHP-WINS-DEV o

Questa applicazione & in modalita sviluppatore e pub essere usata solo dagli amministratori, dagli sviluppatori e dai tester

dellapplicazione (2]

Versione dell'API 21 D app
212]
Chiave segreta

“%

_images/017_socialaouth.png
Select social application to change

Action: [————————- v | Go| 0 of 2 selected

0o

o

2 social applications

_images/022_socialaouth.png
Seleziona piattaforma

Giochi Web di
Facebook

Sito Web

_images/023_socialaouth.png
Sito Web

URL del sito
http://igad-dev.geo-solutions. it/
http://igad-dev.geo-solutions.it/

_images/020_socialaouth.png
1D app

Nome visualizzato

IHP-WINS-DEV

Domini app
hitp/igad-dev.geo-solutions |

hitp:/figad

v.geo-solutions.it/

Normativa sulla privacv per Ia finestra di dialooo di a

cesso e pel

_images/ubuntu_vm_setup_13.png
Ubuntu [Running] - Oracle VM VirtualBox - B x

File Machine View Input Devices Help

Install

Have fun with your photos

Shotuels 3 handy photo manager that SRS
isready for your gadgets. Connect a v

camera or 2 phone to transfer your Duastmport
photos,thent's easy to share them and - 5 comeres

keep them safe. IF you're feeling @rssstoageconesa
creative, you can try lots of photo apps J Clomts

from the Ubuntu Software Center. et]

Included software
Shotwell Photo Manager

Supported software &
&, aMPmage Editor S
[Pitivi Video Editor

peraure:

» Copying

& @ @ @ Right Ctrl

_images/021_socialaouth.png
Domini app Inainzzo e-mail

i oo < | assioavan

URL Normativa sulla privacy URL delle Cond
Normativa sulla privacy per Ia finestra di dialogo di accesso € per i de Condizioni d'u
Icona dell'app (1024 x 1024) Categoria
Scegli una cate
aj Ottieni maggiori
1024 x 1024

+ Aggiungi piattaforma

_images/oauth008.png
Role Services
© add new
© Remove selected

Name. Type Administrator Role
defauit Default XML role service ADMIN
geonode REST role service AUEFKEY REST Role Service ROLE_ADMIN

<<« (1> [>> Resuts 1 to2 (out of 2 items)

_images/ubuntu_vm_setup_2.png
Create Virtual Machine

Hard disk

If you wish you can add a virtual hard disk to the new machine. You
can either create a new hard disk file or select one from the list or
from another location using the folder icon.

If you need a more complex storage set-up you can skip this step
and make the changes to the machine settings once the machine is
created.

The recommended size of the hard disk is 8,00 GB.

Do not add a virtual hard disk

© [Create a virtual hard disk now]

Use an existing virtual hard disk file

<Back Create Cancel

_images/ubuntu_vm_setup_14.png
Ubuntu [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

Installation Complete

Installation is complete. You need to restart the computer in order to use the

newinstallation.

Restart Now
=T

_images/024_socialaouth.png
yma

[LCTEM salva modifiche

_images/oauth010.png
AuthKEY REST Role Service

Role senvice from REST endpoint

Settings | Roles

Name

geonode REST role service

Adriistrator ole
ROLE_ADMIN v
roup adrministrator role

ROLE_ADMIN v

REST Role Service Settings

Base Server URL

hitpi<geonode_host_url>
Roles REST Endpaint

Japiftoles
Adrin Rol REST Endpoint

JapifadminRole

Users REST Endpaint

Japilusers
Roles J50N Path

5.010ps
adrin Role J5ON Path

5 adminRole
Users 50N Path

_images/ubuntu_vm_setup_4.png
Ubuntu - Settings

Storage

Storage Tree Attributes

@ Controller: IDE Optical Drive: |IDE Secondary Master || (2):
==

B Audo @ Controller: SATA
@P Network Ubuntu.vdi
£ Serial Ports

& uss

Shared Folders

Information

=] User Interface

BBee

[hep | | cancet || ok

_images/oauth009.png
New Role Service

Create and configure 3 new Rols Service

XL - Defauit role service stored a5 XML
I2EE - Role servie extracting roles from web.ari

AUhKEY REST - Role service from REST endpoint
10BC ﬁ service stored in database

LDAP - Role service stored in LDAP repositary

_images/ubuntu_vm_setup_3.png
File

IR

New Settings

% Ubuntu
© Powered Off

Machine Help

.

Start.

Display the virtual machine settings window

Oracle VM VirtualBox Manager —1

{27 Details

(® snapshots

E General B Preview

Name: Ubuntu

Operating System: Ubuntu (32-bit)

System Ubuntu

Base Memory: 4096 MB

Boot Order: Floppy, Optical, Hard Disk

Acceleration: VT-x/AMD-V, Nested Paging, PAE/NX,
KVM Paravirtualization

Display
Video Memory: 12M8
Remote Desktop Server: Disabled
Video Capture: Disabled
Storage
Controller: IDE
IDE Secondary Master: [Optical Drive] Empty

Controller: SATA

SATA Port O; Ubuntu.vdi (Normal, 30,00 GB)

B Audio

Host Driver:
Controller:

PulseAudio
ICH AC97

& Network
Adapter 1 Intel PRO/1000 MT Desktop (NAT)

& us

USB Controller:
Device Filters:

OHCI, EHCI
0 (0 active)

Shared folders
None
@ Description

None

_images/oauth001.png
GeoNode
(OP)

_images/ubuntu_admin_8.png
@

)
o)
B
=

A

oA

Terminal

geo@geonode: ~
geo@geonode:~$

GeoNode - Training [Running] - Oracle VM VirtualBox

1ty B o) 1816 B

_images/notification_settings.png
Notification Settings

Note: You do not have a verified email address to which notices can be sent. Add one now.

Notification Type Email

User following you @
another user has started following you

Request to download aresource @
Arequest for downloading a resource was sent

Layer Created @
Alayer was created

Layer Updated @
ALayer was updated

Layer Deleted @
AlLayer was deleted

Comment on Layer @

Alayer was commented on

Rating for Layer @
Arating was given to a layer

_images/ubuntu_admin_7.png
GeoNode - Training [Running] - Oracle VM VirtualBox

1y B o) 1815 B

Filter results »

Applications

Terminal

f

i Reference

—] m

GNOME Terminal

See more scopes...

_images/oauth003.png
Django OAuth Toolkit

Access tokens
Applicat @ns
Grants

Refresh tokens

#add
#add
#add
#add

2 Change
2 Change
2 Change
2 Change

_images/ubuntu_vm_setup_10.png
ing] - Oracle VM VirtualBox

File Machine View Input Devices Help

© Install

Installation type

This computer currently has no detected operating systems. What would you like to do?
) Erase disk and install Ubuntu
Warning: This will delete all your programs, documents, photos, music, and any other files in all operating systems.
Encrypt the new Ubuntu installation for security
You will choose a security key in the next step.

Use LVM with the new Ubuntu installation
This will set up Logical Volume Management. It allows taking snapshots and easier partition resizing.

Something else
You can create or resize partitions yourselF, or choose multiple partitions For Ubuntu.

install Noyy

& @ @ @ Right Ctrl

_images/oauth002.png
Menu

& Upload Layers

& Profile
Recent Activity
@ Inbox
¢ Announcements
@ Remote Services

@ Invite User

& GeoServer

L Ad%

@ Help

_images/ubuntu_vm_setup_1.png
Create Virtual Machine

Name and operating system

Please choose a descriptive name for the new virtual machine and
select the type of operating system you intend to install on it. The
name you choose will be used throughout VirtualBox to identify

this machine.

Name: |Ubuntu

Type: |Linux v
Version: |Ubuntu (32-bit) v
Next > Cancel

Expert Mode

_images/oauth005.png
GeoServer Logedt n 25 e, | EjLogout |

Welcome

welzome

About & Status

2L Server Status

=] Geoserver Logs

=2 Contact Information This Geoserver belongs to —
#bout GeoServer

8 Process status Wes
i— © actd layers 100
110
Data 2 Stores © add stores i1
[Layer Preview
Ipert Date 1 Workspaces © create workspaces 11
[workspaces 201
(3 stores /A Please read the file security/masterpw.info and remave it afterwards. This fle s a WS
) Layers security risk. 100
Layer Groups 110
D styes /i, The default user/group service should Lse cigest password encodng, 200
(& Backup & Restore WS
/i The administrator password for this server has not been changed from the default. Tt s Ll
Services highly recommende that you change it now. Change it 130
@& wuts WPS
@ wes /iy No strong cryptography avaiable, instalation of the unrestricted policy jar fies is 100
@ wrs recommendedt S
& wis 100
& wes This GeoServer instance is running version 2.9-SNAPSHOT. For more informtion please WS-
contact the adminsrator. 111
Settings WMTS
100

Global

_images/ubuntu_vm_setup_12.png
Ubuntu [Running] - Oracle VM VirtualBox S

File Machine View Input Devices Help

Install

Who are you?

Your name: | GeoSolutions L%

Your computer's name: | geo <

The name it uses when it talks to other computers.

Pick a username: | geo
Choose a password: ||
Confirm your password: | Confirm password

Login automatically
Require my password to login

Encrypt my home folder

B @& & =@ @ @ @ Right Ctrl

_images/oauth004.png
Change application

Client i

User:

Redirect uris:

Client type:

Authorizatio

n grant type:

Client secret:

Name:

Jrcha2oPY3akmendmgUTYrs9gezlaoy2:

2 Q admin

http://localhost:8080/gzaserver
hitn://localhost:a080/geasarver/
hitpi//<hast_name_or_jn>/azaserver
biipi//<hast_name_ar_in>/gsnserver/

Canfidential ¥
Autharizatian code v

rCnpStxobUoB3ERQEBIMBFYI3QTS 265!

Geaserver

Skip authorization

_images/ubuntu_vm_setup_11.png
Ubuntu [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

Install

Keyboard layout

Choose your keyboard layout:

Icelandic
Indian Italian - Georgian (Italy)
Iraqi Italian - Italian (1BM 142)
Irish Italian - Italian (Macintosh)
Italian - Italian (US keyboard with Italian letters)
Japanese Italian - Italian (eliminate dead keys)
Japanese (PC-98xx Series)
Kazakh

Khmer (Cambodia)

Type here to test your keyboard

Detect Keyboard Layout

Back Contint|

& @ @ [@ Right Ctrl

_images/oauth007.png
Users, Groups, and Roles

Hanage user group and role servicss

Services | Users/Groups | Roles

User Group Services
© addrew
© Remove selected

Role Services
© addpew
@ Rertie selected

_images/oauth006.png
Security

& settings
U Authentication

By
@
B

Passwords

s, Groups, Roles

Manage users, groups, and roles

(8 WPS security

ot GeoFence

i GeoFence Data Rules
i GeoFence Admin Rules

_images/025_socialaouth.png
&R HP-WINS-DEV

Dashboard

Impostazioni

Avanzate

Ruoli
Awvisi

Analisi dellapplicazione

+Aggiungi prodotto

_images/026_socialaouth.png
Facebook Login

Il prodotto per 'accesso social numero uno
al mondo.

o sames (Y

_images/029_socialaouth.png
0 Accesso client OAuth
L____| Avilita il flow standard del token client OAuth. Proteggi la ti
di reindirizzamento dei token consentiti con le opzioni di s¢

Accesso a OAuth Web

L | Abilita Il'accesso al client OAuth basato sul
web. [?]

‘j‘ Accesso OAuth al browser incorporato
L-="_1 Abilita 'URI di reindirizzamento per il

rnntenlin Anl hrmenr nar Fassneen Al slinnt

_images/030_socialaouth.png
URI di reindirizzamento OAuth validi

1= Accesso dai dispositivi
Abilita il flusso di accesso del client OAuth
per dispositivi come smart TV [?]

_images/027_socialaouth.png
questa app.

00006

Android Altro

_images/028_socialaouth.png
Facebook Login

Impos'@zioni

_images/033_socialaouth.png
4 Message User

@ Edit profile

- Connenid social accounts

B2 Associated e-mails

& Set/Mhanne naccwnrd

_images/vector1bis.png
GeoServer E——

Welcome

welzome

About & Status

© #bout GeoServer
“This GeoServer belongs to Service Capabilities

Data

B Layer Preview This GeoServer instance i runing version 2.4-RC2. For more information plesse contact
the adrmiristrator.

wes
100
110
111
11
WFS
100
110
200
Wi
111
130
™
100
WHS-C
111
WHTS
100

Demos

_images/034_socialaouth.png
Account Connections

You currently have no social network accounts connected to this account.

Add a 3rd Party Account
MCnnneclqummrn

(B3 connect with Facebook

_images/vector10.png
Layers

Manage the layers being publshed by GeoServer
© Add 3 new resource.
@ Remove selected resources.

<121 Resuts 1t 16 (out of 16 tems) + Search

I~ Type workspace Store Layer Name Enabled? Native SRS
™ 1 geosoltions Mainrd Mainrd v EPSGi2876.
[T M geosolutions BoulderCityLimit BoulderCityLimits. v EPSGi2876.
™ M geosolutions Buidings0S0714 Buildings050714. v EPSGi2876.
T M geosolutions Parcels Parcels v EPSGi2876.
™ @ geosolutions pointim pointim v EPSGi2876.
T V1 gessolutions streets Strests v EpsG:2876
™ 1 geosolutions Streets Strests. v EPSGi2876.
r geosolutions Strests Strests. v EPSGi2876.
™ M geosolutions t_2010_08013_arealm t_2010_08013_arealm v EPSGi2876.
[T M geosolutions t|_2010_08013_areawater t|_2010_08013_areawater o EPSGi2876.
™ 11 geosolutions t_2010_08013_linearwater t_2010_08013_linearwater /' EPSGi2876.
[T o geosolutions t_2010_08013_pointim +_2010_08013_pointim v EPSGi2876.
™ M geosolutions H_2010_08_countyl0 t_2010_08_county10 v EPSGi2876.
U1 gessobtions Tralls Trails v EpsG:2876
™ M geosolutions Wetlands_requistory_area Wetlands_requlstory_area o EPSGi2876.
T M geosolutions Zoning Zoning v EPSGi2876.
<1221 Resuts 1t 16 (out of 16 tems)

_images/031_socialaouth.png

_images/palette1.png

_images/vector2bis.png
Welcome
‘Welcome:

This GeoServer belongs to

30 Layers © add layers

18 Stores [3

1 Workspaces © Create workspaces

_images/032_socialaouth.png
Menu

& Upload Layers

Prlﬁ“ﬁle

@ Regent Activity

Inbox

Notifications

Thuite llcare

_images/overpass_turbo.png
Share Export Save Load Settings Hep OVErpass

<osm-script>
<union intos"_">
<bbox-query {{bbox}} />
<recurse into="x" type="node-relation"/>
<query type="way">
<bbox-query {{bbox}}/>
<has-kv k="building" va"yes"></has-kv>
</query>
<recurse into="x" type="way-node"/>
<recurse type="way-relation’/>
</union>
<print mode="meta"/>
</osm-script>

+

s %|Blo|v

_images/vector2.png
Welcome
‘Welcome
This GeoServer belongs to GeoSolutions.

Add layers

1 Workspaces © Craate workspaces

_images/firebug-debug.png
& (@ s1oha.cevgeonode.org/search/form/

v Q] [Bv coe

GeoNode

SEARCH

Search for:
Allof tewos | oy
Exclude words from your search
Metadata: 5 B
Since thisdate v mm dq 5
Yyyyy-mm-dd)
Readalpha.dev.geanode.org

0 LT RS

Consels WL 0S5 Serph | Do e Gt

| categories O Mapsonly O Layersonly O Users only

(=[6[o]

13

utilsjs ~ || <

@ fire - firwith < ready - DOMCo)> |

@ b 9 @ |Weeeh~ | stack Breskpoints

1 s(function() { A
2 71 Topbar active tab support this

o : $(".main-nav 1i").removeClass("current”); class,
4
S /7 SC[reltooltip]').tooltip({placement:"1eft")); arguments
6 Window
7 var class Jist = $("body").attr("class").split(/\s+/);

> s $.each(clase [D
s var sel + iten

10 $(selector). addClass(

11 n;

12 s("#login-link').click(function(e) {

13 e.preventDefault();

14 var href = $(this).attr("href');

15 if (nref[0] == *77) {

16 $.post(hrer, {3, function(d.s,x) {
17 window. location. reload();
18)

1) else ¢

New watch expression.

Document /searchform/
["adv-search”, "search”]
[function() 1

Window /search/form/

_images/palette3.png

_images/vector4.png
_— - e
New Vector Data Source

[ER——

o
S ot 1 0)
s store o
[Totm racony =] it e vk
ok Sz s
gz e o
weaso S
Gormectin arametes o e |
S intim.st 15maganiz 1049 FEES
fle datalboulderMaintd sho. Bows,. | P
B svoesa =
o 200 o0 et T
R 250 0 et SegmRie o
o i e T
(e " e 4_2010_02013_portinshp 15mag2012 1045 Bx
P cache and reuse memary s 1_2010_08_county10.shp. 15mag2012 1045 2
o Sz s
- T S
[e o

_images/filtering6.png

_images/palette2.png

_images/vector3.png
New data source

Choose thetypeof tasource you wis to confiure

Vector Data Sources

5 Diectoy of spatal s Tkes dirctory of spatial tafiles an exposes 25 dta store
1 PostGS - PostIS Database
5 PostGS (DD - PostIS Database ONDY)

s contaiing Festur informaton

reresens conction t a i Festure Server, Thisconaction provices scces o the
Festures publishe by the sever, and th anifty o peform transactons o the sarver (when supported / allowes).

Raster Data Sources

8 i - A Grd overage Format

B GeoTIFF - Tagoed Image Fle Fomat with Geogaphic information
5 G0p030 - G0po30 Coverage Fomat

B ImageNosi - Image mossicking phigin

B ImageosscIOBC - Image mosacking/pyramidal b pugin

5 Imagepyrami - Inage pyamida plugin

B P2K (Direct) 2K (Direct) Coverage Format

1 Wordiage - A aste il accompanied by a spatal dtafle

_images/firebug-html.png
[(@ atoha cev.geonode.org

GeoNode

haiti_poi
from admin, 14 hours, 14 minutes ago

No abstract provided
0 views | Average rating 7 1 % ¢ &

haiti_location

H(—‘mﬂkvtshitmu:uu

Bike Plan Map

No Image Available

Bike Plan Map
from admin, 3 days, 18 hours ago

3 views | Average rating 1 1 & 7

article - section.widget - divspang - divrow - divspani2 - divow - dv.container

<articler

E

5 <a Wer="/lavers

.list article {
border-bot tor
margin-bot tor

1px solid #CCCCCC;
20px;

/4.t ntmlody/civ{2)/iv/civ/div/iv{2) divsection/article[] (hecp/fuwn.w3.0rg/1999/xheml) |

px;

<Ing SFe="RTEpT
Igeoserver
/ums/reflect?layers=it.geosolutions:h
i_naturalawidth=1598height=638
Format-inage/pngs">

<t

B <div class="details">
<a class="btn btn-info
download" data-toggl
nload-42">Download

a href="/layers

/it.geosolutions:haiti_natural™

div class="neta">

‘modal” href=

STphs - dev. geonode or g

Position: relative;
¥

article, aside, details,
figeaption, figure,
footer, header, hgroup,
nav, section {

display: block;

base.css (line 9)

¥

article, aside, details,
figeaption, figure,
footer, header, hgroup,
nav, section {

sisplay: block;

bootstrap.css (line 10)

_images/palette5.png

_images/vector6.png
Edit Layer
o e

geosolutions:Mainrd
PO AP ——

Data | Publshing

Basic Resource Info

Name.
e

e
Vot

Absteact

Keywords
Current Keywords

o
=] Ramovs salacted

New Keywrord

Vocsbulary

Ad Kapword

Metadata links
[P

RG] Mo ol FSOC s TC211 o bk o WHS 111 coblee

Coordinate Reference Systems

e — T T T S
T] 5308304888 | Cobendo Nt (05
S b

Wﬂ Set the declared CRS to

“EPSG:2876".

_images/firebug-dom.png
alpha dev geonode.org/Loye

itgeosolutionsirigated_areas

HOME LAYERS MAPS

DOCUMENTS

PEOPLE

SEARCH

IRRIGATED _AREAS

Download Layer~ [ll Download Me

@ a@er- «

ERalnd H

i Tttty N\
Turkmenistan - ¥
= Ashgabat °
- e e ot
E ofn S °©
b Wasthad
ot O tehian o
(ol "™ o
o [
taban e
S O™ \ g
pfa oS €T .
i tipiana =5
pn oo e SR TS
e o A o Yo
stz PR ol AT
2 Pakistan ot e’ (OO N
s o 7 U Lnewsen
i st \ O] 1: 17471
Ties Courtesy of ao0uest [, 800 gre.sstos G " L ™ = 1

| Console HTML CSS Script | DOM v | Net

Object { registerLinks=function() }

Object { VERSION_NUMBER="Release 2.13 dev’,
/geoexplorer/ext. ..ayers/thene/default/ing", more...}

Object { query={...}, uti
Object { ColorManager=function() }

singleFile=true, ImgPath="/static

Selectz
styler

st [hel, pert, rw,WI,SW,SA, SMFW,cfg,ci,h,u,hee,p,dpo,us,cu,cd,sws, ah,H,CPwatt, fm,RPMQ,] {
11, “hel=10, FW-[2], more...}

__gapi jstiming_ Object { load=a, Ppk={...}.

_callback OpenLayers_Layer Bing 181 undefined

_callback_OpenLayers_Layer Bing 25 undefined

_callback_OpenLayers_Layer Bing 27 undefined

_callback_OpenLayers_Layer Bing 29 undefined

_eventCachelD “ext-gen2_eventCacheID_1"

Object { mapitems=[2],
[Object {_handiers:
o}, more..} 1

events={..

. layerSources={...}, more...}
. displayClass="01ControlNavigation",

zoomWheelOption:

_images/palette4.png
canyon B Boulder

S & ‘ArapahoeAv: 5
‘ ‘!ﬁ
- [% \ %@u

Boulder
Mountain Par}
S| \‘%
I
I

_images/vector5.png
New Layer
Addanew oer

You n reats now fetur type by manualy Confusng the atte s and tyoss. Create new feature type..
Here 1 3 6t of resources contaned thestore Marr Cck on theare you weh 0 confiare

)9 Resls 1101 (out o 1 ors) + Search

Rl 1101 (out of 1 oms) ! -

_images/files_to_be_uploaded.png
streams

ESRI Shapefile

e streams.cst Remove
e streams.dbf Remove
e streams.prj Remove
e streams.shp Remove
e streams.shx Remove

Select the charset or leave default

| UTF-8/Unicode ¢

Clear Upload files

_images/open_terminal.png
GeoNode - Training [Running] - Oracle VM VirtualBox

Ubuntu Desktop ty B o) 1556

Terminal

”
B

N
%

oD

_images/using_workspace.png
3. Specify the target for the import

Workspace,

Greato now &) ne

_images/externallayersadded.png
HOME LAYERS MAPS

[Emap~ Eyprint | @ identiy £ Query = Measure ~ SGEat -

Layers

S|4 4 3=

©- 04,9
4 Overlays
9] San Andres Y Providencia Natural
]
9]San Andres Y Providencia Water

9]San Andres Y Providencia Coastiine

/

9]San Andres Y Providencia Highway

Tl

9] San Andres Y Providencia Administrative:

4]

Thos Courtsy of iapcuest [

(RS

0

[4
2

Wpowa Zoala
s

1:60885143 |,

_images/oauth033.png
Provider Chain

Available Selected

defaut
genfence

geonodeAuthProvider <

_images/using_recent.png
Recent Imports @ Remove

Import ‘Statu Last Updated
oo PENDING. & minutes ago

Resuls 110 1 (outof 1 tems)

_images/filtering2.png
Scale = 1: 270 191.87109, 9385743
Click on the map to get feature info

_images/oracle_start.png
New data source

Chaose the type af data source you wish to configure

Vector Data Sources

iDirectory of spatial les (shapefiles) - Takes a drectory of shapefies and expases i a5 a data stare

CAMierosoft SQL Server - Microsoft QL Server
AMicrosoft SQL Server (JNDI) - Microsoft SQL Server (NDI)

_images/filtering1.png
eosolstorsrtm atm Opertayers o

eoslsorsine shaded Nt Bt 1 wen S et Opentarers o

= S oo LG
arosbtors ok b octereed ot o cotrt e
oo Oz o
st E—

Reslts 110 22 (out of 22 tems)

_images/oracle_conf.png
New Vector Data Source

#dd a new vestor data saurce.

Oracle NG (D)
Oracle Database (NDI)

Basic Store Info

Workspace *

test i
Data Source Name *
e

Description

‘Shows haw ta retrieve & connection poal fram JNDI

) Enabled

Connection Parameters

indiReferenceName *
Javacomplenvidbcioraiocal
schema

DBUSER

_images/vector1.png
GeoServer
Welcome

¢

i G gy i 242t s
P ety

[

_images/filtering4.png
Scale

270M 91.48828, 112.46288

_images/filtering3.png
Scale = 1:270M

189.22266, 98.09570

_images/overpass_export.png
Heb overnass-turbo @,

[Export x

Map
as png image
as interactive Map

as Openlayers Map ¥ (only for queries returning
valid OSM-XML)

current map view (bbox, center, etc.)

Data

raw link to AP interpreter &
as geoJSON

Query

as text

convert to xml ¥

convert to (compact ¥) OverpassQL?

load into JOSM (only for queries returning valid OSM-
XML with meta data)

_images/filtering5.png
Scale

Z7om

50.68350, 112.46288

_images/GeoServer-JAI-Settings.png
GeoServer

Server

G Server Status
GeoServer logs
23 Contact Information

Global Semnis

B2 Coverage Access Settings.
About GeoServer

Services

@ owc
& wes
& wrs
& wis

Data

Workspaces

Stores

Layers

@ Layer Groups
D styles

Security

&8 Users
Data security

B service security

3 catalog security

Demos

Layer Preview

Logged in as admin. |] Legout

JAI Settings

Administer settings related to Java Advanced Imaging.

Memory Capacity (0-1)
05

Memory Threshold (0-1)
075

Tile Threads

O mage /0 Caching

S

Native Acceleratic

& PNG Native Acceleratic

Mosaic Native Acceleration

Submit Cancel

_images/GeoServer-Web-Map-Service.png
GeoServer

Server
i Server Status

GeoSenver logs
23 Contact Information
Global Settings
I JAI Settings
2 Coverage Access Settings.
© About GeoServer

Services

® owc

& wes
E WS

Data

Workspaces
Stores
9 Layers

@ Layer Groups.
D styles

Security
8 users

Data security
B Service security
3 catalog security

Demos

Layer Preview

Web Map Service

Manage map publishing

Service Metadata
& Enable wis

U strict CITE compliance

http://jira.codehaus.org/secure/BrowseProject jspz

Online resource

http://geoserver.org
Title

My GeoServer WM.
Abstract

This is a description of your Web Map Server.

Submit Cancel

Logged in as admin.

&

Logout

_images/035_socialaouth.png
Account Connections

You can sign in to your account using any of the following already connected third party accounts:

'i Facebook account: Alessio Fabiani

ﬂ LinkedIn account: Alessio Fabiani

Remove

_images/accountsettingslink.png
Actions

Edit profil information
Account Settings
Change password
Upload new layers

Create a new map

_images/add_test_user.png
Home » Auth > Users > Add user

Add user

First, enter a username and password. Then, you'll be able to edit more user options.

Username: test_user

Requied. 30 characters o fewer. Lettrs,digs and @

Password: —

Password confirmation: | e

Enter the same password as above, for verfiation

Saveand acd antver | | Save and conieesing | [E)

_images/access_geoserver.png
GeoNode - Training [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help
Firefox Web Browser

Welcome! - example.com - Mozilla Firefox

Welcome!-example.com %

€ localhost

Menu

& Upload Layers

& Profile
@ Recent Activity
Q Inbox
¢ Announcements
@ Remote Services

@ InviteUser

« GeoSerkver
£ Admin

@ Help

oOvRAEPD D JE e

localhost/geoserver/

'l

_images/accountpage.png
ACCOUNT

Email
john@smith.com
Timezone

Americallew_York

Language
Engiish

_images/addgeotiff2.png
New Layer

Add a new layer

Here s 2 st of resources contained n the store '13tde815295_200803_0x6000m .
Cick on the ayer you wish to configure

1> Restits 10 1 (cut of 1 items) A Search
Published Layer name action
13106815205 _200803_0<6000m_c| Publsh

Resuits 10 1 (out of 1 tems)

_images/uploading.png
Your upload has started

E— 20 0

~

_images/add_user.png
Django administration

Home > Auth

Select user to change

_images/oauth028.png
Security

& settings

U Authentication
Passwords

& users, Groups, Roles
(% Data

2 services

(2 WP secuity

¢ GeoFence

i GpoFence Data Rules
it §_bFence Admin Rules

——[Configure data rules for the internal GeoFence server.

_images/using_advanced.png
Advanced Import Settings

Reprojection

@ Enablea
From

Find
o
EPSGi4326 Find

Attribute Remapping

EPSGIWGS B4

© Add

(o] (o]

_images/addgeotiff1.png
S —
Add Raster Data Source

Desapton

GaoTEF
Tagged Imsge P Format vith Geogragh iformatin

Basi store Info
Workspoce o
= 13tde770R10 200803 o0 i 14mag20i2 1211
Dotasource name
130770325 200603 6000t 14map2012 1210
13tde815205_200803_0x6000m_cl = - o
130770340 _20603_ OO 4 1402012 1210
15e815205_20090_5.600m_cl | 15tde7e5250_200803 D600t cf 14msp2012 12.10
P ried 13tde7oS295 200603 6000, i 142052 1211
130e7ESII0_20060 D00t 14map2012 1210
onnection Parameters
s 1304785325, 200603 00T 1 14212 1211

e dtaexample sxnion 131de785340_200603 0A6000M A 14mig 2012 1209
131e600260_ 200603 0R6000M_ Gt 14map 2012 1211
15106800295 200803 e00OM_tf 14map2012 1211
15106800310 200603 EO0OM_cF 14imag2012 12.10
1310600325, 200603 CR6O00M_CLtf 14mag2012 1210

131deB15290_ 200803 0R6000M_GLAF 14mag2012 1211
Lat0e815295 200603 QOO Lt 14map 2012 12.10
131eQ15310 200603 0A6000M LA 14mig 2012 1210

_images/uploadpermissions.png
PERMISSIONS

Who can view and download this data?

Anyone @ Any registered user
Only users who can edit
Who can edit this data?

Any registered user
© Only the following users or groups:

x admin

'Who can manage and edit this data?

_images/example-issue.png
'I'ne no-contlict mode should be the default
beraviour #12395

thewebdreamer opened this issue 3 days ago - 10 comments

: thewebdreamer commented 3 days ago

‘The no-conflict mode should be the default behaviour. Why would a Bootstrap client need to implement
this?

cvebertcommentad 3 days a0

1 believe no-conflict-is-not-the-default is the norm for jQuery plugins?

: thewebdreamer commented 3 days ago

Itis true that it is the norm for jQuery plugins.

Couldn't there be a clash with other jQuery plugins with the current implementation of Bootstrap though?

Labels

Milestone

No milestone

Assignee

No one assigned

Notifications.

@ Subscribe

3 participants.

vl

_images/oauth030.png
Security

& settings

U Authentication
Passwords

& users, Gioups, Roles
(3 Data

B services

(25 WS secuity

¢ GeoFence

i GeoFence Data Rules

- GimiFEncE Admin Rules

Demo| Conigure sdmin ol for the el GeaFence sever

_images/using_directory.png
2. Configure the data source

Choose a e o directory
natural_earth_guickstart/1 10m_cultural Browse.

_images/oauth029.png
GeoFence Data Rules

Configure data rules for the intermal GeoFence server.

© © add new e
*+ © Remove selected rules

Resuits 1 to 1 (out of 1 items)

Resuits 1 to 1 (out of 1 items)

2 Search

_images/using_datasource.png
1. Choose a data source to import from

‘SpatialFiles - Flls from a directory or archive
B8 Mosaic - Rastor fies from a directory composing a mosaic
T PostGIS - Tables from PostGIS database

4 Oracle - Tables from Oracle databas (Install lugin and drivers.)

3 5QL Server - Tables from Microsot SQL Server database (Instal plugin and drivers)

_images/externallayersadd.png
[E]Map- EyPrint | @ dentty g Query f=Measure -

Layers » Available Layers

View avaiatie daa rom:
-Atas Server v

Title 1d
Coast100k-Australian... ea:Coast100k-...
Coast100k-Australian... ea:Coast100k-...
CorallD-14_Acropora... ea:CorallD-14_..
CorallD-15_Acropora... ea:CorallD-15_..
CorallD-ecoregions_... ea:CorallD-eco...
EPA_cassowary-habitat ea:EPA_casso...
GBRMPA_TUMRA ea:GBRMPA_T...
GBRMPA_reefs-dry_... ea:GBRMPAr...
GBRMPA _reefs-gbr_f... ea:GBRMPA ...

&

&

&

&

]

&

&

&

&

y
©Addlayers Done

_images/oauth032.png
Authentication Providers
© add new
© Remove selected

Name. Type
defauit Basic username/password authentication

geofence org.geoserver.geoserver.authentication,auth, GeoFenceAuthenticatiorProvider
geonodeAuthProvider org.geonode.security. GeohodeAuthenticatiorProvider

<< i< (1> [>> Resdts1to3 (out of 3 items)

_images/using_layerlistchecked.png
Import 0

PENDING 8 minues ago 8 minues ago
(4 IUsers/jody/Data/natural_earth/110m_cultural Select: Al |None | Ready
§ Loy Status Actions

)| no_110m_adnin_0_counties » Roady ‘Advanced.

@ ne_110m_admin_0_boundary_lines_land Roagy Advanced.

30 110m_admin_0_tny_countis » Roady Advancos

| ne_110m_populated_places Roagy Advanced.

()3 ne_110m_acnin_0_pacifc_groupings » Roady Advancos

[ne_110m_admin_1_states_provinces_shp. » Roagy Advanced.

Resuls 110 6 (outof 6 tems)

_images/explore_layers.png
Home

Explore Layers

Your selections Clear allfilters.
Enter your text here.. B

HydroMet
Risks
Environment
Ocean

Land
Agriculture

Water

Economy

> KEYWORDS
% DATE

yers Maps Documents

Total: 27

Mostrecent Lessrecent A-Z Z-A Mostpopular

Domi

a soil survey|
Land Cover and Land Use

Land Cover and Land Use

by srinaldo

Dig

Dominica development control boundaries

Land Cover and Land Use
Protected areas and parks
by srinaldo

Belize ecosystem

Geographical and BioPhysical Environment
Ecosystem and Biodiversity (Terrestrizl)

by srinaldo

Ambereric Cave shoreline

_images/oauth031.png
GeoFence Admin Rules

Configure acmin ruies for the internal GeoFence server.

© © add new e
* © Remove selected rules

Resits 0 to 0 (out of O items) 2 Search

Results 0 to 0 (out of 0 items)

_images/using_layerlist.png
Import 0

Status. Created Last Updated
PENDING moments ago moments ago

4 lUsersiiody/Datanatural_earth/110m_cultural Select: Al | None | Roady
m Layer Status. Actions

|3 ne_110m_admin_ Ready Advanced.

| ne_110m_admin_0_boundary_lines_land Ready Advances.

(|3 ne_t10m_admin_0_tiny_countries & Roady Advanced.

© 3 ne_110m_popuiated._places Ready Advances.

(|3 ne_t10m_admin_0_pacifc_groupings & Roady Advanced.

|3 ne_110m_admin_1_sates.provinces_shp » Ready Advances.

Resuls 110 6 (outof 6 tems)

_images/oauth023.png
Available - Selected

=
geonodeAnanymousFiter | [basic
geonadeCookieFilter = geonode-oauth?

| anonymous
LI [anony

_images/uploadform.png
i GeoNode S

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH [)]

EXPLORELAYERS [MUIJKeZ\n]WNG238Y

PERMISSIONS

U P LOA D LAY E RS 'Who can view and download this data?

1 1 @ Anyone Any registered user
1 1 Only users who can edit

; Drop files here | Whocanedit s dats?

1 1 ® Any registered user

P e e e e e e e e e e e = = = = == = = = = = 5 (O Only the following users or groups:

Choose one or more users.

'Who can manage and edit this data?

Choose one or more users.
FILES TO BE UPLOAD!

Select the charset or leave default

UTF-8/Unicode v

_images/oauth022.png
Available Selected

basic
geonode-oauth2

anonymous
geonodeAnonymousFiter
geonodeCookieFitter

EEEE

_images/upload_shapefile.png
GeoNode

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH

M O admin ~

UPLOAD LAYERS

or select them one by one:

Nofile chosen

FILES TO BE UPLOADE]

POSTCODE_POLYGON ESRISHAPEFILE

 posteode_polygon.dbf Remove
 posteode_polygon.prj Remove.
 postcode_polygon.shp Remove
 postcode_polygon.shx Remove

Select the charset or leave default

UTF-8/Unicode v

PERMISSIONS
Who can view and download this data?

@ Anyone () Any registered user
Only users who can edit
Who can edit this data?

© Any registered user
Only the following users or groups:

Choose one or more users.

'Who can manage and edit this data?

Choose one or more users.

_images/oauth025.png
Filter chain

Configure an incivicual fiter chain

Chain settings
Heme
webLogout

Comma delimited lst of ANT patterns (with optionsl query string)

) Disable security for this chan

() Allow creation of an HTTP session for storing the auth
() Acespt orly S5L requests

Role filter

_images/uploadformfilled.png
PERMISSIONS

Who can view and download this data?

UPLOAD LAYERS

1 1 © Anyone Any registered user
1 1 Only users who can edit

i Drop files here | Whocanedit s dats?

1 1 @® Any registered user

P e e e e e e e e e = = e = = = = = 0 () Only the following users or groups:
or select them one by one:

Choose one or more users.

Choose Files R lita
Who can manage and edit this data?

Choose one or more users.
FILES TO BE UPLOAD!

SAN_ANDRES_Y_PROVIDENCIA ADMINISTRATIVE ESRISHAPEFILE

 san_andres_y_providencia_administrative.dbf Remove

 san_andres_y_providencia_administrative.prj Remove.

 san_andres_y_providencia_administrative.shp Remove

 san_andres_y_providencia_administrative.shx Remove
Select the charset or leave default

UTF-8/Unicode v

B Upload files

_images/oauth024.png
ilter chain

Configure an incivicual fiter chain

Chain settings
Heme
webLogin

Comma delimited lst of ANT patterns (with optionsl query siring)

) Disable security for this chan
() allow creation of an HTTP session for storing the authentication token
() Acespt orly S5L requests

Role fiter

_images/uploadform_new_quickstart.png
Upload | ayears

Permissions
‘Who can view it?

& Anyone

The following users:

or select them one by one: Choose users...

The following groups:

_Browse. No files selected.

Choose groups...

Files to be uploaded
Select the charset or leave default Who can download it?

UTF-8/Unicode Who can change metadata for it?

Who can edit data for this layer?

Clear

Who can edit styles for this layer?

Who can manage it? (update, delete, change
permissions, publish/unpublish it)

_images/oauth027.png
GeoFence Admin Page

GeoFence options Administration Page

General settings
GeoServer Instance name for GeoFence
defaultos

GeoFence services URL (GeoServer restart s required f changed)

internali

Tegt Connection |
g J

Options

@) Allow remote and inline layers in SLD
9] Allow SLD and SLD_BODY parameters in requssts
@) authenticated users can wiite

() Use GenServer roles to get authorizations

_images/oauth026.png
Security

& settings
U Authentication

Passwords

& Users, Groups, Roles

(% pata

2 Servicss
(B WPS security

o e
o e
o e

ence
Ince Data Rules

GeoFence Admin Page

_images/styling_vector2.png
New style

Type a new SLD defiition, or use an existing one as 3 template, or upload a rearly mark
the "validate” button to verify the style is 3 valid SLD document,

Name

landmarks
Copy from existing style

Sceglieme una =l coor

12pt 7|

_images/styling_vector1.png
Styles

Manage the Styles published by Geoserver
© Add 3 new style
© Removed selected styie(s)

<)<z Results 1 t0 25 (out of 41 1
" style ame

I areandmarks

[areafandmarks_pt
I buidings

[cemetery_graphics

™ cemetery_mark

_images/style6.png
Layers

Hanage the yers beng pubished by Geoserver
© Add 3 new resource.
© Remove seiected resources.

- Resuks 1t 17 (out of 17 tems)

r Twe Workspace. store Layer Name
rou ‘geosoutions. boulder_shapefies. buldings.
rom gecsoitins bouker_shapefies bhkes

(il] geosoutions bouker_shapefies Boukdarcrytimes
rom geosoitons boulder_snapefies bpsndmarks
s geosoitins bouker_shapefies bptindraris
r o geosoutons boulder_shapefies bptandraris_ 2876
ru gecsoistions boulder_shapefies brvers

=7} geosoitions bouker_shapefies betrsets
rou ‘geosolutions. boulder_shapefies. ccounties.
rom geosoitions bouker_shapefies parces

ru geasolutions. boulder_shapefies. Traks.

rom gecsoitons boulder_snapefies Wetnds_regubtory_area
r e geosoltins dem stm

r® gecsolitons hinade Pihace.

(=l] geosoitins NaturaarthCountries WorkiCountries
rom geosoitions states states

ru

i s rts

_images/style5.png
About & Status

(EL server status

=) GeoServer Logs

5| Contact Information
) About GeoServer

Data

[Lever preview
£ Workspaces

_images/style8.png
WMS Settings
P queryable

outer
Label
/ iner

Additional Styles
Available Styles

arealandmarks
arealandmarks_pt
buildings

_images/style7.png
Edit Layer

Edit ayer data and pubishing

geosolutions:Mainrd

Configure the resource and pubiishing information for the current fyer

Dimensions | Tile Caching

Basic Resource Info

Name.
Mainrd

P Enabled

W Advertised

_images/style_rule_basic.png

_images/style_rule_advanced.png

_images/styledlayer.png
HOME LAYERS MAPS

DOCUMENTS ~ PEOPLE SEARCH

| [sp- Syprint || @ denty| Query F=essure - et -

Layers

©- 04,9

4 Overlays

[Clsan andres ¥ Providencia Water

san_andres_y_providencia_poi
.

[Clsan andres Y Providencia Natural

[Clsan andres Y Providencia Location
Dlsan andres v Providencia Hghway
[Clsan andres Y Providencia Coastine

[Dsan_andres_y_providencia_agministrative.
Base Maps

bluemarble
Bing Acrial Wih Labels
MapQuest magery

© mapQuest Openstrestiap
Openstreetiiap

No background

S|4 % 3 ==37

O]
(OHD])
[C]

AEROPUERTO
5] INTERNACIONAL
GUSTAVOROUAS

LA

P'S b

Parking.
]

ered .

_LaLoma

Flace of Worshipilglesia

Museun:Casa Museo Isled. ® Bautista de fa Loma

2

7 HotelHote Marazul

Beach:Evans Point.
4

LfRER.]

CaferLa Heladeria
£
San Andrés
)

Hotel:Royal Decameron

gt
-

Maps / San Andreas

Beach:Punta Hansa (
Chapman Point)

_images/style_rule_label.png

_images/styles.png
Layers san_andres_y_providencia_poi

[~Styles A

Choose style: san_andres_y_providencia_

@ads @ remove PEdt P Dupicate

Rules A

® Untited 1

@ Ada @ Remove (P Et §f Dupicate

_images/style4.png
GeoServer

Styles

Manage the Styles publshed by GeosServer
© Add anew style
© Removed selected seyi(s)

About & Status

L server status
Geaserver Logs

= Contact Informatian

© About Geoserver <12 55> Resuts 11025 (out of 34 tems)

™ Style Name

Data
Layer Preview ™ arealandmarks
- gz:z’a‘“ T areslandmarks_pt

Layers ™ buidings
& Lover Groups cemetery_graphics
D styles r ey arerhi
™ cometery_mark
Services
tylnits
& wes T ciyimits
a wFs. ™ contours.
& s ™ countries
Settings M county
8 Global o
s
I Coverage Access. ™ dem2
Tie Caching [dem_clevation
1 Tile Layers ™ lakes
@ Caching Dot =
ine
I Gridsets
= Dk Quota
Security parceh
o -

_images/sqlviews_plainsql_bbox.png
Coordinate Reference Systems
Native SRS

EPSG:4326 EPSG:WGS 84...
Declared SRS

EPSG:4326 Find... | EPSG:WGsS 84...

SRS handling
Force declared |

Bounding Boxes
Native Bounding Box
Min X Min Y Max X Max Y

180 [-o0 180 90
Compute from data

Lat/Lon Bounding Box
Min X Min Y Max X Max Y

-180 -90 180 oo
Compute from native bounds

_images/sqlviews_parametricsql_publishing.png
& wms

settings

Global
@ GeowebCache
A

I coverage Access

security

8 users

$ Data security
B service security
[3 catalog security

Cache Time (seconds)

Edit Layer
Per-Request Feature Limi
o

Maximum number of decimals
o

WMS Settings
Queryable

[Default styl

storm_track interval =]

./ Trapical Sterm (24-63 knots)

Hurricane Cat 1 (64-82 knots)

/ Hurricane Cat 2 (83-95 knots)

/ Hurricane Cat 3 (96-112 knots)

" Hurricane Cat 4 (113-135 knots)|
Hurricane Cat 5 (>135 knots)

Additional Styles
Available Styles

burg
capitals

_images/sqlviews_plainsql_params.png
Create new SQL view

Define 3 new SQL view and configure ts identfied and geometry columns

View Name

[storm track

SQL statement

SELECT st.obs_yesz,
st scomm num,
=t scomm nane,
min(st.obs_datecine)
A5 stomm start, max(st.obs_datetime)
25 stomm_end, max(st.wind)
35 max_wind, =t _makeline (zt.geom)
25 the xoute
ssorm mum,
e e |
=corm obs.wing,
Stomm_oba.press,
storm obs.obs_astevine,
date_part(*year':itext,

FROM (SELECT storm ob:

storm_obs.obs_datetine)
25 obs_year, stomm_obs.geom

FROM storm_obs
ORDER BY date_part ('year’

text, storm_obs.obs_datetime),
storm_obs.stomm num,
storm_obs.obs_datetime) st

GROUP BY st.obs_year, st.storm num, st.storm name

ORDER BY st.obs_year, st.storm_num

_images/sqlviews_plainsql_featuretype.png
Feature Type Details

Property
obs_year
storm_num
storm_name
storm_start
storm_end
max_wind

the_route

Edit sql view

Type
Double
Integer
String
Timestamp
Timestamp
Bigbecimal

Linestring

ble
true
false
false
true
true
true

true

Min/Max Occurences
o/1
/1
11
0/1
o/1
o/1
o/1

_images/sqlviews_plainsql_refresh_srid.png
e Linestring 4 [B=

save cancel

_images/sqlviews_plainsql_refresh.png
SQL view parameters
Guess parameters from SQL Add new parameter Remove selected

-
et P ————

obs._year Double o
storm_num Integer o
stom_name string o
storm start Timestamp o
storm_end Timestamp. o
mas_wind BigDecimal o
the_route LineString i [a

_images/style1.png
About & Status

@\ server status

[5) Geoserver Logs
Contact Information
© About Geoserver

Data
[caver preview
) Workspaces
@ stores

9 Layers

.

_images/sqlviews_postgrestore.png
About & Status
(2 Server status
GeoServer Logs
Contact Information
© About GeoServer

Data

[Layer preview
5 Workspaces
@ stwres

W Layers

GeoServer

Logged n asadmin. |] tovout |

New Layer

Add 2 new layer

‘Add layer from [Sceglieme uno
Sceglieme uno

_images/style3.png
New style

/52 2 new SLD dsfinton, o use an sxsting one 3 3 fampste, o upload resdy mads sy rom your is system. The adar can provids
yntex ighight snd be Erought t ful scraen, Cick on the vaidsts button o vardy the sy & vaid SLD docurmant

Workspace
=

‘Copy from existing style

Seegiemeuo 2] cony

120t =

EXE]

Stogla. | Nessunfile selezionato. Upisd

Validate Submit Cancel

_images/style2.png
Styles

‘Manage the Styles published by GeoServer
© Add 2 new style
© Removed selected style(s)

_images/ubuntu_admin_4.png
Jbuntu Desktop

Searchyour computer and online sources

=]
]
]

_images/ubuntu_admin_3.png
GeoNode - Tr:

File Machine View Input Devices Help

System Settings

All settings

System Settings

8
5
©

Personal

[3]

Sl

Brightness &

Appearance
Lock

Hardware

3]

Bluetooth

Printers

Backups

ing [Running] - Oracle VM VirtualBox

i

Security &
Privacy

Language
Ssupport

@

online
Accounts

}
U

Mouse &
Touchpad

Displays

Keyboard

pidt
Wacom Tablet

B O

Software &
Updates

Landscape
Service

Time & Date

B o 75
About This Computer
Ubuntu Help

Lock/switch Account..
2 Guest s ion

2 GeoNode Training
2 geonode

Log Out..

Suspend

Shut Down.

Text Entry

Universal User Accounts

Access

B O P& @ @ @ Right Ctrl

_images/nofts.png

_images/ubuntu_admin_6.png
GeoNode - Tr:

ing [Running] - Oracle VM VirtualBox - m x

File Machine View Input Devices Help
Authenticate

All software

VLC media player ek s
& Read, capture, broadcast your multimedia streams

More Info

Screensaver Control
Automatically pause music and video players when locking your screen, and prevent screensaver when audio i playing.

Authenticate

To install or remove software, you need to authenticate.

Anapplicationis attempting to perform an action that requires privileges.
Authentication s required to perform this action.

Password:

» Details
Authenticate

Show 41 technicalitems

BO® 5 o @@ 0 @ 6 Right ctrt

_images/no_marlin.png
Average Max | st Dev. | Eror% |Througnpul KBisec | Avg Btes
T o 5 278 4116 0.00%| 1o7isec 85089 826695
2 0] 5 233 4276 000% 170kec 158718 9sdessl
0 6] 56 458 8137 0.00% 230kec 241647 1075404]
g 231 50 G81 15049 0.00%| 28.2isec 2590.41 _942065)
1 57 55 o750 410.00 000%| 20.4isec 2689.13 935422
&2 169 76 8800 121031 000% 223sec 2126.48 076366
23 2560] 77 16308 275493 000%| 21sisec 195111 67923
TOTAL 1254] 4516308 2015.61 0.00%| 221secl 204580 949531

_images/ubuntu_admin_5.png
File Machine View Input Devices Help
Ubuntu Software Center

Ubuntu Software Center

All Software

VLC media player
S Read, capture, broadcast your multimedia streams

By Relevance

Screensaver Control
Automatically pause music and video players when locking your screen, and prevent screensaver when audio s playing.

BO® &= @ ® [Right Ctrl

_images/mosaic_addraster.jpg
Add Raster Data Source

Description

ImageMosaic
Image mosaicking plugin

Basic Store Info
Workspace *

| geosolutions ~|
Data Source Name *

boulder_bg_optimized
Description

Enabled
Connection Parameters

URL*
file:/home/geosolutions/Desktop/workshop/data/user

_images/transifex_request_language.png
LANGUAGES @ Requestlanguage O View glossary

_images/monitorwebadmin.png
Monitor

s actiity
[Reports

_images/transifex_join_project.png
Set up a new project

You are setting up a brand new project for
your organization or team.

No thanks, take me to my dashboard

Join an existing project

You are joining a team which already has
an established project on Transifex.

_images/mosaic_publish.jpg
New Layer

add s rew lyer

addlayer from

Herw g atof

geosoluions bouider_b_opimized

resources contaned inthe stors boudsr_bg_optimead, ik on the ajer you wih to confiaure

- | Results 010 0 (out of 0 items) 4 s

optried e
> [>> |Resuts 0 to 0 (out of O items)

_images/tx_secondary_style.png
WMS Settings

@ Queryable

Default style
mainrd =l

/
7

Additional Styles

Available Styles

dem

dem2
dem_elevation
hillshade

lakes

line

mainrd

parcels

point
point_landmark

‘mainrd_transform

Selected Styles

_images/mosaic_pratopreview.jpg
] geosolutions:houlder_bg bouider_bg OpenLayers kML

_images/transifex_start.png
transifex peshboard

Teams

Geonode

GeoNode

Languages > Chinese

P GeoNode

Languages

2

Resources

Name

Category. ‘Source Strings / Words Source Updated

Javascript

O% reviewed 8377% translated

master
O% reviewed 76.62% translated

Docs APl Integrations Blog Status Contact Privacy Terms

~ English Transifex © 2017

_images/mosaic_setname.jpg
Edit Layer

Edit layer data and publishing

geosolutions:optimized

Configure the resource and publishing information for the current layer
Data | publishing

Basic Resource Info
Name.
boulder_ba_optimized
Title

boulder_bg_optimized

_images/ubuntu_admin_1.png
GeoNode - Training [Running] - Oracle VM VirtualBox

Q ty B) 1744

geonode

Guest Session

ubuntu® 14.04 (15

@) Right

_images/mosaic_retiledpreview.jpg
] gensolutions:houlder_bg_optimized bouider_bg_optimized OpenLayers kML

_images/tx_secondary_style_buffer.png
Default Style
mainrd =l

/
/

Additional Styles
Available Styles Selected Styles

mainrd B mainrd_transform
parcels ‘mainrd_buffer
point

point_landmark
point_landmark_ds |
point_landmark_ds_ns
polygon A
raster

Tiver_armow

tivers .

_images/navigation-highlight.png
<> Code

Q@ lIssues

0 Pull B

_images/mosaic_single_tiff.png
Add Raster Data Source

Description

ImageMosaic
Image mosaicking plugin

Basic Store Info
Workspace *

geosolutions ¥

Data Source Name *
mosaic_single_ti
Description
mosaic_single_ti

@ Enabled

Connection Parameters
uRL*
fle:DADEMO\ataluser_datatfootprint_dataimosaic_si Browse.

_images/ubuntu_admin_2.png
GeoNode - Training [Running] - Oracle VM VirtualBox

Input
Ubuntu Desktop 1ty B o) 1746 L&

F
~
B

oxB

_images/new_repo.jpg
¢ ©|® Explore Gist Blog Help Biomnsn B %X B

® o s
L. | johnsOn / my_geonode e GUnwatch - % Star 0

Code Network Pull Requests 0 lssues 0 wiki Graphs. Settings.

Quick setup — if you've done this kind of thing before

@SetupinMac or [HTTP | ssH | hetps://github. con/jjehnsen/my_geonode. git

We recommend every repository include a README, LICENSE, and .gitignore.

Create a new repository on the command line

touch README.md
git init

git add README.md
git comnit -m "first commit"
git remote add origin http:

/github.con/§30hns0n/my_geonode.git

git push -u origin master

Push an existing repository from the command line

git remote add origin https://github.con/330hns0n/my_geonode.git
o P e e

_images/transifex_add_translation.png
O, © TRANSLATED: no

[search: master

o

collection session

-, dimension group

- legalland descriptions

[rype your transiation here

. man-made construction

& Addatag

+ More details

_images/monitoring-dashboard.png
Maps v About v

€OoN

@ Data v

Q Search admin v

Latest: 10 min 1 hour 1 week

Health Check Uptime
87 days
Software Performance
Geonode Data Overview
Average Response Time Max Response Time
2ms 271 ms
Total Requests
151
W*S Data Overview
wMs
Average Response Time Max Response Time
4ms 591 ms
Total Requests

from: 09/11/2017 13:55:47 to: 09/12/2017 13:55:47

) AutoRefresh

Alerts Errors

10 Errors occured

1 Alerts to show

Hardware Performance it

localhost
GeoNode HW Status

Average CPU Average Memory

2398 MB

Number of requests

E] v
-

no data:

0-109: [109-215: [l 216.327: { s27-4c: [>4sc: ()

_images/transifex_interface.png
by geonode, a year ago
Determines the order that roles are presented in the user Py

Anonymous Users

~ More details

Suggestions (2 | History 1 Glossary Comments =0

Registered Users
2suggestions available

_images/transifex_homepage.png
transifex Product v Pricing Customers Resources v About v

A localization platform that
moves as fast as you do

Agile, Open, Continuously Localized, Cloud-Based Translation Management
for the Industry’s Fastest-Moving Companies

st a demo

_images/styling_vector_add_style.png
WHS Settings

W queryzble

Default style
point encmark =]
W shopping

A mountains.

[Wias

Mgoverement

A aimort

&seiool

+ cemetery

e

Additional styles

Available Styles

arealandmarks
arealandmarks_pt
buildings
cemetery_graphics
cemetery_mark
citimits

contours

countries

county

dem

Selected Styles

_images/styling_vector4.png
wns verson: [111] i

Formats [PNG 2061[%] Stvles: [Fandmarka 7] width/veight: [2ato =] [Auto =]

[Singletle =] Tramsiton ffect: [None =] Antitias: [l

]
& a
a a
& a
aa a
aa o
a
a
a
a a
a a
a a
a A &

Stale = 1: 122K
Click on the map to get feature info

~105.42535, 40.12108

|

Dx

_images/test_geoserver.png
GeoNode - Tr:

ing [Running] - Oracle VM VirtualBox - 8 x

File Machine View Input Devices Help
Firefox Web Browser 1y B o) 1637 L&
Ubuntu Start Page - Mozilla ver.war /v

Ubuntu help> Ubuntu shop > Ubuntu community >

BO® P& @ S B Right Ctrl

_images/test_geonode2.png
g] - Oracle VM VirtualBox

File Machine View Input Dey

Firefox Web Browser 1 B o) 1636
© ™ welcome! - example.com - Mozilla Firefox

Welcome! - example.com x

€ @ localhost

Welcome

GeoNode is an open source platform for sharing geospatial data and maps.

If you have any questions about the software or service, join our | ng
Need help? C¢ arted

No Layers

Click to sea atia sublished by other users,
standard format

BO® &= @ @ @ @ Right Ctrl

_images/toolbar.png
3}¢ GeoNode

Document:

_images/test_geoserver2.png
GeoNode - Training [Running] - Oracle VM VirtualBox - 8 x

File Machine View Input Devices Help
Firefox Web Browser 1y B) 163
GeoServer: Welcome - Mozilla Firefox r.war /v

& Geoserver: Welcome x

€ @ localhost,

osemame

Welcome

This Geoserver belongs to

This GeoServer instance is running version 2.7-SNAPSHOT. For more information
please contact the

& @ L= @ @ @ @ Right Ctrl

_images/toolbar_search.png
312 GeoNode

_images/toolbar_quickstart.png

_images/arcmap_wfs_identify.png
File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help

DBES BB X9 | S-[[4830 Vi EEEE D e
(R QOO ¢RIk P, g il
Table Of Contents 2 x 5
ks e8 B
R wwy o] :
o v [
Identy fom: | <Topmostlayers][Home- Documents\ArcGS
. GeoSer = hw Folder Connections
My GeoServer WM S FlderCon
My GeoServer WMS Nort INAS o vers
Database Connections
615 Severs
£ Add Arcals Server
| 0 Add Arcvis Server
Location: | ~117,207958 32.707695 Decimal Degrees = | GG AddWCS Server
- — ‘Add WMS Server
Feld Vave Add WMTS Server
oo 2 [185 b L My GeoServer WS o lpha dv.geonode
Sup My Hosted Snvces
Folvgen Interoperat Connections.
e 3 A teopersity Connecon
Eluwe vortrisenanas Py
L omen vy " ey o £
|| sunee_snen 2112s7se. 123
SwELeN 55297
< >
Identied 1 festure
Jgje| e n < < N

-117.208 32.708 Decimal Degrees.

_images/arcmap_wfs_import.png
File Edit View Bookmarks

Untitled - ArcMap
Insert Selection Geoprocessing Customize Windows Help

OB @& L OB x| 0o b (138 ME4l=1=1=1 ol o)

H-ON@/FBENBRT

RIQA N @Ik«
Table Of Contents 2 x
klse8

6 Layers

My GeoServer WMS

Indexing features in Connection (1) - My GeoServer WFS
WFSHd

Features: 400

gl e n <

Indexing Connection (1) - My GeoServer WFS WFS.fdl

sl

Home - DocumentsArcGIS
Folder Conections
& Toolboxes
£ Database Servers
3 Database Connections
& Gis Servers
8 Add ArcGis Server
2 Add ArcM Server
2 Add WS Server

Add WMS Server
Add WMTS Server
i My GeoServer WMS on alpha.devgeonode
5 My Hosted Senvices
) 3 Interoperability Connections

&% Add Interoperabity Connection

& 2 Connection (1) - My GeoServer WFS WFS.fdl
Runways
Air Ssfety Zones CN

_81.271 13.427 Decimal Degrees

_images/arcmap_layer_properties.png
Q Untitled - ArcMap -a
Fle Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help

Hul=1 EIRNE] RN L EGEERO
QAW kil e>HE-TINOFBIZINBSTE

Table Of Contents B x &
kies8 g
= Layers El

Boxes With Year Field2
haiti_administrative

hitps//abha.dev.geonode. org/geoserver fums?.

Nme: ~ irigated_areas
t.geosolutions:san_andres_y_providendia_admiistr Provincial Boundaries of Soutr
atve. Relief San Andres
Abstract: San Andres Y Providencia Adr
Noabstract provided San Andres Y Providencia Coa:
- San Andres Y Providencia High
51908727, 12.118997, -79.933332, 15502775 San Andres ¥ Providencia Locs
San Andres Y Providencia Natt
San Andres Y Providencia Poi
San Andres Y Providencia Wat;

SANGISFAULT_ALQPRI
Sanitation Districts
School_Districts_Elementary
School_Districts_High
School_Districts_Unified
Single Point

Supported SRS
'EPSG:4326, CRS:84, AUTO:42001, AUTO:42002,
AUTO:42003, ALTO:42004, EPSG:WGSSATD),

State_L
State_With_County_Boundarie.
Street Light
SupenvisorDistricts

Test Grid

Traffic_Signal

TrfficSignal

gl n < > ¢ >

634,841 324958 Unknown Units

POOOOOOOOOOOOOOOOOOOOOOOOOOOOOQ

_images/arcmap_layers_catalog.png
Geoprocessing Customize Windows Help.

Ml=l-i=] =[N
W28 DIEL

Fle Edt View Bookmars lnsert Selectin
'Dﬂﬂﬁ\:-“:@éx\"“\Q'
QU@ ki« -0 8@ FF
‘Dﬂhmems 5 x
Elee8 2
= layers
J@el e <

TEEENTT e
Y IEMETETE N
Location: |3 IS Servers. MIE

D © MyGeosenvarWMs &
-y
g

Air_Safety Zones CN.
Ambulance_Exclusive_Operatit
Ambulance_Staging_Location:
Aquifers

Bike_Plan_SD

Boxes With Date

Boxes With Date Iso Date
Boxes With Dates Bc

Boxes With End Date

Boxes With Year Field

Boxes With Year Field2

irtigated_areas
Provincial Boundaries of Soutt
Relief San Andres

San Andres Y Providencia Adr
San Andres Y Providencia Coa:
San Andres Y Providencia High
San Andres Y Providencia Locz
San Andres Y Providencia Natt
San Andres Y Providencia Poi
‘San Andres Y Providencia Wat:
SANGISFAULT_ALQPRI

POOOOOOOOOOOOOOOOOOOOOOOOOOOQ

634.841 324,958 Unknown Units

_images/arcmap_wfs_layer_view.png
= o o s ETE——

LR X (0| b (a8 V EEEEO
e O8O BFafds TR

Table Of Contents X

B

EEEXE] EILIER
= £ layers (& Ar_Runways. v|l=
© o [© & Home - Documensireas

Folder Connections.
 Toolboes
£ Database Servers
3 Database Connections
& oIS Servers
8 Add ArcGis Server
8 Add ArcM Server
2 Add WS Server
2] Add WM Server
2 Add WMITS Server
i My GeoServer WMS on slpha.devgeonode.
My Hosted Services
) 5 Interoperability Connections
& Add Interoperabity Connection
& 2 Connection (1) - My GeoServer WFS WFS.fdl
Air Runways
Air Ssfety Zones CN

My GeoServer WMS
My GeoServer WMS

gl e n < > ¢ >

-117.18 32.724 Decimal Degrees.

_images/arcmap_wfs_layers.png
@ Untitled - ArcMap -
B & O o e e ——

DR2ES OB x| 9 | b- [Jx EEEeE ®
Q@I € 8- 0 K@/ D & MBS s Cepecion

WFS (Web Feature Service) Parameters

URL: Fha.dev.geonode.org/geoserver/ufs

Table Of Contents » x
kee8 Prefer HTTP Post, if Avaiable: [No —
8 & Layers wsverson: [0 =]

™ Use HITP Authentication

HITP Username: [<Unused>

My GeoServer WMS

[Ambulance Staging Locations {Amb..

0] Aquifers {Aquifers}
 {Bike Plan 5D}

[0 boxes_with_date {Bores With Date}

O boxes_with_date iso_date {Boxes Wit...
[0 bores_with_dates_be {Bores With Dat..
O bores_with_end_date {Boxes With En.

Jgje| e n <

_images/virtualbox.png
0066

Gk &

Oracle VM VirtualBox Manager

4 EX= o soeosvos

New Setngs Sart Discard
IE9 - Win7 E General 5 Preview @
@ Foivered OF, Name: IEQ - Win7
Operating System: Windows 7 (32 bit)
System
Base Memory: 512 MB IE9 - Win7

Boot Order: Floppy, CD/DVD, Hard Disk
Acceleration: VT-x/AMD-V, Nested Pag

Display
Video Memory: 27 MB
Remote Desktop Server: Disabled
Video Capture: Disabled
storage

Controller: IDE
IDE Primary Master: E9 - Win7-disk1.vmdk (Normal, 127.00 GB)
IDE Secondary Master: [CD/DVD] Empty

Controller: SATA

B Audio

Host Driver: CoreAudio
Controller: Intel HD Audio

& Network
Adapter 1: Intel PRO/1000 MT Desktop (NAT)

_images/vector9.png
Layers
Mange the ayers bengpublshe by Geoserver
© Add a new resource.

@ Remove selected resources.

Resuks 1to1 (outof 1 irems)

+ Search
I Type Workspace Store. LayerName Enabled? Native SRS
(7} ‘geosalutions Mainrd Mainrd v EPSGi2876.

Resuks 1to 1 (outof 1 irems)

_images/virtualbox_install_win_1.png
Welcome to the Oracle VM
VirtualBox 5.0.6 Setup Wizard

The Setup Wizard wil nstall Oracle Y VirtuslBx 5.0.6 on
your computer. Click Next to continue or Cancel to it the.
Setup Wizard

_images/virtualbox_install_1.png
Ubuntu Software Center - o x
File Edit View Help
@ € . & . 0O <
s = oy s
Oracle VM VirtualBox
virtualbox-5.0
Please install "virtualbox-5.0" via your normal software channels. Only install this file if you trust the _—

origin.

VirtualBox is a powerful PC virtualization solution allowing you to run a wide range of PC

‘operating systems on your Linux system. This includes Windows, Linux, FreeBSD, DOS,
OpenBSD and others. VirtualBox comes with a broad feature set and excellent
performance, making it the premier virtualization software solution on the market.

Version
Total size

License

Updates

Reviews

virtualbox-5.0 5.0.4-102546-Ubuntu-trusty
63,2 MB to download, 155,0 MB when installed
Unknown

Unknown

English

% Checking for reviews...

Most helpful first v

_images/virtualbox_install_win_5.png
i Oracle ¥M VirtualBox 5.0.6 Setup

Ready to Install

The Setup Wizard is ready to begin the Custom installation,

ClckInstallto begin the installation. I you want to review or change any of your
installaton settings, clck Back. Cick Cance to et the wizard

Verson 5.0.6 <gack [l] Concel

_images/virtualbox_install_win_2.png
8 Oracle M VirtualBox 5.0.6 Setup

Custom Setup

Select the way you want features to be installd,

Clck on the cons inthe tres below o change the way features wil be nstalled

Oracle Vi1 VirtuaBox 5.0.6.
=3~ VrtuslBox USB Support | appication.
/3] vituslBox Networking

3+ rtualbox Bridger
= This eature reqies 1611 on
S ituslbox Host-C | youy hard drive. It has 3 of 3
53+ Virtualbox Python 2.x S| subfeatures selected, The
subfeatures require 5348 on .
‘ | |

Location: Ci{program FlesiOracelyirtualox)

Verson 5.0.6 Disk Usage <gack Concel

_images/virtualbox_install_win_7.png
Setup

Oracle VM tualBox 5.0.6
installation is complete.

Click the Finish button to extt the Setup Wizard,

¥ Stert Oracle ¥ VitualBox 5.0.6 after installation

versin5.0.6 e Gl

_images/virtualbox_install_win_6.png
i Oracle VM VirtualBox 5.0.6 Setup =107]x]

Oracle YM VirtualBox 5.0.6

Please wait whils the Setup Wizard nstalls Oracle WM VituslBox 5.0.6. This may
take several minutes.

Status:

Vrion 508 <wi | wes

_images/welcome.png
3i{GeoNode Lavers Maps Document Group:

No Layers No Maps

Click to search for geospatial data published by Data is available for browsing, aggregating and
other users, organizations and public sources. styling to generate maps which can be shared
Download data in standard formats. publicly or restricted to specific users only.
Explore Layers » Create maps »

Powered by GeoNode version 2.4.dev20141202232100| Developers | About

I User

GeoNode allows registered users to easily
upload geospatial data in several formats
including shapefile and GeoTiff.

Share data »

English

_images/virtualbox_started.png
Oracle VM VirtualBox Manager - o x
file Machine Help
=
® B P D, [, T
New Settings Discard ~Start
Welcome to VirtualBox!
The left part of this window is a list of all virtual machines on your computer. The list is empty
now because you haven't created any virtual machines yet. (/’— 4
In order to create a new virtual machine, press the New button i the .
main tool bar located at the top of the window. 4 . EAN

You can press the F1 key to get instant help, or visit
www.virtualbox.org for the latest information and news.

_images/arcmap_interop_wfs.png
Untitled - ArcMap

@aanoiies

Table Of Contents 2 x

kee8

e on @

Fle Gt View Bookmas et Seecon Geoprocessing Customize Windows Help
DR2E& L OB x ® o b ¢ EEDEN
=11 Rl

'~ |catalog 2 x[g
A Y M TE T
Location: | Home - Documents\ArcGIS. E

[Home - Documents\ArcGIS
Folder Connections.

& Toolboxes

] Dstabase Servers

3 Dstabase Connections

teset: [http://alpha.dev.geonode. org/geoserver/nfs

rw_l III

-81.271 13.427 Decimal Degrees.

_images/arcmap_interoperability.png
File Edit View Bookmarks

DeEs Lo x|

Table Of Contents 2 x
keS8

Insert Selection

Geoprocessing Customize Windows Help.

T EEED e EEEEE

BAM@III e E-TI 5@

CIEY r el

Jge| e n <

“«- e lal | B &

Location: |« Add Interoperabilty Connection v

TETOT |

Home - DocumentsArcGIS
Folder Connections

@ Toolboxes

] Dstabase Servers

5 Dstabase Connections

3 6l Servers

i My GeoServer WS on sipha dev.geonode.o

My Hosted Services

& B Interoperability Connections
o

-81.271 13427 Decimal Degrees

_images/arcmap_empty.png
e e s T

D2ES AR X2 -] VK EEEEE ey
Q@353 €= K- TN ’@\Lﬂﬂxén'v\ﬂ\i
Table Of Contents %

2388

& Layers

Jge|en < >

984,925 1.675 Unknown Units

_images/arcmap_interop_add.png
File Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help

1191357

DS LOB x| (S|

Bl 1= =

CIE Yoralelo

RIAQAN @I €= |- T|
Table Of Contents 2 x
Hee8

5 Layers

Jge|en <

sl

Folder Connections.
8 Toolboxes
] Dstabase Servers
3 Dstabase Connections
& 615 Servers

Interoperability Connection

{

e |

Cwe | [[P

-81.271 13.427 Decimal Degrees

_images/wfs-t_geonode2.png
streams_1

\@Lﬁ-]@‘i‘- 3=l
o '/'%_m
0.9

Download Layer

Edit Layer

e f Download Metadata
AN Legend
7 4
ot oy
305, o # Maps using this layer
4 h e layer is not currently used in any maps.
s b 2im v v
e Pzl [272sm
AWRENC 7 . .
Create a map using this layer
@info SAttributes MShare *Ratings ¢ Comments Click the button below to generate anew map based
onthis layer.
No abstract provided
Oct.8,2015, 6:59 am.
o Styles
Vector Data !
admin ‘The following styles are associated with this layer.

Choose a style to view it in the preview map.

Moreinfo -
O streams_1

_images/wfs-t4.png
[+ Add Data

Resource Selection

| Pleaseselectaresource.

)| 4 Search| £ Tal

fing examples (WF
ings

mits

onal landmarks

[&]al

|~ @1 FOS54G 2011 styling examples (WFS 1.0.0)
0 Boulder buildings
O Boulder polygonal landmarks
O Boulder streets
O M BoulderCityLimits
] A Lakes and other polygonal water entities
I mained
Ol parcels
O = Point landmarks
DIV Rivers and other linear water entities
O Tails
O wetlands_regulatory_area
DM countries

O/ main_roads
71 = nninttands
Resources Selected: 1

<Back Next>

Cancel | Finish |

Gettingstarted Offical W
o= 5

_images/wfs-t3.png
L i

e Gt e vap Do w1

@it Comect o3 b st sener e s ot oves e weh

_images/wfs-t6.png
O | [Mainrd 22

[r713ac =] navsscvs

G Catalog 5 |0 Web| 57 search| £ Table| &
b @ Decoration

FOSS4G 2011 styling examples (WFS 1.0.0)

_images/wfs-t5.png
) uDig e x
e et dgaion Lo o D Window il
[T e
s = =0 s 1] =0 =wene | =8
@ o T Bew
e Weicome to uoia

e *eng saed

L #EADs[E e 74 “offcal websita
EXIETS [L
[l T
GiEN

] oo

5 coroog 4 e sewn v

> souder bl
» @ooudsciyinis
> B Bolder polorslandmaks

Gettingsanad oty

————

[oo aeares

_images/wfs-t8.png
Q4

Selection ©

1 Box
Selection

© Feature

-\/ Selection
[l Area of

Interest

¥ Remove
Vertex
Mty jocepp~ 122050~ | dhossiaiii) |ﬁ
2y % Y8

te!

_images/wfs-t7.png
[rasnse || navsstsn

@ catalog 52 |5 web’

search

i Table

E

b [Decoration
F0S54G 2011

_images/wfs-t_geonode1.png
Layers

I'xplore | ayers

Your selections Clear all filters.
E te

v TYPE

Raster

0o

Vector

_2014_cc_omega_2

_2014_cc_omega_1

_2014_cc_omega

Upload Layers

Set permissions

Select

Select

Select

_images/wfs-t9.png
Layer Map Data
PRI Q

78 @ vaina 51

I~

_images/wfs-t_geonode11.png
Scale = 1: 35K
streams_1

fid cat label
Streams_1.1052 CREATED

603245.69363, 4927849.27091

_images/wfs-t_geonode10.png
|egEd |
S 2 x =120

Ol

_images/welcome_documents_documents.png
Home

Layers Maps

_images/welcome_documents_maps.png
vocumenss [<

_images/welcome_documents_layers.png

_images/wfs-t1.png
S ===

Select

AV
Import spatal data sevicesintothe catslog =L}

Select an import source:

type filter text

b & General
4 G Other

< CSVimpeo
[[D Date]]
" Geopaparazi Import
& Importimagery folderas mosaic
& KMUKMZImport

E

_images/welcome_toolbar.png
Welcome

GeoNode is an open source platform for sharing geospatial data and maps.

If you have any questions about the software or service, join our mailing list
Need help? Getting Started

_images/wfs-t11.png
el Sl
 wap Dota vindow Help
REKKAR 0 &
Emaind & =
T
EE3
Fr—
oo
TN Lo
oo &
o
Saection

© Feature
selecton

Elsreaor
ncerest
Selection

] (T T

B cotalon 2 i e Tl 5 EEI
I [search dEa

o LABEL NAME B

Maind 10
Mainrd.1141 Gardst

_images/wfs-t10.png
QT gD &

Sean= 119K)
Clik on the map o get feature info

_images/wfs-t14.png
SeRoTIER ST TE, 127 R0 SETT

« Type: Mainrd 0
o LABEL NavE|

_images/wfs-t13.png
(e s 5

info
o
~ Distance
Selection =

TBox
Selection

© Faature
selection

Dl areaof
interest
selection

R

Cotalog| 1 web 5 Search 7 Table 3 DG@R-0

Ay v earch e
Festure Selectad |
|

o LABEL NAVE

Maid. 1140

EE—]

Mained. 141 sardst

_images/wfs-t2.png
oL

e G Ly o o yindew

RS
ermn] o
o

e A

I
s

Sason

scat

s

vt

e IO

=l e

_images/addlayerslink.png
er®

© Addiayers
© Frdiyers

_images/addlayerslink1.png
er®

© Addiayers
© Frdiyers

_images/addgeotiff3.png
Coordinate Reference Systems

Native SRS
EP8G26013 EPSGNADS3 / UTM z0ne 13N..
Declared S1S
EPG26013 Find | psG:NaDa3 / UTM zone 13M..
SRS handing
Reproject native to declared ¥
Bounding Boxes
Native Bounding Bow
Minx Miny Max Maxy
481500 4429500 483000 4431000

Compute fiom data

Lat/Lon Bounding Bos
Minx MinY Maxx Max ¥
1052168216144 40,015499345512|-105,1992022820 | 40,02904546109€
Compute fiom native bounds

Coverage Parameters

InputTransparentColor

st

‘SUGGESTED_TILE SIZE
512512

_images/addgeotiff4.png

_images/addnewserver.png
| [ElMap- Syprint - @ identiy Cuery [Measure +

Layers » Avallable Layers

View avaiable data from:
My GeoServer WMS

My GeoServer WMS
Openstrestitap Layers
MapQuest Layers
Bing Layers

MapBox Layers

Add a New Server.

0
by

_images/admin-auth.png
Groups. Add o Change

_images/addlayersselect.png
| [map- Syprint | @ wentity g Query F=measure -+
Loyers » Available Layers

View avalabie data from: '°S'

Title]

san_andres_y_provi... geonode:san_.
SanAndres Y Provid... geonodesan_..
SanAndres Y Provid... geonodesan_..
SanAndres Y Provid... geonodesan_..
SanAndres Y Provid... geonodesan_..
san_andres_y_provi.. geonodessan_.

San Andres Y Provid... geonodesan_

Water_Hydrant_SD geonode'water.

© Add lyers| Done

_images/addlayersselect_quickstart.png
tap~ (SyPrint | @ entity it Cwery = Measure + o
Layers » Available Layers

View avalabie data from: '°S' A

Title Id

san_andres_y_provi... geonode:san_.
SanAndres Y Provid... geonodesan_..
SanAndres Y Provid... geonodesan_..
SanAndres Y Provid... geonodesan_..
SanAndres Y Provid... geonodesan_..
san_andres_y_provi.. geonodessan_.

San Andres Y Provid... geonodesan_

Water_Hydrant_SD geonode'water.

_images/admin-base-region-list.png
Home » Base > Metadata Regions

Select region to change
Qf Search|

Action: [e ¥ [Go| 0 of 100 selected

0 code Name =
o A Afghanistan

O Aaa Aland siands

O as Albania

[pza Algeria

O asm American Samoa

O A Andorra

0 aso Angola

S Anguilla

o ae ‘Antigua and Barbuda

O Arc Argentina

]

_images/admin-base-restriction-list.png
Leonardo

Home » Base » Metadata Restriction Code Types

Select restriction code type to change

Action: [7] Go] 0 of 8 selected
) Wdentifier ~ Description ‘GeoNode descrption Is choice
@ copyright exclusive right o the publication, producton,or sae of th rights to a erary, dramatic, musical or atstc work, orto. exclusive igh o the publcation, production, r sale of the righis to a erary, ramlic, musical, o artstc work,orfo @
the use of a commercial pint or label, ranted by law for a specifid period oftme to an author, composer, atst, the use of a commercialprint o label, granted by law for a specified period of ime to an author, composer, arist,
disriutor disriutor
) intellectualPropertyRights _ rights to financial benefi from and control f istriution of non-tangide property that i a result of creaviy rights to financil benefit rom and conirol f distriution of non-tangibe property that i a resul of creativiy °
O ticense formal permission to do someting formal permission to do someting °
@ limitation not isted otherRestrictons otherRestrictons °
O patent overnment has granted excusive rghtto make, sel, use of icense an invention or discovery overnment has granted excusive rghtto make, sel, use of icense an invention or discovery °
@ patentPending produced or sod information awaiing a patent produced or sod information awaiing a patent °
@ restricted withheld rom general circulaton o disclosure withheld rom general circulaton o disclosure °
[trademark ‘aname, symbol, o other device identiying a roduct, ofcialy registered and egaly restrcted o the use ofthe owner & name, symbl,or ofher device ientiying a poduct, offcial registered and legaly restricted fo the use of the owner | @
or manufacturer or manufacturer

8 Metadata Restriction Code Types

_images/admin-documents.png
Documents Add o Change

_images/admin-layers-batch.png
Action: [WelRGa BRR] <] Go 2 of 100 selectea

O
@ s

| 2017_03_15t4_44_53 tast

_images/admin-base-topiccategories-list.png
Home » Base » Metadata Topic Categories

Select topic category to change

Action: [cems v]1Go| 00r 20 setectea

| entr | Descrpton Geotiode desrpion s chace

0 boa fors s it e, s e, Egetn, OOES SRS, 5060y, TS, s, wtanc, i G0 o

0 boundaries [P ———————— Sounaes o

(3 clmatologyMeteorologyAtmosphere | prcessesand henanen of e aosphere. Exais: o cove,eather, e aesphercodions, e shge, reciaion Cinatosy o

Simers

O sconomy ccoomic acite,conions and aplyment. Exampes: rocucion, beu, e, omTerc, sy, ot andscouts, resty, s, commersil subssercerg, | Ecoromy o
e et oo 1 et o 5 e, e

0 slevation e o or b v B s, iy, il v o, S, derued s Sevan B

0 envronment el it o, 5 nls: TR i S e, AT S5, o e e Ense B
e s

0 tarming T T e TV T BT = o T I ST T TR R T M T S T D = o

= 100 . ar o

_images/admin-base.png
Metadata Topic Categories #Change
Resource bases 4Add Change

_images/admin-maps.png
Map layers #A%0 o Change
Map snapshots #A%0 o Change
Maps #A%0 o Change

_images/admin-monitoring-add-host.png
Welcome, admin

Hor

foitoring

Select host to change Add host_+

v| G0

_images/admin-layers.png
Upload sessions. 4Add Change

_images/admin-login.png
& Upload Layers.

&Profile

 Announcements
@ Remote Services

@ Invite User

9 GeoServer
———> ©Admin

©Help

® Logout

_images/admin-monitoring-add-service.png
Icome, admin

Home » Monitoring

Select service to change

v| G0

Active | Host name Service type

_images/admin-base-spatialrepresentation-list.png
nardo.

Home » Base » Metadata Spatial Representation Types

Select spatial representation type to change

Action: [

v]1Go| 0ors seiecte

dentifier
grid
stereoModel
textTable
tin

vector

video

O0o0EooE

o
rid data is used to represent geographic data

three-dimensional view formed by the intersecting homologous rays of an overlapping pai of mages
textual or tabular data s used 1o represent geographic data

riangueted imeguiar network

vector data s used {0 represent geographic data

Scene from a video recording

6 Metadata Spatial Representation Types

GeoNode description
rid data is used to represent geographic data

three-dimensional view formed by the intersecting homologous rays of an overlapping pai of mages
textual or tabular data s used 1o represent geographic data

riangueted imeguiar network

vector data s used {0 represent geographic data

Scene from a video recording

ee0c0o0 0oz

choice

_images/admin-monitoring-service-local-geoserver.png
Home > Monitoring > Services » 5t

local-geoserver@localhost

Change service

Host:

Check
interval:

Last check:

Service type:

@ Active

Notes

url

% Delete

local-geoserver
Host: localhost (127.0.0.1) ¥ & &

00:01:00

Date: [2017-09-08 | Todoy | ()
Time: 10142:52 | Now |)

Service Type: geoserver ¥ %

Currently: http://localhost/geoserver/

Change: http://localhost/geoserver/

_images/admin-monitoring-service-local-system-geonode.png
admin.

Home » Monitoring > Services » Service: local-system@localhost
Change service [+
Name: Iocal-system-geonode
Host: Host: localhost (127.0.0.1) ¥ & &
Check 00:01:00
interval:
Last check: Date: [2017-03-08 | Tocay | [

Time: |10:45:48 | Now |)

Service type: | service Type: hostgeonode ¥ & &
@ Active

Notes

url currently: ntto://localhost/

Change: | http://localhost/

% Delete Save and add another | Save and continue editing | [

_images/admin-monitoring-section.png
Layers

Attributes
Layers
Styles.

Upload sessions

#aad
#aad
#aad
#aad

Change
Change
Change

Change

Map layers
Map snapshots
Maps.

Fadd
Fadd
Fadd

Change
Change

Change

Exception events
Hosts

Metric labels

Metric notification checks

Metrics

Monitored resources

#aad
#aad
#aad
#aad
#aad
#Add

#Change
#Change
#Change
#Change

Change

Change

_images/admin-monitoring-service-local-geonode.png
admin.

Home » Monitoring » Services » Service: local-geonode@localhost

Change service
Nam local-geonode
Host: Host: localhost (127.0.0.1) ¥ & &
Check 00:01:00
interval
Last check: Date: [2017-03-08 | Tocay | [

Service type:
@ Active

Notes:

url

% Delete

Time: |10:46:11 | Now |)

Service Type: geonode ¥ %

_images/admin-roles-add.png
GeoNode administration

Home » Base > Contact roles > Add contact role.

Add contact role

Resource: Resource name. #
Contact: Type some text to search
Role: -

function performed by the responsile party

Saveand acd antver | | Save and contie esing | [E)

_images/admin-users-list.png
Leonardo.

Home > Auth > Users
© The user "admin" was changed successfully.

Select user to change
Ql ‘Search|
By staff status
Action: [7] 60| 0ors selectea Al
[Usemame o | Email address First name Last name. Stat status. :‘25
O admin leonardo@exampl.com Leonardo daVinci °
By superuser status
O colombo coombo@exampie.com Crstotoro GColombo ° Al
O galieo galieo@exampie.com Gaieo Gatiel ° =
No
O mageliano magelanoGexampie.com Fermando Magelano °
By active
O piagora biagora@exampe.com Pragora ° Al

Yes
5 users No

_images/admin-people.png
Users. Add o Change

_images/admin-profiles-contactroles.png
Contact roles
Resource

Delete?

4k Add another Contact Role

_images/admin-monitoring-host.png
admin

Home » Monitoring » Hosts » Host: localhost (127.0.0.1)

Change host
Name: locainost
Ip: 127.0.0.1
@ Active

wDelete Save s ot | Save snd cominue s | [0

_images/admin-monitoring-hosts-services-underline.png
Home » Monitoring

Exception events #hdd o Change
Hosts #hdd o Change
Metric labels #hdd o Change
Metric notification checks #hdd o Change
Metrics #hdd o Change
Monitored resources #hdd o Change
Notification checks #hdd o Change
Notification metric definitions #hdd o Change
Notification recelvers #hdd o Change
Ows services #hdd o Change
Request events #hdd o Change
Service type metrics #hdd o Change
Service types #hdd o Change

Services 4Add 2 Change

_images/advanced.png
Advanced Import Settings

Reprojection
Enatled

From

EPSG4269 Find.. | EPSGNADS3.

T

EPSG3005 Find.. | EPSGNADS3 /BC Albers

Attribute Remapping

BORDER_ID[+]| |[Double[+] ([D @ Apply @ Cancel
© Aqa

Eae=

_images/afterupload.png
Your layer was successfully uploaded

_images/adminactivities.png
:$ GeoNode

HOME

LAYERS

MAPS

Activity Feed for admin

uploaded layer
uploaded layer
uploaded layer
uploaded layer

DOCUMENTS

PEOPLE SEARCH

7 hours, 28 minutes ago
7 hours, 29 minutes ago

7 hours, 29 minutes ago

7 hours, 29 minutes ago

[fHCN.]

_images/adminlayers.png
3¢ GeoNode

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH oE
Type Title Date admin
Layer San Andres Y Providencia Water 20121227 =) - -
Activities | Follow
Layer San Andres Y Providencia Natural 20121227 =] FO"OWIIIQ
Layer San Andres Y Providencia Coastline 20121227 =)
Layer San Andres Y Providencia Highway 2012-12-27 B Followers
Layer San Andres Y Providencia Location 20121227 =)

_images/arccatalog.png
Fle Edt View Bookmarks lnsert Seltin Geoprocessing Customize Windows Help
DBES BB X0 (S| MEA=1ial-lal-o)
QQEQIE € D K@/ BEIZRERDRY

Table Of Contents % X

8e8 3
 Layers

Ty |

Home - Documents\ATcGIS
Folder Connections.
 Toolboes

3 Database Servers

3 Database Connections

& & GiS Servers

88 Add ArcGis Server

2 Add ArcM Server

My Hosted Services
& B3 Interoperability Connections
& Add Interoperabilty Connection

gl e n < > < >
522,613 956,449 Unknown Units

_images/arc_add_wms.png
(HIHHEL T ATLIVIdY o
Bookmarks Insert Selection Geoprocessing Customize Windows Help

- BB x| 9
Lol
s »x =
1 it . myserver com/ercgsfservicesmymap MepServer WMSServer?
— http: //www.example. com/serviet/com. esri.wms. Esrimap?ServiceName =Name&.
Defautverson v
Getlayers
gl e n < > <

522,613 956,449 Unknown Units

_images/arc_enter_wms_url.png
Fle Edt View Bookmaris
Dsd& L 5@ x|
RAQAEQ IR e
Table Of Contents % X
8e83

Untitled - ArcMap
Insert Selection Geoprocessing Customize Windows Help

|5

https//alpha. dev.geonode. orafgeoserver wms|
it fawm.myserver.comjarcgis/services mymap|MapServer \WMSServer?

= Layers

it/ example.com/servietjcom. i wms Esrinap7Ser vicehiame =Names.
Defautverson v

gl n < >

522613 956.449 Unknown Units.

el

_images/admin-users-new.png
Add user

First, enter a username and password. Then, you'll be able to edit more user options.

Required. 30 characters or fewer. Letters, digits and @/./+/-/_ only.
Password:

Password confirmation:

Enter the same password as above, for verification.

Save and add another | Save and continue editing | m

_images/admin_interface.png
Site administration

Account deletions. Aeadd
Accounts Aradd
Signup codes 4Add p Change
Actions Aeadd
Follows 4eadd

Announcements

Dismissals

Groups.

users

Avatars

Contact roles Aeadd

Links Aradd

Metadata Regions $ndd

_images/admin-users-new-2.png
Home > Auth > Users > bob.
© The user "bob" was added successfully. You may edit it again below.

Change user

bob
Requied. 30 characlers orfewer. Letter, digis and @1.1-_only.

|gorithm: pbidf2_sha256 Iterations: 10000 salt: WIMOFL*+++++ hash: 76eKSA*H++Hsrsssssssrsrsrsrerersrsrsrersres

Password:
Raw passwords are not sored, so here s No way {0 see this user's password, but you can change the password using thi for.

Designates whether s user shouklbe treated as active. Unselect hs instead of deletng accours.

(0 Staff status
Designates whetherhe user can kg nt tis admin ste.

O Superuser status
Designates that this user has al pemissions wihout expicity assigning them.

The groups s user elongst. A user wi et i pemissions rantc 1o ach of hshergroup. Hod down “Contor,or“Command” o a Mac, 1 selectmore than one.
e e *

Available groups ©

Qe
i

Groups:

_images/maps_quickstart.png
kxplore Maps

Your selections Clear all filters

e yons st e B

[yyyy-mm-dd
Date ends before

[yyyy-mm-dd

Total: 0

Most recent ~ Less recent

A-Z Z-A Mostpopular

<

page 1of 1

>

_images/css_overrides.png
7

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH

GeoNode is an open source platform for sharing geospatial data and maps. If Explore Layers
you have any questions about the software or service, join our

Need help Explore Maps

LATEST LAYERS LATEST MAPS

_images/menu_admin.png
Menu

& Upload Layers

& Profile
@ Recent Activity
& Inbox
« Announcements
@ Remote Services

@ Invite User

& GeoServer
£ Admin

© Help

_images/marlin.png
Label | #Samples|_Average Max [Std Dev. | Emor% [Througnpui
T 100 | @ as0] 5708 0.00%| foisec
z 100 o] 42 247 4145 0.00%| Toisec
i 200 29 50| 424 6050 0.00%| Zo.iisec
g 200 76| 42 450 77.44] 0.00%| 382isec
1 400401 51| 117 19152 0.00%| ooisec
2 34 790 78] 1900 35650 0.00%| 3diisec
54 708 7538 95| 3500 617.92] 0.00%| 37aisec
TOTAL 2152 802 42 3595 71743 0.00% 30 tiseq|

_images/css_point_map2.png

_images/metadataformats.png
. Download Metadata ~

ATOM >

DIF >

DUBLIN CORE >
EBRIM >

FGDC >

TC211 3

_images/css_point_map1.png

_images/merge-button.png
This pull request can be automatically merged. "M i Merge pull request
You can also merge branches on the command line.

_images/css_poly_map1.png

_images/monitor1.png
OWS Request Summary

Categuiesd Oz

ows request

Overview | wis | wvs | wos

OWS Request Summary

PV et

_images/css_point_map3.png

_images/modern_ie.png
& | modern.IE (% BE Microsoft

Tools Platform Status ~ Tech Preview ~Community MSDN Dev Center

Download test VMs of IE for OSX,
Linux or Windows

Test versions of IE using Virtual Machines that you download and manage in your own
development environment.

1 _ vV 2 v 3 Download your Virtual Machine
Dourioad the fles below t ssemble your VM

Download Zip Archive (single:

Getting started with VMs

To start, download a single-file ZIP archive or all parts of a multi-file ZIP archive for a VM. IE9.Win7.For.Mac.VirtualBox.zip.001

mds

To extract a single-file ZIP archive: IEQ.Win7.For.Mac.VirtualBoxzip.002
mds
IEQ.Win7.For.Mac.VirtualBoxzip.003
mds

1. Extract by right-clicking on the ZIP file, select Open With > Archive Utilty. Altenatively, use The
Unarchiver (free download) or any other modern, 3rd-party utility that can handle the Zip64
format. Note: the unzip utility for OS X may work, but you need to have v6.0 or greater for Zip64

_images/css_ras_map1.png

_images/monitoring-alerts-unfolded.png
< Latest: 10min 1 hour 1 week from: €

Alerts

Number of handled requests is lower than 800
Number of requests should be at least 800, got 6 instead

_images/css_poly_map2.png

_images/monitoring-alerts-notification-link.png
Alerts

Number of handled requests is lower than 100
2017-09-13 15:31:41.142

_images/ctr_palette_ovr.png
: \\\\\\vﬁl

S\
Scole =1 : 5410 BDL707.45160, 4860324, 56535
info

_images/css_ras_map2.png

_images/monitoring-alerts.png
o GeoNode Data v Maps v About v Q Search admin v

< Latest: 10min 1 hour 1 week from: 09/11/2017 13:56:39 to: 09/12/2017 13:56:39) AutoRefresh

Alerts o

Number of handled requests is lower than 800 —

_images/css_mainrd_map3.png
- “=LindenAv,

[
A
il

Sh

wer=j

30ths
S sy

28th st

-
[

2
Balsam Av=! C
_,__Eu\ .,‘;\\4‘
=
P (T |
\J
S

L\

\
Olorado Av ===

3

_JOC Y
[\

uD\

o

>

_images/css_mainrd_map2.png

_images/logoutconfirm.png
LOGOUT

Are you sure you want to log out?

_images/logo_override.png
CEED - o

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH BERE
GeoNode is an open source platform for sharing geospatial data and maps. If Explore Layers
you have any questions about the software or service, join our .

LATEST LAYERS LATEST MAPS

Powered by GeoNode version 2.0.dev20130207195320 | Developers | About

_images/create-pr.png
Choose two branches to see what's changed or to start a new pull request. If you need to, you can also compare across forks.

1 | base master~ compare: add_logo~ | ¥ Able to merge. These branches can be automatically merged.
WP HESE Discuss and review the changes in this comparison with others.
-1 commit [2files changed

Bl Commits on Dec 17. 2015

_images/manage_styles.png
yers Maps

Manage Styles

Documents Upload

Manage Available Styles for geonode:soilp

Layer Default Style

Available styles

Click on an available style in the
upper box to assign it to this layer.
Selected styles appear in the lower
box.

soilp ¥

Default Polygon =
Default Line

Default Raster

Default Point

jamaica_geology_forms

201_geosbg
belize airstrins wes84 ¥
« —— y

e Available Styles

&

soilp

srinaldo

_images/cql_filter_result.png
- <wfs:FeatureCollection xsi:schemaLocation="http://www.geo-solutions.it/workshop
httpi/flocalhost:8080/geoserver/wis?service=WFS&version=1.0.0&request=DescribeFeature Type&
typeName=geosolutions%3AWorldCountries http://wwi.opengis.net/wfs httpi/localhost:8080/geoserver
Ischemas/wis/1.0.0/WFS-basic.xsd">
- <gml:boundedBy>

<gml:null>unknown</gml:null>
</gml:boundedBy>
- <gml:featureMember>
- <geosolutions:WorldCountries fid="WorldCountries.137">
- <geosolutions:the_geom>.
— <gml:MultiPolygon srsName=""http://www.opengis.net/gml/srs/epsg xml#4326">
- <gml:polygonMember>
—<gml:Polygon>
—<gml:outerBoundaryls>
- <gml:LincarRing>
- <gml:coordinates decimal=""
7.43860876,43.75045645 7.37772057,43.73174958 7.38000769.43.75324698
7.3949805,43.76333926 7.41441084,43.77092032 7.43694177,43.76146353
7.43869876,43.75045645
</gml:coordinates>
</gm:LinearRing>
</gm:outerBoundaryls>
</gml:Polygon>
</gml:polygonMember>
</gml:MultiPolygon>
</geosolutions:the_geom>
<geosolutions:ScaleRank>6</geosolutions:ScaleRank>
<geosolutions: LabelRank>6</geosolutions: Label Rank>
<geosolutions: FeatureCla>Admin-0 countries</geosolutions:FeatureCla>
<geosolutions:SOVEREIGNT>Monaco</geosolutions:SOVEREIGNT>
<geosolutions:SOV_A3>MCO</geosolutions:SOV_A3>
<geosolutions:ADMO_DIF>0.0</geosolutions:ADM0_DIF>
<geosolutions:LEVEL>2.0</geosolutions:LEVEL>
<geosolutions: TYPE>Sovereign country</geosolutions: TYPE>

_images/logoutlink.png

_images/create_repo.jpg
® o secioyeaconmad © @ Explore Gist Blog Help BBiommson X % B

i Repository name
wuse L] 8 tonnson /| my_geonode v
Great repository names are short and memorable. Need inspiration? How about north-american-octo-cyril.
Description (optional)
My GeoNode Project
@ [Public
= Anyone can see this repository. You choose who can commit.

© -\ prvate
You choose who can see and committo this epository.

1 Initalize this repository with a README
“This wil llow you o git clone the reposiory immediatey

Add gitignore: None ~

[— D

_images/mapcomposition.png
Layers

©- 049
4 Overlays
[Clsan andres ¥ Providencia Water

san_andres_y_providencia_poi
.

[Clsan Andres Y Providencia Natural
[Clsan andres Y Providencia Location

San Andres Y Providencia Highway

4

[Clsan andres Y Providencia Coastine

[Dsan_andres_y_providencia_saministrative.
Base Maps

© biemarble

© 8ing Aerial Wih Labels

Flace of Worshipiglesia
MuseunCoss Miseo Isted ' Bautista de la Loma.

Bu{h.‘fvaé:w 7

Hote Hotel Marazul

Aquariin) @ peach:punta Hansa (
Chapman Point)

_images/create_file.png
b bench masier = geonode / docs / - (TN

_images/map_permissions.png
Permissions

Who can view and download this data?
@ Anyone () Any registered user () Only users who can edit
Who can edit this data?

Any registered user
® Only the following users or groups:

x barbara
'Who can manage and edit this data?

x barbara

Apply Changes

_images/createmap1.png
:.g GeoNOde Layers Maps Documents People Groups _ (o}

Wiy « Seerne @) ety "\ F Measure ~ [v Maps / This map is currently unsaved

LAYERS Q $ Q @Q Q « - X

0 e 13 P oo v - 2 w Borgeaux s TR Ttaly 7 ‘?3 TBUCUresy n:mus Imaty Pyt s
v ; y A ro > o 3 'Bulgaria t
. Gw York Atlantic Portugal Magiid "‘B o “Boma"Hieam = letanbul, SYRTbe pakii G o
o gal oo arcelona P il « Ankara * | Turkmenistan
Overlays QG lsboa® [Paut N 5 P 3 Tajikistan
IWashington D.C Lishos Algiers Tunis Athinai Jurkey Tehran Mashhad 7
4 Base Maps . Ocean Syria (e : Kabul
Pharleston pormud ¥/ i i " Tripol . Baghdad ran - arghanistan® | Chin
MapQuest Imagery Bermuda Morocco VP o Tel AV"’--»‘ I('f"q 47 o s Lahore
_ a[ro Amiman - L ,
(0)MapQuest OpenStreetMap Algeria ;w o ,,» uwait TR De|h|" o0 Ever ‘
2 aicl g = o 5 Arabian bt 2 « Kanpur
OpenStreetMap :'(‘ Mami S - Libya Egypt B Karachi, Jaidur O Pl
Havana . S a‘*h"a.r.a : < JAES Masqat “Ahmadabad Kolkata'
5 o é & é Jiddah Saudi ; .
No background co Cuba 5 Arabia z Mumbdl India o
San Juan Mauritania | Mal Pl phi Hyderabad AN
Jamaica Tombouctou, . y
. Kharte Yemer
Dakar. A F R | C A w_.:um: ritrea Bangalore
B ol e Chad’ * sudan * *Chennai Bangk«
Costagie. o Nigeria Adiis Abeba ST
Rica e La?us Central Af “Ethiopia Colombo'
Actra : Meda
3 Kenya Maidives ™
——————— Belem if = .',I*,ar"f. sNairobi
Fortaleza - i alilimanjaro
; ,_ < Tanzania)
v .
Recife Luanda ? Dar es Salaam
. A Indian
1
_ | b Angola
h'»:m_.a BQUV aw JBrasilia } Zambia “\ ‘
WS L OE | BeloHorzonta South Namibia~ ~ Zimbabwe b S Ocean
5 . g < NE DI8 ¥ Mauritius
Baraguay _,Rio de Janeiro Windhiok,© T e
Sao Paulo®
Chile 1 R Atlantic Johannesburg, +Maputo
1 Porto Alegre Lesott
Aconcagua _Cordobs > s South it
. Uruguay Cape Town, Africa
. 5

Santiago® f
9 Buenos® *Montevideo

Aires
M

: lMI_I 1:60885143 ¥
1000 mi

Tiles Courtesy of MapQuest

_images/mapname1.png
Maps / San Andreas

_images/createmap.png
HOME LAYERS ~MAPS DOCUMENTS PEOPLE SEARCH BOE

= ueasure -

" SOUTH
AMERICA

AUST

_images/mapname.png
Maps / San Andreas

_images/css_mainrd_map1.png

_images/maps1.png
GeoNode

S GINOIFVELEN SEARCH MAPS

Signin | @

EXPLORE MAPS

MostRecent | HostPopular | Most Shared

v CATEGORIE! <

Al Categories

No data found

Biota

Boundaries

Climatology Meteorology Atmosphere

Economy

Elevation

Environment

Farming

Geoscientific Information

Health

e e e M B T e

_images/css_mainrd.png
Choose name for new style
jorkspace for new layer

Sceglieme uno ¥

style name
|css_mainr]

_images/maps.png
a o
Explore Maps

Total: 4 A
Cart 7V

Add resources through the "Select"

buttons. . -
mapadaines
dsdvvssd
Set Permissions . X
& admin T 19Nov2015 @ O >0 O O View Map
Filters Clear
Search by text n
. A
cip
stracip

> KEYWORDS

N & charles [19Nov2015 @0 0 %O Q View Map
OWNERS {

> DATE

> REGIONS L e

v
m
Q
o]
=
m
9]

_images/court_close_buildings.png
ider Count

_images/court_buildings.png

_images/logo1.png
3:: GeoNode

_images/cql-filter-url.png
D6typeName=geosolutions:WorldCountries&outputFormat=GML26CQL_FITER=NAME="Monaco]

_images/dashboard-notifications-config.png
GeoServer is not working=

detects when requests are not handled

When to alert

Number of handled requests is lower than
No response for at least

Response time is higher than

100

86400

500

SAVE

_images/dashboard-sw-performance-chart.png
< Latest: 10min 1 hour 1 week

Geonode Analytics

Response Time

Last Response Time: 11 ms

Max Response Time: 255 ms

Average Response Time: 16 ms
140

Q Search admin v

from: 09/12/2017 12:04:05 to: 09/13/2017 12:04:05) AutoRefresh

W*S Analytics

WMS

Response Time
Last Response Time: 25 ms
Max Response Time: 119 ms

\ Average Response Time: 1 ms
105 | 28
70 21
35 y \ 14 f-
ST 7 [t
2017-00Y5T12:00:00 2017-09-15722:00:00 2017-09-13710:00:00 /
o time L |
2017004571200
Throughput

Total Count: 524

120 {

80

40-

Throughput
Total Count: 366
180

135

90

_images/dashboard-notifications-list.png
Alerts Settings

GeoServer is not working
detects when requests are not handled

_images/dashboard-sw-performance.png
Software Performance i
Geonode Data Overview
Average Response Time Max Response Time
5ms 271 ms

Total Requests

W*S Data Overview
WMs
Average Response Time Max Response Time
3ms 591 ms

Total Requests

1734

_images/dashboard-sw-performance-charts-button.png
Software Performance

Geonode Data Overview

Average Response Time

Max Response Time

_images/demo-site.png
\J
::: GeoNode Layers Maps Documents People Groups _ @y Signin

Welcome

GeoNode is an open source platform for sharing geospatial data and maps.

If you have any questions about the software or service, join our mailing list.
Need help? Getting Started

33 Layers 22 Maps 10 Users

Click to search for geospatial data published by Datais available for browsing, aggregating and GeoNode allows registered users to easily
other users, organizations and public sources. styling to generate maps which can be shared upload geospatial data in several formats
Download data in standard formats. publicly or restricted to specific users only. including shapefile and GeoTiff.
Explore layers » Explore maps » See users »

Powered by GeoNede version 2.4.1 | Developers | About English a

_images/decoration2.png
scaleline

= =70 3082934.44102, 1256371.32910
Click on the map to get feature info

_images/docker.png
CONTAINER CONTAINER CONTAINER
Tomcat PHP

Java MySQL Static Binary

Debian Ubuntu Alpine

Kernel

_images/django_debug_toolbar.png
€ @ localhost: v ®searct w e o)

a
‘THE UNIVERSITY OF THE WEST INDIE! _

AT ST. AUGUSTINE, TRINIDAD AND TOBAGO

UWI GeoNode

B

<%

UWI's GeoNode is setup for students and faculty to collaboratively create and share maps for their clas
maintained by the UWI Geographical Society.

For more information about the UWI Geographical society, visit our website

VaN o~

_images/docs-folder.png
P branch: master + | bootstrap /®

Merge pull request #12696 from twbs/im-browserstack =

evrabertauthored an hour ago latest commit 2667439080 B
. dist Merge branch master'into pr/12412 2hours ago
. docs Merge pull request #12695 from martikaljuveloffcanvas-transition 2hours ago

. fonts Remove execute permission on font files 13 hours ago

_images/ctr_screen_pyr.png

_images/ctr_screen_ovr.png
e,
Scale = 1 5410 S01005, 17565, 1360040.13765
Cick on the map to get featurs info

_images/dashboard-error-details.png
from: 09/05/2017 16:26:50 to: 09/12/2017 16:26:50) Auto Refresh

< | Latest: 10min 1hour 1day

Error id: 206

Date: 2017-09-09 06:10:03
Service: demo-geoserver
Type: org.geoserver.platform.ServiceException
Status code: 200

URL: /geosolutions/wms/reflect?format=application/atom+xmi&layers=geosolutions:cleanedgfeatureid=cleaned. 187

PKVpRequestRe:
KvpRequestRe:
KvpRequestRe:
.parseRequestKVP (Dispatche:
cher.dispatch (Dis,
cher.handleRequestInter

n.java:305)
10)
a:28)

(ApplicationFilterChain.
(Thr
DoFilter (Appl
(ApplicationFilterChain.
egatingFiltersChain.doFilter (SpringD: ingFilter
rar dAaFilter (A m;

LocalsC

10)

ArFi ey 4

_images/d3-wiki.png
O O ik fepoefiony ® [Epler Gist Seg Felp ajlord +- X @

mbostock / d3 @5 Watch ~ 1,903 9 Star 22157 | Fork 4,521

Home Pages History

<>
Edit P P Hist Cl URL
H ome it Page age History one o
Wiki 3]
D3.js is a JavaScript library for manipulating documents based on data. D3 helps you bring data to life using HTML, SVG and CSS. D3’s
emphasis on web standards gives you the full capabilfies of modern browsers without tying yourself to a proprietary framewaork, combining
powerful visualization components and a data-driven approach to DOM manipulation. i~
fah
Resources
p
¢ Introduction

Examples Gallery
Tutorlale and Talks

* API Reference

¢ Release Notes

¢ Plugins

* d3.js on Stack Overflow

_images/dashboard-hw-performance-charts-button.png
{ardware Performance

calhost

_images/dashboard-errors-list.png
< Latest: 10min Thour 1day from: 09/05/2017 1 118 to: 09/12/2017 1 rf; Auto Refresh
Errors
205 org.geoserver.platform. ServiceExcepti. demo-geoserver 2017-09-08T23:58:03.823
206 org.geoserver.platform. ServiceExcepti. demo-geoserver 2017-09-09T06:10:03.556.
207 org.geoserver.platform. ServiceExcepti. demo-geoserver 2017-09-10T04:10:03.870
208 org.geoserver.platform. ServiceExcepti. demo-geoserver 2017-09-10T16:20:03.930
209 org.geoserver.platform. ServiceExcepti. demo-geoserver 2017-09-11T08:16:08.702
210 org.geoserver.platform. ServiceExcepti. demo-geoserver 2017-09-11T08:16:08.711
2m org.geoserver.platform. ServiceExcepti. demo-geoserver 2017-09-11T08:16:08.774.
212 org.geoserver.platform. ServiceExcepti. demo-geoserver 2017-09-11T10:14:06.617
213 org.geoserver.platform. ServiceExcepti. demo-geoserver 2017-09-11T10:14:06.729
214 django.template.base. TemplateSyntax. local-geonode 2017-09-11T11:10:56.110

_images/dashboard-hw-performance.png
017 12:30:16 to: 09/13/2017 12:40:16

Alerts

0 Alerts to show

Hardware Performance

localhost
GeoNode HW Status
Average CPU

) AutoRefresh

Errors

0 Errors occured

‘Average Memory

1937 MB

_images/dashboard-hw-performance-charts.png
e
< Latest: nin Thour 1day 1week from: 09/13/2017 13:02:07 to: 09/13/2017 13:12:07
GeoNode status

) AutoRefresh
localhost
CPU Memory
20 2000 -
1 R o
15 = 15001 / \
104 10001 |
5 . | 500
2017-003713:0200 2017-09-15T13:06:00

2017-09-13T13:11:00
< percents

ZO]7'UQ'q 3T13:02:00

2017-09-13T13:06:00 2017-09-13T13:11:00
- MB

_images/dashboard-indicators-ok.png
Latest: Thour 1day 1week from: 09/13/2017 12:30:16 to: 09/13/2017 12:40:16) AutoRefresh

Health Check Uptime Alerts Errors

0 alerts

0 errors 0 days 0 Alerts to show 0 Errors occured

_images/dashboard-indicators-errors.png
Latest: 10min 1 hour 1 week from: 09/11/2017 13:55:47 to: 09/12/2017 13:55:47) AutoRefresh

Health Check Uptime Errors

1 alerts
10 errors

87 days 10 Errors occured

_images/ctr_palette_pyr.png
601312,
Click on the map to et featurs info

_images/sld_create9.png
“<ld:TextSynbolizer>”
<sld:Label>

y*>Ariale/sld: Cspar
ont.size">12.0</51d:CssParan
-font sty Le >normal</sld: CosParaneter>
- font velght">norsal</s1d: CssParaneter>

ority>
ollowtine">true</s1d: Vendorptions

_images/kmz_ge.png
v Search
Search

near NYC “
Get Directions _ History L
S b Gnantanamo >

Make sure 3D Buildings
layer is checked

Temporary Places
trative.kmz

v Vi it.geosolutions:haiti_.
V& it.geosolutions:hait.

N

v Layers Earth Gallery
Primary Database
/P Borders and Labels
Place:
= Photos
= Roads
€3 30 Buildings assa Island
Ocean
£ Weather
Gallery
© Global Awareness
7 More

Tour Guide

Greater Antilles Ridge

Port-auzPrince

el

© 2013 €nes/Spot Image
© 2013 Google

US Dept of State Geographer

Data SIO, NOAA, U.S. Navy, NGA, GEBCO

19°26'46.76" N 73°13'20.3:

Indepen lencia

sign in

Hispaniola Plain

B“?or;u(o
Bar O\ e

Google earth

p)
W elev-3463 ft eye alt 243.80 mi O

_images/sld_transform2.png
e (1) ()

3063766.77812, 1252

1: 46K

Click on the map to get feature info

Scale =

_images/sld_transform1.png

_images/backup003.png
Add backup_+

_images/landmark_trails.png
wws version: (103] v | Tiing: (Singlefile ¥| Transition eftect: [None | v| Antia

Fit

fear—5]

Scale = 1 : 60K -105.32082, 40.02447
Click on the map to get feature info

_images/sources_choosesourcefiles.png
Import Data

1. Choose a data source to import from

I3 SpatialFiles - Files from a directory or archive
T PostGIs - Tables from PostGIS database
(5 Oracle -Tables from Oracle database.
(3:SQL Server - Tables ffom Microsoft SQL Server database

_images/landmark_crossing_trails.png
Scale = 1: 89K
Click on the map to get feature info

-105.27858, 40.08612

_images/socialmedia.png
A markiife~ | & @

_images/backup005.png
Select backup to change
<2016 september 19

sction] Ga] 0 of 1 selected
0w Name Date ~ Location
o2 Test Backup Sept. 13, 2016, 3:23 am. (Hone)

1 backup

_images/layer_create.png
:E: GeONOde Data v Maps v About v @ iR

Create an empty layer

Layer name

empty-layer Permissions
Layer title Who can view it?

My empty layer « Anyone

The following users:
Geomet e
AL Choose users...
Polygons :

The following groups:

Add Attribute Choose groups...

Who can download it?

a-string-field
. R Who can change metadata for it?
String v
Remove Who can edit data for this layer?
Who can edit styles for this layer?

Who can manage it? (update, delete,
change permissions, publish/unpublish
it)

_images/sources_newworkspace.png
3. Specify the target for the import
Workspace.

Create new [+][bd

Store.

Create new |+

_images/backup004.png
Add backup [en v

Name: Test Backup
Description: This is my backup for today

Base folder: /opt/backups

Location: (Hone)

_images/layer2.png
HOME LAYERS MAPS

SAN ANDRES Y

PROVIDENCIA POI

@ BHo9F- t 3=

]

o]
(OND]
[C]

TiesCourtesy o 5 (5, adin

@ info

ttributes @ Share ¥ Ratings

Title: San Andres Y Providencia Poi

DOCUMENTS ~ PEOPLE

XD o ... -

SEARCH

SANANDRES
YPROVDENGA

Andrés

® Comments

2

(2]

LfRER.]

Download Layer Download Metadata Edit Layer ~

1:1001055

MAPS USING THIS LAYER

This layer is not currently used in any maps.

_images/sources_filechooser.png
Choose a file or directory

Home directory OpenGeo/ Desktop/ be_shapefiles’

Aug 16, 2012 1 i

M |

be_2m_border.ax May 1, 2007 12:51 PM

be_2m_border.pg

be_2m_border.shp. Oct 31, 2006 3:30 PM
be_2m_border.shx Oct 31, 2006 3:30 PM
be_2m_border.zp Jun 22, 2012 11:57 AM
be_2m_akes.dbf Jun's, 2006 5:40 PM
be_2m _lakes.fx Apr 3, 2007 6:39 AM

Aug 16, 2012 1
oM

be_2m_akes.pg

be_2m_iakes.ax Apr 3, 2007 6:39 AM
be_2m_akes.shp Jun 5, 2006 5:40 PM

_images/backup007.png
= Location

(Hone)

_images/layer_info_vector.png
i GeoNode EXD o : oo

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH BRE

POSTCODE_POLYG
ON

@ QWO t3==E

)
e SRR
© 9
E]E]E]
7 N Punetty I
) sl i
e
DIEPET) o
4 % VICTORIA
Ll Svautor
] oitaura e
[¢ g, ol
o T

gharburion

MELBOURNE

oCoonautia

o .

— .

ke
TiesCourtesyof Map Qe [i

@ info Attributes @ Share JrRatings # Comments MAPS USING THIS LAYER

Title: postcode.polygon This layer is not currently used in any maps.

_images/sources_postgis.png
2. Configure the data source

Connection type *
Default[+.
Host* Port*
localhost 54321
Database * Schema
OpenGeo public
Username * Password

» Connection pooling
» Advanced

_images/backup006.png
Select backup to change

<2016 september 19

setion 7] iGa] 1 of 1 selected
¥ 0 | Delete selected Backups D
@ 2 O m s

1 backup

_images/layer_filtering.png
Download Layer

Images Data

Do you want tofilter it?

Filter by attributes

Match [of the following:

NAME_1='Benguela’

NAME_1="Cabinda’

Feature limit:

Pick your download format:

pped Shapefile
GML20
GML3.1.1
csv
Excel
GeoJSON

Clear

Close

_images/sources_oracle.png
2. Configure the data source

Connection type *

Default[+.

Host*

localhost

Database *

Username *

» Connection pooling
» Advanced

Password

_images/arcmap_wms_layers.png
Q Untitled - ArcMap
Fle Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help
DBdS 08 %2
HECYNI I IR Al)

Table Of Contents #x it/ dev.gonode.orglgeoserverjms? =
keS8 it fww myserver. com/arcgs/servicesmymap MapServer MMSServer?. z
= Pt/ example.com)seiet]com, s s, EsrmapZServiceName —Names. S
130
Abstract:
This s descrpton of your Web Map Server.
TR 55 || >

522,613 956.449 Unknown Units.

_images/jpeg2k1.png
Add Raster Data Source

Description

p2ECW
P2K (ECW) Coverage Format

Basic Store Info
Workspace *

geosolutions x|
Data Source Name *
TeraColor_Sydney_AU_15m_IPIK
Description
TeraColor_Sydney_AU_15m_IPIK

¥ Enabled

Connection Parameters
URL*

fledataiuser_datale_sydney ay_p2eraColoy_Sydn Browse.

_images/sld_create8e.png
Scale =1 : 67K 3066676.01511, 1271517.47177
Click on the map to get feature info

_images/arcmap_wms_layer_map.png
File Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help
DR2ESIL 5B x (9 | b-([12602 MEAl=11=] gk o)
QA kil e |E-TINO7FZINBRT

Table Of Contents " x N '~ catalog P x

ELEXAE] e 2B @ E-lalkla ¢

5 5 Layers Location: | San Ancres Y providencs Cosstine v | =
Boe Wi 2 A

haiti_administrative

irigated_areas
Provincial Boundaries of Soutr
Relief San Andres

San Andres Y Providencia Adrr

B Creste Loyer..

Create Layer

Create a new layer based on the
selected geographic data.

Sanitation Districts
School_Districts_Elementary
School_Districts_High
School_Districts_Unified
Single Point
State_Licensed_Child_Care
State_Licensed_Group_Homes.
State_With_County_Boundarie.

PO OOOOOOOOOOOOOOOOOOOOOOOOOOOOQ

Stret Light
SupenisorDistricts
TestGrid
o Trafic Signal
Traffic Signal .
e e < > I >

79,503 13.01 Decimal Degrees

_images/jpeg2k0.png
e\ TRy TR EEEEEEEE AT
3 Properties - Allows access to Java Property files containing Feature information
3 Shapefile - ESRI(tm) Shapefiles (*.shp)
5 Web Feature Server - The WFSDataStore represents a connection to a Web Feature Server. This connect
published by the server, and the ability to perform transactions on the server (when supported / allowed).

Raster Data Sources

B AIG - Arc/Info Binary Grid (AIG) Coverage Format
B ArcGrid - Arc Grid Coverage Format
B DTED - DTED Coverage Format
B ECW - ECW Coverage Format.
B EHar - EHar Coverage Format.
8 ENVIHdr - ENVIHdr Coverage Format
B ERDASIMg - Erdas Imagine Coverage Format
B GeoTIFF - Tagged Image File Format with Geographic information
B Gtopo30 - Gtopo30 Coverage Format
B8 ImageMosaic - Image mosaicking plugin
magepyrar ramidal plu

8 JP2K (Direct) - JP2K (Direct) Coverage Format.
B JP2MrSID - JP2K (MrSID) Coverage Format

B MrSID - MrSID Coverage Format

B NITF - NITF Coverage Format.

B Worldimage - A raster file accompanied by a spatial data file

Other Data Sources

& wMs - Cascades a remote Web Map Service

_images/sld_create8b.png
Results 1to 2 (out of 2 matches from 43 tems) L

™ Style Name Workspace
I tais

Results 110 2 (out of 2matches from 43 tems)

_images/ascii_merged.png
Scale = 17 2711813.43750, 4290763.75000
2M
Click on the map to get feature info

_images/jpeg2k3.png
Metadata links

No metadata ks 5o far

Add link | Note ol FGDC and TC211 metadsts liks show up i WIS 1.1.1 capabilties

Coordinate Reference Systems

Native SRS

EPSG14326 EPSGIWGS B4
Declared SR

EPSG.4328 Find.._ | ePsGiwes 84,

SRS handiing

Reproject native to declared x|

Bounding Boxes

Native Bounding Box

Min % Min¥ Max X Max ¥
150,38160451736 -34,35941680639 | 151,38171971736]-33,35950360639
Compute from data

Lat/Lon Bounding Box
MinX MinY Masx Mas ¥
150,38180451736|-34,35041880639 | 151,38171971736 -33,35050360838

Compute from native bounds

Coverage Parameters
SUGGESTED_TILE_SIZE
512512
USE_JAI_IMAGEREAD

ftue
USE_MULTITHREADING
false

_images/arcmap_wms_styles.png
Untitled - ArcMap

File Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help

Deds a8 x|
BRAMQIRII €
Table Of Contents ~ # %
BRI

= £ layers
5 @ Air Runways
[m]
© @ My GeoServer WNIS
EX

My GeoServer WMS

ERE L EARED kg
w080 BLNDS TRy

General | Source | Stes

select layer style:

san_andres_y_providenda_administrative

Abstract:

Height: 20
Width: 20

Legend URL:
hitp://apha. dev.geonode. org:80/geoserverjows?.
service =WMS&request=GetlegendGraphiciformat=image

7
s/

Jge|en <

-117.223 32.727 Decimal Degrees.

eS8

_images/jpeg2k2.png
Edit Layer

Exit layer data and publshing

geosolutions:TerraColor_Sydney_AU_15m

Configure the resource and publishing information for the current layer
Data | Publishing | Dimensions | Tile Caching

Basic Resource Info
Name
TerraColor_Sydney_AU_15m_JP2K

¥ Enabled

W advertised

Title
TerraColor_Sydney_AU_15m_JP2K
Abstract

Keywords

Current Keywords

wos =]

JP2ECH

TemaColor_Syney_AU_15m
2| _Remove selected

New Keyword

Vocabulary

Add Keyword

_images/backup002.png
Avatars

Backups
Contact roles
Hierarchical keywords
Licenses

Links

Metadata Regions
Metadata Res

n Code Types
Metadata Spatial Representat
Metadata Topic Categories

#add 2 Change
#add o Change
#add o Change
#add o Change
#add o Change
#add o Change
#add o Change

2 Change

2 Change

2 Change

_images/backup001.png
Menu

& Upload Layers

& Profile
Recent Activity
@ Inbox
¢ Announcements
@ Remote Services

@ Invite User

& GeoServer
4 Admin

@ Help

_images/002_socialaouth.png
Change social application

Provider: LinkedIn v
Name: LinkedIn
Client id:]

App ID, or consumer key

Secret key:]
API secret, client secret, or consumer secret

Key:
Key
Available sites © |

Q[Fiter I

©0

Choose all © © Remove all

Hold down "Control”. or "Command” on 3 Mac. to select more than one.

_images/003_socialaouth.png
Change social application

Provider: Facebook ¥
Name: Facebook
Client id:]

App ID, or consumer key

Secret key:]
API secret, client secret, or consumer secret

Key:
Key

Sites: | Available sites @ |

Q[Fiter]

o0

Choose all O O Remove all

Hold down "Control”, or "Command” on a Mac, to select more than one.

_images/001_socialaouth.png
Home > Social Accounts > Social applications
Select social application to change

Action: [oe ——————v][Go] Oof 2selected
Provider
Facebook

Name
Facebook
LinkedIn

0o

@ LinkedIn

2 social applications

_images/002_screenshot.png

_images/004_socialaouth.png
Linkediin - Developers ome Jpport Partners og lecal MyApps

My Applications

_images/001_screenshot.png
=§(GeON0de Data v Maps v About v _ €5 Ricardosiva v

Successfully signed in as ricardo.
Ricardo Silva (ricardo)

N no- no- 4 Message User
Ricardo € 9 9 logo-2 logo-1

Position Senior Software Engineer (£ _Edit profile
Organization GeoSolutions SAS. %) Connected social accounts
Location PRT & Associated e-mails
e Not provided. & Set/Change password
Fax Not provided.
Description Senior Software Engineer at GeoSolutions SA.S. & Upload new layers
Keywords Not provided 9 Createanew map
M User layers WMS GetCapabilities document 2 MyActivities

A Notifications

' Announcements

@ Remote Services
Invite User
&8 GeoServer

& Admin

_images/sld_create2b.png
-
&
*
-
&
-
-
&
-

TEEEEEEEE
T EEEEEE P
TEEFEFEEEEF

_images/sld_create2.png

_images/jmeter47.png
EEEEPEPPEPEEPEPREPEPPEPEEREPRERREE

IAAARAAAAAARRAAAAARAAAAAAARAAAAAAN

Sampler result | Request | Response data

niversity Dr NW

tate Rte 1|

73
N"’"'n'a

Jous
)&,y\’

_images/sld_create6.png
Edit Layer

Edit ayer data and pubishing

geosolutions:Wetlands_regulatory_area

Configure the resource and publshing information for the current layer

Data | Publishing |

Edit Layer
flame
Wetlands_regulatory_area

P Enabled
P advertised
HTTP Settings

I Response Cache Headers

Cache Time (seconds)

WFS Settings

Per-Request Feature Limit
0

Maximum number of decimals
0

WMS Settings
P Queryable
ToulE 5t

wetlands

_images/jmeter46.png

_images/sld_create5.png
Styles

Manage the Styles publshed by GeoServer

Add 2 new style
© Removed selected styie(s)

<</l </[1[2][> >> | Results 26 to 33 (out of 33 ttems)
" Style ame

I~ states_population

™ streets

™ streets inner

™ streets outer

I tris

T trais2

r

I~ wetiands_dyn

N
A

<@z -~ | Results 26 to 33 (out of 33 items)

_images/arcmap_wfs_style.png
File Edit View Bookmarks

ee8
= £ layers
o = [
=)
B | My it bt
5@ son Andres Y Pro
.

My GeoServer WMS

DBSd& OB x| (S|
(BRAMQIII e K- T k(@

Insert Selection

Untitled - ArcMap

Geoprocessing Customize Windows Help.

148343

BPl=1-1=1 =

12N RTIEY

Transparency.
Legend Symbol Levels

Label appearing next to the symbol n table of contents:

‘Addtonal description appearing next to the symbol n your map's legend

-117.228 32.734 Decimal Degrees

T |

_images/jmeter7.png
>
>
>
>
>

Threads (Users)
Paste cuy. Test Fragment
Reset Gui Config Element
o Timer

e Pre Processors
ey Post Processors »

Save Node AsImage <<
Save Screen As Image Cr-1lsivse &

Assertions

>

[Estener T Aasregate rapn

Enable
Disable

Togale T

Help

Aggregate Report
Assertion Results

Beanhell Listener

BSF Listener

Comparison Assertion Visualizer
Distribution Graph (alpha)
Generate Summary Results
Graph Results

JSR223 Listener

Mailer Visualizer

Monitor Results

Response Time Graph

Save Responses to a file

Simple Data Writer

Spiine Visualizer

‘Summary Report

View Results in Table

View Resuts Tree

_images/sld_create7a.png
plus

times

_images/arcmap_wfs_params.png
Q Untitled - ArcMap
Fle Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help
DERES L ER X9 | b-|[119357 MPAl=l-15] 1=
RANQII e« E-TINO/ BIENABRT

Table Of Contents 2x

ko8 a

@ 5 Layers

My GeoServer WMS

gl n <

Unused>
HITP Authentication: [<Unused>
T Use Proxy Server
Proxy Address: [<Unused>
Proxy port: [<Unused>
Proxy Username: [<Unused>
Proxy Password:
Proxy Authentication: [<Unused>
-Schema Attrbutes
‘Additonal Atrbutes to Expose: [[i tems selected.
-Constrains-

[Applcaton Schena

Help. Defaults_~.

_images/jmeter5.png
cut cux
Ccopy cuic Access Log Sampler
Paste

-~ Post Processors »| AJPI1.3 Sampler
Duplicate Citesninc | Assertions ¥ BeanShell Sampler
Reset Gui Listener

Remove Detete

Open...

Merge

e e e

_images/sld_create7.png
Scale =1 : 301K 3076008.36186, 1261693.30010
Click on the map to get feature info

_images/arcmap_wms_layer_drag.png
File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help

DRBES L OB (9 | b- (12508 VI EEEEE P g

(QQEQ K« 8- 5 K0/ BH=IME S TIEy .

Table Of Contents #x A Catalog 2[5
ELEXIE] € B @ E-|akld |§
5 < Layers Location: | < San Andres Y Providenca Natural v|[E

Boxes With Year Field2 ~
haiti_administrative

irigated_areas
Provincial Boundaries of Soutr
Relief San Andres

San Andres Y Providencia Adr
San Andres Y Providencia Coa:
San Andres Y Providencia High
San Andres Y Providencia Locz

San Andres Y Providencia Wat;
SANGISFAULT_ALQPRI
Sanitation Districts
School_Districts_Elementary
School_Districts_High
School_Districts_Unified
Single Point
State_Licensed_Child_Care
State_Licensed_Group_Homes.
State_With_County_Boundarie.

POOOOOOOOOOOOOOOOOOOOOOOOOOOOOQ

Street Light
SupenisorDistricts
TestGrid
o Trafic Signal
Trafic Signal -
el e < 5 & >

7969 12,58 Decimal Degrees.

_images/jmeter_request_params.png
Post Body

Send Parameters With the Request:

Value

[Getitap

—
N

s

{EK]

s bbuldings

EPSG2876

3062098 0062867, 1252158 6903078 3065695 2047731

750

500

imagefpng

_images/sld_create8a.png

_images/arcmap_wfs_transformations.png
Untitled - ArcMap

@
File Edit View Bookmerks Inset Selection Geoprocessing Customize Windows Help
DRE& L AR x |9 b3 ME4l=11=1 -l o)
RIAO@ kil €= |§E-TI8@7F ZINBIT
Table Of Contents 2 x
klee8
& & Layers
My GeoServer WMS

[EEIER

The foloning data sources use a geographic coordinate system that s different from
the one used by the data fame you are adding the data nto:

‘Geograptic Coordinate System
GCS North_American_1383

Data Source:
Ar_Runways

‘Alignment and accuracy problems may arise unless there is a correct transformation
between geographic coordinate systems.

You can use this button to specify or modify the- Transformations...

transformation(s) used by this data frame:
The Transformations dialog can also be accessed from the Data Frame Properties.
dilogls Coordinate Systems tab after you have added the data.

[JDon't warn me again in this session
[Jon't warn me again ever

About the qeoaraphic coordinate.
Systems warning

<

Done indexing Connection (1) - My GeoServer WFS WFS.fdl

Fome - DocumentAreGiS
Folder Connections
Toalbores

Database ervrs
Database Connections

615 Servers

(81 Add rcGisserver

| My GeoServer WM on sipha dev.geonode.o
My Hosted Services

Interopersbilty Connections

<t Add Interoperabilty Connection

2 Connection (1) - My GeoServer WFS WFS.fdl
i Rumways

i_Safety_Zones CN

_81.271 13.427 Decimal Degrees

s ol

_images/jmeter9.png
HTTP Request
Name: [HTTP Request

Comments:

Web Server
Server Name or IP: [lacalnost
HTTP Request

Implementation: -

GET ~| contentent

Path: [geoserveriows

_images/sld_create8.png
Styles

Manage the Styles published by GeoServer
© Add 3 new style
© Removed selected styie(s)

<= -~ | Restlts 26 to 33 (out of 33 ftems)
Style Name

states_population

r
=

I streets
I~ streets_inner
o

streets_outer

I trais2

I~ wetiands
I~ wetiands_dyn

<«<(<)1 Results 26 to 33 (out of 33 items)

_images/jmeter42.png
Available gridsets

Gridset Published zoom levels
EPSG:4326 Min v |/[Max v
EPSG:900913 Min v /[Max v
€PSG_2876 Min v/ Wax v

Add grid subset: [Scegieme o v [9]

_images/sld_create1.png
Styles

Manage the Styls publihed by GeoServer
© Add anewstie
© Removed siected styl(s)

2] > |(>> |Results 1to 25 (outof 43items)

Style Hame.

arealandmarks

arealandmarks_pt

a0 g

buidings

T cemetery_mark

[dtyimits

_images/jmeter41.png
[Coordinate Reference System
EPSG2876 ind... | EPSGINADB3(HARN) / Colorado North (RUS)...

oot _surver
Meters per unit: 0.30480060960121924

Gridset bounds

Min X MinY Max X Maxy
1,999 305528570 1.082 572, 159097|3.972 520 326056¢| 1626 770,085995"

[Compute from mavimum extent of CRS

‘il width in pixels *

25
‘Tile height in pixels *

26
Tile Matrix Set

Define grids based on: ® Resolutions) Scale denominators.

Level Pixel Size scale

o [21257731519436893 2.314.000,5448512205

1 [1.062,8865750718445 [1.157.030.2724756103

2 [5314432879850223 578515, 1362378051

3 [26572164300206116 (269 257 56811890256

4 [13286082199648058 144628 78405945128

5 [56.43041099824029 1{72314,39202072564
6 [33215205499120145 1{36.157,19601486282

_images/sld_create0.png
WMS Settings
' Quenvabie
Defaule Seyle
smsnimie
[detaut e

o park

W nationaipark

9 cometars

Additional Styles
Available Styles Selected Styles

arealandmatks cemetey_mark
realandmarcs ot cemetery _graphics
buidings

ciyimts
Gontours
ourtres
courty.
dem
Gem2
gem3

_images/jmeter44.png
BEELEELEELEELEEELEELEECEELEE

&

|| |[sampler result_|" Request [* Response data |

_images/jmeter43.png

_images/sld_create1b.png
Styles

Manage the Styes publshed by GeoServer
© Addanew sty
© Ramoed selsted syfs)

[[0 (2] o Resis 11025 st o

I aresizncmarks
I aresizncmarks st
I buidings

T cemeter

_images/jmeter45.png

_images/layerstoolbar.png
EXPLORE [VAA{2380 UPLOAD LAYERS

_images/coastline.png
San Andres Y Providencia Coastline

O

-
v

4

Edit Layer

Download Metadata

Nan Hi Legend
o

Pan de AzUc:
- a - /

Maps using this layer

This layer is not currently used in any maps.

|ﬂl_| 1| = 68247 v
5000 ft

Tiles Courtesy of MapQuest m
Create a map using this layer

O Info = Attributes Share % Ratings © Comments Click the button below to generate a new map based
on this layer.

Title San AndresY Providencia Coastline Create aMap

Abstract No abstract provided

_images/layersunchecked.png
Layers

©- 04,9

4 Overlays
[Clsan andres ¥ Providencia Water

/san_andres_y_providencia_poi
.

[Clsan andres Y Providencia Natural

[Clsan andres v Providencia Location
[Clsan andres v Providencia Highway
[Clsan andres Y Providencia Coastine

[Clsan_anares_y_providencia_asmiisrative:
Base Maps

_images/layerstoolbar_quickstart.png
Hxnlore Layers

Your selections Clear all filters Total: 0 Mostrecent Lessrecent A-Z Z-A Mostpopular

Set permissions.

_images/commentadded.png
COMMENTS (1 total)

Boy would | like to visit this place!
on Dec 28, 2012

results 11011 | page 1of1

_images/load_osm.png
»
; [[Show/Hide OSM Feature Manac
% Download OSM data
B LD A D O 5upoad osmdara
[Import data from a layer
Save OSM to file

Feature:

TYPE, ID:
CREATED:

USER:

_images/commentadd.png
Add a Comment

Comment:

Boy would ke to viit this.
place!

_images/listing-screen.png
Pull requests Labels Milestones Filters v is:open is:issue m

@® 104 Open 9,660 Closed Author v Labels v Milestones v Assignee v Sort ~

© .form-group-sm .form-group-Ig shrink textarea css | LT
#13989 opened 11 hours ago by limitstudios v3.2.1

® Tooltip unnecessarily breaks into multiple lines when positioned to the right s
#13987 opened 15 hours ago by hnrch02 v3.2.1

® Tooltip Arrows in Modal example facing wrong way (3 Ps
#13981 opened a day ago by SDCore

® Table improvement &3
#13978 opened a day ago by Tjoosten

® docs/dist files (T3 .7
#13977 opened 2 days ago by XhmikosR v3.2.1

@ Potential solution to #4647 [js [I
#13976 opened 2 days ago by julioarmandof

O Bootstrap site: right-hand navigation text becomes rasterized after scrolling (23 (223 [I
#13974 opened 2 days ago by mg1075 v3.2.1

® Dropdown toggle requires two clicks [js |
#13972 opened 2 days ago by Kizmar

_images/confirm.png
e =

:$ GeoNode ® johnsmith

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH | fREN-1]

CONFIRM EMAIL

Confirm email address?

_images/login.png
GeoNode - Training [Running] - Oracle VM VirtualBox

Help

Q ty B) 1554 3%

GeoNode Training

=

Guest Session

ubuntu® 14.04 LTS

_images/commit_logo.png
geo@geonode: /home/geonode/geonode_custom$ git status
on branch add_logo
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: geonode_custom/static/css/site_base.css
new file: geonode_custom/static/img/UWI-logo.IPG

geo@geonode: /home /geonode /geonode customs I

_images/load_osm_dialog.png
000 Load OSM

OpenStreetMap file to load:

/Users jjohnson/downloads/cite_soleil_buildings.osm [

Add columns for tags:

™ name l

() place

() highway

([landuse

[waterway

(] Replace current data (current layers will be removed)

e custom rencres (oK

_images/correct_branch.png
geo@geonode: /home /geonode/geonode_custom$ git branch

master
lgeo@geonode : /home/geonode/geonode_custons

_images/logo.png
3:: GeoNode

_images/confirm_Install.png
~ Training

Terminal

ONDEDIDOM

© ™ geo@geonode: ~
python-html51ib-whl python-numpy python-openid python-paste
python-pastedeploy python-pastedeploy-tpl python-pastescript python-pip
python-pip-whl python-psycopg2 python-pycurl python-requests-whl python-scgi
python-setuptools python-setuptools-whl python-six-whl python-tempita
python-urlgrabber python-urllib3-whl python-virtualenv python-wheel
python2.7-dev ssh-import-id tomcat? tomcat7-common tzdata-java zlibig-dev

The following packages will be upgraded:

libcomerr2 libexpatl openssh-client tzdata

4 upgraded, 142 newly installed, © to remove and 95 not upgraded.
Need to get 6 B/105 MB of archives.

After this operation, 254 MB of additional disk space will be used.
Do you want to continue? [Y/n]

WARNING: The following packages cannot be authenticated!

Llibcomerr2 libgssrpca libkadmsclnt-mit9 libkdbs-7 libkadmssrv-mit9 libapri
Llibexpat1 libaprutill ca-certificates-java tzdata tzdata-java java-common
openjdk-7-jre-headless libgifa openjdk-7-jre libatk-wrapper
Libatk-wrapper-java-jni_libbonobo2-common libidl-common libidle liborbit-2-6
Lliborbit2 libbonobo2-6 libck-connectore libdapil libdapclient3 libepsiloni
Llibfreexl1 libgfortran3 libgnomevfs2-common libgnomevfs2-6 libgnome2-common
Llibgnome2-bin libgnome2-6 1ibhdf5-7 mysql-common libmysqlclient1s Llibodbcl
Llibexpati-dev libpython2.7-dev libgeos-3.4.2 libgeos-c1 proj-data libproje
libspatialite5 libxerces-c3.1 odbcinst odbcinstidebian2 ncurses-term
openssh-client libaprutili-dbd-sqlite3 libaprutili-ldap apache2-bin
apache2-data apache2 authbind fonts-dejavu-extra libblas3 liblapack3
Llibarpack2 libarmadillo4 libhdf4-6-alt liburiparser1 libkmle libnetcdfc7
libogdi3.2 libpgs libgdalih gdal-bin git-core comerr-dev krbs-multidev
Llibapache2-mod-wsgi libcommons-collections3-java libcommons-pool-java
Libconmons-dbcp-java libecj-java Llibgconf2-4 libgeos-dev
Llibgeronimo-jta-1.1-spec-java libjpeg-turbos-dev libjpegs-dev libjpeg-dev
Lliblugeon-2.1.2 libossp-uuidi6 zlibig-dev libpng12-dev libssl-dev libpg-dev
Llibproj-dev libpython-dev libservlet3.e-java libssl-doc libtomcat7-java
libxml2-dev libxslti-dev openssh-sftp-server openssh-server postgis
postgresql-client-common postgresql-client-9.3 postgresql-common
postgresql-9.3 postgresql postgresql-9.3-postgis-scripts
postgresql-9.3-postgis-2.1 postgresql-contrib-9.3 postgresql-contrib
proj-bin python-chardet-whl python-colorama python-colorama-whly
python2.7-dev python-dev python-distlib python-distlib-whl python-dns
python-egenix-mxtools python-egenix-mxdatetime python-formencode
python-numpy python-gdal python-htmlslib python-html5lib-whl python-openid
python-tempita python-paste python-pastedeploy-tpl python-pastedeploy
python-setuptools python-pastescript python-six-whl python-urllib3-whl
python-requests-whl python-setuptools-whl python-pip-whl python-pip
python-psycopg2 python-pycurl python-scgi python-urlgrabber
python-virtualenv python-wheel tomcat7-common tomcat7? ssh-import-id

Install these packages without verification? [y/N] y

&)

1 B o) 1600

_images/login_setup.png
Global Settings

Settings that apply to the entir server.

I Verbose Messages

O Verbose Exception Reporting

‘Number of Dacimals
0

Character set

urrs

Proxy Base URL
Logging Profile

[DEFAULT_LOGGING properties
|VERBOSE LOGGING.propertes

[GEOTOOLS DEVELOPER LOGGING.properties
|GEOSERVER_DEVELOPER_LOGGING,properties

Log to stdout

Log Location
Togsigeoserveriog

_images/buildings_parks.png

_images/layersadded.png
HOME LAYERS ~MAPS ~ DOCUMENTS ~ PEOPLE SEARCH
| [Esp~ Syprint | @ entity g = Messure + gt + 1iaps I This map is currently unsaved
S48 s ==50

oo Lamaira

Puerto Cabezas
Rosita o
o

. o)

Lsonpetra et vt

Base Maps an Andres

g?

© buemardle

© Bing aerial i Labels

oBetilas

=
fapQuest magery o Morrito

© MapQuest Openstreetitap 1\

© openstreetitap s Cr
m EL] 1:4367832 Y
. e Courtesy ST T2 (). jonnamith, admin

_images/buildings_layer_geonode.png
GeoNode

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH

CITE_SOLEIL_BUILD
INGS
@ | B[H09 T

cite_solei_ buiings 73

Name Value
Timestamp 2010-01-15T...
User andygates
Tags “building”

Name

cite_solei_ buiings 74

@ Info MAPS USING THIS LAYER

This layer is not currently used in any maps.

_images/layers1.png
Si¢ GeoNode

EXD o .-z e

2 GIEOIAWNGNEN UPLOAD LAYERS

EXPLORE LAYERS

MostRecent | LessRecent | A-Z | Z-A | MostPopular | Relevance

Your selections

Clearall Total: 10

All Categories

Biota

Boundaries

Climatology Meteorology Atmosphere

Economy

Elevation

Environment

Farming

bar

viewsy HEcia

O San Andres Y Providencia Water
Layer from admin, 1day, 21 hours ago
Noabstractprovided

o

Layer from admin, 1.day, 21 hours ago.
Noabstractprovided

4

O San Andres Y Providencia Coastline
Layer from admin, 1day, 21 hours ago
Noabstractprovided

o

< San Andres Y Providencia Location
Layer from admin, 1day, 21 hours ago
No abstract provided

_images/checkout.png
geo@geonode: /home/geonode/geonode_custom$ sudo git branch add_logo
geo@geonode: /home /geonode/geonode_custom$ sudo git checkout add_logo
Switched to branch 'add_logo'
geo@geonode : /home /geonode /geonode_custons |

_images/change_map_permissions.png
Permissions

Specify which users can view or modify this map

Change Permissions of this Map

_images/layerlist_crs.png
Layer Status

be_2m_border Projection could not be determined. Find... | EPSGNADS3. > Api

_images/layercomment.png
Aftributes @ Share % Ratings ~ # Comments

COMMENTS (0 total)

Add Comment

results 00010 | page 1of1

_images/before_crosslayer.png
Memory issues
Geometry merging logic

Get reference geometries

Client GeoServer

Large request with

unioned geometries

The response finally!

e

Extra requests
Large network transfers
Issues with GET requests size

_images/layerlist_success.png
Last Updated

[be_shapefiles Select Al | None |Ready
Importing into new store bc_shapefiles
W Layer Status

intersection @ Import successful. view in [Layer Preview [+ Go

Layer Preview
be_hospitals Import successful pLp
-_hospi © Impor viewin e |50
be_2m_lakes © Import successful. Viewin Layer Preview [+]Go
be_2m_rivers @ Import successful. viewin| Layer Preview [+ Go

be_elections_1996. © Importsuccesstul Viewin Layer Preview[~] Go

_images/batemans_tif.png
D oz o

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH [cX-]
BATEMANS_ELE
& 2@eer ax~-lEe i o]
Durras Norin
o

o]
(OND)
9

Nelligen Ouras Lake.
B o

Durras
o

&
el
1: 272988 aa
TilesCourtesyof 5 e [admin 1]
0 info tiributes @ Share d Ratings 9 Comments MAPS USING THIS LAYER

Title batemans.cle This layer is not currently used in any maps.

Abstract:
No abstract provided

_images/layerlist_select.png
Last Updated

[be_shapefiles Select Al |None |Ready
Importing into new store be_shapefiles
W Layer Status

intersection © Readyforimport. Advanced.
be_hospitals @ Readyforimport. Advanced.
be_2m_lakes © Readyforimport. Advanced.
bc_2m_rivers @ Readyforimport. Advanced.
be_elections_1996 © Readyforimport. Advanced.
be_parks_2001 @ Readyforimport. Advanced.
be_roads © Readyforimport. Advanced.
bc_municipality @ Readyforimport. Advanced.
be_pubs. © Readyforimport. Advanced.
be_elections_nad83. @ Readyforimport. Advanced.
bc_2m_border © Readyforimport. Advanced.
bc_2m_rivwide @ Readyforimport. Advanced.

OO0 resuts 110 12 vt 12 tems)

_images/bootswatch_geonode.png
v | [®search we 93 A

AND TOBAGO

UWI's GeoNode is setup for students and faculty to collaboratively create and share maps for their class projects. It is
maintained by the UWI Geographical Society.

For more information about the UWI Geographical society, vsit our website

VaN o~ -

_images/layerpreview.png
s Geollode

HOME LAYERS MAPS DOCUMENTS

PEOPLE

LERER-]

SAN_ANDRES_Y_PROV | [/ (=

uw@hﬁ@r- tx==HEOQ
Tocoa

[J70)
(G

pusrio Lempira
= »

§ ol oPustto Cabozas
o

0
inatdoa

{50 Pedro Dol Norie
© Watagaipa
ez

nagua |
s gsen Tonas

S o < £ s

©info

Aftributes 2 Share % Ratings

Title: san_andres_y_providencia_administrative

Abstract:
No abstract provided

Publication Date: Dec. 27, 2013, 654 pm
Type: Vector Data

0]

g

©

® Comments

EL 1:4367832 ¥

MAPS USING THIS LAYER

This layer is not currently used in any maps

CREATE AMAP USING THIS
1 AVER

_images/bootswatch.png
Bootswatch SANDSTONE +

Sandstone o
A touch of warmth VARIABLES LESS

BOOTSWATCHLESS

Navbar _VARIABLES SCSS

_BOOTSWATCH.SCSS

Buttons.

Typography

Tables

Forms

Navs

_images/layermetadata.png
Si¢ GeoNode

EDITING DETAILS FOR GEONODE:SAN_ANDRES_Y_PROVIDENCIA_ADMINISTRATIVE

Owner johnsmith ~

Title san_andres_y_providencia_adm

name by which the cited resource is known

Date 5013-1227 =
18:54:30 .
Date type | Publication =

identification of when a given event occurred

Edition

version of the cited resource

Abstract No abstract provided

_images/buildings_inside_park.png
BPL Maih Branch

_images/layers.png
i< GeoNode Layers Search Q O

Explore Layers

Total: 18 lA

Cart

Add resources through the "Select"

buttons. b4 . e
places_i_know

No abstract provided

setPermissions Createamap & charles [19Nov2015 @O0 0 % O @ CreateaMap
Filters Clear *
.

Search by text n e

=

Raster (2] IDPCamps_Nepal_Earthquake

Vector m IDP Camps visible form WHR images of DigitalGlobe after the Nepal Earthquake

> CATEGORIES & admin [19Nov2015 @ 6 0 % 0 @ CreateaMap

> KEYWO

_images/branching.png
‘master’ branch

Create “feature’ branch from ‘master’ Merge ‘feature’ branchinto ‘master’

Commit changes Submit Pull Request Discuss proposed changes

_images/layerrating.png
ASNR POuHesy of MapQosstLals ot

©info

Aftributes @ Share % Ratings ~ ® Comments

Rate this layer

CR 8 8 8 & 4
Average Rating

_images/backup009.png
Home > Base » Backups

© Executed Backup: Test Backup

Select backup to change

<2016 september 19

P p— ¥] 6ol 00 1 selected

® Name Date
2 Test Backup Sept. 19, 2016, 8:29 a.m.

1 backup

Location

/opt/backups/2016-09-19_083614.2ip

_images/layer_styles_userstyle.png
User Style: sollp X}
|

General

@cancal @sove

_images/backup008.png
Home » Confirm run of Backups:
Confirm run of Backups:

Are you sure you want to run the selected Backups?
Test Backup

cancel Yes, I'm sure

_images/layer_styles.png
Layer Styles: Dominica soil survey
Stytes
Choose style: sl ®
@At @ renove Es Poupicae

Rules

 untiled 1

@4ds @Remove P Est §P Dupicate

_images/sources_recentimports.png
Recent Imports. © Remove

COMPLETE moments ago

@QQD@RSM o (outot 1 tems)

_images/backup011.png
Select backup to change

<2016 september 19

Action,

o] 05t 3 selected

o

3 Backups.

Name
Test Backup

Test Backup 2
Test Backup N

Date
Sept. 19, 2016, 8:29 a.m.
Sept. 19, 2016, 8140 a.m.

Sept. 19, 2016, 8141 a.m.

Location
/opt/backups/2016-09-19_083614.2ip

Joptybackups/2016-09-19_084041.2ip
/opt/backups/2016-09-19_084140.2ip

_images/backup010.png
. Location

/opt/backups/2016-09-19_083614.2ip

_images/layerattributes.png
e Santo Tomds. Ll

oAyt s g O

@ info Attributes | @Share JRatings # Comments

Average Median Standard Devi

_images/backup012.png
Select backup to change
<2016 september 19

MERE

0 Delete selected Backups
] 2 | Runthe Backup

@3 "est Backul
Test Backup N

3 Backups.

_images/zoomedin.png

_images/raster_overlay_url.png
1057001388 v

_static/ajax-loader.gif

_images/jmeter19.png
Summary Report
Name: [Summary Repor:

Comments:
Writ results fofle / Read fromfile

Filename | Biouse.._| LogiDisplay Only: [] Errors [] Suc
Label [#ampies | Aversge | i x| 5t Dev | Eror% | Throughput

TP Real| 371 o1 Pz BE 1HeT 000E 62isec

FOTAL il 391 225 815 Atiol 0008 62isec

_images/register.png
s1 GeoNode EXE o v 0

_static/comment-close.png

_images/raster_srtm.png
@S

_static/comment-bright.png

_images/jmeter20.png
-

_images/rest_browser_2.png
V&

R e

48 ([localhost:8080/geoserverirestiorkspaces/ge:

‘This XML file does not appear to have any style information associated with it. The
document tree is shown below.

- <workspace>
<name>geosolutions</name>
- <dataStores>
<atom:link rel="alternate" href="http://localhost:8080/geoserverjrest/workspaces
Jgeosolutions/datastores.xml" type="application/xml’/>
</dataStores>
- <coverageStores>
<atom:link rel="alternate" href="http://localhost:8080/geoserver/rest/workspaces
Jgeosolutions/coveragestores xml" type="application/xml"/>
</coverageStores>
—<wmsStores>
<atom:link rel="alternate" href="http://localhost:8080/geoserverjrest/workspaces
Jgeosolutions/wmsstores xml" type="application/xml"/>
</wmsStores>
</workspace>

_static/down-pressed.png

_images/jmeter2.png

_images/rest_browser_1.png
Geoserver Configuration APT

‘workspaces
‘namespaces
steles

reset
about/manifest
aboutversion
seftings
settings/contact
services/wms/settings
services/wi/settings
services/wes/settings
templates

D I I I)

_static/comment.png

_images/issue.png
m Pull requests Labels Milestones
& Finish README

No one ls assigned %~ No milestone
Write Preview Parsed as Markdown [, Edit in

So that the humans ‘get’ me.

_images/raster_hillshade_defaultstyle.png
WM Settings

& Queryable.

ettt

o

X oo o
1o

2560

_images/workspace1.png
* About to connect() to localhost port 8086 (#8)
+Trying ::1... comected

* Comnected to localhost (::1) port 8080 (#9)

* Server auth using Basic with user ‘adnin’

> POST /geaserver/rest/vorkspaces HTP/1.1

> Authorization: Basic YWRTaWAGR2VYCw==

> User-Agent: curl/7.19.5 (1486-pc-inux-gnu) Libcurl/7.19.5 OpenssL/0.9.8g z1ib/1.2.3.3 libidn/1.15
> Host: Localhost:8680

> Accept: */*

> Content-type: text/xnl

< HITP/1.1 201 Created
< Server: Apache-Coyote/1.1
< Date: Thu, 81 Apr 2610 15:22:57 GHT

< Server: Noelios-Restlet-Engine/1.0..8
< Transfer-Encoding: chunked

* Connection #9 to host localhost left intact
 Closing connection #0

_images/install_packages.png
Terminal B o e

©®®® geo@geonod
geo@geonode:~$ \
> sudo apt-get install

> python-virtualenv
build-essential
openssh-server
apache2

gcc

gdal-bin

gettext

gettext

git-core
Libapache2-mod-wsgi
Libgeos-dev
Llibjpeg-dev
Libpng-dev
Libpg-dev
Llibproj-dev
Libxml2-dev
Llibxslt-dev
openjdk-7-jre

e

patch

postgresql

postgis
postgresql-9.3-postgis-scripts \
postgresql-contrib \

python \

python-dev \

_images/raster_hillshade.png
New Layer

Add a new layer

Here is a s of resources contained i th stoe hilshade’. Click on the layer you wishto configure
T Resuits 1to 1 (out o 1 items) L sen

Published Layer name. action

hillshade. Publsh,

_images/wmscascading_publish.png
&
& ws
&

30

Geosolutions: Raster_50000_Scale_index
Cocsohains i b

Corsohins e i e

Geosotons oy

P ——

Geosotons speza-seconou

Geosotmons spe-mna-depconor
[T——————

Consetar e sepcnne

[——
oottt sestonci depres
[—

PRR——

5 et 11025 (ot o 47 k).

_images/jmeter13.png
Remore st

Shudown cut.cons
Remote stop »
Remote top A

Remote Ext
Remote Bt Al

_images/raster_hillshade_publishing.png
Edit Layer

Edit layer data and publishing

geosolutions:hillshade
Configure the resource and publising nformation fo th currrt lyer

_images/workspace3.png
workspace>
<naneonyworkspaces/nane>
<datastores>
<aton: Link xalns:aton="http: //wwn.3.0r/2005/Aton" rel="alternate" href="http://Localhost:8080/geaserver/rest/uo
spaces/myworkspace/ Gatastores. nl* type="application/xal”/>
</datastores>
<coverageStores>
<aton: Link xalns:aton="http: //wn.i3.0r/2005/Aton" rel="alternate" href="http://localhost:8088/geoserver/rest/uo
Kspaces/mpworkspace/ coveragestores. il type=application/sal”/>
<Icougragestores>
aworkspace>

_images/java_opts.png
@ oW N e

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

set

REM
set
REM
set

REM
set
REM
set

REM
set
REM
set
set

REM
set
set
set
set
set
set
set
set

ROOT=%~dp0

variable used in documentation
TRAINING ROOT=%ROOT:
clear the user PATH
PATH=C:\Windows\System32;C:\Windows ; C:\Windows\Syswows4

Setting Java
JAVA_HOME=%ROOTH\jdk

set JAVA_HOME=C:\Java\jdk
PATH=%JAVA_HOME%\bin; SPATH%

GeoServer and GeolWebCache Options
GEOSERVER_DATA_DIR=%ROOT?\geoserver_data\

set GEOSERVER_DATA_DIR=3ROOT%#\tomcat-6.0.36\instances\instancel\webapps\geoserver\data
GEOSERVER_LOG_LOCATION=#CATALINA_HOME?\logs\ ¥ INSTANCE_NAME? .log
GEOWEBCACHE_CACHE_DIR=#ROOT:\data\gwc

Toncat Options for the JVM
JAVA_OPTS=%JAVA_OPTS® -Xns512m -Xmx512n -XX:MaxPermSize=128m -XX:Permsize=128m
JAVA_OPTS=%JAVA_OPTS® -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:ParallelGCThreads=4
JAVA_OPTS=%JAVA_OPTS% -DGEOSERVER_DATA_DIR=%GEOSERVER_DATA_DIRS

JAVA_OPTS=%JAVA_OPTS% -DGEOSERVER_LOG_LOCATION=%GEOSERVER_LOG_LOCATION%
JAVA_OPTS=%JAVA_OPTS% -DGEOWEBCACHE_CACHE_DIR=%GEOWEBCACHE_CACHE_DIRS
JAVA_OPTS=%JAVA_OPTS® -Djavax.servlet.request.encoding=UTF-8

JAVA_OPTS=%JAVA_OPTS% -Djavax.servlet.response.encoding=UTF-8 -Dfile.encoding=UTF-8
CATALINA_ BASE=%CATALINA_ HOMES\instances\?INSTANCE NAME:

_images/raster_hillshade_preview.png

_images/workspace2.png
Workspaces

Manage Geaserver workspaces
© Add new workspice
© Remove seiected workspacets)

- Resus 1102 (ot of 2 tams)
O Workspace Name.

O gessotions
O myworkpsce

Resus 102 fout of 2 ftems)

_images/jmeter15.png
& e Regques
ST Reauest
ST Reauest
G Reauest
& HTTP Request.
& HTTP Request
& HTTP Request
& HTTP Request
e Request
G Request
G Request
ST Reauest
& HTTP Request

H

P p

HE o
LRy ol
HE
jagio

_images/raster_overlay_2layers.png
=105, 7001358538585

soo1ze

_images/jmeter14.png

_images/raster_overlay.png

_images/jmeter18.png
Thread Properties
Number of Threads (usersy:[1
Ramp.Up Period (insecondsi:[1____
Loop Count: [] Forever [1

(] Delay Thread creation until needed

[Scheduler

_images/jmeter17.png
Graphs to Display [v] Data [v] Average ledian [¢] Deviation

_images/win_install_41.jpg
Edit environment variable

CaAProgram Files\InteNWiFibin\,
CaAProgram Files\Comrmon Files\ntel\WirelessCommon),
CAUsers\Dell\ippData\Roaming\npm
Chapps\Sitextensionsh.

Cawork\programs\Giticmd
Caworkiprograms\GitimingwBRbin
Cawork\programs\Gitiusribin

CaAProgram Files (88)\Skype\Phonet,

CaProgram Files (88\avaljreTbin

|

Move Up

Edit

Browse.

Delete

Cancel

_images/win_install_40.jpg
Enviranment Variables

User variables for Dell

Variable Value

Path CAProgram Files\Inte\WiFi\bin.CAProgram Files\Common Files\Intel\Wirel,
Temp SGUSERPROFILEZA\AppDate\Lacal\Temp

™ SAUSERPROFILEY\AppDateLacal\Temp

New. Ed

Delete
System variables
Variable Value
FP_NO_HOST_CHECK No
GDAL HOME CAProgram Files (G36\GDAL
GDAL_LIBRARY_PATH CiProgram Files (:89\GDAL\gdalT11.dl
5bs\GeoNade-24;

GEOS. LIBRARY_PATH CAAProgrom Files (:89\GDAL\geos_c.dil
JRE_HOME Ciopps\GeoNade-2.4:jre
MAVEN_HOME Citworkiprogramstapache-maven-3.39
NUMBER_OF PROCESSORS 4

New. ; Delete

_images/raster6.png
Layers

Manage the layers being publishe by GeoServer
© Add a new resource.
© Remove selected resources

Results 1to 18 (out o 18 items) e

[|_Type Workspace _Store Layer Name Enabled? _ Native SRS

O M ceosoutions boulder shapefies _ bbuidings v £PsG2676
O M geosoluions bouder shapefies biakes v EpsGuazss
O M geosolutions boulder shapefies BoulderCitylimits v £psG2676
) M oeosoluions boulder shapefies bplancmarks v EpsGuazss
[* geosolutions boulder shapefiles bptiandmarks v EPSG4269
) oeosolutions boulder shapefies bptiandmarks_ 2676 v epsG2676
0 geosolutions boulder_shapefies brivers v £psGazss
O/ oeosolutions boulcer shapefies bstreets v epsG2676
O M oeosolutions boulder shapefies ccountes v £psGazss
O @ oeosolutions boulder shapefies Mainra v epsG2676
O M geosoutions boulder shapefies Parcels v £psG2676
O M oeosoluions bouder shapefies Trails v epsG2676
) M oeosolutions boulder shapefies Wetlands reguiatory area ¥ £psG2676
O @ oeosoutons dem stm v epsGasze
O 8 oeosoutions hilkhade Hilshade v £psGase
mr] geosolutions NaturalEarthCountries WorldCountries. v EPSG:4326
0o @ geosolutions states. states v EPSG4326

Results 1to 18 (out of 18 tems)

_images/wmscascade_sources.png
& server st
e
© oo essarr

yerreven
= wonspces

wes.
&
e

=
8 e

3 owssecrry
® oo sy
3 g sty

Vector Data Sources

S econy f st e (shapties) - Take ety o shpetlessnd cxposes .3t s
Pl —

3 propercs - s accsst v Prperty e contanngFestue amaton

St SR Snapete () i
i et Srvr - Toe WFSOtaStr repesnés conection .3 Web et Srvr, T comnection s
accss o th estrs ubIShd by th e, 0 Sy 0 prtor Uanachonson e sever (when uppred
s

Raster Data Sources.

18 Cacrie - Tagges mage e Frmt i Cesrapc st
2 Gi0p0% - Glopow coerae Famat

e

8 ariinage - A asar e sccompanied by 3 sptl 4t e

Other Data Sources

_images/raster5bis.png
Coverage Band Detalls
Band

Datatwe Nullvalues minkange. maxkange e
RED_8AND Unsgnedsbes 00 [0 [Wm2set
GREEN_BAND Unsgnedsbes 00 0 [Wm2sed
BLUE_BAND nsanedsbes 00

Wm2se

_images/wmscascade_bbox.png
Coordinate Reference Systems

Native SRS
EPSG:4326
Declared SRS
EPSG:4326
SRS handling
Force declared

Bounding Boxes
Native Bounding Box

EPSG:WGS 84...

Fi EPSGIWGS 84...

|

Compute from native bounds

Min X Min Y. Max x Max Y
180 oo [180 foo
Compute from data

Lat/Lon Bounding Box

Min X Min Y max x max Y
180 Foo 180 oo

_images/inspect_element.png
THE UNIVERSITY OF THE WEST INDIES

YSTINE, TRINIDAD AND TOBAGO

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH

Developer Tools - http://localhost:8000/

B e @ % & &AMk

Elements | Resources Network Sources Timeline Profiles Audits Console

» Computed Style
vStyles + &
element.style {

D Show inherited)
vental lang="en"s =
» <head>..</head> #*
hone hasGoogLeVoiceExt

“navbar navbar-Tixed-top"s.</div>
“content-urap's b

Vatched CSS Rules
body.home .content-wrap {

Vediv class="row"> base.css:9

i e
TSR e ,
ATy
»<div class="hero-unit-content">.</div> «content-wrap { site base.css:7|
el ey o o
o st) -
</civ= .content-wrap {
</div> backgroundts [|#FEfr
etes padding: »30px © @ 20px;
</div> width: 980p:
e ctssetooars et et
e e pscgnerserine e
o Tt ,
e
<script src="/static/libs/datatables/is G T wser agent styleshest
query.dataTables.min. js"></script> display: block;
B e L R

_images/raster_dem_style.png
Style Editor

Edit the current SLD style. The editor can provide syntax highiight and be brought to full screen. Click on the "valdate” button to
verity the style is valid SLD document.

Name
dem

Copy from existing style
Gooone = Copy

Dems [l

itp: //www. opengis. net /sLd" xalns: SLek"http: //wew. opengis. net /514

<sld: styl edLayerDescriptor xalns=
<sld: Userlayer>
<sld: LayerFeatursConstraints>
<sld FeatureTypeconst raint/>
</51d: LayerFeatureconst raints>
<sld:Userstyle
ST Nane>srtn_boul der</sLd: Nane>
<sld: Title/>
<sld: FeatureTypestyle>
<=L Name>mame</<1 d iane>
<Sldrile
<<1d: incsl eDenominstar>T50¢
<sld: Rastersymbalizer>
<sld: Geonet ry>

</514: Minscal Denominator>

Colortapent ry opacit.
Colortiapent ry opacity
Colortiapent ry opacity
Colortiapent ry opacity

quantit
aquantity"
aquantity"
aquantity" .
aquantity"

aquantity="
aquantity"
aquantity"
aquantity"
aquantity"

Colortiapent ry opacity

Colortiapent ry opacit,
Colortiapent ry opacity
Colortiapent ry opacity
Colortiapent ry opacity
Colartapent ry opacity

Sio e

_images/wmscascading_preview.png
Scale - 1:279M ~224.29686, 104.06250

_images/infotab.png
@ info ttributes 2 Share

Title: san_andres_y_providencia_administrative

Abstract:
No abstract provided

Publication Date: Dec. 27, 2013, 654 pm
Type: Vector Data

Topic Category: location

Owner: johnsmith

Point of Contact: johnsmith

ShowHide

* Ratings

® Comments

_images/raster7.png
Scale - 1: 146K '480336.91406, 4427050.76125
Click on the map to get feature info

_images/wmscascade_store.png
New WMS Connection

Edt the connecton to a remate WIS Connection
Basic Store Info
‘Workspace *

igessoiiors 8]
W Source ome

gevserver-enterprise
Description

¥ Enabied

Connection Info
‘Copabties URL *

o idemo1 geo-solutions itgeoserver-enterpriselows?
ser Name.

¥ Use HTTP connection pooing
Max concurrent connections *
6
Connect timeout in seconds *
£
Read timeout in seconds *
60

_images/raster1.png
New data source

Choose the type of data source you wish to configure

Vector Data Sources

(CA Directory of spatial files - Takes a directory of spatial data files and exposes it as a data store
(T4 POSIGIS - PoStGIS Database

(T3 PoStGIS (INDI) - PoSGIS Database (INDI)
3 Propertes - Allows access to Java Property files containing Feature information
3 Shapefile - ESRI(tm) Shapefiles (*.shp)
(%4 Web Feature Server - The WFSDataStore represents a connection to a Web Feature Server. This connection provides access o the
Features published by the server, and the abilty to perform transactions on the server (when supported / allowed).
Raster Data Sources

Y

8 GeoTIFF - Tagged Image File Format with Geographic information
e

e
TEIDBC - Image mosaicking/pyramidal jdbc plugin

18 ImagePyramid - Image pyramidal plugin

18 JP2K (Direct) - JP2K (Direct) Coverage Format

1 WorldImage - A raster file accompanied by a spatial data file

_images/win_install_36.jpg
5 Services

File Action View Help

e @EEGR|

El»En®

Services (Local)

Name *

G ActiveX Installer (Axinstsv)

€ Adobe Acrobat Updte Sevce
84 Alloyn Routr Senice
©Apache Tomeat 70 Tomeat?

@ App Readiness
Application Host Helper Serice

G Application dentity

@, Application Information

2 Application Layer Gateway Senvice

G Applicaton Management

6, AppX Deployment Service (AppXSVC)

T ASPINET Sate Senice

&, uto Time Zone Updater

2 Background Inteligent Tansfer Senvice

G Background Tasks Infrastructure Senvce

G Base Fiering Engine

2 BitLocker Drve Encryption Service

) Block Level Backup Engine Senvice

@ Bluetooth Handsree Service

) Bluetooth Support Senvce

&) BranchCache

@ Centiate Propagation

Description
Provides User Account,
Adobe Acrabat Update,
Routes Allloyn messag,
Apache Tomeat 7.065

Gets apps ready for us
Provides administrativ.
Determines and verifie
Facilitaes the running
Provides supportfor 3.
Processes installation,

Provides infrastructure,
Provides support for o
Automatically sets the
Transfers files in the ba.
Windows infrastructur,
The Base Filtering Engi,
BDESVC hosts the Bitl.

The WBENGINE senvice,
Enables wireless Blueto,
The Blustooth service

This service caches net,
Copies user certificates

Status

Running

Running
Running

Running

Running

Running
Running

Running

Startup Type
Manual
Autornatic
Manual Trig
Autornatic

Manual
Automatic
Manual (Tig
Manual (Tig
Manual
Manual
Manual
Disabled
Disabled
Automatic ©.
Automatic
Automatic
Manual (Tig
Manual
Manual (Tig
Manual (Tig
Manual
Automatic

Log On &5
Local Syste
Local Syste
Local Service
Local Syste

Local Syste
Local Syste
Local Service
Local Syste
Local Service
Local Syste
Local Syste
Network s,
Local Service
Local Syste
Local Syste
Local Service
Local Syste
Local Syste
Local Service
Local Service
Network s,
Local Syste

Extended), Standard

_images/rancher_url.png
INFRASTRUCTURE v ADMIN v

=y) Default v STACKSv CATALOGwv

supported version Add a host

Hosts: Add Host

Host Registration URL

What base URL should hosts use to connect to the Rancher API?

@ This site's address: http://155.253.20.47:8080

(O Something else:

Don'tinclude /v1 or any other path, but if you are doing SSL termination in front of Rancher, be sure touse https:// .

SEVS

@Englishvy 4, Download CLI v

v1.6.14 Help Documentation File an Issue Forums Slack

_images/win_install_35.jpg
7% Services

File Action View Help

e @EGR|

> mun

Services (Local)

Name *

B ActveXnsale (st
€ Adobe Acrobat Updte Sevce
% Allioyn Router Service

L Apache?

&1 App Readiness
Application Host Helper Serice

G Application dentity

@, Application Information

2 Application Layer Gateway Senvice

) Applicaton Management

6, AppX Deployment Service (AppXSVC)

T ASPINET Sate Senice

&, uto Time Zone Updater

) Background Inteligent Tansfer Senvice

G Background Tasks Infrastructure Senice

G Base Fiering Engine

2 BitLocker Drve Encryption Sevice
Block Leve Backup Engine Senvice
luetooth Handstee Senvce

@
) Bluetooth Support Senvce
) BranchCache

@ Certiate Propagation

Description
Provides User Account,
Adobe Acrabat Update,
Routes Allloyn messag,

Apache/24.18 (Wind2).
Gets apps reacly for s,

Provides administratv
Determines and verife.
Faciltates the running
Provides support for 3.
Processes instalation,

Provides infrastructure,
Provides suppart for o
Autornatically sets the
Transfers files in the ba,
Windows infrastructur.
The Base Fitering Engi.
BDESVC hosts the Bit

The WBENGINE service
Enables wireless Blueto
The Blustaoth service

This senvice caches net
Copies user cetificates.

Status

Running

Running

Running

Running

Running
Running

Running

Startup Type
Manual
Autornatic
Manual (Trig

Automatic
Manual
Automatic
Manual (Tig
Manual (Tig
Manual
Manual
Manual
Disabled
Disabled
Automatic ©.
Automatic
Automatic
Manual (Tig
Manual
Manual (Tig
Manual (Tig
Manual
Automatic

Log On &5
Local Syste
Local Syste
Local Service

Local Syste
Local Syste
Local Syste
Local Service
Local Syste
Local Service
Local Syste
Local Syste
Network s,
Local Service
Local Syste
Local Syste
Local Service
Local Syste
Local Syste
Local Service
Local Service
Network s,
Local Syste

Extended), Standard

_images/raster3.png
New Layer
Add a new layer

Here s a list of resources contained in the store ‘boulder_bg. Click on the layer you wish to configure

Results 1 to 1 (out of 1 items)

Results 1 to 1 (out of 1 items)

_images/win_install_38.jpg
Control Panel Home

© Device Manager
© Remote setings

© System protection

© Advanced systersetin

Security and Maintenance

Fle Edit View Tools Help

> Control Panel > System and Security » System

View basic information about your computer

Windows edition
Windows 10 Pro.
© 2015 Microsoft Corporation. Allrights reserved.

System
Processor: Intel(R) Core(TM) 5-2520M CPU @ 250GHz 250 GHz
Installed memory (RAM): .00 GB
System type: 64-bit Operating System, x64-based processor
Pen and Tou No Pen or Touch Input is available for this Display.

Computer name, domain, and workgroup settings
Computer name: Del-pC
Full computername: Dell-PC
Computer description
Workgroup: WORKGROUP

Windows activation

Windows is activated Read the Microsoft Software License Terms

Product ID: 00330-80000-00000-AAS54

v @ | Search Control Panel »

2= Windows10

@ Change settings

@ Change product key

_images/raster2.png
Add Raster Data Source

Description

ImageMosaic
Image mosaicking plugin

Basic Store Info

Workspace *
geosalutions v|
Data Source Name *
boulder_by
Description
boulder_by

¥ Enabled

Connection Parameters

URL*
fle:datauser_dataiaeriall Browse,

_images/win_install_37.jpg
% Services

File Action View Help

e @EGR|

> mun

7 Senvices (Local)

Name *

& Network Connection Broker
&) Network Connections

. Network Cannectivity Assistant
etwark List Service

&) Network Setup Sevice
&) Network Store Interface Service
. Offline Fles
&), Optimize drives
6}, Peer Name Resolution Protocol
) Pect Networking Grauplng
:Peer Networking Identity Manager
€ Perfarmance Caunter DLL Host
&, Performance Logs & Alerts
&)Phane Service
) Plug and Play
‘€1 PNRP Machine Name Publication Service
 Portable Device Enumerator Service

i Power

2 Print Spooler

G Printer Extensions and Notifications

€ Problem Reports and Solutions Control Panel S,

Description
Brokers cannections th
Manages objects in th

Provides DirectAccess

Identifies the networks.
Callects and stores ca,

The Network Setup Ser.
This senvice delivers ne.
The Offline Fies servic
Helps the computer ru
Enables serverless peer.
Enables multi-party co.
Provides identity senic.
Enables remate users 2
Performance Logs and.
Manages the telephan,
Enables 2 computerto
This service publishes

Enforces group policy

Manages pawer policy.
This service spools pri.
“This service apens cust.
This senvice provides 5

Status

Running

Running
Running

Running
Running

Running

Running
Running

Startup Type
Manual (Tig
Manual
Manual (Tig
Manual
Automatic
Manual (Tig
Automatic
Automatic T,
Manual
Manual
Manual
Manual
Manual
Manual
Manual (Tig
Manual
Manual
Manual (Tig

Automatic
Automatic
Manual
Manual

Log On &5
Local Syste
Local Syste
Local Syste
Local Serviee
Netwark s,
Local Syste
Local Service
Local Syste
Local Syste
Local Service
Local Service
Local Serviee
Local Service
Local Service
Local Service
Local Syste
Local Service
Local Syste.

Local Syste
Local Syste
Local Syste
Local Syste

Extended), Standard

_images/raster51.png
Data | Publishing | Dimensions | Tile Caching |

Basic Resource Info

Name
boulder_bg

@ Enabled

@ Advertised

Title
aerial
Abstract

Keywords

Current Keywords
wes 5

Imagehosaic
~ | [Remove selected

aerial

New Keyword

Vocabulary

Add Keyword

Metadata links

No metadata links so far
Note only FGDC and Tc211 metadatz links show up in WS 1.1.1 capabilties

Coordinate Reference Systems

Native SRS
EPSG26912 EPSG:NADS3 / UTM zone 13N...

Declared SRS

EPSG26912 ind... | EPSG:NADS3 / UTH zone 13N...
SRS handling

Reproject native to declared

Bounding Boxes

Native Bounding Box
Min X Hiny MaxX Max Y
474.000 4.425.000 483.000 4435500

Compute from data

Lat/Lon Bounding Box
Min X Hiny MaxX Max Y
-105,30490185247| 39,074758050876:|-105, 10908452236] 40,069588982306¢

Compute from native bounds

_images/raster5.png
Data | Publishing | Dimensions | Tile Caching |

Basic Resource Info

Name
boulder_bg

@ Enabled

@ Advertised

Title
aerial
Abstract

Keywords

Current Keywords
wes 5

Imagehosaic
~ | [Remove selected

aerial

New Keyword

Vocabulary

Add Keyword

Metadata links

No metadata links so far
Note only FGDC and Tc211 metadatz links show up in WS 1.1.1 capabilties

Coordinate Reference Systems

Native SRS
EPSG26912 EPSG:NADS3 / UTM zone 13N...

Declared SRS

EPSG26912 ind... | EPSG:NADS3 / UTH zone 13N...
SRS handling

Reproject native to declared

Bounding Boxes

Native Bounding Box
Min X Hiny MaxX Max Y
474.000 4.425.000 483.000 4435500

Compute from data

Lat/Lon Bounding Box
Min X Hiny MaxX Max Y
-105,30490185247| 39,074758050876:|-105, 10908452236] 40,069588982306¢

Compute from native bounds

_images/win_install_39.jpg
Systern Properties
Computer Name Hardware Advanced System Protection Remote

Yo must be logged on as an Adiristator ta make mostof these changes.
Perfamance

Visual efects. pracessor scheduing, memory usage. and vitual memory

Selings.
User Profes
Dieskiop settings related to o signin

Sellings.
Stattup and Fiecovery
System stattup, system falute, and debugging infomation

Setings.

(i3 Cancel Apely

_images/raster5b.png
Coverage Parameters

Accurate resolution computation

faise
AllowHultithreading

faise
Backgroundvalues

Filter

FootprintBehavior

None
InputTransparentColor

MaxAllowedTiles

El
MergeBehavior

FLAT
OutputTransparentColor

SORTING

SUGGESTED_TILE_SIZE

512512
USE_JAI_IMAGEREAD

e

_images/shp_table.png
Name

Shape_Leng

Shape_Area

BUFF_DIST

ortho_i-1_in_s_Ja087_2010_1

577685.23793900001

4133130857.73999977112

~200,00000000000

ortho_2-2_in_s_Ja075_2010_1

25495, 35735900002

3507703365, 03000020951

~200,00000000000

ortho_i-1_in_s_Jat03_2010_1

315607.69107300000

3903136899, 71000003615

~200,00000000000

2244%3.69%50700001

1668022513.30995994275

~200,00000000000

ortho_i-2_in_s_Ja075_2010_1

444599,89763299999

3136445247.32999952371

~200,00000000000

0
1
2
3 ortho_1-1_tn_s 1a071_2010_1
.
5

ortho_1-1_in_s la117_2010_1

235219.56861599999

2773660686, 46000003615

~200,00000000000

_images/jmeter37.png
arealandmarks
arealandmarks ot
buldings

cemetery_graphics
cemetery_mark line_label
atylimits

polygon
contours

polygon
countres

polygon

county
dem

dem2

dem3

-

_images/sign_up_test_user.png
SIGN UP
Username

test_user

Password

Password (38ain) | sasssues

_images/shpchanging2.png
a
a

>

_images/jmeter39.png
Seoscutionsancd
gsoscutions Boudeyiits
geoscutionsbplndmarks
Seosclutions bbuidings

oD o0

_images/signin_quickstart.png
- Q Register Signin

_images/jmeter38.png

_images/signin.png
Signin o Register | @

_images/jmeter40.png
¥ asum o
at

o
¢

o

_images/signup1.png
5i¢ GeoNode

Signup

Signup

Username

Password
Password (again)

Email

_images/jmeter4.png
HTTP Request.jmx (/home/geosolutions/Desktop/HTTP Re]
Ele Eat fun optons elp

TG T

cu
cony
Reset Gur
Remove

open.
Herge
Save Selection As.
Save Nade As Image
Save Screen Ax Image (111

Enabie
Disabie

el

.

| ThreadGrouwo

Confio Element. » It Controler

Timer > nclude Controter
Sampler ’

Post Processors

Assertions

Ustener > Once Oy Controlter

Random Controler

p-Up Peiod an s¢
Random Order Contraler

p Count: CIFOrevt punume Contrtier
Throughput Conuol
Transaction Controter
1 Contolier

_images/signup.png
SIGN UP

Username

Password

Password (again)

Email

johnsmith

john@smith.com

_images/jmeter32.png
Raster Rendering Options

Default Interpolation

Nearest neighbor

KML Options

Default Reflector Mode
refresh i
Default Superoverlay Mode
ao v
@ Generate vector placemarks (KMATTR)
Generate raster placemarks (kmiplacemark)

Raster/vector threshold (0-100, default 40)
0

Resource consumption limits

Max rendering memory (KB)
0

Fax rendering time (s
o

Hax rendering errors (count)
0

_images/shape2.png
Scae - 1A 10515115, 40.05286.
Cllek on the map to gat featuro nfo

_images/jmeter31.png
View Results Tree

Flosame e Logmispay O

e T=] [Samplorosun | Roauest | Response dsa

_images/shape1.png
O B geosolutions hilshade Hilshade v EpsGianzs
O 8 geosolutions bovlder b Boulder by v ErsG26913

myworkspace _paintands pointiands. EPsGiaz69

RSl 1 0 25 (o0t o1 25 tems)

_images/jmeter34.png
o i T
= E i B
——1 i ; s i o
. 5 o
i s i &
s e o =
T 4

_images/shp_postgis1.png
FO %G

Espstre deg ogets

O o)
0 S (ot schars)

5 postgresal (2. ctao0)

PP

T vedten i St i

N @668 W]F| 2 frmnm:]

ol

5® sty e o 5|
e e st sagintzn) by
a0 P s BRSNS 81
8 cripemaiers i BB
Wl OcienaF15 (0) LeeitDr 010S0000000100000001020000000700000000000
B rasmrers) 0105000000010000000102000000020000007F 648
Qs st O30SO00E00D10000C012000OT2000008450.
29) onsnerd oxsocom ooz
R e
L ot
D LSele® s s BT EERE
O vamminay e e e
b i vamoin e
5 rwmi vamoin e
H Vamnin [T
W e () s
templae_sostgis 010500000001000000010200000006C00000BESF 1
6 Vs 1 s OB
Rimo® |
o L - Z

| Femcamerto do detogh o Tabete.. Fato

Pooee:

N

_images/jmeter33.png
I —

Samor v | e | e
[e T st e T A
v+ 113 St 1

erwass et e b s owet et o oot S s e 1005

e e

e o o R SOV T oG R ST ot 2
e o R3S OuRLT Ao et I ot 15
e o o i)

e s G ot ot 20

e s Gt O 3328

e Crtanemasctsco 2 et S

e G e P DR B350 251
s es st 57

e o o e et b gt 10

e o e R e s A R 3318
e Ve R e R o 8 55

e e s e sy
e g Y R o e 83172
e e e Chme S s oA ST

e e Gl eas mors s e See 35
Ry g s RO a3 172
e e e oo Sga eSSt T

e o s Chne e oSSt 0
e R R sy s Y
PE R i o sy

oy o e Rt e ar S A 13 12
e e Ve e sseron e mamisiro s 50
o v e Sty

_images/shards_001.png
Layers

Manage the layers being published by GeoServer

© Add a new layer
@ Remove selected layers

<< | < /1 > >> Results1to 8 (out of 8 items) 4 Search

[Type Title Name Store Enabled Native SRS
0 e ukr_nhr_hotspots geonode:ukr_nhr_hotspots wm_00000 v 4 EPSG:4326
0O e ukr_nhr_hotspots_1 geonode:ukr_nhr_hotspots_1 wm_00000 vV 4 EPSG:4326
0 e ukr_nhr_hotspots_2 geonode:ukr_nhr_hotspots_2 wm_00000 v 4 EPSG:4326
0O e ukr_nhr_hotspots_3 geonode:ukr_nhr_hotspots_3 wm_00001 vV 4 EPSG:4326
0 e ukr_nhr_hotspots_4 geonode:ukr_nhr_hotspots_4 wm_00001 v 4 EPSG:4326
0O e ukr_nhr_hotspots_5 geonode:ukr_nhr_hotspots_5 wm_00001 vV 4 EPSG:4326
0 e ukr_nhr_hotspots_6 geonode:ukr_nhr_hotspots_6 wm_00002 v 4 EPSG:4326
0O e ukr_nhr_hotspots_7 geonode:ukr_nhr_hotspots_7 wm_00002 vV 4 EPSG:4326

<< | < /1 > >> Results1to 8 (out of 8 items)

_images/jmeter36.png
Layers

"Add Layer Group.

1 13 ‘geosolutions:Mainrd

2 1l ‘geosolutions:BouiderCityLimits
3 1l ‘geosolutions:bplandmarks

a1

Resuts 1 to 4 (out of 4 items)

_images/jmeter35.png

_images/screen_pyramid.png

_images/screen_overview.png

_images/jmeter29.png
View Resuts Tree

Wt rot o e Read rom e

_images/searching_page1.png
Search:

Your selections. Clearall filters

> EXTENT

Total: 10

Mostrecent Lessrecent A-Z Z-A Mostpopular

Dominica_Daily_TDCF (XLS)
by sysadmin
Nosbstract provided

B 2402015 [@ 1 [@ 0 % O

Dominica_Daily_TDCF (ODS)
by sysadmin
Nosbstract provided

_images/jmeter28.png
Label #Samples
1 100] 12| S|
2 00| 102 23]
4 200] 40| S|
TOTAL 400] 127] 23]

_images/search.png
3i GeoNode . o

Search

Total: 22
Cart Av

Add resources through the "Select"

buttons.) -
mapadaines
dsdvvssd
Set Permissions X .
& admin 7T 19New 2015 @ 0 >0 O © Wiew Map
Filters Clear
Search by text n
o e
ci
Raster e stracip
Vector { 16 & charles [19Nov2015 ®0 0 ®O0 9 ViewMap

ap 0

M
> CATEGORIES Pl et
> KEYWOR T -

_images/jmeter30.png
Connection Parameters

host *
localhost

port *
5434

database
storm_track_sal
schema

public

geosolutions
passwd

Namespace *
http:/ /www.geo-solutions.it/workshop.

(5 Expose primary keys

Tax connections.
1

‘Tin connections
1

fetch size
1000

Connection timeout
20000000

_images/serverurltype.png
| [Emap- Syprint | @ identty &8 Cuery = Measure +

Layers » Avaiabe Layers » Add new server..

Types Web Map Service (WHS)

URL: | nitpiie-atias.org augeoserverwms| |

_images/jmeter3.png
cuv.

"SetUp Thread Group.
tearDown Thread Group

_images/secondary-line-uom.png
Additional Styles
Available Styles Selected Styles.

hillshade B line4om
lakes

line

mainrd

mainrd_buffer
mainrd_transform)
parcels

point

point_landmark
point_landmark_ds v .

_images/jmeter22.png
Loop Controller

FTP Request Deraurts
‘Sampler | HTTP Authorization Manager
Post Processors »| HTTP Cache Manager

| HTTP Cookie Manager
Listoner »| HTTP Header Manager

_images/savemapdialog.png
=)

‘About this Hap.

Title:

San Andreas

Abstract:

This map contains lots of good information about San Apdreas.
Highway, coastine, points of interest, you name .

Save as Copy Save | Cancel

_images/jmeter21.png
Loop Controller

Focn Contater

Logic Controtler
Contig Eloment
Timer

Pre processors

Assertons.
Listoner

Access Log Sampler
Post rocassors ¥ AJP/.3 Sampler

» Beanshon samplor
» BSF Samplor

Save ode AsImage

Co

Debug Sampler

_images/save_layer_path.png
v VU D

LU ¢ N AN Y Y

Save vector layer as...

Save layer as...

Layer

cit_soleil_bui

downloads

_static/down.png

_images/jmeter24.png
Test] I
Vo AT rncs s »

Paste cuy. TestFragment b estPlan

Reset Gui Config Element ¥ pts:
Timer »

Open...

Pre Processors >

Post Processors »

Save Selection As... —
N T
STy G Listener »| BSF Assertion
‘Save Screen As Image Cil+lsiusc G e
Er— Gt
Disable HTML Assertion
Tougle e JSR223 Assertion
Help. 'MD5Hex Assertion
e
e
T
T
T
e

_images/savemaplink.png
— -
B o | €
Publn mep

Save map.

_images/jmeter23.png
CSV Data Set Config

-,

Comments:

Configure the CSV Data

Variable Names (comma-delimited):width,height bbox
"Delimiter (use \F or tabY],

Allow quoted data?: False

Recycle on EOF |True

Stop thread on EOF 2:[False.

‘Sharing mode:|All threads

_images/savemapdialog1.png
=)

‘About this Hap.

Title:

San Andreas

Abstract:

This map contains lots of good information about San Apdreas.
Highway, coastine, points of interest, you name .

Save as Copy Save | Cancel

_static/file.png

_images/jmeter26.png
View Results Tree
e Resus T

et resata o osd o

[o] Lopmptay oy Clerrors) successe

e

_images/jmeter25.png
e ———————

Aoty

O M sompie a0 b samples ® M sampleony O Sb-samples sy e Vriate
Response et st

O TextResponsa) Documenttex R Samped O ResoonseCode) Rasponse Message Respons Henders] ors St
patonotchag ks

@ Conans) tches O Equats O Subsivng It
PotlrsstoTost

—— |

_images/savemaplink1.png
— -
B o | €
Publn mep

Save map.

_images/jmeter27.png
View Results Tree

mmmm

Vit esuhs o h Readrom i

e tosmontoy0n: s) scceses

(133333333933333333333333333337

_images/win_install_09.jpg
[Control Panel

« « 4 [> Control Panel >

File Edit View Tools

Help

Adjust your computer's settings

System and Security

Review your computersstatus

Save backup copies of your files with File History
Backup and Restore (Windows 7)

Find and fi problems

Network and Internet
View network status and tasks
Choose homegroup and sharing options

Hardware and Sound

View devices and printers

Add a device

Adjust commanly used mobility settings

Programs.

g

52
[}
3
@

Viewby: Category ¥

User Accounts.
© Change accounttype

Appearance and Personalization
Change the theme
Adjustscreen reslution

Clock, Language, and Region
Add slanguage

Change input methods

Change date,time, or number formts

Ease of Access
Let Windows suggest settings
Optimize visual display

vy

Search Cantral Panel

_images/qgis_wfs_add_2.jpg
2D 00RO RLNADDC

Add WES Layer from a Server

Connection details

Name |GeoNode Alpha Dev Server

URL http:/ /alpha.dev.geonode.org/ geoserver/wis

If the service requires basic authentication, enter a user name and
optional password

User name |admin

-

(] Ignore GetMap URI reported in capabilities
[l Ignore GetFeaturelnfo URI reported in capabilities

Help |

_images/win_install_11.jpg
GeoNode-24x Setup - %

GeoServer Data Directory s
GaaserverData Dty pth eecion L

I you have an existing data directory, please select s path. Othervise, the dsfaul data
drectory wil be used.

@ Default data drectory. Wil be ocated at;
Cilapps|Geohiode-2.4.x\data

O Existing data directory:

Brawse,

<Back. Net > Cancel

_images/win_install_10.jpg
[Pragrams and Features - o
« © 4 @ > ControlPanel > Programs > Pragrams and Features v © | Search Programs and Festures
File Edit View Tools Help

Control Panel Home ;
Uninstall or change a program

Viewinstalled updates To uninstall a program, select t from the lst and then click Uninstall, Change, or Repair

© Tur Windowsfestureson or

o Organize ~ Urinstall

Name Publisher Installed On Sze Version

] Microsoft Visual Studio Community 2015 with Update 1 Microsoft Corporation 1272018 09868 140247200

(@ \Muare vSphere Client 5.5 Wiware nc 1242015 HIME 550689

@ VMuare vSghere Client 5.0 VMware Inc 1271672015 7B 50037933

@ Google Chrome Google Inc. a1 A7BMB 480256497

M Player Mare inc 1m0 ssamp 1210

BB ciobe Actobt Reader DC Adobe Systems Incorporated 11572018 TOME 1501020056
Gitwersion 2.7.0 The Git Development Communi... 1/19/2016 0MB 270

S Opendffice 412 Apache Software Foundation 12/11/2015 TomE 412072

@aivp 2816 The GIMP Tearn 12/18/2015 280MB 2816

@ Siypem 718 Seype Technologies S 1282016 e 718100

 Oracle VM VirualBox 5.0.14 Oracle Corporation 112772018 1M 5014

% Dropbox Dropbos, Inc. 112772016 5B 3142

[E]A5US Smort Gesture asus 12472015 mMe 439

@ Software Il © PROSet/Wireless Intel Corporation 12232015 SIME 1611
 Microsot Siverlight Microsoft Corporation 11672015 WIMB 51412120

[0penfire 3103 Ignite Realtime RTC Community _ 12/14/2015 140MB 3103
Jova 7 Updste 80 Oracle 3faaGiE TEOME 70805

[EIGDAL 111 (MSVC 2013 Wint) 056eo 1211072015 106M8 1000

' TortoiseSVN 1.0.2.2680 (83) TortoiseSVN 1172072015 83M8 1926906

8 Microscft Visual # 20 Redistributable Packsge - SE (<64) Microsaft Corgtation 1272372015 021 Me

@ Mozill Firefox 420 636 t) Mozills 12/14/2015 864MB 420

[Microsoft NET Framewark 45.2 Multi-Targeting Pack Microsoft Corporation 1212172015 721M8 4551651

[Microsoft NET Framework 4,51 Multi-Torgeting Pack Microsoft Corporation 1212172015 T21M8 4550992

& | Orade Productversion: 70800 Supportlnk: _ http://java.com Size: 120MB
= Helplink: ~ hitp://java.com/help Update information: _ itp:/java.com/verify

_images/pyramid4.png
Coverage Parameters
AllowMultithreading

false
Backgroundvalues

Fading

false
InputTransparentColor

MaxnllowedTiles

A
OutputTransparentColor

SUGGESTED_TILE_SIZE

512512
USE_JAI_IMAGEREAD

false

_images/win_install_02.jpg
Windows protected your PC

Windows SmartScreen prevented an unrecognized app from starting. Running this app might put
your PC at risk.

App: GeoNode-24xere
Publisher: Unknown Publisher

_images/pyramid3.png
New Layer chooser

‘Add layer from [GEGs0IUtions:bm_pyramid,

Here is a list of resources contained in the store 'om_pyramid'. Click on the layer you wish to configure

() Resuits 0 t00 (out o 0 tems) L search
e Pubisn

(=) Resuits 0 t00 (out of 0 tems)

_images/win_install_01.jpg
aaaaaaaaa

_images/qgis_add_wfs.jpg
™ Control rendering order

Embed Layers and Groups...
& Add Vector Layer.
& Add Raster Layer.
Add PostGIS Layers. %D
Add SpatiaLite Layer...
Add MSSQL Spatial Layer... ©%M
© Add WMS Layer... onwW
[Add Delimited Text Layer

3 Copy style
I Paste style

1 Open Attribute Table
4 Save Edits
Toggle Editing

Save As...

Save Selection as Vector File...

R Remove Layer(s) #D
Set CRS of Layer(s) 28C
Set Project CRS from Layer
Propertes...

Query...

< Labeling

& Add to Overview 050

Add All to Overview
-® Remove All from Overview

@ Show All Layers 08U
© Hide All Layers o8H

-117.2317,32.7409

| Scale (121187 -]

[Render EPSG:4326

_images/win_install_04.jpg
3 Geolode-24x Setup
License Agreement

Please review the cense terms before instaling GeoNiode-2.4.x,

Press Page Dann to ses the rest of the agreement

G GENERAL PLBLIC LICENSE
Version 3, 23 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <httpilfsf oral>
Everyone s permited to copy and dtrbute verbatin copies
OFthiscense document, but changing i s not alowed,

Preanble

The GNL General Puble License i a free, copyleft lcense for
Jsaftware and other ki of work.

sgreement to install Geoliode-2.4.x.

I you accept the terms of e agreement, lck.I Agree to continue. You must accept the.

<gack |[tagiee

Cancel

_images/pyramid5.png

_images/win_install_03.jpg
3 Geolode-24x Setup

Welcome to the GeoNode-2.4.x
Setup Wizard

This installer il uic you through the nstallaton of
Geollade-2.4.x.

Close all cther applcatians before maving on with the setup
Clck next to continue,

Next > Cancel

_images/qgis_identify_wfs.jpg
| Identify Results

[Feature A Value]
vao it.geosolutions:Air_Runways0
¥ WMS layer
| » (Derived)
Air_Runways)
fa OBJECTID NAME (
Air_Runways0.12 12 North Island NAS Y

Feature info

[Help Close

_images/win_install_06.jpg
GeoNade-24x Setup = x
Chaose Start Menu Folder ,
Chaose aSar e e Forthe Geoode2.4 o L

Select the Start Men folder in which you would ke o create the program's shortcuts, You
can asa enter a name to create a new folder.

[Accessibitty ~
| Accessories

Acque-WebGIS-1.0

Adrinistrative Todls

Chrame Apps

Eclpse

DAL
Gealiode 2.4
EY

| Farex Platform
| Maintenance

(00 no create sharteuts

<Back. Next > Cancel

_images/qgis_add_wms_layer.jpg
>

Embed Layers and Groups...

™ Control rendering order

R Add Vector Layer... onv
R Add Raster Layer. %R
Add PostGIS Layers. °%D
#© Add Spatialite Layer... 8L
Add MSSQL Spatial Layer... %M
[Add Delimited Text Layer

@ Add WFS Layer...

% Copy style

aste style

= Open Attribute Table
3 Save Edits

Toggle Editing

Save As..

Save Selection as Vector File...

1 Remove Layer(s) %D

Set CRS of Layer(s) 0%C

Set Project CRS from Layer

Properties...

Query...

<& Labeling

& Add to Overview %0
% Add All to Overview
@ Remove All from Overview

 Show All Layers 08U
© Hide All Layers o%H

| Coordinate:

00

| Scale invaiid scale ||

[Render EPSG:4326

_images/win_install_05.jpg
3 Geolode-24x Setup = x

Chaose InstallLocation .
Choose thefodr i i o sl Gaotioda-2.4.x 5L

Setup wil nstall GeoNode-2,4.x nthe follwing folder. To installin a diferent folder, click
Brawse and select another folder. Click Next ta continie

Destination Folder

Browse,

Space required: 131.7M8
Space avalable: 427.968

<Back. Next > Cancel

_images/qgis_layers.png
EEEEEEE X a0 0 R Tt i a0 i
LB ..o n 0 b E3xAAOODC BiRREEAEE
00 Layers T - e X 00 oS Feature
© clte_soleil_buildings ~ I = =
] \l;cl_m.u_mudln.... “&"q 0| [¢] [+ [<] [<2] [%] [~] [~] [@
™ @ cite_soleil_buildings p... > Feature:
TYPE, ID:
CREATED:
USER: %

™ Control rendering order

S
.~

Properties

-72.336804,18.580410

Scale [12431 -] /] ¥ Render EPSG:4326 &)

_images/win_install_08.jpg
Fle Edit View Tools Help

Control vafa Home

© Device Manger
© Remote setings

© System protection

© Advanced system settings

Security and Maintenance

> Control Panel > System and Security » System

View basic information about your computer

Windows edition
Windows 10 Pro.
© 2015 Microsoft Corporation. Allrights reserved.

System
Processor: Intel(R) Core(TM) 5-2520M CPU @ 250GHz 250 GHz
Installed memory (RAM): 791 GB
System type: 64-bit Operating System, x64-based processor
Pen and Tou No Pen or Touch Input is available for this Display.

Computer name, domain, and workgroup settings
Computer name: Del-pC
Full computername: Dell-PC
Computer description
Workgroup: WORKGROUP

Windows activation

Windows is activated Read the Microsoft Software License Terms

Product ID: 00330-80000-00000-AAS54

v O [search Cantrol Panel »

2= Windows10

@ Change settings

@ Change product key

_images/qgis_layer_off.png
| 1% cite_soleil_buildings p...
\¢_ cite_soleil_buildings ...
V' @ cite_soleil_buildings p...

_images/win_install_07.jpg
GeoNode-2.4.x Setup -

Java Runtime Environment
Java Runtime Environment Installation

Vouneed Tava JRE 7 nstall on your system.

This step wil nstall the Oracle Java JRE 1.7 update 80 32biton your System which s
necessary to run Geaserver.

<Back. Net > Cancel

_images/qgis_save_as_dialog.png
5 |
]
ofl@

ONBBLAADDC

o Save vector layer as...
Format [ESRI Shapefile s
Save as | Browse |
Encoding [System =
Layer CRS s
RS
OGR creation options
Data source
Layer
(1] Skip attribute creation
(1] Add saved file to map
| Help | | Cancel | [OK |

_images/qgis_save_as.png
om to Layer Extent
Show in Overview

' Remove

Set Layer CRS

Set Project CRS from Layer

Save Selection As..

Show Feature Count 2

poprs -:{ o
perties

Rename

Copy Style l / Sy,

Add New Group Ay i,

3 Expand Al /"w é

3 Collapse All #’

Update Drawing Order ~ l :\

» R

i

4 L

Open Attribute Table " "
q

_images/wfscascading_publish.png
New Layer
saa e e
P e ——

ou an Gte: new festur ype by manually configuning the aibuts rames nd types. Create new feature type...
Hora 53 15 of rasources condainedIn th o wfs-casade’. Cck on he ayer you wih t confgure

<1215 > Resuts 01 0 outof 0 tams) Search
‘geosoutons_county .
guosolutons adanco depare publch
‘geosoutions_ctes publsh
geosoitons_coastine publsh
‘geosoluons_sba-dres publn
Geosotons_eba-depcontour Publsn

_images/wfscascading_preview.png
8
® = - =,
A

/5
#" el

Scale = 11 279 5421875, 60.07941
Click on the map to get feature info

_images/wfs-t_geonode4.png
B e I E—
541 Inbox (34) - alessio.fabian. X | X Resources - GeoNode -Dc X | () geosolutions-it/dac-geon X | [Patters and Hatches— C X |] Documentation de forma! X / [Geofplorer - GeoNode X
€« c fi

Opentayers msp preview x
[demo.geonode.org/maps/new?layer=geonode:streams_1
App %k Bookmarks [Digitally Imported - .. [Facebook

| CNIMobile

Insrcsszs On ine [T] Portsfogio personsl... | Poste lsisne - Cont... @ Conto deposito,con... 7 Banca via nternet . (@) @time, Ihome bank.

db ntersctive @ Vocidlstero [B CHICAGO BLOG » (3 Al Preferti

[Svap- Zyprt | © centty 8 Query |~ Measure -

Waps | This map s currenty unsaved
Layers +
©-0+9 =
4 Overtays AN
< streams 1 =
/ .
4 Base Maps

MapQuest imagery
© MapQuest Openstreethap

Opensreethiap 2]

Mo bsckgrauna = f
3 -
s
3

Latrel St

<,

o \

swe | 7 =
[

U

_images/wfs-t_geonode3.png
Edit Layer

6 aa O

Metadata Styles Thumbnail

Edit Edit set

Mansge e

_images/wfs-t_geonode6.png
[map~ (Syprint | @ dentty # Query |~ Measure -

at - |

Bxe==

= 4B Create
0-0/9 =
4 Overlays = 2

¥ streams_1 '

3 5

+ saseaps I

MapQuest Imagery

 MapQuest Opentreettlap
Opensteethiap
Nobackground

o potom Owof-

_images/wfs-t_geonode5.png
[Svap- SyPrt Q@ ity i uery - Measure - [Edh v

Layers.

©- 04,9
4 Overlays
I streams_1

4

4 Base Maps
MapOuestimagery
 MapQuest Openstreetitap
Opensteetiiap
Mo background

B o
Moty

_images/wfs-t_geonode8.png

_images/wfs-t_geonode7.png
i potom ot

Streams_1.13 <=l
Name Value
cat 2
label
N
2 fia| @ Detete:

Make this feature editable o

_images/wfscascade_bbox.png
Goordinate Reference Systems

Native SRS

EPSG4326 EPSGIWGS B4
Declared SRS

EPSGA328 Find... |EPsGiwGs 24,

SRS handiing

Force declared

Bounding Boxes

Native Bounding Box

Min % Min¥ Max X Max ¥
-179,9999999999: 90 180,00000000000] 83534100653000

Compute from data

Lat/Lon Bounding Box
MinX MinY Mas X Max ¥
-179,9999999999: 90 180,0000000000083,634100653000

Compute from native bounds

_images/wfs-t_geonode9.png
b

Scale = 1: 35K
streams_1

fid cat label
streams_1.132 this is a test

L
603843.88948, 4927829.65'

793

_images/wfscascade_store.png
New Vector Data Source

'Add 2 new vector data source

Web Feature Server
The WFSDataStore represents a connecton to 2 Web Feature Server. This connection provides access t the
and the abifty t perform transactions on the server (when supported / allowed).

Basic Store Info
Workspace
geosaluions [¥]
Data Source ame.
csscade
Descrption

Use version 1
¥ Enabled

Connection Parameters

WFS GetCapabiities URL *

Juest-GetCapabiltes.
) Favor HTTP POST method over GET

HTTP Authentication user name —
T | Leavethese fields empty

HTTP Authentication user password —

_images/win_install_29.jpg
3 GeoNode-24x Setup

Rebootis needed in arder ta finish the installation, Do you want ta reboot now?

Yes No

_images/rancher_new_stack.png
=) Default v STACKSv CATALOGwv INFRASTRUCTURE v

ADMIN v

Add Stack

Name

MyGeoNode

Optional: docker-compose.yml

version: "2"
services:

db:
image: geonode/postgis:9.6
restart: unless-stopped
container_name: db4${COMPOSE_PROJECT_NAME}
stdin_open: true
tty: true
labels:

Description

My first GeoNode stack

OPTIONAL: IMPORT COMPOSE

Optional: rancher-compose.yml

ADVANCED OPTIONS A

=

_images/win_install_32.jpg
[Benvenuto - ecample.com %

€ c

localhost

3¢ GeoNode

Benvenuto

GeoNode é una piattaforma open source per la condivisione di dati geospa

Ifyou ha stions

Hai bisogno di aiuto?

8 Layers

Clicea per la ricerca di dati

bblicati da altri

icarei datiin

nti, organizzazion e fonti pu
formati standard

Explore layers»

out the software or sen

join our

No Mappe

1 dati sono disponibili per 1a navigazione, I'a

Explore maps

ziali e mappe.

zione e lo

1 Utente

GeaNode consente agli utenti registrati di

ricare

dati geosp si formati, tra o

sha

Seeusers»

_images/win_install_30.jpg
o

La tua vita a colpo d'oc

E
W cioee -
F Calendar Ma
B8 Funcionait facoltative —
= =
W oo -
—e [Miosottedge |
g v, [
Y GeoNode Viruattny Setup O
B shtdown Geosenver Rome o
B stor Geoode
W] o ceoserer a |
W Geonode-24x New v [sk
@ cecoree Gioca ed esplora
8 Getsipe

& ok (<)

_images/rancher_stacks_all.png
ﬂ‘) Default II II

Alstacks T

@ <4 healthcheck Up to date

Service ~ Container

2 4 [0

i Up to date |
& 4 ipsec 2 Services Containers

@ <+ network-services Uptodate 2 3 °

Services Containers

@ <+ scheduler Up to date

Service ~ Container u

_images/win_install_34.jpg
[servi - Control Panel
<« © 4 [Control Panel >

Fle Edit View Tools Help

& Administrative Tools

'ﬂ_»@ﬂg
m Program and Features

View installed updates

gy System

Allow remote sccess to your computer
) Allow Remote Acsistance initstions to besent from this computer

Invite omeene to connict to your PC and help you, or offer to hlp zomeone elze
) Seect userswiho can use remote desktop

@ eaech Windows Help and Support for“sen

v

_images/rancher_overview.png
Rancher Catalog

Gl Spark’ Itzmm % elastic [logstash KbGAQ soweren (@ Jenkins

— Container Orchestration and Scheduling ooe M Leverage
(=) < UserMgmt DOCKER % ps Mgmt-—> existing tools:
= SWARM Eggi MESOS ‘% kuberne_&e,; _ciep
AD/LDAP - gode
it
Infrastructure Services (Storage, Networking, Load Balancer, DNS, etc.) R Mi?\ci)tzlri(r)\g
| Linux Hosts !
! = I !
| - - R i

' amazon g

" webservices™

n cloudstack

openstack

_images/win_install_33.jpg
Fle Edit View Tools Help

Control Dan:}@cmﬁ

© Device Mansger
© Remote setings

© System protection

© Advanced system settings

Security and Maintenance

> Control Panel > System and Security » System

View basic information about your computer

Windows edition
Windows 10 Pro.
© 2015 Microsoft Corporation. Allrights reserved.

System
Processor: Intel(R) Core(TM) 5-2520M CPU @ 250GHz 250 GHz
Installed memory (RAM): .00 GB
System type: 64-bit Operating System, x64-based processor
Pen and Tou No Pen or Touch Input is available for this Display.

Computer name, domain, and workgroup settings
Computer name: Del-pC
Full computername: Dell-PC
Computer description
Workgroup: WORKGROUP

Windows activation

Windows is activated Read the Microsoft Software License Terms

Product ID: 00330-80000-00000-AAS54

v @ | Search Control Panel »

2= Windows10

@ Change settings

@ Change productkey

_images/qgis_wms_metadata.jpg
ae#ee@ta'»ﬂa“mq

Layer Properties - it.geosolutions:Air_Runways0

™ Transparency =, General Metadata

Title

Abstract

OGC Web Map Service version 1.3 data provider
Server Propetes Selectad Lavers Ottr Lavers

WMS Version 13.0
Title My GeoServer WM.
Abstract This is a description of your Web Map Server.
Keywords WES

wMs

GEOSERVER

Online Resource -
Contact Person

Fees NONE
Access Constraints NONE
| Image Formats age/png

| Restore Default Style || Save As Default I Load Style

J

-
|8

_images/win_install_24.jpg
3 GeoNode-2.4x Setup =

Installing
Please walt whil Geollods-2.4.x s being nstald.

Extract : geanode-2.4.xidocs{tutorialstadvancedigeanade_praductioniady_gsconfighimeter’

Extract : geanode-2.4,+|docs|uterials\advancedigeonode._productionlady_gsconfi.. A
Extract : geonode-2.4,x|docs|tutoridls|advanced|geonode._productionlady_gsconf.
Extract : geanode-2.4,x|docs|tutorials|advanced|geonade._productonlady_gsconfi.
Extract : geonode-2.4,x|docs|tutaridls|advancedigeonode._productionlady_gsconf
Extract : geonode-2.4,x|docs|utoridls|advanced|gzonode._productionlady_gsconf
Extract : geonode2.4.x|docs|tutorids|advanced|geonode._productionlady_gsconf.
Extract : geonode-2.4,»|docs|tutorials|advanced|gzonode._productionlady_gsconf
Extract ; geonode-2.4,x|docs|tutorials|advanced|gzonode._productonlady_gsconf,
Extract : geanode-2.4.x|docs|tutorials|advanced|gzonode._productionlacy_gsconf.
Extract : geonode-2.4,+|docs|utorials|advancedigeonod._productionlady_gsconfi... ,

_images/qgis_wms_layer_zoom.jpg
Quantum GIS 1.8.0-Lisboa

JEEddo RRPPRREER » 2 DRYIRI ~ 10> @> 0> > > D
Lt B0 FID OB BLENRDDC
06 Layers

™ Control rendering order
34815 of 34815 bytes of map downloaded. ¥ Coordinate: |

| Scale [1:27187 1v) & M Render EPSG:4326 @ A

y

_images/win_install_23.jpg
GeoNode-2.4.x Setup

Proceed with GeoNade-2.4x Installation?

_images/rancher_auth.png
Access Control

v

’

Active Directory Azure AD GITHUB LOCAL OpenLDAP SHIBBOLETH

Local Authentication is not configured

Rancher can be configured to restrict access to a set of accounts defined in the Rancher database. This is not currently set up, so anybody that reach this page (or the API) has full control

over the system.

1. Setup an Admin user

This user will become the admin that has full control over Rancher.

Login Username* Full Name

Password* Confirm Password*

_images/win_install_26.jpg
Creating Tastyple_apiaccess
reating tahle tastypie_apikey

reating table actstrean_follow

reating table actstream_action

reating table announcements_announcement

reating table announcements_dismissal

Installing custom SQL ...

tnstalling indexes ...

Installed 299 object(s) from 1 fixture(s)

bython manage.py’ loaddata sample_adnin. json

ot anabing Bingiizps base layer as 2 B1NAPTKEY s not defined in Tocal_setti
nos.py file.

Trstalled 1 object(s) from 1 fixture(s)

ot enabling Eingaps base layer as a BING_APIKEY is not defined in local_setti
nos.py file.

ou have requested to collect static files at the destination
location as specified in your settings:

C:\apps\GeoNode-2.4.x\geonode~2. 4. x\ geonode\static_root

This will overwrite existing files!
ire you sure you want to do this?

s e %5 SARRRGR, AF G5 B3 BERGAT W .

_images/rancher_add_stack.png
=) Default v STACKS v CATALOG v INFRASTRUCTURE v ADMIN v

User Stacks SortBy: | State

Adding your first Stack

A service is simply a group of containers created from the same Docker image but extends Docker's 'link' concept to leverage Rancher's lightweight distributed DNS service for service
discovery. Services can be added individually or by deploying an item from the Catalog.

A service is also capable of leveraging other Rancher built-in services such as load balancers, health monitoring, upgrade support, and high availability. Learn More

Srowse Catalog

v1.6.14 Help Documentation File an Issue Forums Slack @Englishvy , Download CLI v

_images/win_install_25.jpg
New b S\SCr1AES \python. exe

Installing setuptools, pip, wheel...done.

ot enabing Binghizps bese layer 35 a BTG APTKEY s not defined in Tocal_setti
i1e.

> pavement . sync

by thon manage.py syncdb ~-noinput

ot anabing Bingiizps base layar as a BINGAPTKEY s not defined in Tocal_setti

hos.py file

Peating tables

reating table auth permission

reating table auth group_permissions

reating table auth_group

reating table django_content_type

reating table django_session

reating table django_site

reating table django_admin_log

reating table tagg}t_tag

reating table taggit_taggeditem

Teating table calory tashmeta

reating table celery tasksetmeta

reating table djcelery_intervalschedule

reating table djcelery_crontabschedule

reating table djcelery_perjodictasks

reating table dicelery_periodictask

_images/rancher_home.png
ﬂ‘) Default v STACKS v CATALOG v INFRASTRUCTURE v ADMINw ! APlv

supported version Add a host

User Stacks SortBy: | State | Name

Adding your first Stack

A service is simply a group of containers created from the same Docker image but extends Docker's 'link' concept to leverage Rancher's lightweight distributed DNS service for service
discovery. Services can be added individually or by deploying an item from the Catalog.

A service is also capable of leveraging other Rancher built-in services such as load balancers, health monitoring, upgrade support, and high availability. Learn More

Srowse Catalog

v1.6.14 Help Documentation File an Issue Forums Slack @Englishvy 4, Download CLI v

_images/win_install_28.jpg
ot enanling ETngWaps base layer as a BING APIKEY 15 not detined 1n local-settipy
nos.py File.
erifying that Geolode is rumning ...

Found 8 potential Tayers.

[created] Layer for 'C:\apps\GeoNode-2.4.x\geonode=2.4.x\Lib\s te-packages\gisdd
ta\data\goodvector\san_andres_y_providencia_administrative.shp' (1/8)

[created] Layer for 'C:\apps\GeoNode-2.4.x\geonode-2.4.x\Lib\site-packages\gisdq
ta\data\goodvector\san_andres_y. providencia_coastline.shp' (2/8)

[created] Layer for 'C:\apps\GeoNode-2.4.x\geonode-2.4.x\Lib\s te-packages\gisdd
£a\data\goodvector\san_andres_y_providencia_highway.shp' (3/8)

_images/rancher_geonode_stack.png
ﬂ‘) Default v STACKS v CATALOG v INFRASTRUCTURE v ADMIN v

Stack: ©MyGeoNode < SActive | © | i

Description: My first GeoNode stack

& Active celery ® mage: geonode/geonode:2.6.x Service 1 Container D3
@ Started-Once data-dir-conf @ mage: geonode/geoserver_data:2.10.x Service 1 Container D3
& Active db ® mage: geonode/postgis:9.6 Service 1 Container D3
& Active django ® mage: geonode/geonode:2.6.x Service 1 Container D3
& Active elasticsearch mage: elasticsearch Service 1 Container D ¢
& Active geonode mage: geonode/nginx:geoserver Ports: 80 Service 1 Container D3
& Active geoserver O mage: geonode/geoserver:2.10.x Service 1 Container D3
& Active rabbitmg mage: rabbitmq Service 1 Container D ¢

_images/win_install_27.jpg
C\D=0R XD (0P ar \XTErNA S \ X T\ E50Ur C23 \TMAges \Or 3y \Gr 1 H1C0 | -Move-bottom - g1 ~
opying !C:\apps\Geoliode=2.4.x\geonode=2.4.x\T1h\site-packages \geoexplorer \stat
c\geoexpWorerﬁextemaws\ext\resources\mages\ rayigridheo] ove-top. 01 ¢

ORying 1 \appe\aroNoda3 A x\geonode=2 -\ 115\ Tre-packages \asoexporer\stati
c\geoexpWorerﬁextemaws\ext\resources\images\ rayigr o] dihoben 01 ¢

SRy ing 1 \apps\aronoda 3 4 x\geonods-2 4.\ 1B\ Tre-packages\geosxplorerystati
c\geoexpWorerﬁextemaws\ext\resources\images\ rayigr o dachrow-over .01 F!

SRy ing 1C:\apps\aroNoda 3 A x\geonode-2 .\ 115\ Tre-packages\goaxplorer stat]
c\geoexpWorerﬁextemaws\ext\resources\mages\ rayiar o dochrow-over2 g1

SRy ing 1C:\apps\aronoda 3 4 x\geonods-2 4.\ 1B\ Tre-packagesyasoarplor er\stat]
c\geoexpWorerﬁextemaws\ext\resources\mages\ rayiar g dahrow. 91F!

Shying - \apps\GeoNods- 4. x\geonoda=2 . 3.x\ 11\ re-pack agas\gesexplorer\stati
c\geoexpWorerﬁextemaws\ext\resources\images\ rayiar g dachrows 93 F.

SBying. - \apps\GeoNods-2 4. x\geonoda-2 4.x\ 116\ re-packages\geosaplorer\stat]
S eL B S e e

opying SCi\apps\Geoteda—2. 4. x\geonode-

.4.x\1ib\site-packages\geoexplorer\stati
N Bboannor ar Noxtarnalsvext - sscur casinages \gr ayvar 4\

gridi-special-col-hg2.gif]

opying 'C:\apps\GeoNoda-2.4.x\geonode~2 . 4.x\11b\site-packages\geoexplorer\stati
c\%eoex;ﬂorer Extarnals \ext \rasiur cas\images\aray\ari A\r 133-special el -se1-bg.

opying 'c:\apps\Geotiode-2. 4. x\geonode-2.4.x\] ib\site-packages\geoexplorer \stat
E\gecerplorer \extarnalslextiresourcestinages \ar= Rarid\aroupocoTl apse, o1 F
e s e o e e

_images/rancher_host_active.png
=) Default v STACKS v CATALOG v INFRASTRUCTURE v ADMIN v

Hosts @ Show System = ---

ACTIVE I :

<discovered host server>

& <host-server-public-ip> w0 17.12.0-ce
A Ubuntu 16.04.2 LTS (4.4.0)
#]2.49 GHz B9 15.7 GiB @ 8.23GiB

geonodehost=satfarm2

Stack: healthcheck

/\ ..healthcheck-1 10.42.109.113

Stack: ipsec

/\ .ipsec-1 10.42.224.136

Sidekicks O O

O ..cni-driver-1 None

Stack: network-services

O ..network-manager-1 None

O ..metadata-1 172.17.0.2

Sidekicks O

_images/rancher_host.png
Hosts: Add Host

v
e 0
Custom AmAzon EC2 DigitalOcean pad<et

Manage available machine drivers

1 Startup aLinux machine somewhere and install a supported version of Docker on it.

2 Make sure any security groups or firewalls allow traffic:
o From and To all other hosts on UDP ports 500 and 4500 (for IPsec networking)

3 Optional: Add labels to be applied to the host.

(P Add Label

4 Specify the public IP that should be registered for this host. If left empty, Rancher will auto-detect the IP to use. This
generally works for machines with unique public IPs, but will not work if the machine is behind a firewall/NAT or if it is the
same machine that is running the rancher/server container.

_images/win_install_20.jpg
GeoNode-2.4x Setup - X

PostBls 1.55 .
ostats rtalation L

PostGIS s necessary for the system to work and must be nstalled before DB intialzaton,

This step wil install PostGIS 1.5.4 on your system

<Back. Next > Cancel

_images/win_install_19.jpg
e Setup - o x

Instaling
Starting the database server

|

_images/qgis_wms_layer.jpg
Quantum GIS 1.8.0-Lisboa

BEHd S RRCPEREER ~BPAIRR » £ 8> 022 «» @
e v RO 2D a~90908EAKRDDC

(x]=) Layers '

'/ itgeosolutions:Air Ru...

™ Control rendering order
6488 of 6488 bytes of map downloaded.

-] S| @ Render EPSG:4326 (@ (A

_images/win_install_22.jpg
GeoNode-2.4x Setup -

Apache Tomcat 7.0.65
apache Tomeat Installation

Vouneed Tomeat to run GeaServer.

This step wil nstall Apache Tomcat? as Service on your system.

<Back. Tnstal Cancal

_images/qgis_wms_add_7.jpg
2

Load || Save Add default servers

Air_Runways
Air_Runways
Air_Safety Z.
Ambulance_.

Ambulance_....

Aquifers

 Bike Plan SD_

 Image encoding
@PNG (OJPEG ()GIF () TIFF
Options

This is a description of your Web Map Server.
No abstract provided
No abstract provided
No abstract provided
No abstract provided
No abstract provided
No abstract provided

Noabstractorovided |

Layer name |

Tile size |

Feature limit for GetFeaturelnfo

Help Add

311673 of 311673 bytes of capabilities downloaded.

_images/win_install_21.jpg
3 GeoNode-2.4x Setup - X

Ready to Install
Geoliods s ready to be mstalled

Please review the settings below and click the Back button f changes need to be mads, Clck
the Install buttan to continue,

Installaton drectary: CHlapps|Geotiods-2.4.x
Java Runtime Environment: C:lappsiGeatiode-2.4.x{jre
Java Heap Memory: 256 | 1024

Data Directory: Using default dats drectory:

CiappsiGeotiode-2.4.x\data

Username | Password fPort; adin | geoserver | 9898

<Back. Next > Cancel

_images/qgis_wfs_fields.jpg
o|[=][~][w]

@ Actions | € Joins | [¥ Diagrams H

d Name

Type Length Precision Comment

Edit widget |

SAPID.

xsd:string | 0

0

Line edit

INTERSECTI

xsdiint |0

0

[Line edit

SIGNAL_ID

xsd:string | O

0

Save As Default

_images/win_install_13.jpg
GeoNode-2.4x Setup

GeoServer Administrator
Set adninstrator crecertials

ek the username and password for admiristration of GeoServer.

Username [admin

Password | geoserver

<Back.

et >

Cancal

_images/qgis_wfs_add_3.jpg
) B~ 039688 80H00DC

Server connections

| GeoNode Alpha Dev Server

[[Connect] | New | [Edit | [Delete |

Cache
Abstract Features | Filter

No abstract
No abstract

No abstract
No abstract
No abstract

[

. @

No abstract ...
z

Coordinate reference system

EPSG:2230

[Help | [Apply |

_images/win_install_12.jpg
3 GeoNode-24x Setup = x

GeoServer Heap Memory
‘Assign Java Vitusl Machine Heap Memory to Geoserver

et the Java Virtual Machine Heap memory for GeoServer, Defaul valuss usualy work; tune
them accordinaly to the avaisble physical memory!

JEE—
M in E3

Hean = |
M Max 1024

Hean

<Back. Net > Cancel

_images/qgis_wfs_installer.jpg
4 QGIS Python Plugin Installer

8 plugins available

T Repositories | Options |

Filter: ((all repositories =] [any staws :
Status Name Version Description

upgradeable InaSAFE 1.0.0 -> 1.0.1 InaSAFE Disaster Scenario Assessm

upgradeable Save As SLD 020 ->0.3.0 Save layer style as Styled Layer Des

new! Accuracy Assessment 03 Raster classification accuracy asses

new! Plain Geometry Editor 10 Edit geometry of features using WK

new! DimLao 002 Plugin for dimensioning. Supported

new! ShellDB 22 Pass selected feature data to the st

new! Geospatial Simulation 10 Geospatial tool for spatial extrapol,

new! Layer to labeled layer 01 Make it possible to use data-define

Help

| Upgrade all

The plugins will be installed to ~/.qgis/python/plugins

Install/upgrade plugin

Uninstall plugin

[_Close

M

_images/win_install_15.jpg
3 Geolode-24x Setup

Python 2.7.10
Python Instalation

Vou need Python instaled on your system,

This step wil nstall Python 2.7.10 325t on your system.

<Back.

Net > Cancal

_images/qgis_wfs_identify.jpg
W%

SRS 4
0.0.0 Identify Results
Feature. 4 Value
vo it.geosolutions:Traffic_Signal
v
» (Actions)
¥ (Derived)
INTERSECTI 561
SAPID 5X-005256-001
SIGNALID CT-0071
>
>
>
»
>
>
>
»
32 Help Close.

_images/win_install_14.jpg
GeoNode-2.4.x Setup

GeoServer Web Server Port

Set the port that Geaserver wil respand on

ek the web server port that GeoServer il espond on,

port

Vald range s 1024-65535 and

Afferent from .

<Back.

Next > Cancel

_images/qgis_wfs_style.jpg
| Labels | [Fields X General | () Metadata < Actions & Joins | | Diagrams |

Legend type

_ A
le Symbol + | Transparency: 0% O New symbology |

Point Symbol

'RERXRA=

aERXEae

ERR+EE

- B804+ E0%

00000 (<] 110 map units
Label
Outline options
— Width |0.26 2
[Restore Default Style Save As Default] Load Style ... J(Save Style ...
Help | [Apply | Cancel oK

 ort. -

_images/win_install_17.jpg
GeoNode-2.4x Setup - X

PostgreSQL 8.4.22
PostgresQL Installation

Vou need PastareSCL with PostGls DB instaled an your system,

This step wil install PostareSQL 84,22 on your system,

<Back. Next > Cancel

_images/qgis_wfs_layer.jpg
Quantum GIS 1.8.0-Lisboa

™ Control rendering order ®

6138139.04,1773669.90 : 6460430.86,1069313.32 ¥ Coordinate: | 6223201,1862828 Scale 1272200 1) |/ M Render EPSG:2230 (@) &

_images/win_install_16.jpg
Python 2.7.10

@ Please wait uhil Windows configures Python 27.10

Time temaining: 14 seconds

_images/qgis_wms_add_2.jpg
R SR A, . T 3 e e i N

AD S 0RBR ﬁ\#f\QDO

Add Layer(s) from a Server

Layer Order | Tilesets | Server Search

| GeoNode Alpha Dev Server

Create a new WMS connection

D Connection details

Name GeoNode Alpha Dev Server

URL ht

Jalpha.dev.geonode.org/geoserver/wms

optional password

If the service requires basic authentication, enter a user name and

Image encodi
User name [admin
Password .
Options [} gnore GetMap URI reported in capabilities

Layer name (I Ignore GetFeaturelnfo URI reported in capabilities

Tile size | Help | | Cancel | |

default servers

Feature limit

[Help | | Add
24061 of 24061 bytes of capabilities downloaded.

_images/qgis_wms_add_1.jpg
= .M = . O B Y sy sV K 0 0 W Y

"a s ¥ & 3% 4
2D 90803 EARDDC

Add Layer(s) from a Server

Layer Order | Tilesets | Server Search

B

[_Connect |(JO OO Create a new WMS connection default servers
D Connection details.
Name
URL
If the service requires basic authentication, enter a user name and
optional password
Image encodi
User name [
Password
©Options | ignore GetMap URI reported in capabilities
Layer name | Lllgnore GetFeaturelnfo URI reported in capal
Tile size. | Help | Cancel | oK |

Feature llnﬂt_—‘

[Change |

Help | | Add | Close |
Ready

_images/win_install_18.jpg
& Setup -

Instaling

Unpacking C:\appsiGeol.. Jalorglpostaresaliplavalntermallsession.hinl

_images/qgis_wms_add_6.jpg
P D cn®0DBRLEANADDC
(s}

Title
My GeoServ..
Air_Runways
Air_Runways
Air_Safety_Z... No abstract provided
Ambulance_... No abstract provided
Ambulance_... No abstract provided

uifers.
Image encoding
@PNG PG ()GIF () TIFF

Coordinate Reference System (4957 available)

Layer name it.geosolutions:Air_Runways0

Tilesize |

Feature limit for GetFeaturelnfo

WGS 84

| Help | [Add |
1 Layer(s) selected

