
GeoNode Documentation
Release 2.8

GeoNode Development Team

Feb 26, 2020

Contents

1 First Steps 3

2 How To Use The Documentation 5

3 Table of contents 7
3.1 About GeoNode . 7

3.1.1 About GeoNode . 7
3.1.1.1 Online demo . 7
3.1.1.2 Geospatial data storage . 8
3.1.1.3 Data mixing, maps creation . 8
3.1.1.4 GeoNode as a building block . 9
3.1.1.5 Convinced! Where do I sign? . 9

3.2 Tutorials . 9
3.2.1 Tutorials . 9

3.2.1.1 GeoNode Overview & Reference . 9
3.2.1.1.1 Users’ Features . 9
3.2.1.1.2 Introduction . 10
3.2.1.1.3 Reference Doc . 23

3.2.1.2 Installation & Admin . 31
3.2.1.2.1 Quick Installation Guide . 32
3.2.1.2.2 Linux Admin Intro . 38
3.2.1.2.3 Running Ansible scripts . 47
3.2.1.2.4 GeoNode (v2.8) on Docker . 52
3.2.1.2.5 VM Setup with VirtualBox . 63
3.2.1.2.6 Running a VM with Vagrant . 83
3.2.1.2.7 GeoNode (v2.8) installation on Ubuntu 16.04 85
3.2.1.2.8 GeoNode (v2.8) installation on CentOS 7 116
3.2.1.2.9 Network configuration issues . 137
3.2.1.2.10 Windows Binary Installer . 138
3.2.1.2.11 GeoNode (v2.8) update from older versions 162

3.2.1.3 Users Workshop . 205
3.2.1.3.1 Accounts and users . 205
3.2.1.3.2 Document Types . 213
3.2.1.3.3 Searching . 216
3.2.1.3.4 Managing layers . 217
3.2.1.3.5 Edit Layer Style . 234
3.2.1.3.6 Managing maps . 235

i

3.2.1.3.7 Using GeoNode with other applications 255
3.2.1.4 Administrators Workshop . 293

3.2.1.4.1 GeoNode and GeoServer Advanced Security 294
3.2.1.4.2 Usage of the GeoNode’s Django Administration Panel 336
3.2.1.4.3 Management Commands for GeoNode 344
3.2.1.4.4 Configuring Alternate CSW Backends 348
3.2.1.4.5 LDAP configuration . 350
3.2.1.4.6 Customize the look and feel . 351
3.2.1.4.7 Debugging GeoNode Installations . 366
3.2.1.4.8 Changing the Default Language . 369
3.2.1.4.9 More on Security and Permissions . 370
3.2.1.4.10 Loading Data into a GeoNode . 379
3.2.1.4.11 Implementing S3 Bucket for Static and Media Files 395
3.2.1.4.12 Backup & Restore GeoNode - Data Migration 397
3.2.1.4.13 GeoNode Monitoring . 411
3.2.1.4.14 Use datastore shards in GeoNode . 430
3.2.1.4.15 Asynchronous signals handling . 432
3.2.1.4.16 GeoNode Social Accounts . 434

3.2.1.5 Developers Workshop . 454
3.2.1.5.1 Introduction to GeoNode development 454
3.2.1.5.2 Django Overview . 460
3.2.1.5.3 Development Prerequisites and Core Modules 471
3.2.1.5.4 Install GeoNode for Development . 478
3.2.1.5.5 Start working on Geonode the next day after install 484
3.2.1.5.6 GeoNode debugging techniques . 485
3.2.1.5.7 GeoNode APIs . 493
3.2.1.5.8 Testing in GeoNode . 564
3.2.1.5.9 Pavement.py and Paver . 566
3.2.1.5.10 Introduction to GeoNode Projects . 569
3.2.1.5.11 Make a GeoNode release . 569

3.2.1.6 Advanced Workshop . 572
3.2.1.6.1 Advanced Data Management and Processing 572
3.2.1.6.2 GeoNode Advanced Configuration . 841
3.2.1.6.3 GeoNode on Production . 860

3.3 Reference . 946
3.3.1 Reference documentation . 947

3.3.1.1 Security and Permissions . 947
3.3.1.1.1 Permissions and GeoNode objects . 948
3.3.1.1.2 Publishing and unpublishing objects . 952

3.3.1.2 GeoNode ad-hoc API . 952
3.3.1.2.1 API endpoints . 953
3.3.1.2.2 API filtering . 953
3.3.1.2.3 API limit and pagination . 953
3.3.1.2.4 API settings . 953
3.3.1.2.5 Searching with Haystack . 953

3.3.1.3 Localization . 954
3.3.1.4 Developers Reference . 955

3.3.1.4.1 GeoNode Django Apps . 955
3.3.1.4.2 JavaScript in GeoNode . 962
3.3.1.4.3 Settings . 963
3.3.1.4.4 GeoSites: GeoNode Multi-Tenancy . 978

3.3.1.5 Supported Browsers . 980
3.3.1.5.1 Internet Explorer . 980
3.3.1.5.2 Testing on Internet Explorer . 981

ii

3.3.1.6 WorldMap . 981
3.3.1.6.1 Installation . 982
3.3.1.6.2 Hypermap Registry . 985
3.3.1.6.3 Test the stack . 985
3.3.1.6.4 Schedule Celery tasks . 986

3.4 Organizational . 987
3.4.1 Organizational . 987

3.4.1.1 Project Information . 987
3.4.1.2 Contributing . 987
3.4.1.3 Table of Content . 987

3.4.1.3.1 Roadmap Process . 987
3.4.1.3.2 Community Resources . 988
3.4.1.3.3 Community Bylaws . 990
3.4.1.3.4 Contributing to GeoNode . 992
3.4.1.3.5 GeoNode Patch Review Process . 1003
3.4.1.3.6 Patch Review criteria . 1004
3.4.1.3.7 How to contribute to GeoNode’s translation 1006
3.4.1.3.8 How to contribute to GeoNode’s Documentation 1010
3.4.1.3.9 How to write Documentation . 1015
3.4.1.3.10 How to Translate the Documentation . 1020

4 Need Help? 1021

Python Module Index 1023

Index 1025

iii

iv

GeoNode Documentation, Release 2.8

Welcome to GeoNode’s Documentation.

GeoNode is an Open Source, Content Management System (CMS) for geospatial data. It is a web-based application
and platform for developing geospatial information systems (GIS) and for deploying spatial data infrastructures (SDI).

Contents 1

GeoNode Documentation, Release 2.8

2 Contents

CHAPTER 1

First Steps

The following sections give an overview of GeoNode from different perspectives, they are targeted at a non-technical
audience and the quick installation guide at people who just want to get it installed and will come back later to the
complete documentation.

• About GeoNode

• Quick Installation Guide

• GeoNode Users Quickstart Manual

3

GeoNode Documentation, Release 2.8

4 Chapter 1. First Steps

CHAPTER 2

How To Use The Documentation

The documentation is geared toward three distinct types of users:

1. Users: Are people who log into a GeoNode website and use its functionality.

2. Administrators: Are people who install and deploy GeoNode websites in production for their Users.

3. Developers: Are people who write code to add functionality, integrate with other systems, fix bugs, and poten-
tially help an Administrator setup a server and deploy a GeoNode instance for production.

The documentation is divided into three sections:

1. Tutorials: Step-by-step instructions in workshop format that help a user to accomplish a set of tasks.

2. Reference: Architecture, component information, API descriptions etc.

3. Organizational: About the project, how to contribute, links, resources, other info.

5

GeoNode Documentation, Release 2.8

6 Chapter 2. How To Use The Documentation

CHAPTER 3

Table of contents

3.1 About GeoNode

3.1.1 About GeoNode

GeoNode is a geospatial content management system, a platform for the management and publication of geospatial
data. It brings together mature and stable open-source software projects under a consistent and easy-to-use interface
allowing non-specialized users to share data and create interactive maps.

Data management tools built into GeoNode allow for integrated creation of data, metadata, and map visualizations.
Each dataset in the system can be shared publicly or restricted to allow access to only specific users. Social features
like user profiles and commenting and rating systems allow for the development of communities around each platform
to facilitate the use, management, and quality control of the data the GeoNode instance contains.

It is also designed to be a flexible platform that software developers can extend, modify or integrate against to meet
requirements in their own applications.

3.1.1.1 Online demo

A live demo of the latest stable build is available at demo.geonode.org.

Anyone may sign up for a user account, upload and style data, create and share maps, and change permissions. Since
it is a demo site, we don’t make any guarantee that your data and maps will always be there. But it should hopefully
allow you to easily preview the capabilities of GeoNode.

7

http://demo.geonode.org

GeoNode Documentation, Release 2.8

3.1.1.2 Geospatial data storage

GeoNode allows the user to upload vector data (currently only shapefiles) and raster data in their original projections
using a web form. Vector data is uploaded in ESRI shapefile format and satellite imagery and other kinds of raster
data are uploaded as GeoTIFFs.

Special importance is given to standard metadata formats like ISO 19139:2007. After the upload is finished, the
user is presented with a form to fill in the metadata and it is made available using a CSW interface. Users may also
upload a metadata XML document (in ISO, FGDC, or Dublin Core format) to fill in key GeoNode metadata elements
automatically.

Similarly, GeoNode provides a web based styler, that lets the user change how the data looks and preview the changes
in real time.

3.1.1.3 Data mixing, maps creation

Once the data has been uploaded, GeoNode lets the user search for it geographically or via keywords and create maps.

All the layers are automatically re-projected to web mercator for maps display, making it possible to use different
popular base layers, like Open Street Map, Google Satellite or Bing layers.

Once maps are saved, it is possible to embed them in any web page or get a PDF version for printing.

8 Chapter 3. Table of contents

http://www.opengeospatial.org/standards/cat

GeoNode Documentation, Release 2.8

3.1.1.4 GeoNode as a building block

A handful of other Open Source projects extend GeoNode’s functionality by tapping into the re-usability of Django
applications. Visit our gallery to see how the community uses GeoNode: GeoNode Projects.

The development community is very supportive of new projects and contributes ideas and guidance for newcomers.

3.1.1.5 Convinced! Where do I sign?

The next steps are to follow the Quick Installation Guide, read the tutorials and subscribe to the geonode-users and/or
geonode-devel mailing lists to join the community. Thanks for your interest!

3.2 Tutorials

The Tutorials section contains step-by-step workshops that are oriented around performing particular sets of tasks, like
adding data or publishing maps, setting up and maintaining a server, or setting up a project to extend from GeoNode.
These tutorials are written in a workshop like format and are broken into three groups: Users, Administrators and
Developers.

3.2.1 Tutorials

The tutorials are based around performing tasks, like adding data or publishing maps. The tutorials are written in a
workshop like format and are broken into three groups Users, Administrators and Developers.

3.2.1.1 GeoNode Overview & Reference

Welcome to the GeoNode Training Overview & Reference documentation v2.8.

This module guides the user to an overview of GeoNode and its main components.

At the end of this section you will have a clear view of what GeoNode is and can do. You will be able also to use the
GeoNode main functionalities and understand some of the basic concepts of the system infrastructure.

3.2.1.1.1 Users’ Features

Open Source Geospatial Content Management System

GeoNode is a web-based application and platform for developing geospatial information systems (GIS) and for de-
ploying spatial data infrastructures (SDI).

What GeoNode can be used for. . . GeoNode Demo (admin/admin)

Spatial Data Discovery

GeoNode allows users to browse and search for geospatial data. By combining collaboration found in social networks
with specialized geospatial tools, GeoNode makes it easy to explore, process, style, and share maps and geospatial
data. Spatial datasets can be imported and shared, all through a non-technical user interface.

Features include:

• Powerful spatial search engine

3.2. Tutorials 9

http://geonode.org/gallery/
https://lists.osgeo.org/mailman/listinfo/geonode-users
https://lists.osgeo.org/mailman/listinfo/geonode-devel
http://demo.geonode.org/

GeoNode Documentation, Release 2.8

• Federated OGC services

• Metadata catalogue

Import and Manage

GeoNode allows users to upload and share geospatial data, securely. GeoNode makes it easy to upload and manage
geospatial data on the web. Any user can upload and make content available via standard OGC protocols such as
Web Map Service (WMS) and Web Feature Service (WFS). Data is available for browsing, searching, styling, and
processing to generate maps which can be shared publicly or restricted to specific users only. Supported upload
formats include shapefile, GeoTIFF, KML and CSV. In addition, it is possible to connect to existing external spatial
databases and services.

Features include:

• Publish raster, vector, and tabular data

• Manage metadata and associated documents

• Securely or publicly share data

• Versioned geospatial data editor

Interactive Mapping

GeoNode allows users to create and share interactive web maps. GeoNode comes with helpful cartography tools for
styling and composing maps graphically. These tools make it easy for anyone to assemble a web-based mapping
application with functionality traditionally found in desktop GIS applications. Users can gain enhanced interactivity
with GIS-specific tools such as querying and measuring.

Features include:

• GeoExplorer GIS client

• Graphical style editor

• Create multi-layer interactive maps

• Share and embed maps in web pages

3.2.1.1.2 Introduction

This section introduces the GeoNode GUI and functionalities through a step-by-step workshop.

At the end of this module the users will be familiar with the GeoNode default GUI and objects.

A Tour Of GeoNode

In order to get started, let’s look at the GeoNode interface and get a feel for how to navigate around it.

The GeoNode web interface is the primary method of interacting with GeoNode as a user. From this interface, one
can view and modify existing spatial layers and maps, as well as find information on other GeoNode users.

Without being logged in, you are limited to read-only access of public layers.

1. Navigate to your GeoNode instance (online demo available here):

10 Chapter 3. Table of contents

http://demo.geonode.org/

GeoNode Documentation, Release 2.8

Welcome page

This page shows a variety of information about the current GeoNode instance. At the top of the
page is a toolbar showing quick links to view layers, maps, documents (metadata), people, and a
search field. Below this is a listing of recently updated layers, including abstract, owner, rating, and
download button (if available).

2. Click Explore button and choose Preview. Table data could be visualized as: Grid, Graph or Map.

3.2. Tutorials 11

http://docs.geonode.org/en/latest/tutorials/users/layers/index.html#layers
http://docs.geonode.org/en/latest/tutorials/users/maps/index.html#maps
http://docs.geonode.org/en/latest/tutorials/users/accounts/index.html#accounts

GeoNode Documentation, Release 2.8

Explore Layers page

This page shows all layers known to GeoNode, available in either List or Grid viewing. Layers can
be sorted by Most Recent, Most Popular, or Most Shared. Also available are a list of categories, with
which layers can be connected with.

3. Find a layer and click on its name.

Viewing a layer

4. A layer viewing page will display, with the layer itself superimposed on a hosted base layer (in this case
MapQuest OpenStreetMap). Explore this page, noting the various options available to you.

5. Now click the Maps link in the tool bar to go to the Explore Maps page.

12 Chapter 3. Table of contents

http://open.mapquest.com/

GeoNode Documentation, Release 2.8

Explore Maps page

This page shows all maps known to GeoNode, available with similar viewing options as with the
layers. Currently, there are no maps here, but we will create one later on in the workshop.

6. Click the Search link in the toolbar to bring up the Search page.

Search page

This page contains a wealth of options for customizing a search for various information on this
GeoNode instance. While a simple search box is available at the top of every page, this search form
allows for much more fine-tuned searches.

3.2. Tutorials 13

GeoNode Documentation, Release 2.8

Now that you are familiar with the basic interface, the next step is to create your own account so you manage some
GeoNode resources of your own.

GeoNode Quickstart

Open Source Geospatial Content Management System

GeoNode is a web-based application and platform for developing geospatial information systems (GIS) and for de-
ploying spatial data infrastructures (SDI).

In this Quickstart guide you will learn the following:

1. How to register a new account to get started

2. How to add a new layer

3. How to create a map using your new layer

4. How to share your map with others

Start GeoNode on your Live DVD or local VM and redirect your browser at http://localhost:8000/ (this is the default
port). The page will look like shown in the image below.

Welcome page

1. Register a new account

From the interface shown above, one can view and modify existing spatial layers and maps, as well as find information
on other GeoNode users. But, without being logged in, you are limited to read-only access of public layers. In order
to create a map and add layers to it, you have to have create an account first.

14 Chapter 3. Table of contents

http://localhost:8000/

GeoNode Documentation, Release 2.8

1. From any page in the web interface, you will see a Sign in link. Click that link, and in the dialog that displays,
click the Register now link.

Sign in Form

2. On the next page, fill out the form. Enter a user name and password in the fields. Also, enter your email address
for verification.

Register Form

3. You will be returned to the welcome page. An email will be sent confirming that you have signed up. While
you are now logged in, you will need to confirm your account. Navigate to the link that was sent in the email.

4. By clicking Confirm you will be returned to the homepage. Now you’ve registered an account, you are able to
add layers to it as well as create maps and share those with other users.

3.2. Tutorials 15

GeoNode Documentation, Release 2.8

Note: Depending on how the GeoNode you are using is configured, registration may not be available, or you may not
be required to confirm your email address before logging in.

2. Add a new layer

Layers are a published resource representing a raster or vector spatial data source. Layers also can be associated with
metadata, ratings, and comments.

1. To add a layer to your account, navigate to the welcome page. There the following toolbar can be seen:

Toolbar

2. By clicking the Layers link you will be brought to the Layers menu where a new subtoolbar can be seen. This
toolbar allows you to Explore, Search and Upload layers.

Upload Button

3. Now click Upload Layers and you’ll see the upload form.

Upload Form

4. You have two possibilities to add your files. You can either do that by using drag & drop or you choose to
browse them. Be aware that you have to upload a complete set of files, consisting of a shp, a prj, a dbf and a
shx file. If one of them is missing, GeoNode will warn you before you upload them.

5. You shold now be able to see all the files you want to upload.

16 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Files to be Uploaded

6. GeoNode has the ability to restrict who can view, edit, and manage layers. On the right side of the page you can
see the Permission section, where you can limit the access on your layer. Under Who can view and download
this data, select Any registered user. This will ensure that Anonymous view access is disabled. In the same
area, under Who can edit this data, select your username. This will ensure that Only You are able to edit the
data in the layer.

Permissions

7. To upload data, click the Upload button at the bottom.

3.2. Tutorials 17

GeoNode Documentation, Release 2.8

3. Create a new map

The next step for you is to create a map and add the newly created layers to this map.

1. Click the Maps link on the top toolbar. This will bring up the list of maps.

Create new Map Button

2. Currently, there aren’t any maps here. To add one click the Create a New Map button and a map composition
interface will display.

Maps Editor

In this interface there is a toolbar, layer list, and map window. The map window contains the
MapQuest OpenStreetMap layer by default. There are other service layers available here as well:
Blue Marble, Bing Aerial With Labels, MapQuest, and OpenStreetMap.

3. Click on the New Layers button and select Add Layers.

18 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Add Layers

4. Now you should be able to see all the availabel layers. In your case, this should only be the ones you’ve added
before (San Andreas?).

5. Select all of the layers by clicking the top entry and Shift-clicking the bottom one. Click Add Layers to add
them all to the map.

3.2. Tutorials 19

GeoNode Documentation, Release 2.8

Add Layers

6. The layers will be added to the map. Click Done (right next to Add Layers at the bottom) to return to the main
layers list.

7. To save the map click on the Map button in the toolbar, and select Save Map.

20 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Save Map

8. Enter a title and abstract for your map.

Edit Map Metadata

9. Click Save. Notice that the link on the top right of the page changed to reflect the map’s name.

Save Map

3.2. Tutorials 21

GeoNode Documentation, Release 2.8

This link contains a permalink to your map. If you open this link in a new window, your map will
appear exactly as it was saved.

4. Share your map

Now let’s finish our map.

1. Check the box next to the highway layer to activate it. If it is not below the POI layer in the list, click and drag
it down.

Activate Layers on Map

2. Make any final adjustments to the map composition as desired, including zoom and pan settings.

3. Click the Map button in the toolbar, and then click Publish Map.

Publish Map button

4. The title and abstract as previously created should still be there. Make any adjustments as necessary, and click
Save.

5. A new dialog will appear with instructions on how to embed this map in a web page, including a code snippet.
You can adjust the parameters as necessary.

22 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Publish the Map

Your map can now be shared!

To be continued

Now you’ve gotten some quick insight in the possibilities of GeoNode. To learn more about GeoNode and its features,
visit the official GeoNode web page.

Stay in touch with the GeoNode community through the Gitter.im chatroom or by asking your question in our mailing
list!

3.2.1.1.3 Reference Doc

In this section, you will find information about each and every component of GeoNode, for example GeoServer,
GeoNode Settings, Security, etc.

The Big Picture

3.2. Tutorials 23

http://geonode.org/
https://gitter.im/geonode/
https://lists.osgeo.org/cgi-bin/mailman/listinfo/geonode-users
https://lists.osgeo.org/cgi-bin/mailman/listinfo/geonode-users

GeoNode Documentation, Release 2.8

Architecture

GeoNode Component Architecture

GeoNode core is based on Django web framework with few more dependencies necessary for the communication with
the geospatial servers (GeoServer, pyCSW)

On the left side you can see the list of Entities defined in GeoNode and managed by the Django ORM framework.
Those objects will be detailed in a future section.

On the right side the list of Services available allowing GeoNode to communicate with the social world.

The GeoNode catalog is strictly connected to the GeoServer one (see the bottom of the figure). The geospatial dataset
and the OGC Services are implemented and managed by GeoServer. GeoNode acts as a broker for the geospatial
layers, adding metadata information and tools that make easier the management, cataloging, mapping and searching
of the datasets.

Thanks to the ORM framework and the auxiliary Python libraries, GeoNode is constantly aligned with the GeoServer
catalog. An ad-hoc security module allows the two modules to strictly interact and share security and permissions
rules.

In the advanced sections of this documentation we will go through GeoNode commands allowing administrators to
re-sync the catalogs and keep them consistently aligned.

24 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Django Architecture

GeoNode is based on Django which is a high level Python web development framework that encourages rapid devel-
opment and clean pragmatic design. Django is based on the Model View Controller (MVC) architecture pattern, and
as such, GeoNode models layers, maps and other modules with Django’s Model module and these models are used
via Django’s ORM in views which contain the business logic of the GeoNode application and are used to drive HTML
templates to display the web pages within the application.

Django explained with model/view/controller (MVC)

• Model represents application data and provides rich ORM functionality.

• Views are a rendering of a Model most often using the Django template engine.

• In Django, the controller part of this commonly discussed, layered architecture is a subject of discussion. Ac-
cording to the standard definition, the controller is the layer or component through which the user interacts and
model changes occur.

MVP/MVC

MVP

Model, View, Presenter

In MVP, the Presenter contains the UI business logic for the View. All invocations from the View delegate
directly to the Presenter. The Presenter is also decoupled directly from the View and talks to it through an
interface. This is to allow mocking of the View in a unit test. One common attribute of MVP is that there
has to be a lot of two-way dispatching. For example, when someone clicks the Save button, the event
handler delegates to the Presenter’s OnSave method. Once the save is completed, the Presenter will then
call back the View through its interface so that the View can display that the save has completed.

MVP tends to be a very natural pattern for achieving separated presentation in Web Forms.

Two primary variations (You can find out more about both variants.)

Passive View: The View is as dumb as possible and contains almost zero logic. The Presenter is a middle
man that talks to the View and the Model. The View and Model are completely shielded from one another.
The Model may raise events, but the Presenter subscribes to them for updating the View. In Passive View
there is no direct data binding, instead the View exposes setter properties which the Presenter uses to set
the data. All state is managed in the Presenter and not the View.

• Pro: maximum testability surface; clean separation of the View and Model

• Con: more work (for example all the setter properties) as you are doing all the data binding yourself.

Supervising Controller: The Presenter handles user gestures. The View binds to the Model directly
through data binding. In this case it’s the Presenter’s job to pass off the Model to the View so that it can
bind to it. The Presenter will also contain logic for gestures like pressing a button, navigation, etc.

• Pro: by leveraging data binding the amount of code is reduced.

• Con: there’s less testable surface (because of data binding), and there’s less encapsulation in the
View since it talks directly to the Model.

3.2. Tutorials 25

https://www.djangoproject.com/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://docs.djangoproject.com/en/1.8/topics/db/models/
https://en.wikipedia.org/wiki/Object-relational_mapping
http://webclientguidance.codeplex.com/wikipage?title=MVPDocumentation&referringTitle=bundles

GeoNode Documentation, Release 2.8

MVC

Model, View, Controller

In the MVC, the Controller is responsible for determining which View is displayed in response to any
action including when the application loads.

This differs from MVP where actions route through the View to the Presenter. In MVC, every action in the
View correlates with a call to a Controller along with an action. In the web each action involves a call to
a URL on the other side of which there is a Controller who responds. Once that Controller has completed
its processing, it will return the correct View. The sequence continues in that manner throughout the life
of the application:

1 Action in the View
2 -> Call to Controller
3 -> Controller Logic
4 -> Controller returns the View.

One other big difference about MVC is that the View does not directly bind to the Model. The view
simply renders, and is completely stateless. In implementations of MVC the View usually will not have
any logic in the code behind. This is contrary to MVP where it is absolutely necessary as if the View does
not delegate to the Presenter, it will never get called.

Presentation Model

One other pattern to look at is the Presentation Model pattern. In this pattern there is no Presenter. Instead
the View binds directly to a Presentation Model. The Presentation Model is a Model crafted specifically
for the View. This means this Model can expose properties that one would never put on a domain model
as it would be a violation of separation-of-concerns. In this case, the Presentation Model binds to the
domain model, and may subscribe to events coming from that Model. The View then subscribes to events
coming from the Presentation Model and updates itself accordingly. The Presentation Model can expose
commands which the view uses for invoking actions. The advantage of this approach is that you can
essentially remove the code-behind altogether as the PM completely encapsulates all of the behaviour for
the view.

This pattern is a very strong candidate for use in WPF applications and is also called Model-View-
ViewModel.

More: http://reinout.vanrees.org/weblog/2011/12/13/django-mvc-explanation.html

WSGI

Web Server Gateway Interface (whis-gey)

• This is a python specification for supporting a common interface between all of the various web
frameworks and an application (Apache, for example) that is ‘serving’.

• This allows any WSGI compliant framework to be hosted in any WSGI compliant server.

• For most GeoNode development, the details of this specification may be ignored.

More: http://en.wikipedia.org/wiki/Wsgi

26 Chapter 3. Table of contents

https://msdn.microsoft.com/en-us/magazine/dd419663.aspx
https://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://reinout.vanrees.org/weblog/2011/12/13/django-mvc-explanation.html
https://en.wikipedia.org/wiki/Wsgi

GeoNode Documentation, Release 2.8

GeoNode and GeoServer

GeoNode uses GeoServer for providing OGC services.

At its core, GeoNode provides a standards-based platform to enable integrated, programmatic access to your data via
OGC Web Services, which are essential building blocks required to deploy an OGC-compliant spatial data infrastruc-
ture (SDI). These Web Services enable discovery, visualization and access your data, all without necessarily having to
interact directly with your GeoNode website, look and feel/UI, etc.

• GeoNode configures GeoServer via the REST API

• GeoNode retrieves and caches spatial information from GeoServer. This includes relevant OGC service links,
spatial metadata, and attribute information.

In summary, GeoServer contains the layer data, and GeoNode’s layer model extends the metadata present in
GeoServer with its own.

• GeoNode can discover existing layers published in a GeoServer via the WMS capabilities document.

• GeoServer delegates authentication and authorization to GeoNode.

• Data uploaded to GeoNode is first processed in GeoNode and finally published to GeoServer (or ingested into
the spatial database).

OGC Web Services:

• operate over HTTP (GET, POST)

• provide a formalized, accepted API

• provide formalized, accepted formats

The OGC Web Services provided by GeoNode have a mature implementation base and provide an multi-application
approach to integration. This means, as a developer, there are already numerous off-the-shelf GIS packages, tools and
webapps (proprietary, free, open source) that natively support OGC Web Services.

There are numerous ways to leverage OGC Web Services from GeoNode:

• desktop GIS

• web-based application

• client libraries / toolkits

• custom development

Your GeoNode lists OGC Web Services and their URLs at http://localhost:8000/developer. You can
use these APIs directly to interact with your GeoNode.

The following sections briefly describe the OGC Web Services provided by GeoNode.

Web Map Service (WMS)

WMS provides an API to retrieve map images (PNG, JPEG, etc.) of geospatial data. WMS is suitable for
visualization and when access to raw data is not a requirement.

3.2. Tutorials 27

GeoNode Documentation, Release 2.8

WFS

WFS provides an API to retrieve raw geospatial vector data directly. WFS is suitable for direct query and
access to geographic features.

WCS

WCS provides an API to retrieve raw geospatial raster data directly. WCS is suitable for direct access to
satellite imagery, DEMs, etc.

CSW

CSW provides an interface to publish and search metadata (data about data). CSW is suitable for cata-
loguing geospatial data and making it discoverable to enable visualization and access.

WMTS

WMTS provides an API to retrieve pre-rendered map tiles of geospatial data.

WMC

WMC provides a format to save and load map views and application state via XML. This allows, for
example, a user to save their web mapping application in WMC and share it with others, viewing the
same content.

More: http://geoserver.org

GeoNode and PostgreSQL/PostGIS

In production, GeoNode is configured to use PostgreSQL/PostGIS for it’s persistent store. In development and testing
mode, often an embedded SQLite database is used. The latter is not suggested for production.

• The database stores configuration and application information. This includes users, layers, maps, etc.

• It is recommended that GeoNode be configured to use PostgreSQL/PostGIS for storing vector data as well.
While serving layers directly from shapefile allows for adequate performance in many cases, storing features in
the database allows for better performance especially when using complex style rules based on attributes.

GeoNode and pycsw

GeoNode is built with pycsw embedded as the default CSW server component.

Publishing

Since pycsw is embedded in GeoNode, layers published within GeoNode are automatically published to pycsw and
discoverable via CSW. No additional configuration or actions are required to publish layers, maps or documents to
pycsw.

28 Chapter 3. Table of contents

http://geoserver.org

GeoNode Documentation, Release 2.8

Discovery

GeoNode’s CSW endpoint is deployed available at http://localhost:8000/catalogue/csw and is avail-
able for clients to use for standards-based discovery. See http://docs.pycsw.org/en/latest/tools.html for a list of CSW
clients and tools.

Javascript in GeoNode

GeoNode provides a number of facilities for interactivity in the web browser built on top of several high-
quality JavaScript frameworks:

• Bootstrap for GeoNode’s front-end user interface and common user interaction.

• Bower for GeoNode’s front-end package management.

• ExtJS for component-based UI construction and data access

• OpenLayers for interactive mapping and other geospatial operations

• GeoExt for integrating ExtJS with OpenLayers

• Grunt for front-end task automation.

• GXP for providing some higher-level application building facilities on top of GeoExt, as well as
improving integration with GeoServer.

• jQuery to abstract Javascript manipulation, event handling, animation and Ajax.

GeoNode uses application-specific modules to handle pages and services that are unique to GeoNode.
This framework includes:

• A GeoNode mixin class that provides GeoExplorer with the methods needed to properly function in
GeoNode. The class is responsible for checking permissions, retrieving and submitting the CSRF
token, and user authentication.

• A search module responsible for the GeoNode’s site-wide search functionality.

• An upload and status module to support file uploads.

• Template files for generating commonly used html sections.

• A front-end testing module to test GeoNode Javascript.

The following concepts are particularly important for developing on top of the GeoNode’s JavaScript
framework.

• Components Ext components handle most interactive functionality in “regular” web pages. For
example, the scrollable/sortable/filterable table on the default Search page is a Grid component.
While GeoNode does use some custom components, familiarity with the idea of Components
used by ExtJS is applicable in GeoNode development.

• Viewers Viewers display interactive maps in web pages, optionally decorated with Ext controls
for toolbars, layer selection, etc. Viewers in GeoNode use the GeoExplorer base class, which
builds on top of GXP’s Viewer to provide some common functionality such as respecting site-
wide settings for background layers. Viewers can be used as components embedded in pages,
or they can be full-page JavaScript applications.

• Controls Controls are tools for use in OpenLayers maps (such as a freehand control for drawing
new geometries onto a map, or an identify control for getting information about individual fea-
tures on a map.) GeoExt provides tools for using these controls as ExtJS “Actions” - operations
that can be invoked as buttons or menu options or associated with other events.

3.2. Tutorials 29

http://docs.pycsw.org/en/latest/tools.html
http://getbootstrap.com/
https://bower.io/
https://www.sencha.com/products/extjs/
http://openlayers.org/
http://geoext.org/
http://gruntjs.com/
https://github.com/boundlessgeo/gxp
http://jquery.com
https://github.com/GeoNode/geonode/blob/master/geonode/static/geonode/js/extjs/GeoNode-mixin.js
https://docs.djangoproject.com/en/1.8/ref/csrf/
https://docs.djangoproject.com/en/1.8/ref/csrf/
https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/search
https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/upload
https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/templates
https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/tests

GeoNode Documentation, Release 2.8

Components

architecture is based on a set of core tools and libraries that provide the building blocks on which the application is
built. Having a basic understanding of each of these components is critical to your success as a developer working
with GeoNode.

Lets look at each of these components and discuss how they are used within the GeoNode application.

Django

GeoNode is based on Django which is a high level Python web development framework that encourages rapid devel-
opment and clean pragmatic design. Django is based on the Model View Controller (MVC) architecture pattern, and
as such, GeoNode models layers, maps and other modules with Django’s Model module and these models are used
via Django’s ORM in views which contain the business logic of the GeoNode application and are used to drive HTML
templates to display the web pages within the application.

GeoServer

GeoServer is an open source software server written in Java that provides OGC compliant services which publish data
from many spatial data sources. GeoServer is used as the core GIS component inside GeoNode and is used to render
the layers in a GeoNode instance, create map tiles from the layers, provide for downloading those layers in various
formats and to allow for transactional editing of those layers.

GeoExplorer

GeoExplorer is a web application, based on the GeoExt framework, for composing and publishing web maps with
OGC and other web based GIS Services. GeoExplorer is used inside GeoNode to provide many of the GIS and
cartography functions that are a core part of the application.

PostgreSQL and PostGIS

PostgreSQL and PostGIS are the database components that store and manage spatial data and information for GeoNode
and the Django modules that it is composed of, pycsw and GeoServer. All of these tables and data are stored within
a geonode database in PostgreSQL. GeoServer uses PostGIS to store and manage spatial vector data for each layer
which are stored as a separate table in the database.

pycsw

pycsw is an OGC CSW server implementation written in Python. GeoNode uses pycsw to provide an OGC compliant
standards-based CSW metadata and catalogue component of spatial data infrastructures, supporting popular geospatial
metadata standards such as Dublin Core, ISO 19115, FGDC and DIF.

Geospatial Python Libraries

GeoNode leverages several geospatial python libraries including gsconfig and OWSLib. gsconfig is used to commu-
nicates with GeoServer’s REST Configuration API to configure GeoNode layers in GeoServer. OWSLib is used to
communicate with GeoServer’s OGC services and can be used to communicate with other OGC services.

30 Chapter 3. Table of contents

https://www.djangoproject.com/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://docs.djangoproject.com/en/1.8/topics/db/models/
https://en.wikipedia.org/wiki/Object-relational_mapping
http://geoserver.org/display/GEOS/Welcome
https://github.com/GeoNode/geoexplorer
http://geoext.org/
https://www.postgresql.org/
http://postgis.net/
http://pycsw.org
https://github.com/boundlessgeo/gsconfig
http://geopython.github.io/OWSLib/

GeoNode Documentation, Release 2.8

Django Pluggables

GeoNode uses a set of Django plugins which are usually referred to as pluggables. Each of these pluggables provides
a particular set of functionality inside the application from things like Registration and Profiles to interactivity with
external sites. Being based on Django enables GeoNode to take advantage of the large ecosystem of these pluggables
out there, and while a specific set is included in GeoNode itself, many more are available for use in applications based
on GeoNode.

jQuery

jQuery is a feature-rich Javascript library that is used within GeoNode to provide an interactive and responsive user
interface as part of the application. GeoNode uses several jQuery plugins to provide specific pieces of functionality,
and the GeoNode development team often adds new features to the interface by adding additional plugins.

Bootstrap

Bootstrap is a front-end framework for laying out and styling the pages that make up the GeoNode application. It
is designed to ensure that the pages render and look and behave the same across all browsers. GeoNode customizes
bootstraps default style and its relatively easy for developers to customize their own GeoNode based site using existing
Bootstrap themes or by customizing the styles directly.

Users’ Features Open Source Geospatial Content Management System

GeoNode is a web-based application and platform for developing geospatial information systems (GIS) and for
deploying spatial data infrastructures (SDI).

What GeoNode can be used for. . . GeoNode Demo (admin/admin)

Introduction This section introduces the GeoNode GUI and functionalities through a step-by-step workshop.

At the end of this module the users will be familiar with the GeoNode default GUI and objects.

Reference Doc In this section, you will find information about each and every component of GeoNode, for example
GeoServer, GeoNode Settings, Security, etc.

3.2.1.2 Installation & Admin

Welcome to the GeoNode Training Installation & Admin documentation v2.8.

This module is more oriented to users having some System Administrator background.

At the end of this section you will be able to setup from scratch the whole GeoNode infrastructure and understand how
to the different pieces are interconnected and which are their dependencies.

Prerequisites

Before proceeding with the reading, it is strongly recommended to be sure having clear the following
concepts:

1. GeoNode and Django framework basic concepts

2. What is Python

3. What is a DBMS

4. What is a Java Virtual Machine and the JDK

5. Basic TCP/IP and networking concepts

3.2. Tutorials 31

http://jquery.com/
http://getbootstrap.com/
http://demo.geonode.org/

GeoNode Documentation, Release 2.8

6. Linux OS basic shell and maintenance commands

7. Apache HTTPD Server and WSGI Python bindings

3.2.1.2.1 Quick Installation Guide

The following is a quick guide to get GeoNode up and running in most common operating systems. This is meant to
be run on a fresh machine with no previously installed packages or GeoNode versions.

Recommended Minimum System Requirements

For deployment of GeoNode on a single server, the following are the bare minimum system requirements:

• 6GB of RAM, including swap space.

• 2.2GHz processor. (Additional processing power may be required for multiple concurrent styling renderings)

• 1 GB software disk usage.

• Additional disk space for any data hosted with GeoNode and tiles cached with GeoWebCache. For spatial data,
cached tiles, and “scratch space” useful for administration, a decent baseline size for GeoNode deployments is
100GB.

• 64-bit hardware recommended.

Linux

Ubuntu (standard deployment)

The easiest way to get the .deb is to install it using APT, the standard installation management tool for Ubuntu. The
current release, 2.8 is available only for Ubuntu 16.04.

These instructions have been tested on a fresh install of Ubuntu 16.04 64 bit server edition. Please ensure the latest
packages are installed with:

sudo apt-get update; sudo apt-get upgrade

Amongst other things, this will ensure that the software-properties-common package is installed, which is
required to make the add-apt-repository command used below available.

The steps to install geonode and all dependencies in Ubuntu 16.04 are as follows:

1. Set up the GeoNode PPA repository (you only need to do this once; the repository will still be available for
upgrades later):

sudo add-apt-repository ppa:geonode/stable

Note: If you want to try latest unstable version of GeoNode, add the repository:

sudo add-apt-repository ppa:geonode/testing

2. Install the geonode package and dependencies:

sudo apt-get update; sudo apt-get upgrade; sudo apt-get autoremove
sudo apt-get install geonode

32 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3. Set the correct IP address (NB: the first command below looks up the IP address automatically):

.. note:: If you want to run geonode on your local instance, just run::

sudo geonode-updateip -p localhost

IP_ADDRESS=$(ip route get 8.8.8.8 | awk ‘{print $NF; exit}’) sudo geonode-updateip -p
$IP_ADDRESS

Note: If geoserver and geonode are not on the same machine then add your local geonode address:

sudo geonode-updateip -p $IP_ADDRESS -l yourlocaladdress

NB: The IP address must be set to enable access from another machine, e.g. the host machine if geonode is
installed in a virtual machine.

4. Access geonode from your web browser, using the IP address from step 3 above. The neonode web applicaiton
should be displayed and you can log in using the superuser details entered immediately above:

Note: If you want to access geonode on your local instance, just go to:

http://localhost/

http://{[}IP_ADDRESS{]}/

NB: With this installation method you use sudo geonode xxxx in place of any python manage.py xxx
command referred to in documentation. For example, try:

sudo geonode help

For further information, read the Admin Docs at http://docs.geonode.org/en/master/#for-administrators.

Ubuntu (for development)

This option installs geonode in a virtual environment. This option is very useful in case you want to develop using
Ubuntu (tested on Ubuntu 16.04 LTS):

Install Ubuntu dependencies
sudo apt-get update
sudo apt-get install python-virtualenv python-dev libxml2 libxml2-dev libxslt1-dev
→˓zlib1g-dev libjpeg-dev libpq-dev gdal libgdal-dev git default-jdk

Install Java 8 (needed by latest GeoServer 2.9)
sudo apt-add-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer

Create and activate the virtulenv
virtualenv --no-site-packages env
source env/bin/activate

git clone geonode
git clone https://github.com/GeoNode/geonode
cd geonode

(continues on next page)

3.2. Tutorials 33

http://{[}IP_ADDRESS{]}/
http://docs.geonode.org/en/master/#for-administrators

GeoNode Documentation, Release 2.8

(continued from previous page)

Install pip dependencies
pip install -r requirements.txt --upgrade
pip install -e . --upgrade --no-cache

sudo add-apt-repository ppa:ubuntugis/ppa && sudo apt-get update
sudo apt-get install gdal-bin

install the correct PyGDAL version
gdal-config --version | cut -c 1-5 | xargs -I % pip install 'pygdal>=%.0,<=%.999'

if the command cannot install a suitable version, be sure to install at least the
→˓closer major one e.g. 2.1.2 -> 2.1.2.3
gdalinfo --version
pip install pygdal==`gdal-config --version`

You can now setup and start GeoNode:

Paver setup
paver setup
paver sync
paver start

In case you want to be involved in static files development:

The following lines must be run only the first time
sudo apt-get install -y nodejs, npm

Rebuild libraries through:

cd geonode/static

The following lines must be run only the first time
npm install --save-dev
npm install bower --save-dev
npm install grunt-cli --save-dev
npm install grunt-contrib-jshint --save-dev
npm install grunt-contrib-less --save-dev
npm install grunt-contrib-concat --save-dev
npm install grunt-contrib-copy --save-dev
npm install grunt-text-replace --save-dev
npm install grunt-contrib-uglify --save-dev
npm install grunt-contrib-cssmin --save-dev
npm install grunt-contrib-watch --save-dev
npm install -g grunt-cli

Later you can just do the following
bower cache clean
bower update
grunt production

Warning: If you get an error like /usr/bin/env: node: No such file or directory while
running bower, try to execute the following command:

sudo ln -s /usr/bin/nodejs /usr/bin/node

34 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

On a production environment, remember to refresh also the “static_root” folder:

python manage.py collectstatic --clear -i site-packages* -i .components* -i node_
→˓modules* --noinput

Windows, OSX and others

Windows

It is now available an automatic installer for Windows systems which configures GeoNode with PostgreSQL DB and
few sample layers on a few steps. See detailed instructions and steps of the GeoNode Windows Installer at section
Windows Binary Installer.

If you have different needs or just want to configure the GeoNode environment manually, please continue reading the
guide below.

To install in Windows it is assumed you’re familiar with python development and virtualenv on Windows and that
you’re familiar with the windows command prompt. You will need the follow prerequisites installed:

• Java JDK

• Python 2.7.9 * Earlier versions of python require you to install distutils (easy_install) - http://www.lfd.uci.edu/
~gohlke/pythonlibs/#setuptools

• ant (bin directory must be on system PATH)

• maven2 (bin directory must be on system PATH)

• git

Install and configure from the windows command prompt, if you don’t already have python virtualenv installed, then
do it now:

easy_install virtualenv

Create virtualenv and activate it:

cd <Directory to install the virtualenv & geonode into>
virtualenv <name of virtualenv folder>
virtualenv <name of virtualenv folder>\scripts\activate

Clone GeoNode:

git clone https://github.com/GeoNode/geonode.git

cd geonode

Install Python native dependencies, this command will look for and install binary distributions (pip install will attempt
to build and fail):

pip install paver
paver win_install_deps

Install GeoNode in the local virtualenv:

pip install -e . --upgrade --no-cache

You have two options to set up the GEOS and GDAL libraries. Either create an environment variable or add the
variables to your local_settings.py file as below.

3.2. Tutorials 35

http://www.lfd.uci.edu/~gohlke/pythonlibs/#setuptools
http://www.lfd.uci.edu/~gohlke/pythonlibs/#setuptools

GeoNode Documentation, Release 2.8

GEOS_LIBRARY_PATH=”C:/path/to/geos_c.dll” GDAL_LIBRARY_PATH=”C:/path/to/gdal111.dll”

The GEOS and GDAL libraries can be found in your <virtualenv directory>Libsite-packagesGDAL-1.11.0-py2.7-
win32.eggosgeofolder.

Setup GeoServer:

paver setup

Start the servers. You have the option to set the JAVA_HOME environment variable or use the –java_path.:

paver start --java_path="C:\path\to\java\java.exe"

or if you set your JAVA_HOME environment variables (e.g. JAVA_HOME=”C:Program FilesJavajdk1.7.0_75”):

paver start

Once the package is installed, please consult custom_install to learn how to create an account for the admin user and
tweak the settings to get more performance.

OSX

The recommended install method in these platforms is to use a virtualization solution, like ‘Virtual Box‘_, install
the latest Ubuntu Linux and then proceed with the steps mentioned above. Some GeoNode developers prefer to use
Vagrant - a VirtualBox wrapper, the steps for this are detailed below. The Vagrant quickstart guide shows how to get a
Linux VM configured in most operating systems. However, if you would like to develop natively on Mac OS X please
follow the following instructions.

You may need brew install various dependencies:

mkdir -p ~/pyenv
virtualenv ~/pyenv/geonode
source ~/pyenv/geonode/bin/activate
git clone https://github.com/GeoNode/geonode
cd geonode
pip install lxml
pip install pyproj
pip install nose
pip install httplib2
pip install shapely
pip install pillow
pip install paver

Node and tools required for static files development:

brew install node
npm install -g bower
npm install -g grunt-cli

Rebuild libraries through:

cd geonode/static
bower cache clean
bower update
grunt production

On a production environment, remember to refresh also the “static_root” folder:

36 Chapter 3. Table of contents

https://www.ubuntu.com/download
https://www.vagrantup.com/

GeoNode Documentation, Release 2.8

python manage.py collectstatic --clear -i site-packages* -i .components* -i node_
→˓modules* --noinput

Install pip dependencies:

pip install -e . --upgrade --no-cache

Paver handles dependencies for Geonode, first setup (this will download and update your python dependencies - ensure
you’re in a virtualenv):

paver setup
paver start

Optional: To generate document thumbnails for PDFs and other ghostscript file types, download ghostscript: https:
//www.macupdate.com/app/mac/9980/gpl-ghostscript:

sudo apt-get install imagemagick
brew install imagemagick
pip install Wand==0.3.5

Once fully started, you should see a message indicating the address of your geonode. The default username and
password are admin and admin:

Development GeoNode is running at http://localhost:8000/
The GeoNode is an unstoppable machine
Press CTRL-C to shut down

Before starting GeoNode (paver start), you could test your installation by running tests:

paver test
paver test_integration

In case you want to build yourself the documentation, you need to install Sphinx and the run ‘make html’ from within
the docs directory:

pip install Sphinx
cd docs
make html

You can eventually generate a pdf containing the whole documentation set. For this purpose, if using Ubuntu 12.4 you
will need to install the texlive-full package:

sudo apt-get install texlive-full
make latexpdf

Note: When running virtualenv venv the --system-site-packages option is not required. If not en-
abled, the bootstrap script will sandbox your virtual environment from any packages that are installed in the system,
useful if you have incompatible versions of libraries such as Django installed system-wide. On the other hand, most
of the times it is useful to use a version of the Python Imaging Library provided by your operating system vendor, or
packaged other than on PyPI. When in doubt, however, just leave this option out.

Vagrant

https://www.vagrantup.com/docs/getting-started/index.html

3.2. Tutorials 37

https://www.macupdate.com/app/mac/9980/gpl-ghostscript
https://www.macupdate.com/app/mac/9980/gpl-ghostscript
https://www.vagrantup.com/docs/getting-started/index.html

GeoNode Documentation, Release 2.8

CentOS/RHEL and other *nix distros

We recommend you to download the latest release and modify the included install.sh and support/config.
sh. GeoNode has been installed in CentOS/RHEL using this mechanism.

Once the package is installed, please consult the custom_install to learn how to create the admin user and tweak the
settings to get more performance.

3.2.1.2.2 Linux Admin Intro

This part of the documentation contains basic instruction on how to setup and manages Virtual Machine.

Ubuntu Basic Tutorial

Ubuntu is one of the most widespread Linux Distributions .

In this section of the documentation you will learn how to do basic operations in Ubuntu such as login and logout,
launching applications and installing new software.

User Login

When you first start Ubuntu, at the end of the boot process you see the Ubuntu login screen

38 Chapter 3. Table of contents

https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux_distribution

GeoNode Documentation, Release 2.8

Select the user you want to login as, enter the password and press Enter. In a few second the user’s desktop will appear.

User Interface Walkthrough

The panel on the left side of the screen contains shortcuts to frequently used application. From dark grey bar at the top
you can reach network settings (the icon with two arrows pointing in opposite directions) system language (the icon
with En written inside it), audio volume, system date and time and power menu (top right corner with an icon half way
between a gear and power buttom).

From the power menu you can switch to a different user, logout, power off the system or access system settings.

In ‘system setting ‘ menu you can set several different parameters for the system

3.2. Tutorials 39

GeoNode Documentation, Release 2.8

Launch an application

You can launch the applications listed in the Favourites panel simply by clicking on them.

If the application you want to launch is not in the favourites panel, use the Ubuntu Launcher. Click on the Ubuntu
Launcher icon in the top left corner of the screen

40 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Write down the name of the application. A list of applications matching the name you are searching will show up, for
and press Enter or click on the icon of the application.

Install new software

To install new software, open the Ubuntu software Center (you will find it in the favourite applications panel).

Enter the name of the application you are looking for in the search bar

3.2. Tutorials 41

GeoNode Documentation, Release 2.8

A list of candidate applications will appear. Click on the one you want to install, then click install to install it. You
will be prompted for administrative password

42 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

And your application will be installed in the system.

Launch the terminal emulator

Click on the Ubuntu Launcher icon in the top left corner of the screen, and type gnome-terminal in the search box

3.2. Tutorials 43

GeoNode Documentation, Release 2.8

And launch the terminal emulator.

44 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Terminal emulator will open and will be ready for your commands.

Basic commands

Current working directory

$ pwd
/home/geo

The pwd command will show you your working directory, that is the directory you are inside of and running your
commands in.

3.2. Tutorials 45

GeoNode Documentation, Release 2.8

Create a directory

$ mkdir test

To create a new directory inside your working directory use the mkdir command followed by the folder name argument

Delete a directory

$ rmdir test

To delete an empty directory type rmdir followed by the folder name argument

Create an empty file

$ touch testfile

To create an empty file in your current working directory use the touch command followed by the name of the file

Delete a file

$ rm filename

To delete a file use the rm command followed by the file name

Change working directory

$ cd /home

To change your current working directory use the cd command followed by the path (location) you want to change to

List content of a folder

$ ls

The ls command will list the content of your current working directory. You can optionally provide a path to a directory
as argument, in that case ls will show you the content of that directory

$ ls /home
geo geonode

Home folder

A user’s home folder is the folder where he or she will do most of the operations in. Inside your home folder you can
freely create or delete file and folders.

To switch to your home folder you can use the tilde ~ character as a shortcut

46 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

$ cd ~
$ pwd
/home/geo

For more information on Ubuntu refer to the Ubuntu user manual

For more terminal commands read the Using the terminal guide

CentOS Basic Tutorial

This section is still under construction. . . please be patient!

3.2.1.2.3 Running Ansible scripts

Ansible is a free software platform used for configuring and managing computers. It is written in Python and allows
users to manage nodes (computers) over SSH.

Configuration files are written in YAML, a simple, human-readable, data serialization format.

Installing Ansible

Before you install Ansible make sure you have Python 2.6 or Python 2.7 on the controlling machine, you will also
need an SSH client. Most Linux distributions come with an SSH client preinstalled.

If you encounter any problems during the installation, refer to the official documentation.

Windows

Windows is not supported as a controlling machine.

Ubuntu

Fist configure Ansible PPA:

sudo apt-get install software-properties-common
sudo apt-add-repository ppa:ansible/ansible

Then update your available software index and install Ansible:

sudo apt-get update
sudo apt-get install ansible

Running Ansible

To test your Ansible installation, run the following command

Note: you need a running SSH server on your machine for this to work:

3.2. Tutorials 47

http://ubuntu-manual.org/?lang=en
https://help.ubuntu.com/community/UsingTheTerminal
https://www.ansible.com/
https://www.python.org/
https://en.wikipedia.org/wiki/YAML
http://docs.ansible.com/ansible/intro_installation.html
https://en.wikipedia.org/wiki/Personal_Package_Archive

GeoNode Documentation, Release 2.8

ansible localhost -m ping

You should get the following output:

localhost | success >> {
"changed": false,
"ping": "pong"

}

Ansible Hosts file

Ansible keeps information about the managed nodes in the inventory or hosts file. Edit or create the hosts file:

vim /etc/ansible/hosts

This file contains a list of nodes for Ansible to manage. Nodes can be referred either with IP or host name. The syntax
is the following:

192.168.1.50
aserver.example.org
bserver.example.org

You can also arrange hosts in groups:

mail.example.com

[webservers]
foo.example.com
bar.example.com

[dbservers]
one.example.com
two.example.com
three.example.com

Public Key access

To avoid having to type your user’s password to connect to the nodes over and over, using SSH keys is recommended.

To setup Public Key SSH access to the nodes. First create a key pair:

ssh-keygen

And follow the instructions on the screen. A new key pair will be generated and placed inside the .ssh folder in your
user’s home directory.

All you need to do now is copy the public key (id_rsa.pub) into the authorized_keys file on the node you want to
manage, inside the user’s home directory. For example if you want to be able to connect to training.geonode1.com as
user geo edit the /home/geo/.ssh/authorized_keys file on the remote machine and add the content of your public key
inside the file.

For more information on how to setup SSH keys in Ubuntu refer to this document.

48 Chapter 3. Table of contents

https://help.ubuntu.com/community/SSH/OpenSSH/Keys

GeoNode Documentation, Release 2.8

Connect to managed nodes

Now that SSH access to the managed nodes is in place for all the nodes inside the Ansible inventory (hosts file), we
can run our first command:

ansible all -m ping -u geo

Note: change geo with the username to use for SSH login

The output will be similar to this::

ansible all -m ping -u geo
84.33.2.70 | success >> {

"changed": false,
"ping": "pong"

}

We asked Ansible to connect to all the machine in our Inventory as user geo and run the module ping (modules are
Ansible’s units of work, more on that later. . .). As you can see by the output, Ansible successfully connected to the
remote machine and executed the module ping.

Ad hoc commands

An ad-hoc command is something that you might type in to do something really quick, but don’t want to save for later.

Later you are going to write so called Playbooks with the commands to run on the controlled node but for learning
purposes ad-hoc commands can be used to do quick things.

One example of an ad-hoc command is the ping command we just ran. We typed in the command line and ran it
interactively.

Another example:

ansible all -m shell -a "free" -u geo
84.33.2.70 | success | rc=0 >>

total used free shared buffers cached
Mem: 4049236 3915596 133640 0 650560 2487416
-/+ buffers/cache: 777620 3271616
Swap: 4194300 730268 3464032

In this example we ran the free command on the remote hosts to get memory usage stats. Note that we used the shell
module (-m flag) with the command as the argument (-a flag).

File Transfer

Another use case for the Ansible command is to transfer files over SCP:

ansible 84.33.2.70 -m copy -a "src=/home/geo/test dest=~/" -u geo
84.33.2.70 | success >> {

"changed": true,
"dest": "/home/geo/test",
"gid": 1000,
"group": "geo",

(continues on next page)

3.2. Tutorials 49

GeoNode Documentation, Release 2.8

(continued from previous page)

"md5sum": "d41d8cd98f00b204e9800998ecf8427e",
"mode": "0664",
"owner": "geo",
"size": 0,
"src": "/home/geo/.ansible/tmp/ansible-tmp-1444051174.15-189094870931130/source",
"state": "file",
"uid": 1000

We used the ansible command to transfer the local file /home/geo/test to the remote node in user’s home directory
(‘~/’).

Managing Packages

Another use case is installing or upgrading packages on the remote nodes. You can use the apt module to achieve this
on Debian based systems or the yum module on Red Hat based systems:

ansible 84.33.2.70 -m apt -a "name=apache2 state=present"

For example the previous command will install the Apache web server on the remote system (if not present).

You can use the same module to make sure a package is at the latest version:

ansible 84.33.2.70 -m apt -a "name=apache2 state=latest"

Managing Services

Use the service module to ensure a given service is started on all web servers:

ansible webservers -m service -a "name=httpd state=started"

(where webserver is a group defined in Ansible Inventory)

Restart the service:

ansible webservers -m service -a "name=httpd state=restarted"

Or stop it:

ansible webservers -m service -a "name=httpd state=stopped"

For more information on ad-hoc command refer to the official documentation.

These were just a few of the modules available for Ansible. See the complete list available at the Ansible web site.

Ansible Playbooks

Playbooks are Ansible’s configuration, deployment and orchestration language.

Playbooks are a completely different way to use Ansible than in ad-hoc task execution mode, and are particularly
powerful.

Playbooks can declare configurations, but they can also orchestrate steps of any manual ordered process.

While you might run the main /usr/bin/ansible program for ad-hoc tasks, playbooks are more likely to be kept in source
control and used to push out your configuration or assure the configurations of your remote systems are in spec.

50 Chapter 3. Table of contents

https://docs.ansible.com/ansible/intro_adhoc.html
http://docs.ansible.com/ansible/list_of_all_modules.html

GeoNode Documentation, Release 2.8

Playbooks language example

Playbooks are expressed in YAML format

Here is an example of a Playbook:

- hosts: webservers

vars:
http_port: 80
max_clients: 200

remote_user: root
tasks:
- name: ensure apache is at the latest version
yum: pkg=httpd state=latest

- name: write the apache config file
template: src=/srv/httpd.j2 dest=/etc/httpd.conf
notify:
- restart apache

- name: ensure apache is running (and enable it at boot)
service: name=httpd state=started enabled=yes

handlers:
- name: restart apache

service: name=httpd state=restarted

Every Playbook begins with three dashes at the very top of the file to indicate that this is a YAML file.

This example Playbook contains only one Play. The play is composed of three parts:

• hosts

• tasks

• handlers

The hosts part specifies to which hosts in the Inventory this playbook applies and how to connect to them.

The tasks part describes the desired state or actions to perform on the hosts.

The handlers part describes the handlers for this playbook (more on handlers later).

In the example above there are three tasks. Each task has a name, a module and zero or more arguments for the module.

The first task specifies that we want the latest version of Apache installed on the system. This is accomplished by the
yum module.

The second task specifies a configuration file for Apache using a template. Template files are written in Jinja2 template
language.

The third task make sure the Apache web server is running using the service module.

When you run a Playbook using the ansible-playbook command, Ansible will connect to the hosts specified in the
hosts section and run the tasks one by one, in order.

One or more tasks may have a notify section (just like the second task in our example). The notify actions are triggered
at the end of each block of tasks in a playbook, and will only be triggered once even if notified by multiple different
tasks. When triggered, the corresponding handler will be executed. In the example above the handler will restart
Apache because we changed a config file.

3.2. Tutorials 51

https://en.wikipedia.org/wiki/YAML
http://jinja.pocoo.org/
http://jinja.pocoo.org/

GeoNode Documentation, Release 2.8

Run a Playbook

Now that we have created a sample Playbook, save it on the file system and execute it:

ansible-playbook test.yml -u geo

PLAY [84.33.2.70] ***

GATHERING FACTS ***
ok: [84.33.2.70]

TASK: [test] **
ok: [84.33.2.70]

PLAY RECAP **
84.33.2.70 : ok=2 changed=0 unreachable=0 failed=0

This concludes our brief tutorial on Ansible. For a more thorough introduction refer the official documentation.

Also, take a look at the Ansible examples repository or a set of Playbooks showing common techniques.

3.2.1.2.4 GeoNode (v2.8) on Docker

This part of the documentation describes the complete setup process for GeoNode on Docker.

Docker installation and setup

Docker is a free software platform used for packaging software into standardized units for development, shipment and
deployment.

Note: credits to Docker

Introducing main concepts

A container image is a lightweight, stand-alone, executable package of a piece of software that includes everything
needed to run it: code, runtime, system tools, system libraries, settings.

Docker containers running on a single machine share that machine’s operating system kernel; they start instantly and
use less compute and RAM.

Containers can share a single kernel, and the only information that needs to be in a container image is the executable
and its package dependencies, which never need to be installed on the host system.

Multiple containers can run on the same machine and share the OS kernel with other containers, each running as
isolated processes in user space.

This tutorial will introduce the use of Docker community edition on Ubuntu 16.04. The same instructions can be
applied to CentOS accordingly.

Install Docker CE on Ubuntu

Docker CE is supported on Ubuntu on x86_64 , armhf , s390x (IBM Z), and ppc64le (IBM Power) architectures.

52 Chapter 3. Table of contents

https://docs.ansible.com/
https://github.com/ansible/ansible-examples
https://www.docker.com/

GeoNode Documentation, Release 2.8

3.2. Tutorials 53

GeoNode Documentation, Release 2.8

Warning: Make sure to check the OS version as one among supported ones

Show your OS details running:

uname -a

Uninstall old docker versions

if old versions of Docker binary were installed then uninstall them:

sudo apt-get remove docker docker-engine docker.io

Install docker

The package of Docker CE is now called docker-ce. Before doing the installation steps please make sure that the
apt package index has been updated:

sudo apt-get update

Add packages to allow the use of secure http channel:

sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
software-properties-common

Add the official GPG key from Docker:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

Run the following command to setup the stable repository:

sudo add-apt-repository \
"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) \
stable"

Update the package index:

sudo apt-get update

Install the latest version of the binary or a specific version with the command:

sudo apt-get install docker-ce # latest
sudo apt-get install docker-ce=<VERSION> # specific

The docker daemon will start automatically.

Add your user to the docker group if you want to run docker command without sudo privileges:

sudo usermod -aG docker $USER
source $HOME/.bashrc

54 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Verify the health of your installation by running the sample hello-world image:

docker run hello-world

The following message has to be displayed if everything is working properly:

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.

(amd64)
3. The Docker daemon created a new container from that image which runs the

executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it

to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Orchestrate GeoNode stack with Docker Compose

Docker Compose is a tool for defining and running multi-container Docker applications automatically. This tool relies
on Docker daemon so make sure you have completed successfully the section on _setup_docker.

Introducing main concepts

In a composed application, different pieces of the application are called services. A service runs just one image but it
specifies how that image is executed, what ports have to be used, which containers are depending each other, which
volumes and so on.

A stack is a group of interrelated services that share dependencies, and can be orchestrated and scaled together. A
single stack is capable of defining and coordinating the functionality of an entire application like GeoNode.

Install Docker Compose on Ubuntu

Download the latest version of docker-compose binary:

sudo curl -L \
https://github.com/docker/compose/releases/download/1.19.0/docker-compose-`uname -s`-
→˓`uname -m` \
-o /usr/local/bin/docker-compose

Adjust executable permissions to the binary:

sudo chmod +x /usr/local/bin/docker-compose

Verify the installation:

docker-compose --version

3.2. Tutorials 55

https://docs.docker.com/compose/

GeoNode Documentation, Release 2.8

Running GeoNode stack on localhost

Clone the repository:

git clone https://github.com/GeoNode/geonode.git

Launch the stack with the build of GeoNode so any changes you did will be immediately available:

docker-compose -f docker-compose.yml -f docker-compose.override.localhost.yml up --
→˓build

Note: docker-compose.override.localhost.yml containse environment variables to allow you run the instances on
localhost. You can use this file as template in order to run on other public addresses.

Note: For Windows users: In case you’re using the native Docker for Windows (on Hyper-V) you will probably be
affected by an error related to mounting the /var/run/docker.sock volume. It’s due to a problem with the current version
of Docker Compose for Windows. In this case you need to set the COMPOSE_CONVERT_WINDOWS_PATHS
environmental variable:

set COMPOSE_CONVERT_WINDOWS_PATHS=1

before running docker-compose up

Running GeoNode stack on docker ip address

If you want to navigate the application from the address of the Docker socket than run simply:

docker-compose up --build

Note: For Windows users: In case you’re using the native Docker for Windows (on Hyper-V) you will probably be
affected by an error related to mounting the /var/run/docker.sock volume. It’s due to a problem with the current version
of Docker Compose for Windows. In this case you need to set the COMPOSE_CONVERT_WINDOWS_PATHS
environmental variable:

set COMPOSE_CONVERT_WINDOWS_PATHS=1

before running docker-compose up

GeoNode will be available at the ip address of the docker0 interface:

ifconfig -a

Scaling and deploy with Rancher

Rancher is an open source software platform that enables organizations to run and manage Docker and Kubernetes in
production.

With Rancher, organizations no longer have to build a container services platform from scratch using a distinct set of
open source technologies. Rancher supplies the entire software stack needed to manage containers in production.

56 Chapter 3. Table of contents

https://github.com/docker/for-win/issues/1829
https://github.com/docker/for-win/issues/1829
https://github.com/docker/for-win/issues/1829
https://github.com/docker/for-win/issues/1829
http://rancher.com/

GeoNode Documentation, Release 2.8

Introducing main concepts

Rancher takes in raw computing resources from any public or private cloud in the form of Linux hosts. Each Linux
host can be a virtual machine or physical machine.

Rancher includes a distribution of all popular container orchestration and scheduling frameworks today, including
Docker Swarm, Kubernetes, and Mesos.

Rancher users can deploy an entire multi-container clustered application from the application catalog or docker com-
pose files with few clicks.

Getting started with Rancher

Install Rancher

To install the latest stable version run the following docker command:

docker run -d --restart=unless-stopped -p 8080:8080 rancher/server:stable

Setup Rancher

Verify that Rancher server is running on the port defined above (default is 8080):

docker ps -a

After opening the browser at that port:

then the instance can be secured navigating the url Local authentication :

Choose a username and a passord and then enable the access control by clicking the button at the bottom.

3.2. Tutorials 57

http://rancher-server-ip:8080/admin/access/local

GeoNode Documentation, Release 2.8

58 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Add new host to the infrastructure

From the Default menu follow the link add host :

and click the button Save to confirm. The administrator will be landed to the following page:

Several options will be shown to decide what kind of machine driver is going to be used. For a local bare metal or
virtual machine choose the Custom option. After that follow the indicated steps to prepare the new host

3.2. Tutorials 59

http://rancher-server-ip:8080/env/1a5/infra/hosts/add

GeoNode Documentation, Release 2.8

1. Start up a Linux machine somewhere and install a supported version of Docker on it. Refer to the section on
_setup_docker.

2. Allow IPsec networking between hosts on UDP ports 500 and 4500.

3. Add labels to be applied to the host. This is optional but it is required for GeoNode if you want all the containers
of a stack deployed on a same host. In that case add for example Key:geonodehost and Value:<host label value>
which will be translated to the label geonodehost=<host label value>.

4. Specify the public IP <host-server-public-ip> that should be registered for the host. This is particularly import
if the machine is behind a firewall/NAT.

5. Copy, paste, and run the command below to register the host with Rancher. The value of registrationToken is
provided by the system.

sudo docker run -e CATTLE_AGENT_IP=”<host-server-public-ip>” -e CAT-
TLE_HOST_LABELS=’geonodehost=<host label value>’ –rm –privileged -v
/var/run/docker.sock:/var/run/docker.sock -v /var/lib/rancher:/var/lib/rancher rancher/agent:v1.2.9
http://<rancher-server-ip>:8080/v1/scripts/<registrationToken> # sudo can be avoided if the user has
been privileged

6. Click on the Close button.

After some minutes the new host should be registered and available in the active status under the menu Infrastructure
=> Hosts.

Since Rancher itself has containerized services, some of them which are managing the new host have to be available
under the menu Stacks => All.

Deploy GeoNode as stack on Rancher

60 Chapter 3. Table of contents

http://docs.rancher.com/rancher/v1.6/en/hosts/#supported-docker-versions

GeoNode Documentation, Release 2.8

Create a stack from a docker-compose file

This is the first option to deploy GeoNode stack from a template like this docker compose file.

Before going to create a new stack by loading it from the Rancher console the values of the placeholders <host label
value> and <host-server-public-ip> have to be edited accordingly to your previous setup.

Once the docker-compose.yml is ready follow the menu Stacks => User:

Then click the Add Stack button:

3.2. Tutorials 61

GeoNode Documentation, Release 2.8

From the property docker-compose.yml load the file previously edited, then click the Create button:

Warning: The first time the host has to provision all the images and can take a while

At the end of the provisioning job all the GeoNode services will be active and the stack available as deployed applica-
tion:

GeoNode is now available at the public ip address defined into the GEONODE_LB_HOST_IP variable of your docker-
compose file.

62 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

As usual the default credentials for the master administrator is admin/admin.

3.2.1.2.5 VM Setup with VirtualBox

In this section you will find instructions on how to setup an Ubuntu 14.04 VM in VirtualBox

VirtualBox Setup

Download VirtualBox from official web site. Choose the installer matching your operating system and architecture.

Installation process is straightforward, refer to VirtualBox official documentation if you encounter any problem.

Windows

After you downloaded executable, double click on it to launch the installer.

Customize VirtualBox features an paths if you need to or leave default ones

3.2. Tutorials 63

https://www.virtualbox.org/
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/manual/ch01.html#intro-installing

GeoNode Documentation, Release 2.8

And start the installation process

64 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 65

GeoNode Documentation, Release 2.8

Click on “Finish”

66 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

VirtualBox is now installed. And will automatically be launched

Ubuntu

After you downloaded the package, double click on it. The “Ubuntu Software Center” will pop up, click on “Install”
to start the installation process

3.2. Tutorials 67

GeoNode Documentation, Release 2.8

You will be prompted for administrator password.

At the end of the installation process, launch VirtualBox.

68 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Download Ubuntu ISO

Navigate to Ubuntu official Download page and download the Ubuntu 14.04 .iso file for your architecture. The ISO
image will be used to install Ubuntu 14.04 inside the Virtual Machine

Virtual Machine Setup

Now that VirtualBox is installed on the system it is time to setup our Ubuntu VM.

Click the light blue New button in VirtualBox user interface.

Choose a name for the Virtual Machine and select the appropriate VM type and version

3.2. Tutorials 69

https://www.ubuntu.com/download/alternative-downloads

GeoNode Documentation, Release 2.8

Then select the amount of memory you want to assign to the VM, Ubuntu recommends at least 512 MB of memory but
we are going to need more than that to run GeoNode refer to System Preparation & Prerequisites sections for details.

70 Chapter 3. Table of contents

https://help.ubuntu.com/community/Installation/SystemRequirements

GeoNode Documentation, Release 2.8

Create a new virtual disk for the VM. Again, refer to System Preparation & Prerequisites section for details about disk
size, for testing purposes 30 GB will be enough.

Now edit the Virtual Machine settings

3.2. Tutorials 71

GeoNode Documentation, Release 2.8

Under “Storage” select the empty DVD drive, click on Live CD/DVD as shown below

72 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Click on the DVD icon next to the Optical Drive drop down menu and select the Ubuntu 14.04 .iso file that you
downloaded before

3.2. Tutorials 73

GeoNode Documentation, Release 2.8

Edit other VM setting if you need to, then click OK.

We are ready to start our Ubuntu VM for the first time. Select it from the main menu and click on Start

74 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Ubuntu will start the boot process

3.2. Tutorials 75

GeoNode Documentation, Release 2.8

At the end of the boot process you will be asked if you want to Try Ubuntu or Install Ubuntu. Select the language in
the left panel and click on Install Ubuntu

76 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

The installer will check your internet connection and available disk space. If you are connected to the internet check
the Download updates while installing checkbox.

3.2. Tutorials 77

GeoNode Documentation, Release 2.8

Click on continue. In the page you will configure the partitioning of the disks. If you recall we have created a new
virtual disk during the VM configuration process for Ubuntu. We are going to assign the entire disk to it. Select Erase
disk and install Ubuntu, then Install Now

78 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

You will be prompted for confirmation.

Now select the correct time zone for your location, then select the language for the VM and enter the details for the
administrator user.

3.2. Tutorials 79

GeoNode Documentation, Release 2.8

80 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 81

GeoNode Documentation, Release 2.8

The installation will continue automatically. At the end of the installation process a pop up window will ask you to
restart the system to start using Ubuntu. Click on Restart Now

82 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2.1.2.6 Running a VM with Vagrant

In this section you will find instructions on how to setup an Ubuntu 16.04 VM using Vagrant

Vagrant Setup

Download Vagrant from the official web site. Choose the installer matching your operating system and architecture.

Installation process is straightforward, refer to Vagrant official documentation if you encounter any problems.

At the end of the installation process log out your system and log back in.

3.2. Tutorials 83

https://www.vagrantup.com/
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/docs/installation/index.html

GeoNode Documentation, Release 2.8

Vagrant is going to need a provider in order to setup the Virtual Machines. VirtualBox is supported out of the box. Just
make sure you install one of the supported versions of VirtualBox

Open a terminal and type vagrant version. A message containing the installed version of Vagrant will be printed on
the terminal

Installed Version: 2.0.2
Latest Version: 2.0.3
...

Virtual Machine Setup

Now that Vagrant is installed let’s create our Ubuntu Virtual Machine. Open the terminal and create a new folder
called vagrand. Within folder vagrand create a new file called Vagrantfile with following content.

Vagrant.configure(2) do |config|

config.vm.box = "ubuntu/xenial64"

To automatically configure a private network uncomment following line.
config.vm.network "private_network", ip: "192.168.33.30"

config.vm.provider "virtualbox" do |vb|
Customize the amount of memory on the VM:

vb.memory = "4024"
end

Port forwarding: If unneeded comment or remove following lines
config.vm.network "forwarded_port", guest: 80, host: 8001
config.vm.network "forwarded_port", guest: 8000, host: 8000
config.vm.network "forwarded_port", guest: 8080, host: 8080

end

This Vagrantfile containing the settings for the virtual machine, notably the config.vm.box variable set to
“ubuntu/xenial64” will tell Vagrant the specific VM we want to run (Ubuntu 16.04 “Xenial Xerus”, 64 bit version).
Please take note of comments regarding private network setup, amount of memory and port forwarding within this file.
Further visit official vagrant documentation for more explanations on fine tuning your VM.

To finally start the VM, run

vagrant up

The first time you run the command it is going to take some time since you do not have a locally available image of
the Ubuntu 16.04 VM. Vagrant will download the VM from the Vagrant Cloud to your local system.

Bringing machine 'default' up with 'virtualbox' provider...
==> default: Box 'ubuntu/xenial64' could not be found. Attempting to find and install.
→˓..
default: Box Provider: virtualbox
default: Box Version: >= 0
==> default: Loading metadata for box 'ubuntu/xenial64'
default: URL: https://vagrantcloud.com/ubuntu/xenial64
==> default: Adding box 'ubuntu/xenial64' (v20180406.0.0) for provider: virtualbox
default: Downloading:
https://vagrantcloud.com/ubuntu/boxes/xenial64/versions/20180406.0.0/providers/
→˓virtualbox.box

84 Chapter 3. Table of contents

https://www.vagrantup.com/docs/providers/
https://www.vagrantup.com/docs/virtualbox/
https://www.vagrantup.com/docs
https://vagrantcloud.com/

GeoNode Documentation, Release 2.8

At the end of the download process Vagrant will start the VM.

To access the Virtual machine, run

vagrant ssh

Note: You need an SSH client for the previous command to work. Most Linux distributions come with an SSH
installed. If you are using Windows as the guest operating system install MinGW or Cygwin or Git to obtain a
command line SSH client. More information available here

You will be connected to the guest Virtual Machine over SSH as user vagrant. Vagrant provides all files next to your
Vagrantfile in a folder called /vagrant at your VM.

3.2.1.2.7 GeoNode (v2.8) installation on Ubuntu 16.04

This part of the documentation describes the complete setup process for GeoNode on an Ubuntu 16.04 machine.

Install GeoNode Application

In this section you are going to install all the basic packages and tools needed for a complete GeoNode installation.

Login

When you first start the Virtual Machine at the end of the boot process you will be prompted for the user password to
login. Enter geo as user password and press Enter.

3.2. Tutorials 85

http://docs-v1.vagrantup.com/v1/docs/getting-started/ssh.html

GeoNode Documentation, Release 2.8

You are now logged in as user ‘geo’. On the left side of the screen there is a panel with shortcuts to common
applications, launch a the terminal emulator.

86 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Packages Installation

First we are going to install all the software packages we are going to need for the GeoNode setup. Among others
Tomcat 8, PostgreSQL, PostGIS, Apache HTTP server and Git. Run the following command to install all the packages

$ sudo apt-get update

$ sudo apt-get install python-virtualenv python-dev libxml2 libxml2-dev libxslt1-dev
→˓zlib1g-dev libjpeg-dev libpq-dev git default-jdk
$ sudo apt-get install build-essential openssh-server gettext nano vim unzip zip
→˓patch git-core postfix

(continues on next page)

3.2. Tutorials 87

GeoNode Documentation, Release 2.8

(continued from previous page)

$ sudo apt-add-repository ppa:webupd8team/java
$ sudo apt-get update
$ sudo apt-get install oracle-java8-installer

$ sudo apt-add-repository ppa:ubuntugis && sudo apt-get update && sudo apt-get upgrade
$ sudo apt-add-repository ppa:ubuntugis/ppa && sudo apt-get update && sudo apt-get
→˓upgrade
$ sudo apt-get install gcc apache2 libapache2-mod-wsgi libgeos-dev libjpeg-dev libpng-
→˓dev libpq-dev libproj-dev libxml2-dev libxslt-dev
$ sudo apt-add-repository ppa:ubuntugis/ubuntugis-testing && sudo apt-get update &&
→˓sudo apt-get upgrade
$ sudo apt-get install gdal-bin libgdal20 libgdal-dev
$ sudo apt-get install python-gdal python-pycurl python-imaging python-pastescript
→˓python-psycopg2 python-urlgrabber
$ sudo apt-get install postgresql postgis postgresql-9.5-postgis-scripts postgresql-
→˓contrib
$ sudo apt-get install tomcat8

$ sudo apt-get update && sudo apt-get upgrade && sudo apt-get autoremove && sudo apt-
→˓get autoclean && sudo apt-get purge && sudo apt-get clean

Note: If you will be prompted for geo user’s password (geo) and for confirmation twice

88 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Warning: The installation process is going to take several minutes and it will need to download packages from
Internet.

At this point we have all the packages we need on the system.

GeoNode Setup

First of all we need to prepare a new Python Virtual Environment:

3.2. Tutorials 89

GeoNode Documentation, Release 2.8

$ sudo apt-get install python-pip
$ pip install --upgrade pip
$ pip install --user virtualenv
$ pip install --user virtualenvwrapper
The commands above will install the Python Venv packages

$ export WORKON_HOME=~/Envs
$ mkdir -p $WORKON_HOME
$ source $HOME/.local/bin/virtualenvwrapper.sh
$ printf '\n%s\n%s\n%s' '# virtualenv' 'export WORKON_HOME=~/Envs' 'source $HOME/.
→˓local/bin/virtualenvwrapper.sh' >> ~/.bashrc
$ source ~/.bashrc
We have now configured the user environment

$ mkvirtualenv --no-site-packages geonode
Through this command we have created a brand new geonode Virual Environment

$ sudo useradd -m geonode
$ sudo usermod -a -G geonode geo
$ sudo chmod -Rf 775 /home/geonode/
$ sudo su - geo
The commands above are needed only if geo and geonode users have not been already
→˓defined

Let’s activate the new geonode Python Virtual Environment:

$ workon geonode

Move into the geonode home folder

$ cd /home/geonode

We are going to install GeoNode as a dependency of a Customized DJango Project

Note: A custom project is a DJango application with ad hoc configuration and folders, which allows you to extend
the original GeoNode code without actually dealing or modifying the main source code.

This will allow you to easily customize your GeoNode instance, modify the theme, add new functionalities and so on,
and also being able to keep updated with the GeoNode latest source code.

For more deails please check https://github.com/GeoNode/geonode-project/tree/master

$ pip install Django==1.8.18
$ django-admin.py startproject --template=https://github.com/GeoNode/geonode-project/
→˓archive/2.8.0.zip -e py,rst,json,yml my_geonode

Let’s install the GeoNode dependencies and packages into the Python Virtual Environment:

$ cd my_geonode

Find the closest pygdal version.
Example: 2.2.1 ... 2.2.1.3, ...
$ gdal-config --version && pip install pygdal==

$ vim requirements.txt
Make sure requirements contains reference to geonode 2.8 branch

(continues on next page)

90 Chapter 3. Table of contents

https://github.com/GeoNode/geonode-project/tree/master

GeoNode Documentation, Release 2.8

(continued from previous page)

and correct gdal version (see above)
-e git://github.com/GeoNode/geonode.git@2.8.0#egg=geonode
pygdal==2.2.1.3

$ pip install -r requirements.txt --upgrade
$ pip install -e . --upgrade --no-cache

In the next section we are going to setup PostgreSQL Databases for GeoNode and finalize the setup

Create GeoNode DB & Finalize GeoNode Setup

In this section we are going to setup users and databases for GeoNode in PostgreSQL.

Warning: Be sure you have successfully completed the steps in the previous section.

Databases and Permissions

First create the geonode user. GeoNode is going to use this user to access the database

$ sudo -u postgres createuser -P geonode

You will be prompted asked to set a password for the user. Enter geonode as password

Create geonode database with owner geonode

$ sudo -u postgres createdb -O geonode geonode

And database geonode_data with owner geonode

$ sudo -u postgres createdb -O geonode geonode_data

Switch to user postgres and create PostGIS extension

$ sudo -u postgres psql -d geonode_data -c 'CREATE EXTENSION postgis;'

Then adjust permissions

$ sudo -u postgres psql -d geonode_data -c 'GRANT ALL ON geometry_columns TO PUBLIC;'
$ sudo -u postgres psql -d geonode_data -c 'GRANT ALL ON spatial_ref_sys TO PUBLIC;'
$ sudo -u postgres psql -d geonode_data -c 'GRANT ALL PRIVILEGES ON ALL TABLES IN
→˓SCHEMA public TO geonode;'

Now we are going to change user access policy for local connections in file pg_hba.conf

$ sudo vim /etc/postgresql/9.5/main/pg_hba.conf

Scroll down to the bottom of the document. We only need to edit one line. Change

"local" is for Unix domain socket connections only
local all all peer

Into

3.2. Tutorials 91

GeoNode Documentation, Release 2.8

"local" is for Unix domain socket connections only
local all all trust

Note: If your PostgreSQL database resides on a separate machine, you have to allow remote access to the databases
in the pg_hba.conf for the geonode user and tell PostgreSQL to accept non local connections in your postgresql.conf
file

Then restart PostgreSQL to make the change effective

$ sudo service postgresql restart

PostgreSQL is now ready. To test the configuration try to connect to the geonode database as geonode

$ psql -U geonode geonode

Finalize GeoNode Setup

Once the DB has been correctly configured, we can finalize the GeoNode setup.

If not already active let’s activate the new geonode Python Virtual Environment:

$ workon geonode

Move into the geonode home folder

$ cd /home/geonode

Move into the my_geonode custom project base folder

$ cd my_geonode

First of all we need to tweak a bit the my_geonode local_settings. In order to do that, rename the
my_geonode/local_settings.py.sample file to my_geonode/local_settings.py end edit it:

$ cp my_geonode/local_settings.py.sample my_geonode/local_settings.py
$ vim my_geonode/local_settings.py

Update the following sections at the accordingly to your server configuration

...
SITE_HOST_NAME = os.getenv('SITE_HOST_NAME', "localhost")
SITE_HOST_PORT = os.getenv('SITE_HOST_PORT', "8000")
SITEURL = os.getenv('SITEURL', "http://%s:%s/" % (SITE_HOST_NAME, SITE_HOST_
→˓PORT))

...

EMAIL_ENABLE = True

if EMAIL_ENABLE:
EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST = 'localhost'
EMAIL_PORT = 25

(continues on next page)

92 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

EMAIL_HOST_USER = ''
EMAIL_HOST_PASSWORD = ''
EMAIL_USE_TLS = False
DEFAULT_FROM_EMAIL = '{{ project_name }} <no-reply@{{ project_name }}>'

...

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'geonode',
'USER': 'geonode',
'PASSWORD': 'geonode',
'CONN_TOUT': 900,

},
vector datastore for uploads
'datastore' : {

'ENGINE': 'django.contrib.gis.db.backends.postgis',
'ENGINE': '', # Empty ENGINE name disables
'NAME': 'geonode_data',
'USER' : 'geonode',
'PASSWORD' : 'geonode',
'HOST' : 'localhost',
'PORT' : '5432',
'CONN_TOUT': 900,

}
}

...

OGC_SERVER_DEFAULT_USER = os.getenv(
'GEOSERVER_ADMIN_USER', 'admin'

)

OGC_SERVER_DEFAULT_PASSWORD = os.getenv(
'GEOSERVER_ADMIN_PASSWORD', 'geoserver'

)

...

You may also want to tweak some configuration on my_geonode settings. This file inherits my_geonode
local_settings and set some GeoNode default settings:

$ vim my_geonode/settings.py

Update the following sections at the accordingly to your server configuration

...
Make sure GeoNode recognizes your servers

ALLOWED_HOSTS = # Add here your hosts

...
Modify time zone accordingly

TIME_ZONE = os.getenv('TIME_ZONE', "America/Chicago")

(continues on next page)

3.2. Tutorials 93

GeoNode Documentation, Release 2.8

(continued from previous page)

...
Tweak GeoNode behavior with the following settings
(see GeoNode documentation for more details)

CLIENT_RESULTS_LIMIT = 20
API_LIMIT_PER_PAGE = 1000
FREETEXT_KEYWORDS_READONLY = False
RESOURCE_PUBLISHING = False
ADMIN_MODERATE_UPLOADS = False
GROUP_PRIVATE_RESOURCES = False
GROUP_MANDATORY_RESOURCES = True
MODIFY_TOPICCATEGORY = True
USER_MESSAGES_ALLOW_MULTIPLE_RECIPIENTS = True
DISPLAY_WMS_LINKS = True

prevent signing up by default
ACCOUNT_OPEN_SIGNUP = True
ACCOUNT_EMAIL_REQUIRED = True
ACCOUNT_EMAIL_VERIFICATION = 'optional'
ACCOUNT_EMAIL_CONFIRMATION_EMAIL = True
ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = True
ACCOUNT_CONFIRM_EMAIL_ON_GET = True
ACCOUNT_APPROVAL_REQUIRED = True

...
Modify your maps and backgrounds

default map projection
Note: If set to EPSG:4326, then only EPSG:4326 basemaps will work.
DEFAULT_MAP_CRS = "EPSG:3857"

Where should newly created maps be focused?
DEFAULT_MAP_CENTER = (0, 0)

How tightly zoomed should newly created maps be?
0 = entire world;
maximum zoom is between 12 and 15 (for Google Maps, coverage varies by
→˓area)
DEFAULT_MAP_ZOOM = 0

ALT_OSM_BASEMAPS = os.environ.get('ALT_OSM_BASEMAPS', False)
CARTODB_BASEMAPS = os.environ.get('CARTODB_BASEMAPS', False)
STAMEN_BASEMAPS = os.environ.get('STAMEN_BASEMAPS', False)
THUNDERFOREST_BASEMAPS = os.environ.get('THUNDERFOREST_BASEMAPS', False)
MAPBOX_ACCESS_TOKEN = os.environ.get('MAPBOX_ACCESS_TOKEN', '')
BING_API_KEY = os.environ.get('BING_API_KEY', None)

MAP_BASELAYERS = [{
...

Enable/Disable the notification system
(see GeoNode documentation for more details)

NOTIFICATION_ENABLED = True

...
(continues on next page)

94 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

Enable/Disable the integrated monitoring system
(see GeoNode documentation for more details)

MONITORING_ENABLED = False

Tweak the logging options

LOGGING = {
...

"loggers": {
"django": {

"handlers": ["console"], "level": "INFO", },
"geonode": {

"handlers": ["console"], "level": "INFO", },
"gsconfig.catalog": {

"handlers": ["console"], "level": "INFO", },
"owslib": {

"handlers": ["console"], "level": "INFO", },
"pycsw": {

"handlers": ["console"], "level": "INFO", },
"{{ project_name }}": {

"handlers": ["console"], "level": "DEBUG", },
},

}

Finalize GeoNode Setup & Test

The following Python commands will finalize the setup, configure and create DB tables and download GeoServer.

Warning: Before running the next commands be sure that:

• You have completed all the steps from the beginning of this chapter

• You are located into the my_geonode custom project base folder

• The geonode Python Virtual Environment is enabled

Stop all the services

$ sudo service apache2 stop
$ sudo service tomcat8 stop
Being sure other services are stopped

Cleanup old stuff

• Hard Reset

Warning: This will delete all data you created until now.

$ paver reset_hard
Cleanup folders and old DB Tables

3.2. Tutorials 95

GeoNode Documentation, Release 2.8

• Hard Reset

Note: This will restore only GeoServer.

$ rm -Rf geoserver
$ rm -Rf downloaded/*.*

Revert to default site settings

You need to revert some customizations of the my_geonode local_settings. In order to do that, edit
the my_geonode/local_settings.py file:

$ vim my_geonode/local_settings.py

Comment the following pieces

...
SITEURL = 'http://localhost'
...
#GEOSERVER_LOCATION = os.getenv(
'GEOSERVER_LOCATION', '{}/geoserver/'.format(SITEURL)
#)

#GEOSERVER_PUBLIC_LOCATION = os.getenv(
'GEOSERVER_PUBLIC_LOCATION', '{}/geoserver/'.format(SITEURL)
#)
...

Being sure folders permissions are correctly set

$ sudo chown -Rf geonode: my_geonode/uploaded/
$ sudo chown -Rf geonode: my_geonode/static*

Setup and start the system in DEV mode

$ paver setup
This command downloads and extract the correct GeoServer version

$ paver sync
This command prepares the DB tables and loads initial data

$ paver start
This command allows you to start GeoNode in development mode

GeoNode and GeoServer in Development mode

The paver start command allows you to start the server in development (DEV) mode. That means that you will
be able to directly do changes to your code and see the results on the browser.

You need to be careful to the different ports of the services. In DEV mode the services will run on:

• GeoNode port 8000 -> http://localhost:8000/

• GeoServer port 8080 -> http://localhost:8080/geoserver

In order to test it, move to http://localhost:8000/

96 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Setup & Configure HTTPD

In this section we are going to setup Apache HTTP to serve GeoNode.

Preliminary Steps & Checks

1. Be sure development (DEV) mode has been stopped

If not already active let’s activate the new geonode Python Virtual Environment:

$ workon geonode

Move into the geonode home folder

$ cd /home/geonode

Move into the my_geonode custom project base folder

$ cd my_geonode

If paver start command is running you need to stop it

$ paver stop

2. Restore site settings

You need to restore initial customizations of the my_geonode local_settings. In order to do
that, edit the my_geonode/local_settings.py file:

3.2. Tutorials 97

GeoNode Documentation, Release 2.8

$ vim my_geonode/local_settings.py

Un-comment the following pieces

...
SITEURL = 'http://localhost'
...
GEOSERVER_LOCATION = os.getenv(

'GEOSERVER_LOCATION', '{}/geoserver/'.format(SITEURL)
)

GEOSERVER_PUBLIC_LOCATION = os.getenv(
'GEOSERVER_PUBLIC_LOCATION', '{}/geoserver/'.format(SITEURL)

)
...

Apache Configuration

Navigate to Apache configurations folder

$ cd /etc/apache2/sites-available

And create a new configuration file for GeoNode:

$ sudo vim geonode.conf

Place the following content inside the file

WSGIDaemonProcess geonode python-path=/home/geonode/my_geonode:/home/geo/Envs/geonode/
→˓lib/python2.7/site-packages user=www-data threads=15 processes=2

<VirtualHost *:80>
ServerName http://localhost
ServerAdmin webmaster@localhost
DocumentRoot /home/geonode/my_geonode/my_geonode

LimitRequestFieldSize 32760
LimitRequestLine 32760

ErrorLog /var/log/apache2/error.log
LogLevel warn
CustomLog /var/log/apache2/access.log combined

WSGIProcessGroup geonode
WSGIPassAuthorization On
WSGIScriptAlias / /home/geonode/my_geonode/my_geonode/wsgi.py

Alias /static/ /home/geonode/my_geonode/my_geonode/static_root/
Alias /uploaded/ /home/geonode/my_geonode/my_geonode/uploaded/

<Directory "/home/geonode/my_geonode/my_geonode/">
<Files wsgi.py>

Order deny,allow
Allow from all
Require all granted

(continues on next page)

98 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

</Files>

Order allow,deny
Options Indexes FollowSymLinks
Allow from all
IndexOptions FancyIndexing

</Directory>

<Directory "/home/geonode/my_geonode/my_geonode/static_root/">
Order allow,deny
Options Indexes FollowSymLinks
Allow from all
Require all granted
IndexOptions FancyIndexing

</Directory>

<Directory "/home/geonode/my_geonode/my_geonode/uploaded/thumbs/">
Order allow,deny
Options Indexes FollowSymLinks
Allow from all
Require all granted
IndexOptions FancyIndexing

</Directory>

<Directory "/home/geonode/my_geonode/my_geonode/uploaded/avatars/">
Order allow,deny
Options Indexes FollowSymLinks
Allow from all
Require all granted
IndexOptions FancyIndexing

</Directory>

<Directory "/home/geonode/my_geonode/my_geonode/uploaded/people_group/">
Order allow,deny
Options Indexes FollowSymLinks
Allow from all
Require all granted
IndexOptions FancyIndexing

</Directory>

<Directory "/home/geonode/my_geonode/my_geonode/uploaded/group/">
Order allow,deny
Options Indexes FollowSymLinks
Allow from all
Require all granted
IndexOptions FancyIndexing

</Directory>

<Directory "/home/geonode/my_geonode/my_geonode/uploaded/documents/">
Order allow,deny
Options Indexes FollowSymLinks
Deny from all
Require all granted
IndexOptions FancyIndexing

</Directory>

<Directory "/home/geonode/my_geonode/my_geonode/uploaded/layers/">
(continues on next page)

3.2. Tutorials 99

GeoNode Documentation, Release 2.8

(continued from previous page)

Order allow,deny
Options Indexes FollowSymLinks
Deny from all
Require all granted
IndexOptions FancyIndexing

</Directory>

<Proxy *>
Order allow,deny
Allow from all

</Proxy>

ProxyPreserveHost On
ProxyPass /geoserver http://127.0.0.1:8080/geoserver
ProxyPassReverse /geoserver http://127.0.0.1:8080/geoserver

</VirtualHost>

This sets up a VirtualHost in Apache HTTP server for GeoNode and a reverse proxy for GeoServer.

Note: In the case that GeoServer is running on a separate machine change the ProxyPass and ProxyPassReverse
accordingly

Now load apache poxy module

$ sudo a2enmod proxy_http

And enable geonode configuration file

$ sudo a2ensite geonode

Postfix Configuration

Postfix is a service allowing the host to send e-mail and notificaions to the users. In order to make GeoNode being
able to send e-mails you will need to enable the service.

$ sudo ufw disable
This will be switch-off the

Edit the postfix configuration in order to allow the service act as a web service

$ sudo vim /etc/postfix/main.cf

Check that at the end of the file the following properties are configured as follows

$ sudo vim /etc/postfix/main.cf

...
recipient_delimiter = +
inet_interfaces = all
inet_protocols = all

Finally restart the postfix service

100 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

$ sudo service postfix restart

Finalize GeoNode Setup

Once the Apache2 Virtual Host has been correctly configured, we can finalize the GeoNode setup.

If not already active let’s activate the new geonode Python Virtual Environment:

$ workon geonode

Move into the geonode home folder

$ cd /home/geonode

Move into the my_geonode custom project base folder

$ cd my_geonode

First of all we need to tweak a bit the my_geonode local_settings. In order to do that, edit the my_geonode/
local_settings.py file:

$ vim my_geonode/local_settings.py

Double check that exitsting properties match the following and add the missing ones

SITEURL = 'http://localhost'
...
account registration settings
ACCOUNT_OPEN_SIGNUP = True
ACCOUNT_APPROVAL_REQUIRED = False
ACCOUNT_EMAIL_CONFIRMATION_EMAIL = False
ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = False

notification settings
NOTIFICATION_ENABLED = False
NOTIFICATION_LANGUAGE_MODULE = "account.Account"

Queue non-blocking notifications.
NOTIFICATION_QUEUE_ALL = False

pinax.notifications
or notification
NOTIFICATIONS_MODULE = 'pinax.notifications'

if NOTIFICATION_ENABLED:
INSTALLED_APPS += (NOTIFICATIONS_MODULE,)

#Define email service on GeoNode
EMAIL_ENABLE = False

if EMAIL_ENABLE:
EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST = 'localhost'
EMAIL_PORT = 25
EMAIL_HOST_USER = ''
EMAIL_HOST_PASSWORD = ''

(continues on next page)

3.2. Tutorials 101

GeoNode Documentation, Release 2.8

(continued from previous page)

EMAIL_USE_TLS = False
DEFAULT_FROM_EMAIL = 'My GeoNode <no-reply@geonode.org>'

set to true to have multiple recipients in /message/create/
USER_MESSAGES_ALLOW_MULTIPLE_RECIPIENTS = True

INSTALLED_APPS = INSTALLED_APPS + ('my_geonode',)
...
GEOSERVER_LOCATION = os.getenv(

'GEOSERVER_LOCATION', '{}/geoserver/'.format(SITEURL)
)

GEOSERVER_PUBLIC_LOCATION = os.getenv(
'GEOSERVER_PUBLIC_LOCATION', '{}/geoserver/'.format(SITEURL)

)
...
CATALOGUE = {

'default': {
The underlying CSW implementation
default is pycsw in local mode (tied directly to GeoNode Django DB)
'ENGINE': 'geonode.catalogue.backends.pycsw_local',
pycsw in non-local mode
'ENGINE': 'geonode.catalogue.backends.pycsw_http',
GeoNetwork opensource
'ENGINE': 'geonode.catalogue.backends.geonetwork',
deegree and others
'ENGINE': 'geonode.catalogue.backends.generic',

The FULLY QUALIFIED base url to the CSW instance for this GeoNode
'URL': '%s/catalogue/csw' % SITEURL,
'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',

login credentials (for GeoNetwork)
'USER': 'admin',
'PASSWORD': 'admin',

}
}
...

In the end the my_geonode/local_settings.py should be something like this

-*- coding: utf-8 -*-
###
#
Copyright (C) 2012 OpenPlans
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#

(continues on next page)

102 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
###

Django settings for the GeoNode project.
import os
from geonode.settings import *
#
General Django development settings
#

SECRET_KEY = '************************'

SITEURL = 'http://localhost'
SITENAME = 'my_geonode'

Defines the directory that contains the settings file as the LOCAL_ROOT
It is used for relative settings elsewhere.
LOCAL_ROOT = os.path.abspath(os.path.dirname(__file__))

MEDIA_ROOT = os.getenv('MEDIA_ROOT', os.path.join(LOCAL_ROOT, "uploaded"))

STATIC_ROOT = os.getenv('STATIC_ROOT',
os.path.join(LOCAL_ROOT, "static_root")
)

WSGI_APPLICATION = "my_geonode.wsgi.application"

Load more settings from a file called local_settings.py if it exists
try:

from local_settings import *
except ImportError:

pass

Additional directories which hold static files
STATICFILES_DIRS.append(

os.path.join(LOCAL_ROOT, "static"),
)

Location of url mappings
ROOT_URLCONF = 'my_geonode.urls'

Location of locale files
LOCALE_PATHS = (

os.path.join(LOCAL_ROOT, 'locale'),
) + LOCALE_PATHS

#
account registration settings
ACCOUNT_OPEN_SIGNUP = True
ACCOUNT_APPROVAL_REQUIRED = False
ACCOUNT_EMAIL_CONFIRMATION_EMAIL = False
ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = False

notification settings
(continues on next page)

3.2. Tutorials 103

GeoNode Documentation, Release 2.8

(continued from previous page)

NOTIFICATION_ENABLED = False
NOTIFICATION_LANGUAGE_MODULE = "account.Account"

Queue non-blocking notifications.
NOTIFICATION_QUEUE_ALL = False

pinax.notifications
or notification
NOTIFICATIONS_MODULE = 'pinax.notifications'

if NOTIFICATION_ENABLED:
INSTALLED_APPS += (NOTIFICATIONS_MODULE,)

#Define email service on GeoNode
EMAIL_ENABLE = False

if EMAIL_ENABLE:
EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST = 'localhost'
EMAIL_PORT = 25
EMAIL_HOST_USER = ''
EMAIL_HOST_PASSWORD = ''
EMAIL_USE_TLS = False
DEFAULT_FROM_EMAIL = 'My GeoNode <no-reply@geonode.org>'

set to true to have multiple recipients in /message/create/
USER_MESSAGES_ALLOW_MULTIPLE_RECIPIENTS = True
#

INSTALLED_APPS = INSTALLED_APPS + ('my_geonode',)

TEMPLATES[0]['DIRS'].insert(0, os.path.join(LOCAL_ROOT, "templates"))

##
→˓#
ALLOWED_HOSTS = ['127.0.0.1', 'localhost', '::1']
PROXY_ALLOWED_HOSTS = ("127.0.0.1", 'localhost', '::1')

POSTGIS_VERSION = (2, 0, 7)

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'geonode',
'USER': 'geonode',
'PASSWORD': 'geonode',

},
vector datastore for uploads
'datastore' : {

'ENGINE': 'django.contrib.gis.db.backends.postgis',
#'ENGINE': '', # Empty ENGINE name disables
'NAME': 'geonode_data',
'USER' : 'geonode',
'PASSWORD' : 'geonode',
'HOST' : 'localhost',
'PORT' : '5432',

}
(continues on next page)

104 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

}

GEOSERVER_LOCATION = os.getenv(
'GEOSERVER_LOCATION', '{}/geoserver/'.format(SITEURL)

)

GEOSERVER_PUBLIC_LOCATION = os.getenv(
'GEOSERVER_PUBLIC_LOCATION', '{}/geoserver/'.format(SITEURL)

)

OGC_SERVER_DEFAULT_USER = os.getenv(
'GEOSERVER_ADMIN_USER', 'admin'

)

OGC_SERVER_DEFAULT_PASSWORD = os.getenv(
'GEOSERVER_ADMIN_PASSWORD', 'geoserver'

)

OGC (WMS/WFS/WCS) Server Settings
OGC_SERVER = {

'default': {
'BACKEND': 'geonode.geoserver',
'LOCATION': GEOSERVER_LOCATION,
'LOGIN_ENDPOINT': 'j_spring_oauth2_geonode_login',
'LOGOUT_ENDPOINT': 'j_spring_oauth2_geonode_logout',
PUBLIC_LOCATION needs to be kept like this because in dev mode
the proxy won't work and the integration tests will fail
the entire block has to be overridden in the local_settings
'PUBLIC_LOCATION': GEOSERVER_PUBLIC_LOCATION,
'USER' : OGC_SERVER_DEFAULT_USER,
'PASSWORD' : OGC_SERVER_DEFAULT_PASSWORD,
'MAPFISH_PRINT_ENABLED' : True,
'PRINT_NG_ENABLED' : True,
'GEONODE_SECURITY_ENABLED' : True,
'GEOGIG_ENABLED' : False,
'WMST_ENABLED' : False,
'BACKEND_WRITE_ENABLED': True,
'WPS_ENABLED' : False,
'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.path.

→˓abspath(os.path.join(PROJECT_ROOT, os.pardir)),
Set to dictionary identifier of database containing spatial data

→˓in DATABASES dictionary to enable
'DATASTORE': 'datastore',

}
}

CATALOGUE = {
'default': {

The underlying CSW implementation
default is pycsw in local mode (tied directly to GeoNode Django DB)
'ENGINE': 'geonode.catalogue.backends.pycsw_local',
pycsw in non-local mode
'ENGINE': 'geonode.catalogue.backends.pycsw_http',
GeoNetwork opensource
'ENGINE': 'geonode.catalogue.backends.geonetwork',
deegree and others
'ENGINE': 'geonode.catalogue.backends.generic',

(continues on next page)

3.2. Tutorials 105

GeoNode Documentation, Release 2.8

(continued from previous page)

The FULLY QUALIFIED base url to the CSW instance for this GeoNode
'URL': '%s/catalogue/csw' % SITEURL,
'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',

login credentials (for GeoNetwork)
'USER': 'admin',
'PASSWORD': 'admin',

}
}

ALT_OSM_BASEMAPS = os.environ.get('ALT_OSM_BASEMAPS', False)
CARTODB_BASEMAPS = os.environ.get('CARTODB_BASEMAPS', False)
STAMEN_BASEMAPS = os.environ.get('STAMEN_BASEMAPS', False)
THUNDERFOREST_BASEMAPS = os.environ.get('THUNDERFOREST_BASEMAPS', False)
MAPBOX_ACCESS_TOKEN = os.environ.get('MAPBOX_ACCESS_TOKEN', None)
BING_API_KEY = os.environ.get('BING_API_KEY', None)

MAP_BASELAYERS = [{
"source": {"ptype": "gxp_olsource"},
"type": "OpenLayers.Layer",
"args": ["No background"],
"name": "background",
"visibility": False,
"fixed": True,
"group":"background"

},
{
"source": {"ptype": "gxp_olsource"},
"type": "OpenLayers.Layer.XYZ",
"title": "TEST TILE",
"args": ["TEST_TILE", "http://test_tiles/tiles/${z}/${x}/${y}.png"],
"name": "background",
"attribution": "© TEST TILE",
"visibility": False,
"fixed": True,
"group":"background"
},
{

"source": {"ptype": "gxp_osmsource"},
"type": "OpenLayers.Layer.OSM",
"name": "mapnik",
"visibility": True,
"fixed": True,
"group": "background"

}]

LOCAL_GEOSERVER = {
"source": {

"ptype": "gxp_wmscsource",
"url": OGC_SERVER['default']['PUBLIC_LOCATION'] + "wms",
"restUrl": "/gs/rest"

}
}
baselayers = MAP_BASELAYERS
MAP_BASELAYERS = [LOCAL_GEOSERVER]

(continues on next page)

106 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

MAP_BASELAYERS.extend(baselayers)

LOGGING = {
'version': 1,
'disable_existing_loggers': True,
'formatters': {

'verbose': {
'format': '%(levelname)s %(asctime)s %(module)s %(process)d '

'%(thread)d %(message)s'
},
'simple': {

'format': '%(message)s',
},

},
'filters': {

'require_debug_false': {
'()': 'django.utils.log.RequireDebugFalse'

}
},
'handlers': {

'console': {
'level': 'DEBUG',
'class': 'logging.StreamHandler',
'formatter': 'simple'

},
'mail_admins': {

'level': 'ERROR', 'filters': ['require_debug_false'],
'class': 'django.utils.log.AdminEmailHandler',

}
},
"loggers": {

"django": {
"handlers": ["console"], "level": "ERROR", },

"geonode": {
"handlers": ["console"], "level": "DEBUG", },

"gsconfig.catalog": {
"handlers": ["console"], "level": "DEBUG", },

"owslib": {
"handlers": ["console"], "level": "DEBUG", },

"pycsw": {
"handlers": ["console"], "level": "ERROR", },

},
}

##
→˓#

Finalize HTTPD Setup

Warning: Those steps must be completed from folder /home/geonode/my_geonode and inside geonode
Python Virtual Environment.

Dowload GeoNode data to be served by Apache. You will be prompted for confirmation

3.2. Tutorials 107

GeoNode Documentation, Release 2.8

$ python manage.py migrate
$ python manage.py collectstatic

Add thumbs and layers folders

$ sudo mkdir -p /home/geonode/my_geonode/my_geonode/uploaded/thumbs
$ sudo mkdir -p /home/geonode/my_geonode/my_geonode/uploaded/layers

Change permissions on GeoNode files and folders to allow Apache to read and edit them

$ sudo chown -Rf geonode /home/geonode/my_geonode/
$ sudo chown -Rf geonode:www-data /home/geonode/my_geonode/my_geonode/static/
$ sudo chown -Rf geonode:www-data /home/geonode/my_geonode/my_geonode/uploaded/
$ chmod -Rf 777 /home/geonode/my_geonode/my_geonode/uploaded/thumbs
$ chmod -Rf 777 /home/geonode/my_geonode/my_geonode/uploaded/layers
$ sudo chown www-data:www-data /home/geonode/my_geonode/my_geonode/static_root/

Finally restart Apache to load the new configuration:

$ sudo service apache2 restart

Install GeoServer Application

In this section we are going to setup GeoServer for GeoNode. GeoServer will run inside Tomcat sevrlet container.

Setup GeoServer

1. You’ve already installed Tomcat 8 in the system in the first section of the training. Before you deploy GeoServer
stop the running Tomcat instance

$ sudo service tomcat8 stop

2. Now copy the downloaded GeoServer archive inside Tomcat’s webapps folder

$ sudo cp -Rf /home/geonode/my_geonode/geoserver/geoserver/ /var/lib/
→˓tomcat8/webapps/

3. Move GEOSERVER_DATA_DIR on an external location

$ sudo mkdir -p /data/geoserver-data
$ sudo mkdir -p /data/geoserver-logs
$ sudo mkdir -p /data/gwc_cache_dir
$ sudo cp -Rf /home/geonode/my_geonode/geoserver/data/* /data/geoserver-
→˓data/
$ sudo chown -Rf tomcat8: /data/geoserver-data/
$ sudo chown -Rf tomcat8: /data/geoserver-logs/
$ sudo chown -Rf tomcat8: /data/gwc_cache_dir/

4. Set default Java settings

You need to edit the /etc/default/tomcat8 file

$ sudo vim /etc/default/tomcat8

Make sure JAVA_OPTS are configured as follows

108 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

#JAVA_OPTS="-Djava.awt.headless=true -Xmx128m -XX:+UseConcMarkSweepGC"
GEOSERVER_DATA_DIR="/data/geoserver-data"
GEOSERVER_LOG_LOCATION="/data/geoserver-logs/geoserver.log"
GEOWEBCACHE_CACHE_DIR="/data/gwc_cache_dir"
GEOFENCE_DIR="$GEOSERVER_DATA_DIR/geofence"

JAVA_OPTS="-Djava.awt.headless=true -XX:MaxPermSize=512m -
→˓XX:PermSize=128m -Xms512m -Xmx2048m -Duser.timezone=GMT -Dorg.geotools.
→˓shapefile.datetime=true -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -
→˓XX:ParallelGCThreads=4 -Dfile.encoding=UTF8 -Duser.timezone=GMT -Djavax.
→˓servlet.request.encoding=UTF-8 -Djavax.servlet.response.encoding=UTF-8 -
→˓DGEOSERVER_DATA_DIR=$GEOSERVER_DATA_DIR -Dgeofence.dir=$GEOFENCE_DIR -
→˓DGEOSERVER_LOG_LOCATION=$GEOSERVER_LOG_LOCATION -DGEOWEBCACHE_CACHE_DIR=
→˓$GEOWEBCACHE_CACHE_DIR"

Warning: Double check memory options -Xms512m -Xmx2048m are compatible with your
VM available RAM

5. Set default Catalina settings

You need to edit the /var/lib/tomcat8/conf/catalina.properties file

$ sudo vim /var/lib/tomcat8/conf/catalina.properties

Make sure bcprov*.jar is skipped at run-time

tomcat.util.scan.StandardJarScanFilter.jarsToSkip=\
...
xom-*.jar,\
bcprov*.jar

6. Restart Tomcat 8 service

$ sudo service tomcat8 restart

You can follow the start-up logs by running the following shell command

$ sudo tail -F -n 300 /var/lib/tomcat8/logs/catalina.out

Test GeoServer

Now start Tomcat to deploy GeoServer:

sudo service tomcat8 start

Tomcat will extract GeoServer web archive and start GeoServer. This may take some time

Open a web browser (in this example Firefox) and navigate to http://localhost:8080/geoserver

3.2. Tutorials 109

http://localhost:8080/geoserver

GeoNode Documentation, Release 2.8

In a few seconds GeoServer web interface will show up:

110 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

GeoNode authentication integration

All we need to do now is to integrate GeoNode authentication so that GeoNode administrator will be able to access
and administer GeoServer as well.

1. Stop GeoServer

$ sudo service tomcat8 stop

2. Edit /data/geoserver-data/security/filter/geonode-oauth2/config.xml with a text
editor

3.2. Tutorials 111

GeoNode Documentation, Release 2.8

$ sudo gedit /data/geoserver-data/security/filter/geonode-oauth2/config.
→˓xml

And make sure the following values are configured as follows:

<accessTokenUri>http://localhost/o/token/</accessTokenUri>
<userAuthorizationUri>http://localhost/o/authorize/</userAuthorizationUri>
<redirectUri>http://localhost/geoserver</redirectUri>
<checkTokenEndpointUrl>http://localhost/api/o/v4/tokeninfo/</
→˓checkTokenEndpointUrl>
<logoutUri>http://localhost/account/logout/</logoutUri>

3. Edit /data/geoserver-data/security/role/geonode\ REST\ role\ service/config.
xml with a text editor

$ sudo gedit /data/geoserver-data/security/role/geonode\ REST\ role\
→˓service/config.xml

And make sure the following values are configured as follows:

<baseUrl>http://localhost</baseUrl>

4. Edit /data/geoserver-data/global.xml with a text editor

$ sudo gedit /data/geoserver-data/global.xml

And make sure the following values are configured as follows:

<proxyBaseUrl>http://localhost/geoserver</proxyBaseUrl>

5. Restart GeoServer to make the changes effective

$ sudo service tomcat8 restart

You can follow the start-up logs by running the following shell command

$ sudo tail -F -n 300 /var/lib/tomcat8/logs/catalina.out

Finish installation

In previous sections you’ ve setup all the applications we need to run GeoNode.

Test the installation

We are ready to restart GeoNode (Apache) and test the installation. Restart Apache

$ sudo service apache2 restart

Open the browser and navigate to http://localhost/

GeoNode User interface will show up. Login with admin username and password you just set.

112 Chapter 3. Table of contents

http://localhost/

GeoNode Documentation, Release 2.8

3.2. Tutorials 113

GeoNode Documentation, Release 2.8

Now open the main menu and click on GeoServer

114 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

You will be redirected to GeoServer user interface. You will automatically be logged in as administrator in GeoServer.

3.2. Tutorials 115

GeoNode Documentation, Release 2.8

3.2.1.2.8 GeoNode (v2.8) installation on CentOS 7

This part of the documentation describes the complete setup process for GeoNode on a CentOS 7 machine.

Installing the Operating System

CentOS Setup

We are re going to install a minimal CentOS 7 distribution. You can get a copy of the .iso the image used for the
installation here.

116 Chapter 3. Table of contents

http://isoredirect.centos.org/centos/7/isos/x86_64/CentOS-7-x86_64-Minimal-1611.iso

GeoNode Documentation, Release 2.8

Boot up the installation DVD and start the CentOS 7 Installation wizard.

• Under Select Date & Time an set appropriate Date and Time settings

• Under Keyboard and choose the keyboard layout

• Under Installation Destination select the hard disk where CentOS will be installed.

Create a custom partitioning scheme as follows:

Partition Label Partition Type Size Mount Point
boot ext3 700 MB /boot
root ext4 35 GB /
swap swap 4 GB

• Under Networking configure your network interface according to your infrastructure you can either set it to
DHCP to automatically get all the settings from a local DHCP server or configure it by hand.

• Enable the network interface, then go back to Select Date & Time and enable NTP synchronization periodically
get date and time settings from CentOS servers

• Click on Begin Installation

• Now set the password for the root user. Also click on User Creation to create the geo user.

• Wait for the installation process to finish, then reboot your machine

Network configuration

The network configuration should already be set, since it was set during CentOS setup stage.

You may want to review the configuration files

/etc/sysconfig/network-scripts/ifcfg-DEVICE

You may also want to review the file /etc/resolv.conf to check the name servers.

Check that the connection is up by pinging and external server:

ping 8.8.8.8

Check that the DNS are properly configuring by pinging a host by its name:

ping google.com

Warning: Please note that in CentOS only ssh incoming connections are allowed; all other incoming connections
are disabled by default.

In the paragraph related to the httpd service you can find details about how to enable incoming traffic.

Note that after configuring the network, you may continue installing the system setup using a ssh connection.

User access configuration

Login as root'` user and give the ``geo user administrative privileges by adding him to the wheel
group:

3.2. Tutorials 117

GeoNode Documentation, Release 2.8

usermod -aG wheel geo

SSH access

Allow SSH connections through the firewall

On CentOS 7 the firewall is enabled by default. To allow SSH clients to connect to the machine allow incoming
connections on port 22:

firewall-cmd --zone=public --add-port=22/tcp --permanent
firewall-cmd --zone=public --add-service=ssh --permanent
firewall-cmd --reload

Disable SSH login for the root user

Warning: Before you disable root login make sure you are able to login via SSH with geo user account and you
have the privileges to run sudo su to switch to the root user account.

Edit file /etc/ssh/sshd_config to disable root login via SSH:

PermitRootLogin no

Public key authentication

Public key authentication is generally considered a safer way to authenticate users for SSH access. Let’s set it up and
disable password based authentication

First generate a public/private key pair using ssh-keygen:

ssh-keygen

Follow the procedure, you will end up with your newly generated key under ~/.ssh Now copy your public (by
default it is called id_rsa.pub) key over the CentOS machine in /home/geo/.ssh/authorized_keys. There
are several ways to do it, we are going to use the ssh-copy-id tool:

ssh-copy-id -i ~/.ssh/id_rsa.pub geo@<server-ip-address>

You should now be able to login via SSH as geo without been asked for the password:

ssh geo@<server-ip-address>

You can now disable password based login over SSH

Warning: Before disabling password authentication make sure you’ve installed your public key on the server and
you are able to login without password

Edit /etc/ssh/sshd_config as follows:

118 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

...
RSAAuthentication yes
...
PubkeyAuthentication yes
...
PasswordAuthentication no
...
UsePAM no
...

Installing ntp

Install the program for NTP server synchronization:

sudo yum install ntp

Edit /etc/ntp.conf and add the following line before the first server directive:

server tempo.ien.it # Galileo Ferraris

Replace tempo.ien.it with your nearest NTP server.

Sync with the server by issuing:

systemctl start ntpd

Set the time synchronization as an automatically started daemon:

systemctl enable ntpd

Installing base packages

Install common utility packages:

sudo yum install -y man vim openssh-clients zip unzip wget

Update the system with EPEL latest release:

sudo yum install -y epel-release
sudo yum update -y && sudo reboot

Install pip and necessary dependencies:

sudo yum install -y python-devel python-setuptools python-pip python-virtualenv
sudo pip install --upgrade pip

Installing the Operating System

Warning: In order to follow this section you must have Vagrant already installed into your machine. If not then
you can follow the link and install properly in your computer.

3.2. Tutorials 119

https://www.vagrantup.com/

GeoNode Documentation, Release 2.8

CentOS Setup

Start a new base CentOS server from scratch is as easier as possible with this simple command:

vagrant init centos/7

A new configuration file called Vagrantfile is created in the same directory. That file will contain all the configuration
of the box you are going to run.

Alternatively you can start a new specific version of a CentOS server from an ISO image like this CentOS-7-x86_64-
Minimal-1611.iso. In order to have such a minimal box we can exploit Packer in doing that. Therefore follow the
previous link and install the toolkit. Ansible is required too.

As an example for achieving this goal you might follow the instructions on this GitHub repository. Fork it and simply
let’s do:

packer build --only=virtualbox-iso centos7.json

The build artifact virtualbox-centos7.box will be in the directory builds and can be mounted as alternative
Virtual Box image in the Vagrantfile.

If you, at any time, modify the configuration you can bring your changes by running:

vagrant reload

Network configuration

The configuration of your new CentOS machine can be customised at your need. You can choose to configure a private
network which allows host-only access to the machine using a specific IP as well as a public one which generally
matched to bridged network and the machine would appear as another physical device on your network. Initially
you can opt also to have your internal port of GeoNode forwarded to a physical port on your host for navigating the
application from the browser. The simplest configuration can be:

config.vm.network "forwarded_port", guest: 80, host: 8001

Please note that in development mode this configuration can be a little bit different:

config.vm.network "forwarded_port", guest: 8000, host: 8001 # GeoNode port
config.vm.network "forwarded_port", guest: 8080, host: 8080 # GeoServer port

You can even choose to mapping on 80 but be carefully you need administrative privileges on your host machine. So
it is recommended to begin with a port higher like in the previous example.

Launch your CentOS box

After editing the Vagrant configurations you should end up with a Vagrantfile like this basic sample.
From the same directory then run this command and launch your box:

vagrant up

Install GeoNode on CentOS 7 (dev mode)

120 Chapter 3. Table of contents

http://www.packer.io/
http://docs.ansible.com/intro_installation.html
https://github.com/geerlingguy/packer-centos-7

GeoNode Documentation, Release 2.8

Preparation

Make sure all the needed libraries are installed

sudo yum -y update
sudo yum groupinstall 'Development Tools'
sudo yum install -y libxml2-devel libxslt-devel libjpeg-turbo-devel
→˓postgresql postgresql-server postgresql-contrib postgresql-libs postgresql-
→˓devel postgis geos-python python python-tools python-devel python-pillow
→˓python-lxml openssh-clients zip unzip wget git gdal python-virtualenv gdal-
→˓python geos python-pip python-imaging python-devel gcc-c++ python-psycopg2
→˓libxml2 libxml2-devel libxml2-python libxslt libxslt-devel libxslt-python

Install pip

Installation of Python pip:

sudo rpm -iUvh http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-
→˓7-9.noarch.rpm
sudo yum -y update
sudo yum -y install python-pip
sudo pip install --upgrade pip

Warning: Make sure to align the version of EPEL to the latest for your current CentOS version

Install Python Virtual Environment

sudo pip install virtualenvwrapper

Set up PostgreSQL

Enable the PostgreSQL service

systemctl enable postgresql

Change the Unix password for the postgres user

sudo passwd -u postgres -f
sudo passwd postgres

Initialize the PostgreSQL database with the default service name postgresql

sudo /usr/bin/postgresql-setup initdb

Start the PostgreSQL service

systemctl start postgresql.service

Create the database for GeoNode

3.2. Tutorials 121

GeoNode Documentation, Release 2.8

su - postgres
pg_ctl status
pg_ctl start # if not running

createdb geonode

Create the needed role and privileges

psql
postgres=#
postgres=# \password postgres
postgres=# CREATE USER geonode WITH PASSWORD 'geonode';
postgres=# GRANT ALL PRIVILEGES ON DATABASE "geonode" to geonode;
postgres=# \q

Install Java

First come back to the normal user, then check if Java is already installed

java -version

In case, install Java

sudo yum install -y java-1.8.0-openjdk-devel

Setup a virtual environment

Assuming your username is geonode, you need to edit your .bashrc file

nano /home/geonode/.bashrc

Add the following lines (please replace geonode with your actual user name):

virtualenvwrapper
export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python
export WORKON_HOME=home/geonode/.venvs
source /usr/bin/virtualenvwrapper.sh
export PIP_DOWNLOAD_CACHE=$HOME/.pip-downloads

Save and exit. Then,

source /home/geonode/.bashrc

Install GeoNode

Setup a virtual environment for GeoNode and enter into it

mkvirtualenv geonode --system-site-packages
workon geonode

Make sure to have the most updated Python pip version

122 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

pip install --upgrade pip

Clone the current stable branch 2.6.x

git clone -b 2.6.x https://github.com/GeoNode/geonode

Install GeoNode and its dependencies

pip install -e geonode && pip install -r geonode/requirements.txt
pip Paver

Verify the installation

pip freeze | grep geonode

In case of successful installation, this should return several (50+) lines.

Install GeoServer

The installation of GeoServer in development mode can be started with this pavement command script

paver setup

This should return

GeoNode development environment successfully set up.If you have not set
up an administrative account, please do so now. Use "paver start" to start
up the server.

Run the Django server

Before starting the GeoNode server you have to complete the installation with several import pre-running steps. Let’s
see them in their order.

Warning: Please note we have always to be in our virtual environment before running the following commands,
while you don’t need the sudo privileges anymore!

Migrate the database

python manage.py migrate

Create an administrative account as know as superuser in Django. Please make sure you will create at least one
superuser named admin which is required in development mode.

python manage.py createsuperuser

Create the required initial data and OAuth2 configurations

python manage.py loaddata geonode/base/fixtures/initial_data.json
python manage.py loaddata geonode/base/fixtures/default_oauth_apps.json

Finally we are able to start all the components

3.2. Tutorials 123

GeoNode Documentation, Release 2.8

paver start_geoserver # start GeoServer
python manage.py runserver 0.0.0.0:8000 # start GeoNode

Warning: Note that the default IP address, 127.0.0.1, is not accessible from other machines on your network.
In case you are using forwarded_port on a Vagrantfile please make sure to start runserver with
the option :option:0.0.0.0:8000 which allows fundamentally to view your development server from other
machines on the network, included your host machine in such a case. See more on Installing the Operating
System.

Installing PostgreSQL and PostGIS

Install PostgreSQL

Install the package for configuring the PGDG repository:

sudo yum install http://yum.postgresql.org/9.5/redhat/rhel-7-x86_64/pgdg-centos95-9.5-
→˓3.noarch.rpm

Install PostgreSQL, PostGIS and related libs:

sudo yum update
sudo yum install -y postgis2_95 postgresql95 postgresql95-server postgresql95-libs
→˓postgresql95-contrib \
postgresql95-devel gdal gdal-python geos python-imaging gcc-c++ \
python-psycopg2 libxml2 libxml2-devel libxml2-python libxslt libxslt-devel libxslt-
→˓python

Initialize the DB:

sudo /usr/pgsql-9.5/bin/postgresql95-setup initdb

Enable start on boot:

sudo systemctl enable postgresql-9.5

Start the PostgreSQL service manually:

sudo systemctl start postgresql-9.5

To restart or reload the instance, you can use the following commands:

sudo systemctl restart postgresql-9.5
sudo systemctl reload postgresql-9.5

Setting PostgreSQL access

Now we are going to change user access policy for local connections in file pg_hba.conf:

sudo vim /var/lib/pgsql/9.5/data/pg_hba.conf

Scroll down to the bottom of the document. We only need to edit one line. Change:

124 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

"local" is for Unix domain socket connections only
local all all peer
IPv4 local connections:
host all all 127.0.0.1/32 ident

into:

"local" is for Unix domain socket connections only
local all all trust
IPv4 local connections:
host all all 127.0.0.1/32 md5

Note: If your PostgreSQL database resides on a separate machine, you have to allow remote access to the databases
in the pg_hba.conf for the geonode user and tell PostgreSQL to accept non local connections in your postgresql.
conf configuration.

Once the configuration file has been edited, restart PostgreSQL to make these changes effective:

sudo systemctl restart postgresql-9.5

Create GeoNode Users Databases

Switch to the postgres user:

su - postgres

First create the geonode user. GeoNode is going to use this user to access the database:

createuser -P geonode

You will be prompted asked to set a password for the user. Enter geonode as password

Create geonode database with owner geonode:

createdb -O geonode geonode

And database geonode_data with owner geonode:

createdb -O geonode geonode_data

Create PostGIS extension on the database for spatial data:

psql -d geonode_data -c 'CREATE EXTENSION postgis;'

Then adjust permissions:

psql -d geonode_data -c 'GRANT ALL ON geometry_columns TO PUBLIC;'
psql -d geonode_data -c 'GRANT ALL ON spatial_ref_sys TO PUBLIC;'

We are setting the default encoding to UTF-8, which Django expects:

psql -d geonode -c 'ALTER ROLE geonode SET client_encoding TO 'utf8';'
psql -d geonode_data -c 'ALTER ROLE geonode SET client_encoding TO 'utf8';'

3.2. Tutorials 125

GeoNode Documentation, Release 2.8

And exit postgres user:

exit

Tomcat Installation

Installing Java

We’ll need a JDK to run GeoServer. In particular the latest GeoServer from GeoNode needs the JDK version 1.8

You may already have the OpenJDK package (java-1.8.0-openjdk.x86_64) installed. Check and see if Java
8 is already installed:

java -version
openjdk version "1.8.0_131"
OpenJDK Runtime Environment (build 1.8.0_131-b12)
OpenJDK 64-Bit Server VM (build 25.131-b12, mixed mode)

Otherwise install it by running:

sudo yum install java-1.8.0-openjdk.x86_64

Once done, the command java -version should return info about the installed version.

If java version does not match the one just installed, run the following command:

alternatives --set java /usr/lib/jvm/jre-1.8.0-openjdk/bin/java

Oracle JDK

Until recently, the Oracle JDK was a better performer than the OpenJDK, so it was the preferred choice. This is no
longer true, anyway in the following paragraph you can find instruction about how to install the Oracle JDK.

You can download the Oracle JDK RPM from this page:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Programmatically you can then run:

curl -LO -H "Cookie: oraclelicense=accept-securebackup-cookie;" "http://download.
→˓oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-
→˓linux-x64.rpm"

Once you have the .rpm file, you can install it by:

sudo rpm -ivh jdk-8u131-linux-x64.rpm

Once installed, you still see that the default java and javac commands are still the ones from OpenJDK. In order
to switch JDK version you have to set the proper system alternatives.

Issue the command:

alternatives --install /usr/bin/java java /usr/java/latest/bin/java 200000 \
--slave /usr/lib/jvm/jre jre /usr/java/latest/jre \
--slave /usr/lib/jvm-exports/jre jre_exports /usr/java/latest/jre/lib \

(continues on next page)

126 Chapter 3. Table of contents

http://www.oracle.com/technetwork/java/javase/downloads/index.html

GeoNode Documentation, Release 2.8

(continued from previous page)

--slave /usr/bin/keytool keytool /usr/java/latest/jre/bin/keytool \
--slave /usr/bin/orbd orbd /usr/java/latest/jre/bin/orbd \
--slave /usr/bin/pack200 pack200 /usr/java/latest/jre/bin/pack200 \
--slave /usr/bin/rmid rmid /usr/java/latest/jre/bin/rmid \
--slave /usr/bin/rmiregistry rmiregistry /usr/java/latest/jre/bin/rmiregistry \
--slave /usr/bin/servertool servertool /usr/java/latest/jre/bin/servertool \
--slave /usr/bin/tnameserv tnameserv /usr/java/latest/jre/bin/tnameserv \
--slave /usr/bin/unpack200 unpack200 /usr/java/latest/jre/bin/unpack200 \
--slave /usr/share/man/man1/java.1 java.1 /usr/java/latest/man/man1/java.1 \
--slave /usr/share/man/man1/keytool.1 keytool.1 /usr/java/latest/man/man1/keytool.1 \
--slave /usr/share/man/man1/orbd.1 orbd.1 /usr/java/latest/man/man1/orbd.1 \
--slave /usr/share/man/man1/pack200.1 pack200.1 /usr/java/latest/man/man1/pack200.1 \
--slave /usr/share/man/man1/rmid.1.gz rmid.1 /usr/java/latest/man/man1/rmid.1 \
--slave /usr/share/man/man1/rmiregistry.1 rmiregistry.1 /usr/java/latest/man/man1/
→˓rmiregistry.1 \
--slave /usr/share/man/man1/servertool.1 servertool.1 /usr/java/latest/man/man1/
→˓servertool.1 \
--slave /usr/share/man/man1/tnameserv.1 tnameserv.1 /usr/java/latest/man/man1/
→˓tnameserv.1 \
--slave /usr/share/man/man1/unpack200.1 unpack200.1 /usr/java/latest/man/man1/
→˓unpack200.1

Then run:

alternatives --config java

and select the number related to /usr/java/latest/bin/java.

Now the default java version should be the Oracle one. Verify the proper installation on the JDK:

java -version
java version "1.8.0_131"
Java(TM) SE Runtime Environment (build 1.8.0_131-b11)
Java HotSpot(TM) 64-Bit Server VM (build 25.131-b11, mixed mode)

Installing Tomcat

Tomcat

Let’s install Tomcat first:

sudo yum install -y tomcat

Then prepare a clean instance called base to be used as a template for all tomcat instances:

sudo mkdir /var/lib/tomcats/base
sudo cp -a /usr/share/tomcat/* /var/lib/tomcats/base/

Then create GeoServer’s instance directory structure:

sudo mkdir /var/lib/tomcats/geoserver
sudo cp -a /usr/share/tomcat/* /var/lib/tomcats/geoserver/

3.2. Tutorials 127

GeoNode Documentation, Release 2.8

Instance manager script

Copy the existing management script:

sudo cp /usr/lib/systemd/system/tomcat.service \
/usr/lib/systemd/system/tomcat\@geoserver.service

Edit the EnvironmentFile variable in service management file as follows:

sudo vim /usr/lib/systemd/system/tomcat\@geoserver.service

Systemd unit file for default tomcat
#
To create clones of this service:
DO NOTHING, use tomcat@.service instead.

[Unit]
Description=Apache Tomcat Web Application Container
After=syslog.target network.target

[Service]
Type=simple
EnvironmentFile=/etc/tomcat/tomcat.conf
Environment="NAME="
EnvironmentFile=-/etc/sysconfig/tomcat@geoserver
ExecStart=/usr/libexec/tomcat/server start
ExecStop=/usr/libexec/tomcat/server stop
SuccessExitStatus=143
User=tomcat
Group=tomcat

[Install]
WantedBy=multi-user.target

Create the associated configuration file from template:

sudo cp /etc/sysconfig/tomcat /etc/sysconfig/tomcat\@geoserver

Edit the configuration file and customize the CATALINA_HOME and CATALINA_BASE variables:

...
CATALINA_BASE="/var/lib/tomcats/geoserver"
CATALINA_HOME="/usr/share/tomcat"
...

Now download and copy GeoServer web archive inside the webapps folder. Tomcat will extract the war file and run
GeoServer:

curl -LO https://build.geo-solutions.it/geonode/geoserver/latest//geoserver-2.9.x-
→˓oauth2.war && mv geoserver-2.9.x-oauth2.war geoserver.war
sudo mkdir -p /var/lib/tomcats/geoserver/webapps/
sudo cp geoserver.war /var/lib/tomcats/geoserver/webapps/

And fix the permissions on the files:

sudo chown -R tomcat:tomcat /var/lib/tomcats*

128 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Finally start GeoServer:

sudo systemctl start tomcat@geoserver

And enable it to automatically start at boot time:

sudo systemctl enable tomcat@geoserver

Install GeoNode application

Install required libs

Make sure all the needed libraries are installed:

sudo yum install -y git gdal gdal-python geos python-pip python-imaging \
python-virtualenv python-devel gcc-c++ python-psycopg2 libxml2 \
libxml2-devel libxml2-python libxslt libxslt-devel libxslt-python

Upgrade Python PIP version

Upgrade pip utility:

sudo pip install --upgrade pip

Create a geonode system user for the application

Create the group:

sudo groupadd --system geonode

Create the user:

sudo useradd --system --gid geonode --shell /bin/bash --home /home/geonode --create-
→˓home geonode

Create project home somewhere:

sudo mkdir -p /opt/apps/geonode

Give the required permissions to the new user geonode:

sudo chown -R geonode:geonode /opt/apps/geonode/

Install GeoNode

As a user geonode install GeoNode sources from official repository:

curl -LO "https://github.com/GeoNode/geonode/archive/2.6.3.zip"
unzip 2.6.3.zip && mv geonode-2.6.3 geonode

Move the sources into project folder:

3.2. Tutorials 129

GeoNode Documentation, Release 2.8

mv geonode /opt/apps/geonode/

Navigate to sources folder and install required packages:

cd /opt/apps/geonode/geonode
sudo pip install -e . --upgrade --no-cache

Edit settings

GeoNode Configuration

Now that all applications have been configured we are going to instruct GeoNode on how to connect to PostgreSQL
and GeoServer. Also we are going to instruct GeoNode on who is allowed to connect to it.

First navigate to geonode configuration folder:

cd /opt/apps/geonode/geonode/geonode/

Copy the local_settings.py sample file called local_settings.py.sample:

cp local_settings.py.geoserver.sample local_settings.py

Then edit the configuration file:

vim local_settings.py

Add the ALLOWED_HOSTS and PROXY_ALLOWED_HOSTS variables at the top with the following values::

ALLOWED_HOSTS = ['127.0.0.1', 'localhost', '::1']
PROXY_ALLOWED_HOSTS = ("127.0.0.1", 'localhost', '::1',)

Add the POSTGIS_VERSION variable matching your PostGIS version::

POSTGIS_VERSION = (2, 3, 0)

This will instruct GeoNode to listen on connections from your local machine.

Change the value of the SITEURL:

SITEURL = "http://localhost/"

Now configure database access: Uncomment the ENGINE’: ‘django.contrib.gis.db.backends.postgis line and comment
the one with empty ENGINE variable. Also set the NAME variable to geonode_data:

DATABASES = {
'default': {
...
},
'datastore' : {

'ENGINE': 'django.contrib.gis.db.backends.postgis',
#'ENGINE': '', # Empty ENGINE name disables,
'NAME': 'geonode_data',
...

}

130 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Then configure GeoServer location: Change the value of the LOCATION and PUBLIC_LOCATION variables as
below:

GEOSERVER_LOCATION = os.getenv(
'GEOSERVER_LOCATION', 'http://localhost/geoserver/'

)
GEOSERVER_PUBLIC_LOCATION = os.getenv(

'GEOSERVER_PUBLIC_LOCATION', 'http://localhost/geoserver/'
)

Finally configure GeoServer datastore: Change the value of the DATASTORE variable to the dictionary identifier of
database for spatial data as below:

OGC_SERVER = {
'default': {
...
'DATASTORE': 'datastore',

}

The resulting configuration file should look like this::

import os

PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__))

ALLOWED_HOSTS = ['127.0.0.1', 'localhost', '::1']
PROXY_ALLOWED_HOSTS = ("127.0.0.1", 'localhost', '::1',)

POSTGIS_VERSION = (2, 3, 0)

SITEURL = "http://localhost/"

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'geonode',
'USER': 'geonode',
'PASSWORD': 'geonode',

},
vector datastore for uploads
'datastore' : {

'ENGINE': 'django.contrib.gis.db.backends.postgis',
#'ENGINE': '', # Empty ENGINE name disables
'NAME': 'geonode_data',
'USER' : 'geonode',
'PASSWORD' : 'geonode',
'HOST' : 'localhost',
'PORT' : '5432',

}
}

GEOSERVER_LOCATION = os.getenv(
'GEOSERVER_LOCATION', 'http://localhost/geoserver/'

)
GEOSERVER_PUBLIC_LOCATION = os.getenv(

'GEOSERVER_PUBLIC_LOCATION', 'http://localhost:8001/geoserver/'
)

(continues on next page)

3.2. Tutorials 131

GeoNode Documentation, Release 2.8

(continued from previous page)

OGC (WMS/WFS/WCS) Server Settings
OGC_SERVER = {

'default': {
'BACKEND': 'geonode.geoserver',
'LOCATION': GEOSERVER_LOCATION,
'LOGIN_ENDPOINT': 'j_spring_oauth2_geonode_login',
'LOGOUT_ENDPOINT': 'j_spring_oauth2_geonode_logout',
PUBLIC_LOCATION needs to be kept like this because in dev mode
the proxy won't work and the integration tests will fail
the entire block has to be overridden in the local_settings
'PUBLIC_LOCATION': GEOSERVER_PUBLIC_LOCATION,
'USER' : 'admin',
'PASSWORD' : 'geoserver',
'MAPFISH_PRINT_ENABLED' : True,
'PRINT_NG_ENABLED' : True,
'GEONODE_SECURITY_ENABLED' : True,
'GEOGIG_ENABLED' : False,
'WMST_ENABLED' : False,
'BACKEND_WRITE_ENABLED': True,
'WPS_ENABLED' : False,
'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.path.abspath(os.path.

→˓join(PROJECT_ROOT, os.pardir)),
Set to dictionary identifier of database containing spatial data in

→˓DATABASES dictionary to enable
'DATASTORE': 'datastore', #'datastore',

}
}

If you want to enable Mosaics use the following configuration
#UPLOADER = {
'BACKEND': 'geonode.rest',
'BACKEND': 'geonode.importer',
'OPTIONS': {
'TIME_ENABLED': True,
'MOSAIC_ENABLED': True,
'GEOGIG_ENABLED': False,
}
#}

CATALOGUE = {
'default': {

The underlying CSW implementation
default is pycsw in local mode (tied directly to GeoNode Django DB)
'ENGINE': 'geonode.catalogue.backends.pycsw_local',
pycsw in non-local mode
'ENGINE': 'geonode.catalogue.backends.pycsw_http',
GeoNetwork opensource
'ENGINE': 'geonode.catalogue.backends.geonetwork',
deegree and others
'ENGINE': 'geonode.catalogue.backends.generic',

The FULLY QUALIFIED base url to the CSW instance for this GeoNode
'URL': '%scatalogue/csw' % SITEURL,
'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',

(continues on next page)

132 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

login credentials (for GeoNetwork)
'USER': 'admin',
'PASSWORD': 'admin',

}
}

Default preview library
GEONODE_CLIENT_LAYER_PREVIEW_LIBRARY = 'geoext'

Initialize GeoNode

As user geonode, initialize the db, by creating the schema tables and populating the initial data::

cd /opt/apps/geonode/geonode/
python manage.py migrate
python manage.py loaddata geonode/base/fixtures/initial_data.json

Now create the admin user for GeoNode running the following:

python manage.py createsuperuser

You will be prompted for the username, email address and password for the user.

Warning: It is required to have at least one admin user called admin. If you want to break for security con-
cerns this rule then you have to edit the default OAuth2 initial configuration geonode/base/fixtures/
default_oauth_apps.json accordingly.

Finally create the default configuration for the OAuth2 application:

python manage.py loaddata geonode/base/fixtures/default_oauth_apps.json

In case your GeoNode will be exposed on a different port (i.e. 8001 in case of vagrant port forwarding) from the
default 80 please make sure to do not forget to run the following commands:

Fix the site url from the local_settings file:

python manage.py fixsitename

Setting up OAuth2 configuration:

Set oauth keys
export GEOSERVER_DATA_DIR=/var/lib/tomcat/webapps/geoserver/data
export NEWIP=localhost:8001 # Case of proxied geonode for example
oauth_keys=$(python manage.py fixoauthuri 2>&1)
oauth_keys_cleaned=$(echo $oauth_keys | cut -d " " -f 15)
client_id=`echo $oauth_keys_cleaned | cut -d \, -f 1`
client_secret=`echo $oauth_keys_cleaned | cut -d \, -f 2`
oauth_config="$GEOSERVER_DATA_DIR/security/filter/geonode-oauth2/config.xml"
sudo sed -i "s|<cliendId>.*</cliendId>|<cliendId>$client_id</cliendId>|g" $oauth_
→˓config
sudo sed -i "s|<clientSecret>.*</clientSecret>|<clientSecret>$client_secret</
→˓clientSecret>|g" $oauth_config
sudo sed -i "s/localhost:8000/localhost/g" $oauth_config

(continues on next page)

3.2. Tutorials 133

GeoNode Documentation, Release 2.8

(continued from previous page)

sudo sed -i "s|<userAuthorizationUri>.*</userAuthorizationUri>|<userAuthorizationUri>
→˓http://$NEWIP/o/authorize/</userAuthorizationUri>|g" $oauth_config
sudo sed -i "s|<logoutUri>.*</logoutUri>|<logoutUri>http://$NEWIP/account/logout/</
→˓logoutUri>|g" $oauth_config
sudo sed -i "s|localhost:8080/geoserver|$NEWIP/geoserver/|g" $oauth_config
sudo sed -i "s|localhost:8000|localhost|g" "$GEOSERVER_DATA_DIR/security/role/geonode
→˓REST role service/config.xml"

Restart Tomcat to load new configuration settings:

sudo systemctl restart tomcat@geoserver

Run the command updatelayers:

python manage.py updatelayers

Run the command updatemaplayerip:

python manage.py updatemaplayerip

Download GeoNode data to be served by Apache. You will be prompted for confirmation:

python manage.py collectstatic

Create uploaded folder:

mkdir -p /opt/apps/geonode/geonode/geonode/uploaded/

Isolate GeoNode installation

In case you prefer to isolate the GeoNode installation from the rest of your OS the most used strategy is to rely on a
virtual environment. You can also install all the dependencies with a totally separated version of the python binary as
explained in the section install_venv_httpd.

Apache HTTP Server Installation

Install and setup base packages

Install Apache:

sudo yum install -y httpd

And additional modules:

sudo yum install -y mod_ssl mod_proxy_html mod_wsgi

Important: Please be aware that the WSGI module for Apache shipped by the CentOS repositories is pretty much old
and obsolete. It is recommended to separately replace it with the latest binary from the official mod_wsgi project. Ref-
erer to install_venv_httpd_wsgi. Alternatively you can replace your HTTP web server with the combination of Nginx
and Gunicorn for publishing GeoServer and the Django application as explained in install_venv_nginx_gunicorn.

134 Chapter 3. Table of contents

http://www.modwsgi.org/
https://nginx.org
http://gunicorn.org/

GeoNode Documentation, Release 2.8

Firewall configuration

Allow requests on port 80 through the firewall:

sudo firewall-cmd --zone=public --add-service=http --permanent
sudo firewall-cmd --reload

Security issues

There are a couple of security issues to fix when dealing with GeoNode.

GeoNode will run inside httpd through WSGI. This means that httpd will try to perform external connection toward
the DB. This is usually blocked by default by strict security policies, so we need to relax them:

sudo setsebool -P httpd_can_network_connect_db 1

The other issue is about SELinux itself: it is not WSGI friendly, so we’ll have to disable it. Edit the file /etc/
sysconfig/selinux and change the line:

SELINUX=enforcing

into:

SELINUX=permissive

and reboot the machine.

httpd configuration

As root, create the file /etc/httpd/conf.d/geonode.conf and insert into it this content.

Add thumbs and layers folders:

mkdir -p /opt/apps/geonode/geonode/geonode/static_root
mkdir -p /opt/apps/geonode/geonode/geonode/uploaded/thumbs
mkdir -p /opt/apps/geonode/geonode/geonode/uploaded/layers

Change permissions on GeoNode files and folders to allow Apache to read and edit them::

chmod +x /opt/apps/geonode/
sudo chown -R geonode /opt/apps/geonode/geonode
sudo chown geonode:apache /opt/apps/geonode/geonode/geonode/static/
sudo chown geonode:apache /opt/apps/geonode/geonode/geonode/uploaded/
sudo chown geonode:apache /opt/apps/geonode/geonode/geonode/static_root/
chmod -Rf 777 /opt/apps/geonode/geonode/geonode/uploaded/thumbs
chmod -Rf 777 /opt/apps/geonode/geonode/geonode/uploaded/layers

SSL configuration

If a secure HTTP communication is needed then you have to add a virtual host listening on a secure port::

3.2. Tutorials 135

GeoNode Documentation, Release 2.8

Listen 443
<VirtualHost *:443>

ServerName https://localhost
SSLEngine on
SSLCertificateFile "/path/to/demo.geonode.org.cert"
SSLCertificateKeyFile "/path/to/demo.geonode.org.key"

</VirtualHost>

In some cases even the proxy pass has to challenge with a secured GeoServer instance listening in HTTPS. In this
situation Apache has to verify the remote server certificate with the certificate of its own Certification Authority (CA).
For this purpose the concatenation of the various PEM-encoded certificate files can be used accordingly with this
directive::

SSLProxyCACertificateFile /usr/local/apache2/conf/ssl.crt/ca-bundle-geoserver-remote-
→˓server.crt

Alternatively the directive that sets the directory where you keep the certificates of Certification Authorities (CAs)
whose remote servers you deal with can be used::

SSLProxyCACertificatePath /usr/local/apache2/conf/ssl.crt/

Note: If the verification of GeoServer certificate is not required then the SSL proxy has to be instructed with a
directive which excludes the need of a valid certificate::

SSLProxyVerify none (instead of "require")

If a strong authentication with client certificates is needed then the secure virtual host has to contain at least these
directives::

SSLVerifyClient require
SSLVerifyDepth 1
SSLCACertificateFile "conf/ssl.crt/geonode-ca.crt"

Note: This configuration above requires a client certificate which has to be directly signed by the GeoNode CA
certificate in geonode-ca.crt. In certain cases you do not want the verification of GeoServer certificate as mandatory
hence it is enough to apply the value none

Quick administration

If you change any directive then restart httpd to make it reload the new configurations::

sudo systemctl restart httpd

To automatically start Apache at boot, run::

sudo systemctl enable httpd

136 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2.1.2.9 Network configuration issues

In this section you will find instructions how to understand any problem of connectivity when GeoNode is being
exposed through a network different either from a local computer or a server.

GeoNode being proxied

A similar situations can be encountered in this scenarios:

• GeoNode behind a proxy server like HAProxy or Squid.

• GeoNode in a Vagrant machine with NAT mode and port forwarding

Development mode

Note: Please note that this section is relevant only if your development machine is a Vagrant box and the GeoNode
application is being accessed from a browser and an IP address of your host machine, usually your computer.

Assuming the following port forwarding configuration:

+------------------------+------------+------------+

Component | Host port | Guest port |

+========================+============+============+ | Django | 8001
| 8000 | +————————+————+————+ | GeoServer | 8080 | 8080 |
+————————+————+————+

Important: In such a situation it is mandatory to start your development server on all IPv4 addresses of your guest
machine in order to be reachable from the host.

python manage.py runserver 0.0.0.0:8000

or with Paver

paver start_django -b 0.0.0.0:8000

You have to review and make sure the following configurations are applied in GeoServer for correct communications:

- Configuration of GeoNode REST role service with proper `baseUrl` in the
→˓:file:`config.xml` under the directory `$GEOSERVER_DATA_DIR/security/role/geonode\
→˓REST\ role\ service/`

<baseUrl>http://localhost:8000/</baseUrl>
<!-- base url of geonode web server -->

• Configuration of GeoServer security for the oauth2 provider in the config.xml under the directory
$GEOSERVER_DATA_DIR/security/filter/geonode-oauth2/

3.2. Tutorials 137

http://www.haproxy.org/
http://www.squid-cache.org/

GeoNode Documentation, Release 2.8

<!-- GeoNode accessTokenUri -->
<accessTokenUri>http://localhost:8000/o/token/</accessTokenUri>

<!-- GeoNode userAuthorizationUri -->
<userAuthorizationUri>http://localhost:8001/o/authorize/</
→˓userAuthorizationUri>

<!-- GeoServer Public URL -->
<redirectUri>http://localhost:8080/geoserver</redirectUri>

<!-- GeoNode checkTokenEndpointUrl -->
<checkTokenEndpointUrl>http://localhost:8000/api/o/v4/tokeninfo/</
→˓checkTokenEndpointUrl>

<!-- GeoNode logoutUri -->
<logoutUri>http://localhost:8001/account/logout/</logoutUri>

<proxyBaseUrl>http://localhost:80/geoserver</proxyBaseUrl>
<!-- proxy base url of geonode web server -->

GeoNode outbound connections

SELinux

Security-Enhanced Linux (SELinux) is a security mechanism implemented at kernel level. Generally when SELinux
is enabled communication issues could arise. First of all let’s see how to have a look at its status with this command:

.. code-block:: console

sestatus

The possible values of SELinux status can be enabled or disabled while if it is enabled the Current mode can vary
between enforcing and permissive. If SELinux is enabled its policies will only allow services access to recognized
ports associated with those services. For example if we wanted to allow Django server to listen on tcp port 800 then a
new rule has to be added for such purpose. Simply by using the command semanage below:

.. code-block:: console

sudo semanage port -a -t http_port_t -p tcp 8000

Verify if the rule has been achieved by running:

.. code-block:: console

sudo semanage port -l

3.2.1.2.10 Windows Binary Installer

The GeoNode Windows Binary installer can be downloaded here.

138 Chapter 3. Table of contents

http://build.geonode.org/windows/

GeoNode Documentation, Release 2.8

Current Versions

1. GeoNode-2.4.x.exe; Old version of GeoNode, not fully mantained anymore.

2. GeoNode-2.5.5.exe; Maintenance version of GeoNode, still based on old security system.

3. GeoNode-2.6.x.exe; Stable version of GeoNode, based on new OAuth2 based security system.

4. GeoNode-master.exe; Development version of GeoNode, not stable.

The Installer

The Windows binary installer is an executable file which automatically sets up your system for GeoNode. It will install
everything on the target folder, chosen by the user as a first step.

In particular the installer configures the following components:

1. An instance of the Oracle JRE 32bits

2. An instance of Python 2.7.10 32bit with GDAL 1.11 extensions

3. PostgreSQL with PostGIS spatial extensions

4. Apache Tomcat with GeoServer for GeoNode webapp

5. Apache HTTPD Server 2.49 (WinLAMP version)

The source code of the installer, along with all the components needed to build a custom executable and instructions,
can be found at https://github.com/GeoNode/geonode-win-installer

Warning: In order to install GeoNode using the binary installer, you will need Windows Administrator rights.

Step by step GeoNode Windows installation

1. Execute the binary file downloaded from GeoNode servers

2. The first time you could get a Windows warning about the unknown publisher. Click on “Run Anyway” button
in order to proceed

3. Click “Next” at the welcome screen

4. Read and accept the licence agreement on the next screen

3.2. Tutorials 139

http://build.geonode.org/windows/GeoNode-2.4.x.exe
http://build.geonode.org/windows/GeoNode-2.5.5.exe
http://build.geonode.org/windows/GeoNode-2.6.x.exe
http://build.geonode.org/windows/GeoNode-master.exe
https://github.com/GeoNode/geonode-win-installer
http://build.geonode.org/windows/

GeoNode Documentation, Release 2.8

140 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 141

GeoNode Documentation, Release 2.8

5. Choose the install location. This is the folder where all the pieces of the GeoNode environment will be placed.
You can also keep the default one.

Note: It is highly recommended to avoid long names with spaces and strange character. Also avoid positions
which are system protected. Even if the installer runs with Administrator rights, you may encounter issues
customizing GeoNode in the future.

6. Choose the name of the Start Menu folder. This is the name of the folder which will be created into the “Windows
App Toolbar”. You can also keep the default one.

7. Next step will install the JEW 1.7 32bit version on the installation folder.

Warning: Before proceeding, please be sure you don’t have other JRE 1.7 32bit installation already present
on your system. In order to do that please follow the instructions below:

Go to the “Control Panel”

Click on “Unistall a Program”

142 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 143

GeoNode Documentation, Release 2.8

144 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Check that the menu does not contain entries similar to the one shown in the following figure

8. Choose the location of the external GeoServer Data directory (where the physical geospatial files will be placed).
It is recommended to keep the default value.

9. Select the minimum and maximum values for the memory to assign to the GeoServer JVM. This depends mainly
from the RAM available on the target PC. The default values should work on most cases. Increase the Maximum
Heap Memory if possible.

10. Choose the user and password for the GeoServer Administrator outside GeoNode authentication. The form
presents the default ones.

11. Choose the TCP/IP port to run Apache Tomcat. The default value (8080) is widely used from a lot of installation.
If your system is not fully clean, it is kindly suggested to choose another value between 1024 and 65535.

12. Proceed with the installation of Python 2.7.10 32bit.

This will be placed into the target GeoNode installation folder along with GDAL 1.11 extensions

13. Proceed with the installation of PostgreSQL 8.4.22 and PostGIS 1.5.4.

Note: The installation proceeds silently and using the default values:

• PostgreSQL: TCP/IP Port 5454

• User/password: postgres/g30Nod3-P0stgr3s

14. Ready to install. The page summarizes the user choices and asks to finish the installation process.

3.2. Tutorials 145

GeoNode Documentation, Release 2.8

146 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 147

GeoNode Documentation, Release 2.8

148 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 149

GeoNode Documentation, Release 2.8

150 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 151

GeoNode Documentation, Release 2.8

152 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 153

GeoNode Documentation, Release 2.8

15. Click “Next” and proceed with the installation and automatic configuration of Apache Tomcat 7.0.65535

16. Confirm “Yes” in order to complete the GeoNode installation and configuration process.

17. Wait until the process finishes copying the files

18. At a certain point the process configures the database

154 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 155

GeoNode Documentation, Release 2.8

and asks to copy the GeoNode static resources.

Warning: Enter “yes” and click “Enter”. The system will wait the user input!

19. As a final step, the process automatically creates 8 sample layers on GeoNode

20. You need to “Reboot” the system in order to make everything working fine

21. Once the reboot has done, if everything has worked, you should be able to access the GeoNode Home directory
on your local computer directly from the Windows App Toolbar

Congratulations! The GeoNode setup has successfully completed.

How your system has been updated after the GeoNode Setup

1. At the end of the installation, there will be 3 new Windows Services

Access the Windows local services from the “Control Panel”

The following services should be up & running at the end of the process and after a system reboot

2. At the end of the installation process, there will be few new Environment System Variables

Access the Environment variables from the System panel

Access the System Properties and click on “Environment Variables”

The new Environment Variables are:

156 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 157

GeoNode Documentation, Release 2.8

158 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 159

GeoNode Documentation, Release 2.8

160 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 161

GeoNode Documentation, Release 2.8

• GDAL_HOME; pointing to the folder of GDAL 1.11

• GDAL_LIBRARY_PATH; pointing to the gdal111 dll

• GEOS_LIBRARY_PATH; pointing to the GEOS library dll

• JRE_HOME; pointing to the JRE 1.7 installed at the beginning of the process

• GEONODE_PATHEXT; all the Python paths which will be added to the Windows default PATH

3.2.1.2.11 GeoNode (v2.8) update from older versions

This part of the documentation describes the complete setup process for GeoNode update from older versions.

Guidelines

Update from GeoNode 2.6.3 to GeoNode 2.7+

Warning: Before you proceed with the following steps, it is recommended that you perform a full backup of your
current environment. At the end of this section thare’s a paragraph listing the steps required to perform a full / hard
backup of the whole stack.

Upgrade Development Environment

Prerequisites

1. You did backup of the old Environment

2. You cloned GeoNode from GitHub (https://github.com/GeoNode/geonode/tree/2.6.x)

162 Chapter 3. Table of contents

https://github.com/GeoNode/geonode/tree/2.6.x

GeoNode Documentation, Release 2.8

3.2. Tutorials 163

GeoNode Documentation, Release 2.8

164 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 165

GeoNode Documentation, Release 2.8

Steps

• From geonode git branch do

to refresh all git repos and commits
git pull

get the 2.7.x code: if you want to keep your local copy
WARNING: you will need to fix conflicts manually
git pull origin 2.7.x

if you want to switch to the new branch
git checkout 2.7.x
git pull

• Update the Python libraries

– Exit from the current workspace

deactivate

– Create a new workspace

mkvirtualenv geonode-2.7.x

– Update the requirements

pip install pip --upgrade
pip install -r requirements.txt --upgrade
pip install -e . --upgrade --no-cache

WARNING: your GDAL version might be different. Use the right one
→˓accordingly to gdal-config --version
pip install pygdal==2.2.1.3

Note: Starting from an old environment will require you to manually remove some old deps
before runnin any kind of management command.

pip uninstall geonode-user-accounts -y
pip uninstall django-pagination -y
pip uninstall pinax-theme-bootstrap-account -y

• Update/tweak GeoNode local_settings (for GeoServer)

Left file: D:\work\code\python\geonode\geonode-2.7.
→˓x\geonode\local_settings.py.geoserver.sample
Right file: D:\work\code\python\geonode\geonode-2.6.
→˓x\geonode\local_settings.py.geoserver.sample
21 import os
→˓ = 21
→˓import os
--
→˓------
22 from geonode.settings import *
→˓ +-
--
→˓------

(continues on next page)

166 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

23
→˓ = 22
24 PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__))
→˓ 23
→˓PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__))
25
→˓ 24
--
→˓------
26 MEDIA_ROOT = os.getenv('MEDIA_ROOT', os.path.join(PROJECT_
→˓ROOT, "uploaded")) +-
--
→˓------
27
→˓ =
--
→˓------
28 STATIC_ROOT = os.getenv('STATIC_ROOT',
→˓ +-
29 os.path.join(PROJECT_ROOT, "static_
→˓root")
30)
--
→˓------
31
→˓ =
--
→˓------
32 # SECRET_KEY = '************************'
→˓ +-
--
→˓------
33
→˓ =
--
→˓------
34 SITEURL = "http://localhost:8000/"
→˓ <> 25
→˓SITEURL = "http://localhost:8000/"
--
→˓------
35
→˓ = 26
--
→˓------
36 ALLOWED_HOSTS = ['localhost', 'geonode.example.com']
→˓ +-
--
→˓------
37
→˓ =
--
→˓------
38 # TIME_ZONE = 'Europe/Paris'
→˓ +-
--
→˓------

(continues on next page)

3.2. Tutorials 167

GeoNode Documentation, Release 2.8

(continued from previous page)

39
→˓ =
40 DATABASES = {
→˓ 27
→˓DATABASES = {
41 'default': {
→˓ 28
→˓ 'default': {
42 'ENGINE': 'django.db.backends.postgresql_psycopg2',
→˓ 29
→˓ 'ENGINE': 'django.db.backends.postgresql_psycopg2',
43 'NAME': 'geonode',
→˓ 30
→˓ 'NAME': 'geonode',
44 'USER': 'geonode',
→˓ 31
→˓ 'USER': 'geonode',
45 'PASSWORD': 'geonode',
→˓ 32
→˓ 'PASSWORD': 'geonode',
--
→˓------
46 'HOST' : 'localhost',
→˓ +-
47 'PORT' : '5432',
--
→˓------
48 },
→˓ = 33
→˓ },
49 # vector datastore for uploads
→˓ 34
→˓ # vector datastore for uploads
50 'datastore': {
→˓ 35
→˓ 'datastore' : {
51 #'ENGINE': 'django.contrib.gis.db.backends.postgis',
→˓ 36
→˓ #'ENGINE': 'django.contrib.gis.db.backends.postgis',
52 'ENGINE': '', # Empty ENGINE name disables
→˓ 37
→˓ 'ENGINE': '', # Empty ENGINE name disables
--
→˓------
53 'NAME': 'geonode_data',
→˓ <> 38
→˓ 'NAME': 'geonode',
--
→˓------
54 'USER' : 'geonode',
→˓ = 39
→˓ 'USER' : 'geonode',
55 'PASSWORD': 'geonode',
→˓ 40
→˓ 'PASSWORD' : 'geonode',
56 'HOST': 'localhost',
→˓ 41
→˓ 'HOST' : 'localhost', (continues on next page)

168 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

57 'PORT': '5432',
→˓ 42
→˓ 'PORT' : '5432',
58 }
→˓ 43
→˓ }
59 }
→˓ 44 }
60
→˓ 45
61 GEOSERVER_LOCATION = os.getenv(
→˓ 46
→˓GEOSERVER_LOCATION = os.getenv(
62 'GEOSERVER_LOCATION', 'http://localhost:8080/geoserver/'
→˓ 47
→˓ 'GEOSERVER_LOCATION', 'http://localhost:8080/geoserver/'
63)
→˓ 48)
64
65 GEOSERVER_PUBLIC_LOCATION = os.getenv(
→˓ 49
→˓GEOSERVER_PUBLIC_LOCATION = os.getenv(
--
→˓------
66 # 'GEOSERVER_PUBLIC_LOCATION', '{}geoserver/'.
→˓format(SITEURL)
→˓ <>
67 'GEOSERVER_LOCATION', 'http://localhost:8080/geoserver/'
→˓ 50
→˓ 'GEOSERVER_PUBLIC_LOCATION', 'http://localhost:8080/geoserver/
→˓'
68)
--
→˓------
69
→˓ =
--
→˓------
70 OGC_SERVER_DEFAULT_USER = os.getenv(
→˓ +-
71 'GEOSERVER_ADMIN_USER', 'admin'
72)
--
→˓------
73
→˓ =
--
→˓------
74 OGC_SERVER_DEFAULT_PASSWORD = os.getenv(
→˓ +-
75 'GEOSERVER_ADMIN_PASSWORD', 'geoserver'
--
→˓------
76)
→˓ = 51)
77
→˓ 52

(continues on next page)

3.2. Tutorials 169

GeoNode Documentation, Release 2.8

(continued from previous page)

78 # OGC (WMS/WFS/WCS) Server Settings
→˓ 53 #
→˓OGC (WMS/WFS/WCS) Server Settings
79 OGC_SERVER = {
→˓ 54
→˓OGC_SERVER = {
80 'default': {
→˓ 55
→˓ 'default': {
81 'BACKEND': 'geonode.geoserver',
→˓ 56
→˓ 'BACKEND': 'geonode.geoserver',
--
→˓------
--
→˓------
83 'LOGIN_ENDPOINT': 'j_spring_oauth2_geonode_login',
→˓ = 58
→˓ 'LOGIN_ENDPOINT': 'j_spring_oauth2_geonode_login',
84 'LOGOUT_ENDPOINT': 'j_spring_oauth2_geonode_logout',
→˓ 59
→˓ 'LOGOUT_ENDPOINT': 'j_spring_oauth2_geonode_logout',
85 # PUBLIC_LOCATION needs to be kept like this because
→˓in dev mode 60
→˓ # PUBLIC_LOCATION needs to be kept like this because in
→˓dev mode
86 # the proxy won't work and the integration tests will
→˓fail 61
→˓ # the proxy won't work and the integration tests will fail
87 # the entire block has to be overridden in the local_
→˓settings 62
→˓ # the entire block has to be overridden in the local_
→˓settings
88 'PUBLIC_LOCATION': GEOSERVER_PUBLIC_LOCATION,
→˓ 63
→˓ 'PUBLIC_LOCATION': GEOSERVER_PUBLIC_LOCATION,
--
→˓------
89 'USER' : OGC_SERVER_DEFAULT_USER,
→˓ <> 64
→˓ 'USER' : 'admin',
90 'PASSWORD' : OGC_SERVER_DEFAULT_PASSWORD,
→˓ 65
→˓ 'PASSWORD' : 'geoserver',
--
→˓------
91 'MAPFISH_PRINT_ENABLED' : True,
→˓ = 66
→˓ 'MAPFISH_PRINT_ENABLED' : True,
92 'PRINT_NG_ENABLED' : True,
→˓ 67
→˓ 'PRINT_NG_ENABLED' : True,
93 'GEONODE_SECURITY_ENABLED' : True,
→˓ 68
→˓ 'GEONODE_SECURITY_ENABLED' : True,
--
→˓------

(continues on next page)

170 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

94 'GEOFENCE_SECURITY_ENABLED' : True,
→˓ +-
--
→˓------
95 'GEOGIG_ENABLED' : False,
→˓ = 69
→˓ 'GEOGIG_ENABLED' : False,
96 'WMST_ENABLED' : False,
→˓ 70
→˓ 'WMST_ENABLED' : False,
97 'BACKEND_WRITE_ENABLED': True,
→˓ 71
→˓ 'BACKEND_WRITE_ENABLED': True,
98 'WPS_ENABLED': False,
→˓ 72
→˓ 'WPS_ENABLED' : False,
99 'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' %
→˓os.path.abspath(os.path.join(PROJECT_ROOT, os.pardir)), 73
→˓ 'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.
→˓path.abspath(os.path.join(PROJECT_ROOT, os.pardir)),
100 # Set to dictionary identifier of database containing
→˓spatial data in DATABASES dictionary to enable 74
→˓ # Set to dictionary identifier of database containing
→˓spatial data in DATABASES dictionary to enable
101 'DATASTORE': '', # 'datastore',
→˓ 75
→˓ 'DATASTORE': '', #'datastore',
--
→˓------
102 'PG_GEOGIG': False,
→˓ +-
103 'TIMEOUT': 10 # number of seconds to allow for HTTP
→˓requests
--
→˓------
104 }
→˓ = 76
→˓ }
105 }
→˓ 77 }
106
→˓ 78
107 # If you want to enable Mosaics use the following
→˓configuration
→˓ 79 # If you want to enable Mosaics use the following
→˓configuration
--
→˓------
108 UPLOADER = {
→˓ <> 80
→˓#UPLOADER = {
109 # 'BACKEND': 'geonode.rest',
→˓ 81 #
→˓# 'BACKEND': 'geonode.rest',
110 'BACKEND': 'geonode.importer',
→˓ 82 #
→˓ 'BACKEND': 'geonode.importer',

(continues on next page)

3.2. Tutorials 171

GeoNode Documentation, Release 2.8

(continued from previous page)

111 'OPTIONS': {
→˓ 83 #
→˓ 'OPTIONS': {
112 'TIME_ENABLED': True,
→˓ 84 #
→˓ 'TIME_ENABLED': True,
113 'MOSAIC_ENABLED': False,
→˓ 85 #
→˓ 'MOSAIC_ENABLED': True,
114 'GEOGIG_ENABLED': False,
→˓ 86 #
→˓ 'GEOGIG_ENABLED': False,
115 },
→˓ 87 #
→˓ }
116 'SUPPORTED_CRS': [
117 'EPSG:4326',
118 'EPSG:3785',
119 'EPSG:3857',
120 'EPSG:900913',
121 'EPSG:32647',
122 'EPSG:32736'
123],
124 'SUPPORTED_EXT': [
125 '.shp',
126 '.csv',
127 '.kml',
128 '.kmz',
129 '.json',
130 '.geojson',
131 '.tif',
132 '.tiff',
133 '.geotiff',
134 '.gml',
135 '.xml'
136]
→˓ 88 #}
137 }
→˓ 89
--
→˓------
138
→˓ = 90
139 CATALOGUE = {
→˓ 91
→˓CATALOGUE = {
140 'default': {
→˓ 92
→˓ 'default': {
141 # The underlying CSW implementation
→˓ 93
→˓ # The underlying CSW implementation
142 # default is pycsw in local mode (tied directly to
→˓GeoNode Django DB) 94
→˓ # default is pycsw in local mode (tied directly to
→˓GeoNode Django DB)
143 'ENGINE': 'geonode.catalogue.backends.pycsw_local',
→˓ 95
→˓ 'ENGINE': 'geonode.catalogue.backends.pycsw_local',

(continues on next page)

172 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

--
→˓------
--
→˓------
146 # GeoNetwork opensource
→˓ = 98
→˓ # GeoNetwork opensource
147 # 'ENGINE': 'geonode.catalogue.backends.geonetwork',
→˓ 99
→˓ # 'ENGINE': 'geonode.catalogue.backends.geonetwork',
148 # deegree and others
→˓ 100
→˓ # deegree and others
149 # 'ENGINE': 'geonode.catalogue.backends.generic',
→˓ 101
→˓ # 'ENGINE': 'geonode.catalogue.backends.generic',
150
→˓ 102
151 # The FULLY QUALIFIED base url to the CSW instance
→˓for this GeoNode
→˓103 # The FULLY QUALIFIED base url to the CSW instance
→˓for this GeoNode
--
→˓------
152 'URL': '%scatalogue/csw' % SITEURL,
→˓ <> 104
→˓ 'URL': '%scatalogue/csw' % SITEURL,
--
→˓------
153 # 'URL': 'http://localhost:8080/geonetwork/srv/en/csw
→˓', = 105
→˓ # 'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
154 # 'URL': 'http://localhost:8080/deegree-csw-demo-3.0.
→˓4/services', 106
→˓ # 'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/
→˓services',
155
→˓ 107
156 # login credentials (for GeoNetwork)
→˓ 108
→˓ # login credentials (for GeoNetwork)
157 'USER': 'admin',
→˓ 109
→˓ 'USER': 'admin',
158 'PASSWORD': 'admin',
→˓ 110
→˓ 'PASSWORD': 'admin',
159 }
→˓ 111
→˓ }
160 }
→˓ 112 }
161
→˓ 113
--
→˓------
162 # pycsw settings
→˓ +-(continues on next page)

3.2. Tutorials 173

GeoNode Documentation, Release 2.8

(continued from previous page)

163 PYCSW = {
164 # pycsw configuration
165 'CONFIGURATION': {
166 # uncomment / adjust to override server config system
→˓defaults
167 # 'server': {
168 # 'maxrecords': '10',
169 # 'pretty_print': 'true',
170 # 'federatedcatalogues': 'http://catalog.data.gov/
→˓csw'
171 # },
172 'metadata:main': {
173 'identification_title': 'GeoNode Catalogue',
174 'identification_abstract': 'GeoNode is an open
→˓source platform' \
175 ' that facilitates the creation, sharing, and
→˓collaborative use' \
176 ' of geospatial data',
177 'identification_keywords': 'sdi, catalogue,
→˓discovery, metadata,' \
178 ' GeoNode',
179 'identification_keywords_type': 'theme',
180 'identification_fees': 'None',
181 'identification_accessconstraints': 'None',
182 'provider_name': 'Organization Name',
183 'provider_url': SITEURL,
184 'contact_name': 'Lastname, Firstname',
185 'contact_position': 'Position Title',
186 'contact_address': 'Mailing Address',
187 'contact_city': 'City',
188 'contact_stateorprovince': 'Administrative Area',
189 'contact_postalcode': 'Zip or Postal Code',
190 'contact_country': 'Country',
191 'contact_phone': '+xx-xxx-xxx-xxxx',
192 'contact_fax': '+xx-xxx-xxx-xxxx',
193 'contact_email': 'Email Address',
194 'contact_url': 'Contact URL',
195 'contact_hours': 'Hours of Service',
196 'contact_instructions': 'During hours of service.
→˓Off on ' \
197 'weekends.',
198 'contact_role': 'pointOfContact',
199 },
200 'metadata:inspire': {
201 'enabled': 'true',
202 'languages_supported': 'eng,gre',
203 'default_language': 'eng',
204 'date': 'YYYY-MM-DD',
205 'gemet_keywords': 'Utility and governmental
→˓services',
206 'conformity_service': 'notEvaluated',
207 'contact_name': 'Organization Name',
208 'contact_email': 'Email Address',
209 'temp_extent': 'YYYY-MM-DD/YYYY-MM-DD',
210 }
211 }
212 }

(continues on next page)

174 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

--
→˓------
213
→˓ =
--
→˓------
214 # GeoNode javascript client configuration
→˓ +-
--
→˓------
215
→˓ =
--
→˓------
216 # default map projection
→˓ +-
217 # Note: If set to EPSG:4326, then only EPSG:4326 basemaps
→˓will work.
218 DEFAULT_MAP_CRS = "EPSG:3857"
--
→˓------
219
→˓ =
--
→˓------
220 # Where should newly created maps be focused?
→˓ +-
221 DEFAULT_MAP_CENTER = (0, 0)
--
→˓------
222
→˓ =
--
→˓------
223 # How tightly zoomed should newly created maps be?
→˓ +-
224 # 0 = entire world;
225 # maximum zoom is between 12 and 15 (for Google Maps,
→˓coverage varies by area)
226 DEFAULT_MAP_ZOOM = 0
--
→˓------
227
→˓ =
228 # Default preview library
→˓ 114 #
→˓Default preview library
--
→˓------
229 LAYER_PREVIEW_LIBRARY = 'geoext'
→˓ <> 115
→˓#LAYER_PREVIEW_LIBRARY = 'geoext'
230 #LAYER_PREVIEW_LIBRARY = 'leaflet'
231 #LEAFLET_CONFIG = {
232 # 'TILES': [
233 # # Find tiles at:
234 # # http://leaflet-extras.github.io/leaflet-providers/
→˓preview/ (continues on next page)

3.2. Tutorials 175

GeoNode Documentation, Release 2.8

(continued from previous page)

235 #
236 # # Map Quest
237 # ('Map Quest',
238 # 'http://otile4.mqcdn.com/tiles/1.0.0/osm/{z}/{x}/{y}
→˓.png',
239 # 'Tiles Courtesy of <a href="http://www.mapquest.com/
→˓">MapQuest '
240 # '— Map data © '
241 # '
→˓OpenStreetMap'),
242 # # Stamen toner lite.
243 # # ('Watercolor',
244 # # 'http://{s}.tile.stamen.com/watercolor/{z}/{x}/{y}
→˓.png',
245 # # 'Map tiles by Stamen
→˓Design, \
246 # # <a href="http://creativecommons.org/licenses/by/3.
→˓0">CC BY 3.0 — Map data © \
247 # # OpenStreetMap</
→˓a> contributors, \
248 # # <a href="http://creativecommons.org/licenses/by-
→˓sa/2.0/">CC-BY-SA'),
249 # # ('Toner Lite',
250 # # 'http://{s}.tile.stamen.com/toner-lite/{z}/{x}/{y}
→˓.png',
251 # # 'Map tiles by Stamen
→˓Design, \
252 # # <a href="http://creativecommons.org/licenses/by/3.
→˓0">CC BY 3.0 — Map data © \
253 # # OpenStreetMap</
→˓a> contributors, \
254 # # <a href="http://creativecommons.org/licenses/by-
→˓sa/2.0/">CC-BY-SA'),
255 #],
256 # 'PLUGINS': {
257 # 'esri-leaflet': {
258 # 'js': 'lib/js/esri-leaflet.js',
259 # 'auto-include': True,
260 # },
261 # 'leaflet-fullscreen': {
262 # 'css': 'lib/css/leaflet.fullscreen.css',
263 # 'js': 'lib/js/Leaflet.fullscreen.min.js',
264 # 'auto-include': True,
265 # },
266 # },
267 # 'SRID': 3857,
268 # 'RESET_VIEW': False
269 #}
--
→˓------
270
→˓ =
--
→˓------
271 ALT_OSM_BASEMAPS = os.environ.get('ALT_OSM_BASEMAPS', False)
→˓ +-
272 CARTODB_BASEMAPS = os.environ.get('CARTODB_BASEMAPS', False)

(continues on next page)

176 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

273 STAMEN_BASEMAPS = os.environ.get('STAMEN_BASEMAPS', False)
274 THUNDERFOREST_BASEMAPS = os.environ.get('THUNDERFOREST_
→˓BASEMAPS', False)
275 MAPBOX_ACCESS_TOKEN = os.environ.get('MAPBOX_ACCESS_TOKEN',
→˓None)
276 BING_API_KEY = os.environ.get('BING_API_KEY', None)
--
→˓------
277
→˓ =
--
→˓------
278 MAP_BASELAYERS = [{
→˓ +-
279 "source": {"ptype": "gxp_olsource"},
280 "type": "OpenLayers.Layer",
281 "args": ["No background"],
282 "name": "background",
283 "visibility": False,
284 "fixed": True,
285 "group":"background"
286 },
287 # {
288 # "source": {"ptype": "gxp_olsource"},
289 # "type": "OpenLayers.Layer.XYZ",
290 # "title": "TEST TILE",
291 # "args": ["TEST_TILE", "http://test_tiles/tiles/${z}/${x}
→˓/${y}.png"],
292 # "name": "background",
293 # "attribution": "© TEST TILE",
294 # "visibility": False,
295 # "fixed": True,
296 # "group":"background"
297 # },
298 {
299 "source": {"ptype": "gxp_osmsource"},
300 "type": "OpenLayers.Layer.OSM",
301 "name": "mapnik",
302 "visibility": True,
303 "fixed": True,
304 "group": "background"
305 }]
--
→˓------
306
→˓ =
--
→˓------
307 if 'geonode.geoserver' in INSTALLED_APPS:
→˓ +-
308 LOCAL_GEOSERVER = {
309 "source": {
310 "ptype": "gxp_wmscsource",
311 "url": OGC_SERVER['default']['PUBLIC_LOCATION'] +
→˓"wms",
312 "restUrl": "/gs/rest"
313 }

(continues on next page)

3.2. Tutorials 177

GeoNode Documentation, Release 2.8

(continued from previous page)

314 }
315 baselayers = MAP_BASELAYERS
316 MAP_BASELAYERS = [LOCAL_GEOSERVER]
317 MAP_BASELAYERS.extend(baselayers)
--
→˓------
318
→˓ =
--
→˓------
319 # Use kombu broker by default
→˓ +-
320 # REDIS_URL = 'redis://localhost:6379/1'
321 # BROKER_URL = REDIS_URL
322 # CELERY_RESULT_BACKEND = REDIS_URL
323 CELERYD_HIJACK_ROOT_LOGGER = True
324 CELERYD_CONCURENCY = 1
325 # Set this to False to run real async tasks
326 CELERY_ALWAYS_EAGER = True
327 CELERYD_LOG_FILE = None
328 CELERY_REDIRECT_STDOUTS = True
329 CELERYD_LOG_LEVEL = 1
--
→˓------
330
→˓ =
--
→˓------
331 # Haystack Search Backend Configuration. To enable,
→˓ +-
332 # first install the following:
333 # - pip install django-haystack
334 # - pip install elasticsearch==2.4.0
335 # - pip install woosh
336 # - pip install pyelasticsearch
337 # Set HAYSTACK_SEARCH to True
338 # Run "python manage.py rebuild_index"
339 # HAYSTACK_SEARCH = False
340 # Avoid permissions prefiltering
341 SKIP_PERMS_FILTER = False
342 # Update facet counts from Haystack
343 HAYSTACK_FACET_COUNTS = True
344 HAYSTACK_CONNECTIONS = {
345 'default': {
346 'ENGINE': 'haystack.backends.elasticsearch2_backend.
→˓Elasticsearch2SearchEngine',
347 'URL': 'http://127.0.0.1:9200/',
348 'INDEX_NAME': 'haystack',
349 },
350 # 'db': {
351 # 'ENGINE': 'haystack.backends.simple_backend.
→˓SimpleEngine',
352 # 'EXCLUDED_INDEXES': ['thirdpartyapp.search_indexes.
→˓BarIndex'],
353 # }
354 }
355 HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.
→˓RealtimeSignalProcessor' (continues on next page)

178 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

356 # HAYSTACK_SEARCH_RESULTS_PER_PAGE = 20
--
→˓------
357
→˓ =
--
→˓------
358 LOGGING = {
→˓ +-
359 'version': 1,
360 'disable_existing_loggers': True,
361 'formatters': {
362 'verbose': {
363 'format': '%(levelname)s %(asctime)s %(module)s
→˓%(process)d '
364 '%(thread)d %(message)s'
365 },
366 'simple': {
367 'format': '%(message)s',
368 },
369 },
370 'filters': {
371 'require_debug_false': {
372 '()': 'django.utils.log.RequireDebugFalse'
373 }
374 },
375 'handlers': {
376 'null': {
377 'level': 'ERROR',
378 'class': 'django.utils.log.NullHandler',
379 },
380 'console': {
381 'level': 'DEBUG',
382 'class': 'logging.StreamHandler',
383 'formatter': 'simple'
384 },
385 'mail_admins': {
386 'level': 'ERROR', 'filters': ['require_debug_false
→˓'],
387 'class': 'django.utils.log.AdminEmailHandler',
388 }
389 },
390 "loggers": {
391 "django": {
392 "handlers": ["console"], "level": "ERROR", },
393 "geonode": {
394 "handlers": ["console"], "level": "DEBUG", },
395 "gsconfig.catalog": {
396 "handlers": ["console"], "level": "DEBUG", },
397 "owslib": {
398 "handlers": ["console"], "level": "DEBUG", },
399 "pycsw": {
400 "handlers": ["console"], "level": "ERROR", },
401 },
402 }
--
→˓------

(continues on next page)

3.2. Tutorials 179

GeoNode Documentation, Release 2.8

(continued from previous page)

403
→˓ =
--
→˓------
404 CORS_ORIGIN_ALLOW_ALL = True
→˓ +-
--
→˓------
405
→˓ =
--
→˓------
406 GEOIP_PATH = "/usr/local/share/GeoIP"
→˓ +-
--
→˓------
407
→˓ =
--
→˓------
408 MONITORING_ENABLED = True
→˓ +-
409 # add following lines to your local settings to enable
→˓monitoring
410 if MONITORING_ENABLED:
411 INSTALLED_APPS += ('geonode.contrib.monitoring',)
412 MIDDLEWARE_CLASSES += ('geonode.contrib.monitoring.
→˓middleware.MonitoringMiddleware',)
413 MONITORING_CONFIG = None
414 MONITORING_SERVICE_NAME = 'local-geonode'
--
→˓------

• Update the DB

DJANGO_SETTINGS_MODULE=geonode.local_settings paver sync

• Download the latest GeoServer WAR (https://build.geo-solutions.it/geonode/geoserver/latest/
/geoserver-2.12.2.war)

180 Chapter 3. Table of contents

https://build.geo-solutions.it/geonode/geoserver/latest//geoserver-2.12.2.war
https://build.geo-solutions.it/geonode/geoserver/latest//geoserver-2.12.2.war

GeoNode Documentation, Release 2.8

• Stop GeoServer

• Extract the WAR content and/or substitute the old one

move the old one
mv geoserver/ geoserver_old/

create an ampty folder for the new one
mkdir geoserver
cd geoserver

unzip the new GeoServer to the new folder
unzip /home/geosolutions/Downloads/geoserver-2.12.2.war

• Delete the notifier configuration by deleting the content of the GEOSERVER_DATA_DIR/
notifier folder

• Delete the printing configuration by deleting the content of the GEOSERVER_DATA_DIR/
printing folder

• Insert the content of the 2.12.2 data dir (https://build.geo-solutions.it/geonode/geoserver/latest/
/data-2.12.2.zip), specifically:

– The content of data/notifier, into the GEOSERVER_DATA_DIR/notifier
folder.

– The content of data/monitoring, into the GEOSERVER_DATA_DIR/monitoring
folder.

– The content of data/styles, into the GEOSERVER_DATA_DIR/styles folder.

– The content of data/user_projections, into the GEOSERVER_DATA_DIR/
user_projections folder.

• Update the GEOSERVER_DATA_DIR/geofence/geofence-server.properties as
follows

Left file: D:\tmp\data-2.12.2\data\geofence\geofence-server.properties
Right file: D:\tmp\data-2.9.x-oauth2\data\geofence\geofence-server.
→˓properties
13 useRolesToFilter=false
→˓ = 13 useRolesToFilter=false
14 acceptedRoles=
→˓ 14 acceptedRoles=
15
→˓ 15
16
→˓ 16
17 ### Cache configuration
→˓ 17 ### Cache configuration
18
→˓ 18
--
19 cacheSize=500000
→˓ <> 19 cacheSize=50000
20 cacheRefresh=6000000
→˓ 20 cacheRefresh=600000
21 cacheExpire=6000000
→˓ 21 cacheExpire=600000
--

(continues on next page)

3.2. Tutorials 181

https://build.geo-solutions.it/geonode/geoserver/latest//data-2.12.2.zip
https://build.geo-solutions.it/geonode/geoserver/latest//data-2.12.2.zip

GeoNode Documentation, Release 2.8

(continued from previous page)

22
→˓ =
--
23 gwc.context.suffix=gwc
→˓ +-
24 org.geoserver.rest.DefaultUserGroupServiceName=geonode REST role
→˓service
--

• Create/modify GEOSERVER_DATA_DIR/gwc/geowebcache-diskquota.xml as follows

File: D:\tmp\data-2.12.2\data\gwc\geowebcache-diskquota.xml
1 <gwcQuotaConfiguration> +-
2 <enabled>false</enabled>
3 <cacheCleanUpFrequency>10</cacheCleanUpFrequency>
4 <cacheCleanUpUnits>SECONDS</cacheCleanUpUnits>
5 <maxConcurrentCleanUps>2</maxConcurrentCleanUps>
6 <globalExpirationPolicyName>LRU</globalExpirationPolicyName>
7 <globalQuota>
8 <value>500</value>
9 <units>MiB</units>
10 </globalQuota>
11 <quotaStore>H2</quotaStore>
12 </gwcQuotaConfiguration>
--

• Create/modify GEOSERVER_DATA_DIR/logs/gwc-gs.xml as follows

Left file: D:\tmp\data-2.12.2\data\gwc-gs.xml
Right file: D:\tmp\data-2.9.x-oauth2\data\gwc-gs.xml
2 <version>1.1.0</version>
→˓ = 2 <version>1.1.0</
→˓version>
3 <directWMSIntegrationEnabled>true</directWMSIntegrationEnabled>
→˓ 3
→˓<directWMSIntegrationEnabled>true</directWMSIntegrationEnabled>
4 <WMSCEnabled>true</WMSCEnabled>
→˓ 4 <WMSCEnabled>true
→˓</WMSCEnabled>
5 <TMSEnabled>true</TMSEnabled>
→˓ 5 <TMSEnabled>true</
→˓TMSEnabled>
6 <securityEnabled>false</securityEnabled>
→˓ 6 <securityEnabled>
→˓false</securityEnabled>
7 <innerCachingEnabled>false</innerCachingEnabled>
→˓ 7
→˓<innerCachingEnabled>false</innerCachingEnabled>
--
8 <persistenceEnabled>true</persistenceEnabled>
→˓ <> 8
→˓<persistenceEnabled>false</persistenceEnabled>
--
9 <cacheProviderClass>class org.geowebcache.storage.blobstore.memory.
→˓guava.GuavaCacheProvider</cacheProviderClass> = 9
→˓<cacheProviderClass>class org.geowebcache.storage.blobstore.memory.
→˓guava.GuavaCacheProvider</cacheProviderClass>

(continues on next page)

182 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

10 <cacheConfigurations>
→˓ 10
→˓<cacheConfigurations>
11 <entry>
→˓ 11 <entry>
12 <string>class org.geowebcache.storage.blobstore.memory.guava.
→˓GuavaCacheProvider</string> 12 <string>
→˓class org.geowebcache.storage.blobstore.memory.guava.GuavaCacheProvider
→˓</string>
13 <InnerCacheConfiguration>
→˓ 13
→˓<InnerCacheConfiguration>
14 <hardMemoryLimit>16</hardMemoryLimit>
→˓ 14
→˓<hardMemoryLimit>16</hardMemoryLimit>
--
--
26 <defaultCachingGridSetIds>
→˓ = 26
→˓<defaultCachingGridSetIds>
27 <string>EPSG:4326</string>
→˓ 27 <string>
→˓EPSG:4326</string>
28 <string>EPSG:900913</string>
→˓ 28 <string>
→˓EPSG:900913</string>
29 </defaultCachingGridSetIds>
→˓ 29 </
→˓defaultCachingGridSetIds>
30 <defaultCoverageCacheFormats>
→˓ 30
→˓<defaultCoverageCacheFormats>
31 <string>image/png</string>
→˓ 31 <string>image/
→˓png</string>
--
32 <string>image/vnd.jpeg-png</string>
→˓ +-
--
33 <string>image/jpeg</string>
→˓ = 32 <string>image/
→˓jpeg</string>
34 <string>image/gif</string>
→˓ 33 <string>image/
→˓gif</string>
35 <string>image/png8</string>
→˓ 34 <string>image/
→˓png8</string>
36 </defaultCoverageCacheFormats>
→˓ 35 </
→˓defaultCoverageCacheFormats>
37 <defaultVectorCacheFormats>
→˓ 36
→˓<defaultVectorCacheFormats>
--
38 <string>application/json;type=utfgrid</string>
→˓ +-

(continues on next page)

3.2. Tutorials 183

GeoNode Documentation, Release 2.8

(continued from previous page)

--
39 <string>image/png</string>
→˓ = 37 <string>image/
→˓png</string>
--
40 <string>image/vnd.jpeg-png</string>
→˓ +-
--
41 <string>image/jpeg</string>
→˓ = 38 <string>image/
→˓jpeg</string>
42 <string>image/gif</string>
→˓ 39 <string>image/
→˓gif</string>
43 <string>image/png8</string>
→˓ 40 <string>image/
→˓png8</string>
44 </defaultVectorCacheFormats>
→˓ 41 </
→˓defaultVectorCacheFormats>
45 <defaultOtherCacheFormats>
→˓ 42
→˓<defaultOtherCacheFormats>
46 <string>image/png</string>
→˓ 43 <string>image/
→˓png</string>
--

→˓ -+ 44 <string>image/
→˓jpeg</string>

→˓ 45 <string>image/
→˓gif</string>

→˓ 46 <string>image/
→˓png8</string>
--
47 </defaultOtherCacheFormats>
→˓ = 47 </
→˓defaultOtherCacheFormats>
48 </GeoServerGWCConfig>
→˓ 48 </
→˓GeoServerGWCConfig>
--

• Create/modify GEOSERVER_DATA_DIR/logs/QUIET_LOGGING.properties as follows

This log4j configuration file needs to stay here, and is used as the
→˓default logging setup
during data_dir upgrades and in case the chosen logging config isn't
→˓available.
##
As GeoTools uses java.util.logging logging instead of log4j,
→˓GeoServer makes
the following mappings to adjust the log4j levels specified in this
→˓file to
the GeoTools logging system:

(continues on next page)

184 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

##
Log4J Level java.util.logging Level
--
ALL FINEST
TRACE FINER
DEBUG FINE (includes CONFIG)
INFO INFO
ERROR/ERROR ERRORING
ERROR SEVERE
OFF OFF

log4j.rootLogger=OFF, stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{dd MMM HH:mm:ss} %p [%c
→˓{2}] - %m%n

• Create/modify GEOSERVER_DATA_DIR/logs/TEST_LOGGING.properties as follows

This log4j configuration file needs to stay here, and is used as the
→˓default logging setup
during data_dir upgrades and in case the chosen logging config isn't
→˓available.
##
As GeoTools uses java.util.logging logging instead of log4j,
→˓GeoServer makes
the following mappings to adjust the log4j levels specified in this
→˓file to
the GeoTools logging system:
##
Log4J Level java.util.logging Level
--
ALL FINEST
TRACE FINER
DEBUG FINE (includes CONFIG)
INFO INFO
ERROR/ERROR ERRORING
ERROR SEVERE
OFF OFF

log4j.rootLogger=ERROR, stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{dd MMM HH:mm:ss} %p [%c
→˓{2}] - %m%n

GEOTOOLS_DEVELOPER_LOGGING.properties

log4j.category.org.geotools=ERROR
log4j.category.org.geotools.factory=ERROR
log4j.category.org.geoserver=ERROR
log4j.category.org.vfny.geoserver=ERROR

log4j.category.org.springframework=ERROR

(continues on next page)

3.2. Tutorials 185

GeoNode Documentation, Release 2.8

(continued from previous page)

wicket tester
log4j.category.org.apache.wicket.util.tester=INFO

• Delete old security configuration files, in particular delete the following folders:

- GEOSERVER_DATA_DIR/security/auth/geonodeAuthProvider
- GEOSERVER_DATA_DIR/security/filter/geonodeAnonymousFilter
- GEOSERVER_DATA_DIR/security/filter/geonodeCookieFilter

• Update/modify the GEOSERVER_DATA_DIR/security as follows

– ./filter/geonode-oauth2/config.xml

Left file: D:\tmp\data-2.12.2\data\security\filter\geonode-
→˓oauth2\config.xml
Right file: D:\tmp\data-2.9.x-
→˓oauth2\data\security\filter\geonode-oauth2\config.xml
17 <!-- GeoServer Public URL -->
→˓

→˓ 17 <!--
→˓GeoServer Public URL -->

→˓---------
18 <redirectUri>http://localhost:8080/geoserver/index.html</
→˓redirectUri>
→˓ <> 18 <redirectUri>
→˓http://localhost:8080/geoserver</redirectUri>

→˓---------

– ./role/geonode REST role service/config.xml

Left file: D:\tmp\data-2.12.2\data\security\role\geonode REST
→˓role service\config.xml
Right file: D:\tmp\data-2.9.x-
→˓oauth2\data\security\role\geonode REST role service\config.
→˓xml
12 <adminRoleJSONPath>$.adminRole</adminRoleJSONPath>
→˓ 13 <adminRoleJSONPath>$.
→˓adminRole</adminRoleJSONPath>

→˓---------
13 <usersJSONPath>$.users[?(@.username=='${username}&
→˓apos;)].groups</usersJSONPath> <> 14 <usersJSONPath>$.
→˓users[0].groups</usersJSONPath>
14 <cacheConcurrencyLevel>4</cacheConcurrencyLevel>
15 <cacheMaximumSize>60000</cacheMaximumSize>
16 <cacheExpirationTime>60000</cacheExpirationTime>

→˓---------
17 </authKeyRESTRoleService>
→˓ = 15 </authKeyRESTRoleService>

→˓---------

– ./config.xml

186 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Left file: D:\tmp\data-2.12.2\data\security\config.xml
Right file: D:\tmp\data-2.9.x-oauth2\data\security\config.xml

→˓

→˓

→˓

→˓ -+ 2 <roleServiceName>geonode
→˓REST role service</roleServiceName>

→˓---------

→˓---------
27 <filters name="gwc" class="org.geoserver.security.
→˓ServiceLoginFilterChain" interceptorName="restInterceptor"
→˓exceptionTranslationName="exception" path="/gwc/**" disabled=
→˓"false" allowSessionCreation="false" ssl="false"
→˓matchHTTPMethod="false"> <> 28
→˓<filters name="gwc" class="org.geoserver.security.
→˓ServiceLoginFilterChain" interceptorName="restInterceptor"
→˓exceptionTranslationName="exception" path="/gwc/rest/**"
→˓disabled="false" allowSessionCreation="false" ssl="false"
→˓matchHTTPMethod="false">

→˓---------

→˓---------
30 <filter>anonymous</filter>
→˓

→˓

→˓

→˓ +-
31 </filters>
32 <filters name="geofence-rest" class="org.geoserver.
→˓security.ServiceLoginFilterChain" interceptorName=
→˓"restInterceptor" exceptionTranslationName="exception" path=
→˓"/geofence/rest/**" disabled="false" allowSessionCreation=
→˓"false" ssl="false" matchHTTPMethod="false">
33 <filter>basic</filter>
34 <filter>geonode-oauth2</filter>
35 <filter>anonymous</filter>
36 </filters>
37 <filters name="geofence" class="org.geoserver.security.
→˓ServiceLoginFilterChain" interceptorName="interceptor"
→˓exceptionTranslationName="exception" path="/geofence/**"
→˓disabled="false" allowSessionCreation="false" ssl="false"
→˓matchHTTPMethod="false">
38 <filter>basic</filter>
39 <filter>geonode-oauth2</filter>
40 <filter>anonymous</filter>

→˓---------

→˓---------
52 <bruteForcePrevention>
→˓

→˓

→˓

→˓ +-
(continues on next page)

3.2. Tutorials 187

GeoNode Documentation, Release 2.8

(continued from previous page)

53 <enabled>true</enabled>
54 <minDelaySeconds>1</minDelaySeconds>
55 <maxDelaySeconds>5</maxDelaySeconds>
56 <maxBlockedThreads>100</maxBlockedThreads>
57 <whitelistedMasks>
58 <string>127.0.0.1</string>
59 </whitelistedMasks>
60 </bruteForcePrevention>

→˓---------

– ./rest.properties

Left file: D:\tmp\data-2.12.2\data\security\rest.properties
Right file: D:\tmp\data-2.9.x-oauth2\data\security\rest.
→˓properties

→˓---------
18 /rest/monitor/*;GET=ROLE_ADMINISTRATOR
→˓ +-
19 /rest/security/*;GET,POST,DELETE,PUT=ROLE_ADMINISTRATOR
20 /rest/br/*;GET,POST,DELETE,PUT=ROLE_ADMINISTRATOR
21 /geofence/rest/*;GET,POST,DELETE,PUT=ROLE_ADMINISTRATOR

→˓---------

→˓---------
23 /**;POST,DELETE,PUT=ROLE_AUTHENTICATED
→˓ <> 4 /**;POST,DELETE,
→˓PUT=ROLE_ADMINISTRATOR

→˓---------

Note: In case of dubts you can always try to do a “diff” between your old GEOSERVER_DATA_DIR
and https://build.geo-solutions.it/geonode/geoserver/latest//data-2.12.2.zip

• Update/tweak GeoNode settings.py

– Add LOGIN_REDIRECT_URL

LOGIN_REDIRECT_URL = '/'

– Modify INSTALLED_APPS as follows

Left file: D:\work\code\python\geonode\geonode-2.7.
→˓x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.
→˓x\geonode\settings.py
281 # GeoServer Apps =
→˓269 # GeoServer Apps
282 # Geoserver needs to come last because
→˓270 # Geoserver needs to come last because
283 # it's signals may rely on other apps' signals.
→˓271 # it's signals may rely on other apps' signals.
284 'geonode.geoserver',
→˓272 'geonode.geoserver', (continues on next page)

188 Chapter 3. Table of contents

https://build.geo-solutions.it/geonode/geoserver/latest//data-2.12.2.zip

GeoNode Documentation, Release 2.8

(continued from previous page)

285 'geonode.upload',
→˓273 'geonode.upload',
286 'geonode.tasks',
→˓274 'geonode.tasks',

→˓---------
287 'geonode.messaging', +-

→˓---------
288 =
→˓275
289)
→˓276)
290
→˓277
291 GEONODE_CONTRIB_APPS = (
→˓278 GEONODE_CONTRIB_APPS = (
292 # GeoNode Contrib Apps
→˓279 # GeoNode Contrib Apps

→˓---------
293 # 'geonode.contrib.dynamic', <>
→˓280 'geonode.contrib.dynamic',
294 # 'geonode.contrib.exif',
→˓281 'geonode.contrib.exif',
295 # 'geonode.contrib.favorite',
→˓282 'geonode.contrib.favorite',
296 # 'geonode.contrib.geogig',
→˓283 'geonode.contrib.geogig',
297 # 'geonode.contrib.geosites',
→˓284 'geonode.contrib.geosites',
298 # 'geonode.contrib.nlp',
→˓285 'geonode.contrib.nlp',
299 # 'geonode.contrib.slack',
→˓286 'geonode.contrib.slack',

→˓---------
300 # 'geonode.contrib.createlayer', =
301 # 'geonode.contrib.datastore_shards',

→˓---------
302 'geonode.contrib.metadataxsl', <>
→˓287 'geonode.contrib.metadataxsl'
303 'geonode.contrib.api_basemaps',
304 'geonode.contrib.ows_api',

→˓---------
305) =
→˓288)
306
→˓289
307 # Uncomment the following line to enable contrib apps
→˓290 # Uncomment the following line to enable contrib apps

→˓---------
308 GEONODE_APPS = GEONODE_CONTRIB_APPS + GEONODE_APPS <>
→˓291 # GEONODE_APPS = GEONODE_APPS + GEONODE_CONTRIB_APPS

(continues on next page)

3.2. Tutorials 189

GeoNode Documentation, Release 2.8

(continued from previous page)

→˓---------
309 =
→˓292
310 INSTALLED_APPS = (
→˓293 INSTALLED_APPS = (
311
→˓294
312 'modeltranslation',
→˓295 'modeltranslation',
313
→˓296
314 # Boostrap admin theme
→˓297 # Boostrap admin theme

→˓---------

→˓---------
334 'taggit', =
→˓317 'taggit',
335 'treebeard',
→˓318 'treebeard',
336 'friendlytagloader',
→˓319 'friendlytagloader',
337 'geoexplorer',
→˓320 'geoexplorer',
338 'leaflet',
→˓321 'leaflet',
339 'django_extensions',
→˓322 'django_extensions',

→˓---------
340 'django_basic_auth', <>
→˓323 #'geonode-client',

→˓---------
341 # 'haystack', =
→˓324 # 'haystack',
342 'autocomplete_light',
→˓325 'autocomplete_light',
343 'mptt',
→˓326 'mptt',
344 # 'modeltranslation',
→˓327 # 'modeltranslation',
345 # 'djkombu',
→˓328 # 'djkombu',

→˓---------
346 # 'djcelery', <>
→˓329 'djcelery',

→˓---------
347 # 'kombu.transport.django', =
→˓330 # 'kombu.transport.django',
348
349 'storages',
→˓331 'storages',

(continues on next page)

190 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

→˓---------
350 'floppyforms', +-

→˓---------
351 =
→˓332
352 # Theme
→˓333 # Theme

→˓---------

-+
→˓334 "pinax_theme_bootstrap_account",

→˓---------
353 "pinax_theme_bootstrap", =
→˓335 "pinax_theme_bootstrap",
354 'django_forms_bootstrap',
→˓336 'django_forms_bootstrap',
355
→˓337
356 # Social
→˓338 # Social
357 'account',
→˓339 'account',
358 'avatar',
→˓340 'avatar',

→˓---------

→˓---------
364 'actstream', =
→˓345 'actstream',
365 'user_messages',
→˓346 'user_messages',
366 'tastypie',
→˓347 'tastypie',
367 'polymorphic',
→˓348 'polymorphic',
368 'guardian',
→˓349 'guardian',
369 'oauth2_provider',
→˓350 'oauth2_provider',

→˓---------
370 'corsheaders', +-

→˓---------
371 =
→˓351

→˓---------
372 'invitations', +-

→˓---------
373) + GEONODE_APPS =
→˓352) + GEONODE_APPS

(continues on next page)

3.2. Tutorials 191

GeoNode Documentation, Release 2.8

(continued from previous page)

→˓---------

– Add MONITORING flags as follows

MONITORING_ENABLED = False

how long monitoring data should be stored
MONITORING_DATA_TTL = timedelta(days=7)

this will disable csrf check for notification config views,
use with caution - for dev purpose only
MONITORING_DISABLE_CSRF = False

– Update LOGGING handlers as follows

Left file: D:\work\code\python\geonode\geonode-2.7.
→˓x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.
→˓x\geonode\settings.py
396 'filters': {
→˓= 366 'filters': {
397 'require_debug_false': {
→˓ 367 'require_debug_false': {
398 '()': 'django.utils.log.RequireDebugFalse'
→˓ 368 '()': 'django.utils.log.RequireDebugFalse'
399 }
→˓ 369 }
400 },
→˓ 370 },
401 'handlers': {
→˓ 371 'handlers': {

→˓---------

-
→˓+ 372 'null': {

→˓ 373 'level': 'ERROR',

→˓ 374 'class': 'django.utils.log.NullHandler',

→˓ 375 },

→˓---------
402 'console': {
→˓= 376 'console': {
403 'level': 'ERROR',
→˓ 377 'level': 'ERROR',
404 'class': 'logging.StreamHandler',
→˓ 378 'class': 'logging.StreamHandler',
405 'formatter': 'simple'
→˓ 379 'formatter': 'simple'
406 },
→˓ 380 },
407 'mail_admins': {
→˓ 381 'mail_admins': {

→˓--------- (continues on next page)

192 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

→˓---------
410 }
→˓= 384 }
411 },
→˓ 385 },
412 "loggers": {
→˓ 386 "loggers": {
413 "django": {
→˓ 387 "django": {
414 "handlers": ["console"], "level": "ERROR", },
→˓ 388 "handlers": ["console"], "level": "ERROR",
→˓},
415 "geonode": {
→˓ 389 "geonode": {

→˓---------
416 "handlers": ["console"], "level": "ERROR", },
→˓+-
417 "geonode.qgis_server": {

→˓---------
418 "handlers": ["console"], "level": "ERROR", },
→˓= 390 "handlers": ["console"], "level": "ERROR",
→˓ },
419 "gsconfig.catalog": {
→˓ 391 "gsconfig.catalog": {
420 "handlers": ["console"], "level": "ERROR", },
→˓ 392 "handlers": ["console"], "level": "ERROR",
→˓},
421 "owslib": {
→˓ 393 "owslib": {
422 "handlers": ["console"], "level": "ERROR", },
→˓ 394 "handlers": ["console"], "level": "ERROR",
→˓},
423 "pycsw": {
→˓ 395 "pycsw": {
424 "handlers": ["console"], "level": "ERROR", },
→˓ 396 "handlers": ["console"], "level": "ERROR",
→˓},
425 },
→˓ 397 },
426 }
→˓ 398 }

→˓---------

– Update MIDDLEWARE and SECURITY flags as follows

Left file: D:\work\code\python\geonode\geonode-2.7.
→˓x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.
→˓x\geonode\settings.py
458 MIDDLEWARE_CLASSES = (
→˓ = 430 MIDDLEWARE_CLASSES = (

→˓---------

(continues on next page)

3.2. Tutorials 193

GeoNode Documentation, Release 2.8

(continued from previous page)

459 'corsheaders.middleware.CorsMiddleware',
→˓ +-

→˓---------
460 'django.middleware.common.CommonMiddleware',
→˓ = 431 'django.middleware.common.
→˓CommonMiddleware',
461 'django.contrib.sessions.middleware.SessionMiddleware',
→˓ 432 'django.contrib.sessions.
→˓middleware.SessionMiddleware',
462 'django.contrib.messages.middleware.MessageMiddleware',
→˓ 433 'django.contrib.messages.
→˓middleware.MessageMiddleware',
463
→˓ 434
464 # The setting below makes it possible to serve
→˓different languages per 435 # The setting below
→˓makes it possible to serve different languages per
465 # user depending on things like headers in HTTP
→˓requests. 436 # user depending on
→˓things like headers in HTTP requests.

→˓---------

→˓---------
467 'pagination.middleware.PaginationMiddleware',
→˓ = 438 'pagination.middleware.
→˓PaginationMiddleware',
468 'django.middleware.csrf.CsrfViewMiddleware',
→˓ 439 'django.middleware.csrf.
→˓CsrfViewMiddleware',
469 'django.contrib.auth.middleware.
→˓AuthenticationMiddleware', 440
→˓'django.contrib.auth.middleware.AuthenticationMiddleware',
470 'django.middleware.clickjacking.XFrameOptionsMiddleware
→˓', 441 'django.middleware.
→˓clickjacking.XFrameOptionsMiddleware',
471
→˓ 442
472 # Security settings

→˓---------
473 'django.middleware.security.SecurityMiddleware',
→˓ +-

→˓---------
474
→˓ =
475 # This middleware allows to print private layers for
→˓the users that have 443 # This middleware allows
→˓to print private layers for the users that have
476 # the permissions to view them.
→˓ 444 # the permissions to view
→˓them.
477 # It sets temporary the involved layers as public
→˓before restoring the 445 # It sets temporary the
→˓involved layers as public before restoring the

(continues on next page)

194 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

478 # permissions.
→˓ 446 # permissions.
479 # Beware that for few seconds the involved layers are
→˓public there could be 447 # Beware that for few
→˓seconds the involved layers are public there could be

→˓---------

→˓---------
485 # django-oauth-toolkit.
→˓ =
486 'django.contrib.auth.middleware.
→˓SessionAuthenticationMiddleware', 453
→˓'django.contrib.auth.middleware.
→˓SessionAuthenticationMiddleware',
487 'oauth2_provider.middleware.OAuth2TokenMiddleware',
→˓ 454 'oauth2_provider.middleware.
→˓OAuth2TokenMiddleware',
488)
→˓ 455)
489
→˓ 456
490 # Security stuff

→˓---------
491 MIDDLEWARE_CLASSES += ('django.middleware.security.
→˓SecurityMiddleware',) +-
492 SESSION_COOKIE_SECURE = False
493 CSRF_COOKIE_SECURE = False
494 CSRF_COOKIE_HTTPONLY = False
495 X_FRAME_OPTIONS = 'DENY'
496 SECURE_CONTENT_TYPE_NOSNIFF = True
497 SECURE_BROWSER_XSS_FILTER = True
498 SECURE_SSL_REDIRECT = False
499 SECURE_HSTS_SECONDS = 3600
500 SECURE_HSTS_INCLUDE_SUBDOMAINS = True

→˓---------
501
→˓ = 457
502 # Replacement of default authentication backend in order
→˓to support 458 # Replacement of default
→˓authentication backend in order to support
503 # permissions per object.
→˓ 459 # permissions per object.
504 AUTHENTICATION_BACKENDS = (
→˓ 460 AUTHENTICATION_BACKENDS = (
505 'oauth2_provider.backends.OAuth2Backend',
→˓ 461 'oauth2_provider.backends.
→˓OAuth2Backend',
506 'django.contrib.auth.backends.ModelBackend',
→˓ 462 'django.contrib.auth.
→˓backends.ModelBackend',

→˓---------

→˓---------

(continues on next page)

3.2. Tutorials 195

GeoNode Documentation, Release 2.8

(continued from previous page)

529 # Whether the uplaoded resources should be public and
→˓downloadable by default = 485 # Whether the uplaoded
→˓resources should be public and downloadable by default
530 # or not
→˓ 486 # or not
531 DEFAULT_ANONYMOUS_VIEW_PERMISSION = strtobool(
→˓ 487 DEFAULT_ANONYMOUS_VIEW_
→˓PERMISSION = strtobool(
532 os.getenv('DEFAULT_ANONYMOUS_VIEW_PERMISSION', 'True')
→˓ 488 os.getenv('DEFAULT_ANONYMOUS_
→˓VIEW_PERMISSION', 'True')
533)
→˓ 489)
534 DEFAULT_ANONYMOUS_DOWNLOAD_PERMISSION = strtobool(
→˓ 490 DEFAULT_ANONYMOUS_DOWNLOAD_
→˓PERMISSION = strtobool(

→˓---------
535 os.getenv('DEFAULT_ANONYMOUS_DOWNLOAD_PERMISSION',
→˓'True') <> 491 os.getenv('DEFAULT_
→˓ANONYMOUS_VIEW_PERMISSION', 'True')

→˓---------
536)
→˓ = 492)
537
→˓ 493
538 #
→˓ 494 #
539 # Settings for default search size
→˓ 495 # Settings for default search
→˓size
540 #
→˓ 496 #
541 DEFAULT_SEARCH_SIZE = int(os.getenv('DEFAULT_SEARCH_SIZE',
→˓'10')) 497 DEFAULT_SEARCH_SIZE = int(os.
→˓getenv('DEFAULT_SEARCH_SIZE', '10'))

→˓---------

→˓---------
565 'USE_JSONFIELD': True,
→˓ = 521 'USE_JSONFIELD': True,
566 'GFK_FETCH_DEPTH': 1,
→˓ 522 'GFK_FETCH_DEPTH': 1,
567 }
→˓ 523 }
568
→˓ 524
569
570 # prevent signing up by default
→˓ 525 # Settings for Social Apps

→˓---------
571 ACCOUNT_OPEN_SIGNUP = True
→˓ <> 526 REGISTRATION_OPEN = strtobool(os.
→˓getenv('REGISTRATION_OPEN', 'False'))

(continues on next page)

196 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

→˓---------
572
→˓ =
573 ACCOUNT_EMAIL_CONFIRMATION_EMAIL = strtobool(
→˓ 527 ACCOUNT_EMAIL_CONFIRMATION_EMAIL
→˓= strtobool(
574 os.getenv('ACCOUNT_EMAIL_CONFIRMATION_EMAIL', 'False')
→˓ 528 os.getenv('ACCOUNT_EMAIL_
→˓CONFIRMATION_EMAIL', 'False')
575)
→˓ 529)
576 ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = strtobool(
→˓ 530 ACCOUNT_EMAIL_CONFIRMATION_
→˓REQUIRED = strtobool(
577 os.getenv('ACCOUNT_EMAIL_CONFIRMATION_REQUIRED', 'False
→˓') 531 os.getenv('ACCOUNT_EMAIL_
→˓CONFIRMATION_REQUIRED', 'False')
578)
→˓ 532)
579 ACCOUNT_APPROVAL_REQUIRED = strtobool(
→˓ 533 ACCOUNT_APPROVAL_REQUIRED =
→˓strtobool(
580 os.getenv('ACCOUNT_APPROVAL_REQUIRED', 'False')
→˓ 534 os.getenv('ACCOUNT_APPROVAL_
→˓REQUIRED', 'False')
581)
→˓ 535)

→˓---------

– Update the Uploader Settings as follows

UPLOADER = {
'BACKEND': 'geonode.rest',
'OPTIONS': {

'TIME_ENABLED': False,
'MOSAIC_ENABLED': False,
'GEOGIG_ENABLED': False,

},
'SUPPORTED_CRS': [

'EPSG:4326',
'EPSG:3785',
'EPSG:3857',
'EPSG:900913',
'EPSG:32647',
'EPSG:32736'

],
'SUPPORTED_EXT': [

'.shp',
'.csv',
'.kml',
'.kmz',
'.json',
'.geojson',
'.tif',
'.tiff',

(continues on next page)

3.2. Tutorials 197

GeoNode Documentation, Release 2.8

(continued from previous page)

'.geotiff',
'.gml',
'.xml'

]
}

– Update/modify NOTIFICATIONS settings as follows

Left file: D:\work\code\python\geonode\geonode-2.7.
→˓x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.
→˓x\geonode\settings.py
1099 # notification settings
→˓ =

→˓---------
1100 NOTIFICATION_ENABLED = True or TEST
→˓ +-
1101 PINAX_NOTIFICATIONS_LANGUAGE_MODEL = "account.Account"

→˓---------
1102
→˓ =
1103 # notifications backends

→˓---------
1104 _EMAIL_BACKEND = "pinax.notifications.backends.email.
→˓EmailBackend" +-
1105 PINAX_NOTIFICATIONS_BACKENDS = [
1106 ("email", _EMAIL_BACKEND),
1107]

→˓---------
1108
→˓ =
1109 # Queue non-blocking notifications.
→˓ 969 # Queue non-blocking notifications.

→˓---------
1110 PINAX_NOTIFICATIONS_QUEUE_ALL = False
→˓ <> 970 NOTIFICATION_QUEUE_ALL = False
1111 PINAX_NOTIFICATIONS_LOCK_WAIT_TIMEOUT = -1

→˓---------
1112
→˓ = 971
1113 # explicitly define NOTIFICATION_LOCK_LOCATION
1114 # NOTIFICATION_LOCK_LOCATION = <path>
1115
1116 # pinax.notifications
1117 # or notification
→˓ 972 # notification settings

→˓---------
1118 NOTIFICATIONS_MODULE = 'pinax.notifications'
→˓ <> 973 NOTIFICATION_LANGUAGE_MODULE = "account.
→˓Account"

(continues on next page)

198 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

→˓---------
1119
→˓ =
1120 # set to true to have multiple recipients in /message/
→˓create/

→˓---------
1121 USER_MESSAGES_ALLOW_MULTIPLE_RECIPIENTS = False
→˓ +-

→˓---------
1122
→˓ =

→˓---------
1123 if NOTIFICATION_ENABLED:
→˓ +-
1124 if NOTIFICATIONS_MODULE not in INSTALLED_APPS:
1125 INSTALLED_APPS += (NOTIFICATIONS_MODULE,)

→˓---------

– Update/modify CELERY settings as follows

Left file: D:\work\code\python\geonode\geonode-2.7.
→˓x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.
→˓x\geonode\settings.py
1127 # async signals can be the same as broker url
→˓ =
1128 # but they should have separate setting anyway
1129 # use amqp:// for local rabbitmq server

→˓---------
1130 ASYNC_SIGNALS_BROKER_URL = 'memory://'
→˓ +-

→˓---------
1131
→˓ =

→˓---------
1132 CELERY_BROKER_URL = os.getenv('BROKER_URL', "amqp://")
→˓ <> 974 BROKER_URL = os.getenv('BROKER_URL',
→˓"django://")

→˓ 975 CELERY_ALWAYS_EAGER = True

→˓ 976 CELERY_EAGER_PROPAGATES_EXCEPTIONS =
→˓True

→˓ 977 CELERY_IGNORE_RESULT = True

→˓ 978 CELERY_SEND_EVENTS = False

→˓---------

(continues on next page)

3.2. Tutorials 199

GeoNode Documentation, Release 2.8

(continued from previous page)

1133 CELERY_RESULT_BACKEND = None
→˓ = 979 CELERY_RESULT_BACKEND = None

→˓---------
1134 CELERY_TASK_ALWAYS_EAGER = True # set this to False in
→˓order to run async +-
1135 CELERY_TASK_IGNORE_RESULT = True
1136 CELERY_TASK_DEFAULT_QUEUE = "default"
1137 CELERY_TASK_DEFAULT_EXCHANGE = "default"
1138 CELERY_TASK_DEFAULT_EXCHANGE_TYPE = "direct"
1139 CELERY_TASK_DEFAULT_ROUTING_KEY = "default"
1140 CELERY_TASK_CREATE_MISSING_QUEUES = True

→˓---------
1141 CELERY_TASK_RESULT_EXPIRES = 1
→˓ = 980 CELERY_TASK_RESULT_EXPIRES = 1

→˓---------
1142 CELERY_WORKER_DISABLE_RATE_LIMITS = True
→˓ <> 981 CELERY_DISABLE_RATE_LIMITS = True

→˓ 982 CELERY_DEFAULT_QUEUE = "default"

→˓ 983 CELERY_DEFAULT_EXCHANGE = "default"

→˓ 984 CELERY_DEFAULT_EXCHANGE_TYPE =
→˓"direct"
1143 CELERY_WORKER_SEND_TASK_EVENTS = False
→˓ 985 CELERY_DEFAULT_ROUTING_KEY = "default
→˓"
1144
→˓ 986 CELERY_CREATE_MISSING_QUEUES = True
1145 CELERY_QUEUES = [
→˓ 987 CELERY_IMPORTS = (
1146 Queue('default', routing_key='default'),
→˓ 988 'geonode.tasks.deletion',
1147 Queue('cleanup', routing_key='cleanup'),
1148 Queue('update', routing_key='update'),
→˓ 989 'geonode.tasks.update',
1149 Queue('email', routing_key='email'),
→˓ 990 'geonode.tasks.email'
1150]
→˓ 991)

→˓---------

1177 = 1018
1178 1019
--
1179 # djcelery.setup_loader() <> 1020 djcelery.setup_loader()
--
1180 = 1021
--

– Additional/new Geonode behavior settings

200 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

DISPLAY_SOCIAL = strtobool(os.getenv('DISPLAY_SOCIAL', 'True'))
DISPLAY_COMMENTS = strtobool(os.getenv('DISPLAY_COMMENTS',
→˓'True'))
DISPLAY_RATINGS = strtobool(os.getenv('DISPLAY_RATINGS', 'True
→˓'))
DISPLAY_WMS_LINKS = strtobool(os.getenv('DISPLAY_WMS_LINKS',
→˓'True'))

Number of results per page listed in the GeoNode search pages
CLIENT_RESULTS_LIMIT = int(os.getenv('CLIENT_RESULTS_LIMIT',
→˓'20'))

Number of items returned by the apis 0 equals no limit
API_LIMIT_PER_PAGE = int(os.getenv('API_LIMIT_PER_PAGE', '200
→˓'))
API_INCLUDE_REGIONS_COUNT = strtobool(

os.getenv('API_INCLUDE_REGIONS_COUNT', 'False'))
Make Free-Text Kaywords writable from users or read-only
- if True only admins can edit free-text kwds from admin
→˓dashboard
FREETEXT_KEYWORDS_READONLY = False

Each uploaded Layer must be approved by an Admin before
→˓becoming visible
ADMIN_MODERATE_UPLOADS = False

add following lines to your local settings to enable
→˓monitoring
if MONITORING_ENABLED:

if 'geonode.contrib.monitoring' not in INSTALLED_APPS:
INSTALLED_APPS += ('geonode.contrib.monitoring',)

if 'geonode.contrib.monitoring.middleware.
→˓MonitoringMiddleware' not in MIDDLEWARE_CLASSES:

MIDDLEWARE_CLASSES += \
('geonode.contrib.monitoring.middleware.

→˓MonitoringMiddleware',)

GEOIP_PATH = os.path.join(PROJECT_ROOT, 'GeoIPCities.dat')
If this option is enabled, Resources belonging to a Group won
→˓'t be
visible by others
GROUP_PRIVATE_RESOURCES = False

If this option is enabled, Groups will become strictly
→˓Mandatory on
Metadata Wizard
GROUP_MANDATORY_RESOURCES = False

A boolean which specifies wether to display the email in user
→˓'s profile
SHOW_PROFILE_EMAIL = False

Enables cross origin requests for geonode-client
MAP_CLIENT_USE_CROSS_ORIGIN_CREDENTIALS = strtobool(os.getenv(

'MAP_CLIENT_USE_CROSS_ORIGIN_CREDENTIALS',
'False'

))

3.2. Tutorials 201

GeoNode Documentation, Release 2.8

– Update/modify THUMBNAIL GENERATOR

Left file: D:\work\code\python\geonode\geonode-2.7.
→˓x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.
→˓x\geonode\settings.py
1284
→˓ =
1285 # Choose thumbnail generator -- this is the default
→˓generator 1077 # Choose thumbnail generator --
→˓this is the default generator

→˓---------
1286 THUMBNAIL_GENERATOR = "geonode.layers.utils.create_gs_
→˓thumbnail_geonode" <> 1078 THUMBNAIL_GENERATOR = "geonode.
→˓geoserver.helpers.create_gs_thumbnail_geonode"

→˓---------

Final Steps

1. Run paver setup in order to download the latest Jetty Runner

Warning: Don’t do this if your GEOSERVER_DATA_DIR is located under geonode/
geoserver/data; it will be wiped out!! In this case download Jetty Runner
manually from http://repo2.maven.org/maven2/org/eclipse/jetty/jetty-runner/9.4.7.v20170914/
jetty-runner-9.4.7.v20170914.jar And put is under geonode/downloaded folder

DJANGO_SETTINGS_MODULE=geonode.local_settings paver setup

2. Start the server

DJANGO_SETTINGS_MODULE=geonode.local_settings paver start

3. Re-sync GeoFence Security Rules

DJANGO_SETTINGS_MODULE=geonode.local_settings paython manage.py sync_
→˓geofence

Appendix A

Warning: Before you proceed with the following steps, it is recommended that you perform a full backup of your
current environment. In the next section thare’s a listing of the steps required to perform a full / hard backup of the
whole stack.

Backup of the old Environment

Backup of the DataBase

1. From “local_settings” or “settings” (vim geonode/local_settings.py) retrieve all the DB connection
parameters

202 Chapter 3. Table of contents

http://repo2.maven.org/maven2/org/eclipse/jetty/jetty-runner/9.4.7.v20170914/jetty-runner-9.4.7.v20170914.jar
http://repo2.maven.org/maven2/org/eclipse/jetty/jetty-runner/9.4.7.v20170914/jetty-runner-9.4.7.v20170914.jar

GeoNode Documentation, Release 2.8

2. Dump all the DBs

sudo su - postgres
pg_dump -d geonode -U geonode -f /tmp/geonode.dump
pg_dump -d geonode_data -U geonode -f /tmp/geonode_data.dump

Backup of GeoServer

1. Backup the old GeoServer binaries

tar czvf /tmp/geoserver.tar.gz geoserver/

2. Backup of the GeoServer Data Dir

• As an admin login into GeoServer gui (http://localhost:8080/geoserver/)

• Click on “Server Status” and note the “Data Directory” path

3.2. Tutorials 203

http://localhost:8080/geoserver/

GeoNode Documentation, Release 2.8

tar czvf /tmp/geoserver_data.tar.gz /home/geosolutions/geonode/geoserver/data/

3. Backup of Uploaded/Media and Static files

DJANGO_SETTINGS_MODULE=geonode.local_settings python manage.py print_settings | grep
→˓MEDIA_ROOT

tar czvf /tmp/geonode_media.tar.gz /home/geosolutions/geonode/gonode/uploaded

• do the same for STATIC_ROOT, TEMPLATES (all folders listed), LOCALE (all folders listed)

4. Backup of the original source code

• Make sure you have everything committed and pushed for your local Git branches

• In case you are working locally, make sure you saved everything before proceeding with the update

Quick Installation Guide This section is a quick guide to get GeoNode up and running in most common operating
systems. This is meant to be run on a fresh machine with no previously installed packages or GeoNode versions.

Linux Admin Intro This section describes how to setup a Virtual Machine running Ubuntu.

GeoNode (v2.8) on Docker This section describes how to setup GeoNode on Docker

GeoNode (v2.8) installation on Ubuntu 16.04 This section will guide the user through the steps necessary to install
GeoNode on Ubuntu.

GeoNode (v2.8) installation on CentOS 7 This section will guide the user through the steps necessary to install
GeoNode on CentOS.

Packaging for automatic installation are provided for Ubuntu, so, the only option for installing GeoNode on a
CentOS platform is installing it from source.

204 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Windows Binary Installer Install GeoNode on Windows through the binary installer.

Network configuration issues This section will guide the user through the steps necessary to understand and possibly
solve any of the most common configuration issues on communication between Django and GeoServer.

GeoNode (v2.8) update from older versions This section will guide the user through the steps necessary to update
GeoNode from old versions.

3.2.1.3 Users Workshop

Welcome to the GeoNode Training Users Workshop documentation v2.8.

This workshop will teach how to use the GeoNode going in depth into what we can do with software application. At
the end of this section you will master all the GeoNode sections and entities from a user perspective.

You will know how to:

1. Manage users accounts and how to modify them.

2. Use and manage the different GeoNode basic resources.

3. Use the GeoNode searching tools to find your resources.

4. Manage Layers and Maps, update the styles and publish them.

5. Load datasets into GeoNode and keep them synchronized with GeoServer.

Prerequisites

Before proceeding with the reading, it is strongly recommended to be sure having clear the following
concepts:

1. GeoNode and Django framework basic concepts

2. What is Python

3. What is a geospatial server and a basic knowledge of the geospatial web services.

4. What is a metadata and a catalog.

5. What is a map and a legend.

3.2.1.3.1 Accounts and users

GeoNode is primarily a social platform, and thus a primary component of any GeoNode instance is the user account.
This section will guide you through account registration, updating your account information, and viewing other user
accounts.

Creating a new account

Before you can save or edit any layers on a GeoNode instance, you need to create an account.

1. From any page in the web interface, you will see a Register link. Click that link, and the register form will
appear

Note: The registrations in GeoNode must be open, in case you don’t see the register link then it’s
not possible to register unless the administrator of the site does that for you.

3.2. Tutorials 205

http://geonode.org/

GeoNode Documentation, Release 2.8

Fig. 1: Sign in screen

2. On the next page, fill out the form. Enter a user name and password in the fields. Also, enter your email address
for verification.

Fig. 2: Registering for a new account

3. You will be returned to the welcome page. An email will be sent confirming that you have signed up. While
you are now logged in, you will need to confirm your account. Navigate to the link that was sent in the email.

4. Click Confirm. You will be returned to the homepage.

Managing your profile

Your profile contains personal information.

1. Click on your user name in the top right of the screen. A drop-down list will show. Click on Profile to enter the
Profile settings page.

2. The next page shows your profile, which is currently empty.

206 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 3: Confirming your email address

Fig. 4: Link to your profile

Fig. 5: Profile page

3.2. Tutorials 207

GeoNode Documentation, Release 2.8

3. Click the Edit profile information link.

Fig. 6: Link to edit your profile

4. On this page, your personal information can be set, including your avatar. Enter some details in the Profile box
as well as your city and country info.

5. When finished, click Update profile.

6. You will be returned to the main profile page. Now click Account settings.

7. On this page you can change your email address, time zone, and language. Your email should be populated
already, but set the timezone to your current location.

8. When finished, click Save.

Setting notification preferences

By default GeoNode sends notifications to the users for events that the users could be subscribed such as a new layer
uploaded or a new rate added to a map.

1. You can adjust your notification settings by clicking on your user name in the top right of the screen. A drop-
down list will show. Click on Notifications to enter the Notifications Settings page.

2. Make sure to have a verified email address to which notices can be sent. If not, click on the proposed link to add
one

3. Now check/uncheck the notification types you wish to receive or not receive. It is possible to be notified for the
following events:

• Layer Created

• Layer Updated

• Layer Deleted

• Rating for Layer

• Comment for Layer

• Map Created

• Map Updated

208 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 7: Editing your profile

Fig. 8: Link to save your profile updates

Fig. 9: Link to edit your account settings

3.2. Tutorials 209

GeoNode Documentation, Release 2.8

Fig. 10: Editing your account

210 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

• Map Deleted

• Rating for Map

• Comment for Map

• Document Created

• Document Updated

• Document Deleted

• Rating for Document

• Comment for Document

• User following you

• Request to download a resource

Viewing other user accounts

Now that your account is created, you can view other accounts on the system. Note that on the main profile page there
are options for following (and blocking) other users.

Fig. 11: Profile page

1. To see information about other users on the system, click the People link on the top toolbar. You will see a list
of users registered on this system.

2. Click on the user name for a particular user. You will see the layers owned by this user.

1. You can also click Activities to see the activity feed.

3.2. Tutorials 211

GeoNode Documentation, Release 2.8

Fig. 12: List of users

Fig. 13: List of layers owned by a user

212 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 14: List of users

2. If you are interested in keeping track of what this user does, go back to the previous page and click the Follow
button.

3. A confirmation page will display. Click Confirm.

Fig. 15: Confirming following a user

4. You will now be following this user, and your profile page will note this.

3.2.1.3.2 Document Types

GeoNode welcome page shows a variety of information about the current GeoNode instance. At the top of the page is
a toolbar showing quick links to document types: layers, maps and documents.

Data management tools built into GeoNode allow for integrated creation of data, documents, link to external doc-
uments, and map visualizations. Each dataset in the system can be shared publicly or restricted to allow access to
only specific users. Social features like user profiles and commenting and rating systems allow for the development
of communities around each platform to facilitate the use, management, and quality control of the data the GeoNode
instance contains.

3.2. Tutorials 213

GeoNode Documentation, Release 2.8

Fig. 16: Success following a user

Fig. 17: Document types in GeoNode welcome page

214 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Layers

Layers are a primary component of GeoNode.

Layers are publishable resources representing a raster or vector spatial data source. Layers also can be associated with
metadata, ratings, and comments.

By clicking the Layers link you will get a list of all published layers. If logged in as an administrator, you will also
see the unpublished layers in the same list.

Fig. 18: Layers in GeoNode toolbar

GeoNode allows the user to upload vector (currently only Shapefiles) and raster data in their original projections using
a web form.

Vector data is uploaded in ESRI Shapefile format and satellite imagery and other kinds of raster data are uploaded as
GeoTIFFs.

Fig. 19: Layers list in GeoNode

3.2. Tutorials 215

GeoNode Documentation, Release 2.8

Maps

Maps are a primary component of GeoNode.

Maps are comprised of various layers and their styles. Layers can be both local layers in GeoNode as well as remote
layers either served from other WMS servers or by web service layers such as Google or MapQuest.

GeoNode maps also contain other information such as map zoom and extent, layer ordering, and style.

By clicking the Map link you will get a list of all published maps.

Fig. 20: Maps in GeoNode toolbar

This toolbar allows you create a map based on the uploaded layers combine them with some existing layers and a
remote web service layer, and then share the resulting map for public viewing. Once the data has been uploaded,
GeoNode lets the user search for it geographically or via keywords and create maps. All the layers are automatically
reprojected to web mercator for maps display, making it possible to use different popular base layers, like Open Street
Map, Google Satellite or Bing layers.

Documents

As for the layers and maps GeoNode allows to publish tabular and text data manage metadata and associated docu-
ments.

By clicking the Documents link you will be brought to the Documents menu where a new subtoolbar can be seen.

Fig. 21: Documents in GeoNode toolbar

Through the document detailed page is possible to view, download and manage a document.

3.2.1.3.3 Searching

In GeoNode welcome page, click the Search button to bring up the Search page.

Fig. 22: Search tool in GeoNode welcome page

216 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

This page contains a wealth of options for customizing a search for various information on GeoNode. This search
form allows for much more fine-tuned searches than the simple search box is available at the top of every page.

It is possible to search data by Text, Categories, Type, Keywords, Date, Regions or Extent.

Fig. 23: Search page

3.2.1.3.4 Managing layers

After user accounts, the next primary component of GeoNode is the layer. Layers are a published resource representing
a raster or vector spatial data source. Layers also can be associated with metadata, ratings, and comments.

In this section, you will learn how to create a new layer by uploading a local data set, add layer info, change the style
of the layer, and share the results.

Uploading a layer

Now that we have taken a tour of GeoNode and viewed existing layers, the next step is to upload our own.

In your data pack is a directory called data. Inside that directory is a shapefile called
san_andres_y_providencia_administrative.shp. This is a data set containing administrative
boundaries for the San Andres Province. This will be the first layer that we will upload to GeoNode.

1. Navigate to the GeoNode welcome page.

2. Click the Layers link on the top toolbar. This will bring up the Layers menu.

Fig. 24: Main toolbar for GeoNode

3. Click Upload Layers in the Layers toolbar. This will bring up the upload form

4. Fill out the form.

3.2. Tutorials 217

GeoNode Documentation, Release 2.8

Fig. 25: Layers menu

Fig. 26: Layers toolbar

218 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 27: Upload Layers form

• Click on the Browse. . . button. This will bring up a local file dia-
log. Navigate to your data folder and select all of the four files compos-
ing the shapefile (san_andres_y_providencia_administrative.shp,
san_andres_y_providencia_administrative.dbf, san_andres_y_providencia_administrative.
shx, san_andres_y_providencia_administrative.prj). Alternatively you could drag and
drop the four files in the Drop files here area.

• The upload form should appear like this now:

5. GeoNode has the ability to restrict who can view, edit, and manage layers. On the right side of the page, under
Who can view and download this data?, select Any registered user. This will ensure that anonymous view access
is disabled.

6. In the same area, under Who can edit this data?, select the Only the following users or groups option and type
your username. This will ensure that only you are able to edit the data in the layer.

7. Click Upload to upload the data and create a layer. A dialog will display showing the progress of the upload.

8. Your layer has been uploaded to GeoNode. Now you will be able to access to the its info page (clicking on
the Layer Info button), access to its metadata edit form (clicking on the Edit Metadata button) or to manage the
styles for it (clicking on the Manage Styles button).

Layer information

After upload, another form will displaying, containing metadata about the layer. Change any information as desired,
and then click Update at the very bottom of the form.

After the update, the layer will display in a preview window.

This page contains lots of options for managing this layer. Let’s look at a few of them:

3.2. Tutorials 219

GeoNode Documentation, Release 2.8

Fig. 28: Files ready for upload

220 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 29: Permissions for new layer

Fig. 30: Upload in progress

3.2. Tutorials 221

GeoNode Documentation, Release 2.8

Fig. 31: Layer metadata

Downloads

At the top of the page there are two buttons titled Download Layer and Download Metadata. These buttons provide
access to the ability to extract geospatial data and metadata from within GeoNode. In this way, GeoNode allows for
two way data and metadata access; one can import as well as export data.

Data

1. Click the Download Layer button. You will see a list of options of the supported export formats.

1. Click the option for Zipped Shapefile.

2. GeoNode will process the request and bring up a Save As dialog. Save this file to your computer, and note how
it is the same content as was uploaded.

Metadata

1. Click the Download Metadata button. You will see a list of options of the supported export formats.

1. Click the option for DUBLIN CORE.

2. GeoNode will process the request and display XML metadata. Try clicking various metadata formats, and note
how it is the same metadata content in various formats compatible with metadata and GIS packages.

222 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 32: Layer preview

3.2. Tutorials 223

GeoNode Documentation, Release 2.8

Fig. 33: Available export formats

224 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 34: Available metadata export formats

3.2. Tutorials 225

GeoNode Documentation, Release 2.8

Layer Detail Tabs

1. Scroll down the page toward the bottom. Five tabs are available: Info, Attributes, Share, Ratings, and Comments.
The info tab is already highlighted, and presents basic information about the layer, of the kind that was seen on
the layer list page.

Fig. 35: Layer Info tab

2. Click the Attributes tab. This lists the attributes of the layer, including statistics (range, average, median and
standard deviation). Layer attribute statistics are made available only for numeric attributes. As we can see, this
layer’s attributes are not numeric, so no statistics are calculated.

3. Click the Ratings tab. This tab allows you (and others viewing this page) to rate this layer. Ratings can be based
on quality, accuracy, or any other metric. Click on the appropriate star to rate this layer.

4. Click the Comments tab. This tab allows you to leave a comment for other viewing this layer.

5. Click the Add Comment button and enter a comment.

6. When finished, click Submit Comments

Sharing layers

GeoNode has the ability to restrict or allow other users to access a layer and share on social media.

226 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 36: Attributes tab

Fig. 37: Layer Ratings tab

3.2. Tutorials 227

GeoNode Documentation, Release 2.8

Fig. 38: Layer Comments tab

Fig. 39: Adding a new comment

228 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 40: New comment posted

Anonymous access

1. Go to the layer preview of the first layer uploaded, and copy the URL to that preview page.

Note: The URL should be something like: http://GEONODE/layers/
geonode:san_andres_y_providencia_administrative

2. Now log out of GeoNode by clicking on your profile name and selecting Log out.

Fig. 41: Log out

3. When asked for confirmation, click the Log out button.

Fig. 42: Confirming log out

4. Now paste the URL copied about into your browser address bar and navigate to that location.

3.2. Tutorials 229

GeoNode Documentation, Release 2.8

5. You will be redirected to the Log In form. This is because when this layer was first uploaded, we set the view
properties to be any registered user. Once logged out, we are no longer a registered user and so are not able to
see or interact with the layer, unless we log in GeoNode again.

Fig. 43: Unable to view this protected layer

6. To stop this process from happening, you need to ensure that your permissions are set so anyone can view the
layer for others to see it on social networks.

1. This is done by selecting anyone in the layer permissions tab, be aware this now means your layer is public!

Sharing with social media

1. On the taskbar below your username and profile picture there are three links to social media services, Twitter,
Google Plus and Facebook.

2. Upon clicking on these icons you will be taken through the application’s process for posting to the social net-
work. Ensure the permissions are set so anyone can view the layer if you want unauthenticated to be able to
access it.

Adding more layers

We’ve uploaded one layer so far. There is one more layer in the data directory associated with this workshop called
san_andres_y_providencia_poi.shp.

1. Upload this layer, referring to the directions on uploading a layer. As a difference, leave the permissions set to
their default values.

Creating empty layers

In GeoNode it is possible to create empty layers, that can be populated with features at a later stage using the mapping
client editing tools.

This is possible using the createlayer application, which can be enabled if GeoNode is installed with PostGIS.

Once the application is enabled in GeoNode you will be able to create an empty layer by browsing to “Data > Create
Layer”. You will see a form like this:

230 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 231

GeoNode Documentation, Release 2.8

Fig. 44: Uploading the layer

232 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 45: Finished upload

3.2. Tutorials 233

GeoNode Documentation, Release 2.8

Fill the form as needed:

• give a layer name

• give a layer title

• assign a geometry for the layer (Points, Lines, Polygons)

• add as many attributes as needed. For each attribute provide a name and a type. Type can be string, integer, float
and date

• assign permissions as needed

Now by clicking the “Create” button your new empty layer should be created.

3.2.1.3.5 Edit Layer Style

Editing a style can only be performed by users with the correct permissions.

1. In the Explore Layer page, choose a Layer that you want to edit by clicking on the name of the layer or in the
preview window.

2. In the Edit Layers page, click the Edit Layer button.

3. In the Edit Layer window, click the Edit button under Style icon. In this interface is it possible to change the
style of layers. GeoNode allows editing of layer styles graphically, without the need to resort to programming
or requiring a technical background.

In the following example, the layer has one style and one rule in that style. Click Edit in Styles menu,
then change the Title and Abstract of the selected Style.

Fig. 46: Layer Styles window

Click the Rule (Untitled 1) to select it, and then click on Edit below it. Edit the style by choosing the
Basic tab to edit symbology of layers, the Labels tab to add and manage labels, and the Advanced

234 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 47: User Styles window

tab to manage styles by scale and condition. When done, click Save, then click on the word Layers
to return to the layer list.

4. In the Edit Layer window, click the Manage button under the Style icon. The Manage Styles function allows
assigning an available style to selected layers.

5. If you import a Style created by other GIS software (or edited directly in GeoServer), make sure that your .sld
file already has the <Title></Title> and <Abstract></Abstract> nodes under the <UserStyle> node. Otherwise
the style will be shown as “None” in GeoNode.

3.2.1.3.6 Managing maps

The next primary component of GeoNode is the map. Maps are comprised of various layers and their styles. Layers
can be both local layers in GeoNode as well as remote layers either served from other WMS servers or by web service
layers such as Google or MapQuest.

GeoNode maps also contain other information such as map zoom and extent, layer ordering, and style.

In this section, we’ll create a map based on the layers uploaded in the previous section, combine them with some
existing layers and a remote web service layer, and then share the resulting map for public viewing.

Creating a map

Adding layers

1. Click the Maps link on the top toolbar. This will bring up the list of maps.

2. Currently, there aren’t any maps here, so let’s add one. Click the Create a New Map button.

3. A map composition interface will display.

3.2. Tutorials 235

GeoNode Documentation, Release 2.8

Fig. 48: Basic Style Rule window

236 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 49: Labels Style Rule window

3.2. Tutorials 237

GeoNode Documentation, Release 2.8

Fig. 50: Advanced Style Rule window

Fig. 51: Manage Layer Styles

238 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 52: Maps page

3.2. Tutorials 239

GeoNode Documentation, Release 2.8

Fig. 53: Create maps interface

In this interface there is a toolbar, layer list, and map window. The map window contains the MapQuest Open-
StreetMap layer by default. There are other service layers available here as well: Blue Marble, Bing Aerial With
Labels, MapQuest, and OpenStreetMap.

4. Click on the New Layers button and select Add Layers.

Fig. 54: Add layers link

5. Select all of the San Andreas layers by clicking the top entry and Shift-clicking the bottom one. Click Add
Layers to add them all to the map.

Note: This selection includes not only the two layers uploaded in the previous section, but also the layers that
were already hosted on GeoNode at the beginning of the workshop.

240 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 55: Selecting layers

3.2. Tutorials 241

GeoNode Documentation, Release 2.8

6. The layers will be added to the map. Click Done (right next to Add Layers at the bottom) to return to the main
layers list.

Fig. 56: Layers added to the map

Adding external layers

1. Once again, click on the New Layers button and select Add Layers.

2. From the top dropdown list, select Add a New Server. . .

3. Enter the URL of the server, and select the correct type of server from the dropdown (WMS, TMS, or ArcGIS).
For example, enter http://e-atlas.org.au/geoserver/wms for the URL and select Web Map Service as the type.
Then click the Add Server button.

4. Note - for security purposes, the URL you enter must be on a list of pre-approved external services set up by the
GeoNode administrator. Otherwise you will receive a 403 error when trying to add the server.

5. A list of layers available from that server should appear momentarily. The layers must be available in the Web
Mercator projection or they will not show up in the list. Select the layers you want to add to the map. Click Add
Layers to add them all to the map.

6. The layers will be added to the map. Click Done (right next to Add Layers at the bottom) to return to the main
layers list.

242 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 57: Add layers link

Fig. 58: Add a New Server

3.2. Tutorials 243

GeoNode Documentation, Release 2.8

Fig. 59: New Server URL and Type

244 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 60: Add layers

3.2. Tutorials 245

GeoNode Documentation, Release 2.8

Fig. 61: Layers added to the map

246 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Saving the map

1. While we still have some work to do on our map, let’s save it so that we can come back to it later. Click on the
Map button in the toolbar, and select Save Map.

Fig. 62: Save map link

2. Enter a title and abstract for your map.

3. Click Save. Notice that the link on the top right of the page changed to reflect the map’s name.

This link contains a permalink to your map. If you open this link in a new window, your map will appear exactly
as it was saved.

Styling layers

In this interface, we can pause in our map creation and change the style of one of our uploaded layers. GeoNode allows
you to edit layer styles graphically, without the need to resort to programming or requiring a technical background.

We’ll be editing the san_andres_y_providencia_poi layer.

1. In the layer list, uncheck all of the layers except the above, so that only this one is visible (not including the base
layer).

2. Zoom in closer using the toolbar or the mouse.

3. In the layer list, click to select the remaining layer and then click the palette icon (Layer Styles). This will bring
up the style manager.

4. This layer has one style (named the same as the layer) and one rule in that style. Click the rule (Untitled 1) to
select it, and then click on Edit below it.

5. Edit the style. You can choose from simple shapes, add labels, and even adjust the look of the points based on
attribute values and scale.

6. When done, click Save, then click on the word Layers to return to the layer list.

Share your map

Now let’s finish our map.

1. Check the box next to the highway layer to activate it. If it is not below the POI layer in the list, click and drag
it down.

2. Make any final adjustments to the map composition as desired, including zoom and pan settings.

3. Click the Map button in the toolbar, and then click Publish Map.

3.2. Tutorials 247

GeoNode Documentation, Release 2.8

Fig. 63: Save map dialog

Fig. 64: Saved map name

248 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 65: Only one layer visible

3.2. Tutorials 249

GeoNode Documentation, Release 2.8

Fig. 66: Zoomed in to see the layer better

250 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 67: Styles manager

Fig. 68: Edit style rule link

3.2. Tutorials 251

GeoNode Documentation, Release 2.8

Fig. 69: Editing basic style rules

252 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 70: Editing style labels

Fig. 71: Styled layer

3.2. Tutorials 253

GeoNode Documentation, Release 2.8

Fig. 72: Adjusting map composition

Fig. 73: Publish map link

254 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

4. The title and abstract as previously created should still be there. Make any adjustments as necessary, and click
Save.

5. A new dialog will appear with instructions on how to embed this map in a webpage, including a code snippet.
You can adjust the parameters as necessary.

Fig. 74: Map publishing options

Your map can now be shared.

3.2.1.3.7 Using GeoNode with other applications

Your GeoNode project is based on core components which are interoperable and as such, it is straightforward for you to
integrate with external applications and services. This section will walk you through how to connect to your GeoNode
instance from other applications and how to integrate other services into your GeoNode project. When complete, you
should have a good idea about the possibilities for integration, and have basic knowledge about how to accomplish it.
You may find it necessary to dive deeper into how to do more complex integration in order to accomplish your goals,
but you should feel comfortable with the basics, and feel confident reaching out to the wider GeoNode community for
help.

OGC services

Since GeoNode is built on GeoServer which is heavily based on OGC services, the main path for integration with
external services is via OGC Standards. A large number of systems, applications and services support adding WMS
layers to them, but only a few key ones are covered below. WFS and WCS are also supported in a wide variety of
clients and platforms and give you access to the actual data for use in geoprocessing or to manipulate it to meet your
requirements. GeoServer also bundles GeoWebCache which produces map tiles that can be added as layers in many
popular web mapping tools including Google Maps, Leaflet, OpenLayers and others. You should review the reference
material included in the first chapter to learn more about OGC Services and when evaluating external systems make
sure that they are also OGC Compliant in order to integrate as seamlessly as possible.

3.2. Tutorials 255

GeoNode Documentation, Release 2.8

Use GeoNode with. . .

ArcGIS

ArcGIS Desktop (ArcMap) supports adding WMS layers to your map project. The following set of steps will walk
you through how to configure a WMS Layer from your GeoNode within ArcMap.

First, you can start with a new empty project or add these layers to your existing project.

Next click the ArcCatalog button on the toolbar to bring up its interface.

From there, double click the “Add WMS Server” item in the tree to bring up the dialog that lets you enter the details
for your WMS.

Next, enter the URL for your GeoNode’s WMS endpoint which is the base URL with /geoserver/wms appended to the
end of the URL. You can also enter your credentials into the optional Account section of this dialog to gain access to
non-public layers that your user may have access to.

Click the “Get Layers” button to ask ArcMap to query your WMS’s GetCapabilities document to get the list of
available layers.

After you click the OK button, your GeoNode layers will appear in the ArcCatalog Interface.

Once your server is configured in ArcMap, you can right click on one of the layers and investigate its properties.

In order to actually add the layer to your project, you can drag and drop it into the Table of Contents, or right click and
select “Create Layer”. Your Layer will now be displayed in the map panel of your project.

256 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 257

GeoNode Documentation, Release 2.8

258 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 259

GeoNode Documentation, Release 2.8

260 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 261

GeoNode Documentation, Release 2.8

262 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 263

GeoNode Documentation, Release 2.8

264 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Once the layer is in your projects Table of Contents, you can right click on it and select the Layer Properties option
and select the Styles Tab to choose from the available styles for that layer.

Now that we have seen how to add a WMS layer to our ArcMap project, lets walk through how to add the same layers
as a WFS which retrieves the actual feature data from your GeoNode rather than a rendered map as you get with
WMS. Adding layers as a WFS gives you more control over how the layers are styled within ArcMap and makes them
available for you to use with other ArcGIS tools like the Geoprocessing toolbox.

Note: Adding WFS layers to ArcMap requires that you have the Data Interoperability Extension installed. This
extension is not included in ArcMap by default and is licensed and installed separately.

Start by opening up the ArcCatalog Interface within ArcMap and make sure that you have the “Interoperability Con-
nections” option listed in the list.

Next select “Add Interoperability Connection” to bring up the dialog that lets you add the WFS endpoint from your
GeoNode.

Select “WFS (Web Feature Service)” in the Format dropdown and enter the URL to the WFS endpoint for your
GeoNode in the Dataset field. The WFS endpoint is your base URL + /geoserver/wfs

You will need to click the “Parameters” button to supply more connection information including your credentials
which will give you the ability to use private layers that you have access to.

Select the Feature Types button to have ArcMap get a list of layers from the WFS Service of your GeoNode.

Select the layers that you want to add and click OK and ArcMap will import the features from your GeoNode into the

3.2. Tutorials 265

GeoNode Documentation, Release 2.8

266 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 267

GeoNode Documentation, Release 2.8

268 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 269

GeoNode Documentation, Release 2.8

270 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

system.

Depending on the projection of your data, you may receive a warning about Alignment and Accuracy of data transfor-
mations. You can specify the transformation manually or simply hit close to ignore this dialog. If you don’t want to
be warned again, use the checkboxes in this dialog to hide these warnings temporarily or permanently.

Your WFS Layer will be added to your map and you can view it in the Map Panel. If you need to, use the “Zoom to
Layer Extent” or other zoom tools to zoom to the bounds of your layer.

You can now use the identify tool to inspect a feature in your layer, or perform any other function that you can normally
use to work with Vector Layers in ArcMap.

Since your layer was imported as actual vector features, you can use normal ArcMap styling tools to style the layer to
match how you want it to be displayed.

Now that you have added layers from your GeoNode as both WMS and WFS, you can explore the other options
available to you with these layers within ArcMap.

QGIS

QGIS is an open source, cross platform desktop GIS app. It can also be used to add layers from your GeoNode instance
as WMS or WFS. The process is very similar to how we add these same layers to ArcMap, and we will walk through
the steps necessary in the following section.

First, select “Add WMS Layer” from the Layer menu.

3.2. Tutorials 271

GeoNode Documentation, Release 2.8

272 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 273

GeoNode Documentation, Release 2.8

274 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 275

GeoNode Documentation, Release 2.8

The Add WMS Layer Dialog will be displayed where you are able to specify the parameters to connect to your WMS
server.

Next, you need to fill in the parameters to connect to your GeoNode instance. The URL for your GeoNode’s WMS is
the base URL + /geoserver/wms

After clicking the OK button, your server will show up in the list of servers. Make sure its selected, then, click the
connect button to have QGIS retrieve the list of layers from your GeoNode.

Select the layers you want to add to your QGIS project and click “Add”.

Your layer will be displayed in the map panel.

You can then zoom into your features in the Map.

From there, you can use the identify tool to inspect the attributes of one of the features on the map.

Or, you can look at the layer metadata by right clicking on the layer and selecting Layer Properties and selecting the
metadata tab.

Adding WFS servers and layers to your QGIS project is very similar to adding WMS. Depending on your version of
QGIS, you may need to add the WFS plugin. You can use the Plugin manager to add it.

Once the plugin is installed, you can select the “Add WFS Layer” option from the Layer menu.

Step through the same process you did for WMS to create a new WFS connection. First specify server parameters and
click OK.

276 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 277

GeoNode Documentation, Release 2.8

278 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 279

GeoNode Documentation, Release 2.8

Then click Connect to retrieve the list of layers on the server and select the layers you want to add and click Apply.

The layer(s) you selected will be displayed in the map panel.

You can use the same identify tool to inspect features in the map panel.

To look at more information about your layer, right click the layer in the Table of Contents and select Layer Properties.
You can look at the list of fields.

. . . or set a style to match how you want your data to be displayed.

You now know how to add layers from your GeoNode instance to a QGIS project. You can explore all of the other
options available to you in QGIS by consulting its documentation.

Google Earth

GeoNode’s built in map interface lets you look at your layers and maps in the Google Earth plugin directly in your
browser. You can switch to this 3D viewer directly in GeoNode by clicking the google earth icon in the map panel.

GeoServer will render your layer as an image until you are zoomed in sufficiently, and then it will switch to rendering
it as a vector overlay that you can click on to view the attributes for the feature you clicked on.

You can also use this option in the GeoExplorer client by clicking the same button.

Note: Some of the GeoExplorer options will not be available to you when you are in this mode, they will be grayed
out an inaccessible.

If instead you want to use layers from your GeoNode in the Google Earth client itself, you have a few options available
to you.

280 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 281

GeoNode Documentation, Release 2.8

282 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 283

GeoNode Documentation, Release 2.8

284 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 285

GeoNode Documentation, Release 2.8

First, you can select the KML option from the Download Layer menu to download the entire layer in a single KML
file. Depending on the size of the layer, your GeoNode could take several seconds or longer to generate this KML and
return it to you.

When the layer is generated, it will be downloaded to your desktop machine and you can simply double click it to
open it in Google Earth.

Alternatively, you can use the “View in Google Earth” option in the Layer Download menu to view the layer in Google
Earth using the same methodology described above depending on the zoom level.

This will download a small KMZ to your desktop that contains a reference to the layers on the server and you can
double click it to open it in Google Earth.

Note: The basic difference between these two options is that the first downloads all of the data to your desktop at
once and as such, the downloaded file can be used offline while the second is simply a Network Link to the layer on
the server. Choose whichever method is best for your own needs and purposes.

Once you have added your layers to the Places panel in Google Earth, you can move them from the Temporary Places
section into My Places if you wish to use them after your current Google Earth session is complete. You can arrange
them in folders and use Google Earth functionality to save your project to disk. Consult Google Earths documentation
for more information about how to do this.

Accounts and users GeoNode is primarily a social platform, and thus a primary component of any GeoNode instance
is the user account. This section will guide you through account registration, updating your account information,
and viewing other user accounts.

Document Types GeoNode welcome page shows a variety of information about the current GeoNode instance. At the
top of the page is a toolbar showing quick links to document types: layers, maps and documents.

Searching GeoNode advanced Search tool.

Managing layers Create, delete, manage and share Layers on GeoNode.

286 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 287

GeoNode Documentation, Release 2.8

288 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 289

GeoNode Documentation, Release 2.8

290 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 291

GeoNode Documentation, Release 2.8

292 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Edit Layer Style Beautify the Layer using the GeoNode Style editor.

Managing maps Create, delete, manage and share Maps on GeoNode.

Using GeoNode with other applications Your GeoNode project is based on core components which are interoperable
and as such, it is straightforward for you to integrate with external applications and services. This section will
walk you through how to connect to your GeoNode instance from other applications and how to integrate other
services into your GeoNode project. When complete, you should have a good idea about the possibilities for
integration, and have basic knowledge about how to accomplish it. You may find it necessary to dive deeper into
how to do more complex integration in order to accomplish your goals, but you should feel comfortable with
the basics, and feel confident reaching out to the wider GeoNode community for help.

3.2.1.4 Administrators Workshop

Welcome to the GeoNode Training Administrators Workshop documentation v2.8.

This workshop will teach how to install and manage a deployment of the GeoNode software application. At the end
of this section you will master all the GeoNode sections and entities from an administrator perspective.

You will know how to:

1. Use the GeoNode’s Django Administration Panel.

2. Use the console Management Commands for GeoNode.

3. Configure and customize your GeoNode installation.

Prerequisites

Before proceeding with the reading, it is strongly recommended to be sure having clear the following
concepts:

1. GeoNode and Django framework concepts

3.2. Tutorials 293

http://geonode.org/

GeoNode Documentation, Release 2.8

2. Good knowledge of Python

3. Good knowledge of what is a geospatial server and geospatial web services.

4. Good knowledge of what is metadata and catalog.

5. Good knowledge of HTML and CSS.

3.2.1.4.1 GeoNode and GeoServer Advanced Security

GeoNode interacts with GeoServer through an advanced security mechanism based on OAuth2 Protocol and Ge-
oFence. This section is a walk through of the configuration and setup of GeoNode and GeoServer Advanced Security.

What we will see in this section is:

• Introduction

• GeoNode (Security Backend):

1. DJango Authentication

2. DJango OAuth Toolkit Setup and Configuration

3. Details on settings.py Security Settings

• GeoServer (Security Backend):

1. GeoServer Security Subsystem

2. Introduction to the GeoServer OAuth2 Security Plugin

3. Configuration of the GeoNode REST Role Service

4. Configuration of the GeoNode OAuth2 Authentication Filter

5. The GeoServer Authentication Filter Chains

6. Introduction to GeoFence Plugin, the Advanced Security Framework for GeoServer

• Throubleshooting and Advanced Features:

1. Common Issues and Fixes

2. How to setup HTTPS secured endpoints

3. GeoFence Advanced Features

Introduction

GeoServer, i.e. the geospatial backend server of GeoNode, is a sptial server which needs authenticated users in order
to access protected resources or administration functions.

GeoServer supports several kind of Authentication and Authorization mechanisms. Those systems are pluggable and
GeoServer can use them at the same time by the use of a Filter Chain. Briefly this mechanism allows GeoServer
to check for different A&A protocols one by one. The first one matching is used by GeoServer to authorize the users.

GeoNode Authentication is based by default on Django Security Subsystem. Django authentication allows GeoNode
to manage its internal users, groups, roles and sessions.

GeoNode has some external components, like GeoServer or QGis Server, which are pluggable and stand-alone ser-
vices, devoted to the management of geospatial data. Those external services have theyr own authentication and
authorization mechanisms which must be syncronized somehow with the GeoNode one. Also, those external ser-
vices maintain, in most of the cases and unless specific configuration does not disable this, alternative security access

294 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

which for instance allow GeoNode to modify the geospatial catalog under the hood, or a system administrator to have
indipendent and priviliged access to the servers.

Before going deeply on how GeoServer/GeoNode A&A works and how it can be configured in order to work correctly
with GeoNode, lets quickly clarify the difference between the Authentication and Authorization concepts.

Authentication

Authentication is the process of verifying the identity of someone through the use of some sort of credentials and
an handshake protocol. If the credentials are valid, the authorization process starts. Authentication process always
proceeds to Authorization process (although they may often seem to be combined). The two terms are often used
synonymously but they are two different processes.

For more details and explanation about the authentication concepts, take a look here.

Authorization

Authorization is the process of allowing authenticated users to access protected resources by checking its roles and
rights against some sort of security rules mechanism or protocol. In other words it allows to control access rights by
granting or denying specific permissions to specific authorized users.

GeoNode Security Backend

DJango Authentication

The Django authentication system handles both authentication and authorization.

The auth system consists of:

1. Users

2. Permissions: Binary (yes/no) flags designating whether a user may perform a certain task.

3. Groups: A generic way of applying labels and permissions to more than one user.

4. A configurable password hashing system

5. Forms and view tools for logging in users, or restricting content

6. A pluggable backend system

The authentication system in Django aims to be very generic and doesn’t provide some features commonly found in
web authentication systems. Solutions for some of these common problems have been implemented in third-party
packages:

1. Password strength checking

2. Throttling of login attempts

3. Authentication against third-parties (OAuth, for example)

Note: For more details on installation and configuration of Django authentication system, please refer to the official
guide https://docs.djangoproject.com/en/1.10/topics/auth/.

GeoNode communicates with GeoServer through Basic Authentication under the hood, in order to configure the data
and the GeoServer catalog.

3.2. Tutorials 295

http://searchsecurity.techtarget.com/definition/authentication
https://docs.djangoproject.com/en/1.10/topics/auth/

GeoNode Documentation, Release 2.8

In order to do this, you must be sure that GeoNode knows the internal admin user and password of GeoServer.

Warning: This must be an internal GeoServer user with admin rights, not a GeoNode one.

Make sure the credentials are correctly configured into the file settings.py

OGC_SERVER

Ensure that the OGC_SERVER settings are correctly configured.

Notice that the two properties LOGIN_ENDPOINT and LOGOUT_ENDPOINT must speficy the GeoServer
OAuth2 Endpoints (see details below). The default values 'j_spring_oauth2_geonode_login' and
'j_spring_oauth2_geonode_logout' work in most of the cases, unless you need some specific endpoints
different from the latters. In any case those values must be coherent with the GeoServer OAuth2 Plugin configuration.

If in doubt, please use the default values here below.

Default values are:

...
OGC (WMS/WFS/WCS) Server Settings
OGC (WMS/WFS/WCS) Server Settings
OGC_SERVER = {

'default': {
'BACKEND': 'geonode.geoserver',
'LOCATION': GEOSERVER_LOCATION,
'LOGIN_ENDPOINT': 'j_spring_oauth2_geonode_login',
'LOGOUT_ENDPOINT': 'j_spring_oauth2_geonode_logout',
PUBLIC_LOCATION needs to be kept like this because in dev mode
the proxy won't work and the integration tests will fail
the entire block has to be overridden in the local_settings
'PUBLIC_LOCATION': GEOSERVER_PUBLIC_LOCATION,
'USER': 'admin',
'PASSWORD': 'geoserver',
'MAPFISH_PRINT_ENABLED': True,
'PRINT_NG_ENABLED': True,
'GEONODE_SECURITY_ENABLED': True,
'GEOGIG_ENABLED': False,
'WMST_ENABLED': False,
'BACKEND_WRITE_ENABLED': True,
'WPS_ENABLED': False,
'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.path.abspath(os.path.

→˓join(PROJECT_ROOT, os.pardir)),
Set to name of database in DATABASES dictionary to enable
'DATASTORE': '', # 'datastore',
'PG_GEOGIG': False,
'TIMEOUT': 10 # number of seconds to allow for HTTP requests

}
}
...

GeoNode and GeoServer A&A Interaction

The GeoServer instance used by GeoNode, has a perticular setup that allows the two frameworks to correctly interact
and exchange informations on users credentials and permissions.

296 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

In particular GeoServer is configured with a Filter Chain for Authorization that makes use of the two following
protocols:

1. Basic Authentication; this is the default GeoServer Authentication mechanism. This makes use of rfc2617 - Basic and Digest Access Authentication in order to check for user’s credentials.
In other words, GeoServer takes a username and a password encoded Base64 on the HTTP Request
Headers and compare them against its internal database (which by default is an encrypted XML file on the
GeoServer Data Dir). If the user’s credentials match, then GeoServer checks for Authorization through
its Role Services (we will see those services in details on the GeoServer (Security Backend) section
below).

Note: GeoServer ships by default with admin and geoserver as the default administrator user name
and password. Before putting the GeoServer on-line it is imperative to change at least the administrator
password.

2. OAuth2 Authentication; this module allows GeoServer to authenticate against the OAuth2 Protocol. If the
Basic Authentication fails, GeoServer falls back to this by using GeoNode as OAuth2 Provider by default.

Note: Further details can be found directly on the official GeoServer documentation at section “Authentication Chain”

From the GeoNode backend (server) side, the server will make use of Basic Authentication with administrator
credentials to configure the GeoServer catalog. GeoServer must be reachable by GeoNode of course, and GeoNode
must know the internal GeoServer admin credentials.

From the GeoNode frontend (browser and GUI) side, the Authentication goal is to allow GeoServer to recognize
as valid a user which has been already logged into GeoNode, providing kind of an SSO mechanism between the two
applications.

GeoServer must know and must be able to access GeoNode via HTTP/HTTPS. In other words, an external user
connected to GeoNode must be authenticated to GeoServer with same permissions. This is possible through the
OAuth2 Authentication Protocol.

GeoNode / GeoServer Authentication Mechanism

GeoNode as OAuth2 Provider (OP)

OpenID Connect is an identity framework built on OAuth 2.0 protocol which extends the authorization
of OAuth 2.0 processes to implement its authentication mechanism. OpenID Connect adds a discovery
mechanism allowing users to use an external trusted authority as an identity provider. From another point
of view, this can be seen as a single sign on (SSO) system.

OAuth 2.0 is an authorization framework which is capable of providing a way for clients to access a
resource with restricted access on behalf of the resource owner. OpenID Connect allows clients to verify
the users with an authorization server based authentication.

As an OP, GeoNode will be able to act as trusted identity provider, thus allowing the system working on
an isolated environment and/or allow GeoNode to authenticate private users managed by the local DJango
auth subsystem.

GeoServer as OAuth2 Relying Party (RP)

Thanks to the OAuth2 Authentication GeoServer is able to retrieve an end user’s identity directly from
the OAuth2 Provider (OP).

With GeoNode acting as an OP, the mechanism will avoid the use of cookies relying, instead, on the
OAuth2 secure protocol.

How the OAuth2 Protocol works:

3.2. Tutorials 297

https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc6749
http://docs.geoserver.org/latest/en/user/security/auth/chain.html#security-auth-chain
https://en.wikipedia.org/wiki/Single_sign-on

GeoNode Documentation, Release 2.8

1. The relying party sends the request to the OAuth2 provider to authenticate the end user

2. The OAuth2 provider authenticates the user

3. The OAuth2 provider sends the ID token and access token to the relying party

4. The relying party sends a request to the user info endpoint with the access token received from
OAuth2 provider

5. The user info endpoint returns the claims.

GeoNode / GeoServer Authorization Mechanism

Allowing GeoServer to make use of a OAuth2 in order to act as an OAuth2 RP, is not sufficient to map a
user identity to its roles though.

On GeoServer side we will still need to a RoleService which would be able to talk to GeoNode and
transform the tokens into a User Principal to be used within the GeoServer Security subsystem itself.

In other words after a successfull Authentication, GeoServer needs to Authorize the user in order to
understand which resources he is enable to access or not. A REST based RoleService on GeoNode
side, allows GeoServer to talk to GeoNode via REST to get the current user along with the list of its Roles.

Nevertheless knowning the Roles associated to a user is not sufficient. The complete GeoServer Autho-
rization needs to catch a set of Access Rules, associdated to the Roles, in order to establish which
resources and data are accessible by the user.

The GeoServer Authorization is based on Roles only, therefore for each authenticated user we need also
to know:

1. The Roles associated to a valid user session

2. The access permissions associated to a GeoServer Resource

The Authentication mechanism above allows GeoServer to get information about the user and his Roles,
which addresses point 1.

About point 2, GeoServer makes use of the GeoFence Embedded Server plugin. GeoFence is a java
web application that provides an advanced authentication / authorization engine for GeoServer using the
interface described in here. GeoFence has its own rules database for the management of Authorization
rules, and overrides the standard GeoServer security management system by implementing a sophisticated
Resource Access Manager. Least but not last, GeoFence implements and exposes a REST API allowing
remote authorized clients to read / write / modify security rules.

The advantages using such plugin are multiple:

1. The Authorizations rules have a fine granularity. The security rules are handled by GeoFence in a
way similar to the iptables ones, and allow to define security constraints even on sub-regions and
attributes of layers.

2. GeoFence exposes a REST interface to its internal rule database, allowing external managers to
update the security constraints programmatically

298 Chapter 3. Table of contents

https://en.wikipedia.org/wiki/Representational_state_transfer
http://docs.geoserver.org/latest/en/user/community/geofence-server/index.html
https://github.com/geoserver/geofence/wiki/First-steps
https://github.com/geoserver/geofence/wiki/REST-API

GeoNode Documentation, Release 2.8

3. GeoFence implements an internal caching mechanism which improves considerably the perfor-
mances under load.

GeoNode interaction with GeoFence

GeoNode itself is able to push/manage Authorization rules to GeoServer through the GeoFence REST
API, acting as an administrator for GeoServer. GeoNode properly configures the GeoFence rules anytime
it is needed, i.e. the permissions of a Resource / Layer are updated.

GeoServer must know and must be able to access GeoNode via HTTP/HTTPS. In other words, an external user
connected to GeoNode must be authenticated to GeoServer with same permissions. This is possible through the
GeoNodeCoockieProcessingFiler.

Summarizing we will have different ways to access GeoNode Layers:

1. Through GeoNode via DJango Authentication and GeoNodeCoockieProcessingFiler; basically the users avail-
able in GeoNode are also valid for GeoServer or any other backend.

Warning: If a GeoNode user has “administrator” rights, he will be able to administer GeoServer
too.

2. Through GeoServer Security Subsystem; it will be always possible to access to GeoServer using its internal
security system and users, unless explictly disabled (warning this is dangeruos, you must know what you are
doing).

Lets now see in details how the single pieces are configured and how they can be configured.

DJango OAuth Toolkit Setup and Configuration

As stated above, GeoNode makes use of the OAuth2 protocol for all the frontend interactions with GeoServer. GeoN-
ode must be conifgured as an OAuth2 Provider and provide a Client ID and a Client Sercret kayes to
GeoServer. This is possible by enabling and configuring the Django OAuth Toolkit Plugin.

Warning: GeoNode and GeoServer won’t work at all if the follwing steps are not executed at the first installation.

Default settings.py Security Settings for OAuth2

Double check that the OAuth2 Provider and Security Plugin is enabled and that the settings below are correctly
configured.

AUTH_IP_WHITELIST

AUTH_IP_WHITELIST property limits access to users/groups REST Role Service endpoints to the only whitelisted
IP addresses. Empty list means ‘allow all’. If you need to limit ‘api’ REST calls to only some specific IPs fill the list
like this: AUTH_IP_WHITELIST = ['192.168.1.158', '192.168.1.159']

Default values are:

...
AUTH_IP_WHITELIST = []
...

3.2. Tutorials 299

https://github.com/geoserver/geofence/wiki/REST-API
https://github.com/geoserver/geofence/wiki/REST-API
https://django-oauth-toolkit.readthedocs.io/en/latest/

GeoNode Documentation, Release 2.8

INSTALLED_APPS

In order to allow GeoNode to act as an OAuth2 Provider, we need to enable the oauth2_provider DJango appli-
cation provided by the “Django OAuth Toolkit”.

Default values are:

...
INSTALLED_APPS = (

'modeltranslation',

...
'guardian',
'oauth2_provider',
...

) + GEONODE_APPS
...

MIDDLEWARE_CLASSES

Installing the oauth2_provider‘ DJango application is not sufficient to enable the full functionality. We need also
GeoNode to include additional entities to its internal model.

Default values are:

...
MIDDLEWARE_CLASSES = (

'django.middleware.common.CommonMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',

The setting below makes it possible to serve different languages per
user depending on things like headers in HTTP requests.
'django.middleware.locale.LocaleMiddleware',
'pagination.middleware.PaginationMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',

This middleware allows to print private layers for the users that have
the permissions to view them.
It sets temporary the involved layers as public before restoring the

→˓permissions.
Beware that for few seconds the involved layers are public there could be risks.
'geonode.middleware.PrintProxyMiddleware',

If you use SessionAuthenticationMiddleware, be sure it appears before
→˓OAuth2TokenMiddleware.

SessionAuthenticationMiddleware is NOT required for using django-oauth-toolkit.
'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
'oauth2_provider.middleware.OAuth2TokenMiddleware',

)
...

300 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

AUTHENTICATION_BACKENDS

In order to allow GeoNode to act as an OAuth2 Provider, we need to enable the oauth2_provider.backends.
OAuth2Backend DJango backend provided by the “Django OAuth Toolkit”. Also notice that we need to specify
the OAuth2 Provider scopes and declare which generator to use in order to create OAuth2 Client IDs.

Default values are:

...
Replacement of default authentication backend in order to support
permissions per object.
AUTHENTICATION_BACKENDS = (

'oauth2_provider.backends.OAuth2Backend',
'django.contrib.auth.backends.ModelBackend',
'guardian.backends.ObjectPermissionBackend',

)

OAUTH2_PROVIDER = {
'SCOPES': {

'read': 'Read scope',
'write': 'Write scope',
'groups': 'Access to your groups'

},

'CLIENT_ID_GENERATOR_CLASS': 'oauth2_provider.generators.ClientIdGenerator',
}
...

Django OAuth Toolkit Admin Setup

Once the settings.py and local_settings.py have been correctly configured for your system:

1. Complete the GeoNode setup steps

• Prepare the model

python manage.py makemigrations
python manage.py migrate
python manage.py syncdb

• Prepare the static data

python manage.py collectstatic

• Make sure the database has been populated with initial default data

Warning: Deprecated this command will be replaced by migrations in the future,
so be careful.

python manage.py loaddata initial_data.json

• Make sure there exists a superuser for your environment

3.2. Tutorials 301

GeoNode Documentation, Release 2.8

Warning: Deprecated this command will be replaced by migrations in the future,
so be careful.

python manage.py createsuperuser

Note: Read the base tutorials on GeoNode Developer documentation for details on the specific
commands and how to use them.

2. Start the application

Start GeoNode accordingly on how the setup has been done; run debug mode through paver, or
proxied by an HTTP Server like Apache2 HTTPD, Nginx or others.

3. Finalize the setup of the OAuth2 Provider

First of all you need to configure and create a new OAuth2 Application called GeoServer through
the GeoNode Admin Dashboard

• Access the GeoNode Admin Dashboard

• Go to Django OAuth Toolkit > Applications

• Update or create the Application named GeoServer

Warning: The Application name must be GeoServer

– Client id; An alphanumeric code representing the OAuth2 Client Id. GeoServer
OAuth2 Plugin will use this value.

Warning: In a production environment it is highly recommended to modify
the default value provided with GeoNode installation.

– User; Search for the admin user. Its ID will be automatically updated into the
form.

– Redirect uris; It is possible to specify many URIs here. Those must coincide
with the GeoServer instances URIs.

– Client type; Choose Confidential

– Authorization grant type; Choose Authorization code

– Client secret; An alphanumeric code representing the OAuth2 Client Secret.
GeoServer OAuth2 Plugin will use this value.

Warning: In a production environment it is highly recommended to modify
the default value provided with GeoNode installation.

– Name; Must be GeoServer

302 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 303

GeoNode Documentation, Release 2.8

304 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

GeoServer Security Backend

GeoServer Security Subsystem

GeoServer has a robust security subsystem, modeled on Spring Security. Most of the security features are available
through the Web administration interface.

For more details on how this works and how to configure and modify it, please refer to the official GeoServer guide
http://docs.geoserver.org/stable/en/user/security/webadmin/index.html

By using the GeoServer Data Dir provided with GeoNode build, the following configuration are already avail-
able. You will need just to update them accordingly to your environment (like IP addresses and Host names, OAuth2
Keys, and similar things). However it is recommended to read carefully all the following passages in order to under-
stand exactly how the different component are configured and easily identify any possible issue during the deployment.

The main topics of this section are:

1. Connection to the GeoNode REST Role Service

2. Setup of the GeoServer OAuth2 Authentication Filter

3. Configuration of the GeoServer Filter Chains

4. Setup and test of the GeoFence Server and Default Rules

Connection to the GeoNode REST Role Service

Preliminary checks

• GeoServer is up and running and you have admin rights

• GeoServer must reach the GeoNode instance via HTTP

• The GeoServer Host IP Address must be allowed to access the GeoNode Role Service APIs (see the section
AUTH_IP_WHITELIST above)

Setup of the GeoNode REST Role Service

1. Login as admin to the GeoServer GUI

Warning: In a production system remember to change the default admin credentials admin
geoserver

2. Access the Security > Users, Groups, Roles section

3. If not yet configured the service geonode REST role service, click on Role Services > Add
new

Note: This passage is not needed if the geonode REST role service has been already
created. If so it will be displayed amond the Role Services list

3.2. Tutorials 305

http://docs.geoserver.org/stable/en/user/security/webadmin/index.html

GeoNode Documentation, Release 2.8

306 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 307

GeoNode Documentation, Release 2.8

4. If not yet configured the service geonode REST role service, choose AuthKEY REST - Role
service from REST endpoint

5. Create / update the geonode REST role service accordingly

• Name; Must be geonode REST role service

• Base Server URL; Must point to the GeoNode instance base URL (e.g. http://
<geonode_host_url>)

• Roles REST Endpoint; Enter /api/roles

• Admin Role REST Endpoint; Enter /api/adminRole

• Users REST Endpoint; Enter /api/users

• Roles JSON Path; Enter $.groups

• Admin Role JSON Path; Enter $.adminRole

• Users JSON Path; Enter $.users[0].groups

Once everything has been setup and it is working, choose the Administrator role and Group
administrator role as ROLE_ADMIN

Allow GeoFence to validate rules with ROLES

Warning: The following instruction are different accordingly to the GeoServer version you are currently using.

GeoServer 2.9.x and 2.10.x

1. Access the Security > Settings section

2. Choose the geonode REST role service as Active role service

308 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 309

GeoNode Documentation, Release 2.8

310 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

GeoServer 2.12.x and above

With the latest updates to GeoFence Plugin, the latter no more recognizes the Role Service from the default settings
but from the geofence-server.properties file.

That said, it is important that the Security > Settings role service will be set to default, in order to allow
GeoServer following the standard authorization chain.

On the other side, you will need to be sure that the geofence-server.properties file under the
$GEOSERVER_DATA_DIR/geofence folder, contains the two following additional properties:

gwc.context.suffix=gwc
org.geoserver.rest.DefaultUserGroupServiceName=geonode REST role service

Setup of the GeoServer OAuth2 Authentication Filter

It is necessary now check that GeoServer can connect to OAuth2 Providers (specifically to GeoNode OP), and being
able to Authenticate users through it.

Preliminary checks

• GeoServer is up and running and you have admin rights

• GeoServer must reach the GeoNode instance via HTTP

• OAuth2 Client ID and Client Secret have been generated on GeoNode and known

Setup of the GeoNode OAuth2 Security Filter

1. Access the Security > Authentication section

2. If not yet configured the Authentication Filter geonode-oauth2 - Authentication using a
GeoNode OAuth2, click on Authentication Filters > Add new

Note: This passage is not needed if the geonode-oauth2 - Authentication using a
GeoNode OAuth2 has been already created. If so it will be displayed amond the Authentication
Filters list

3.2. Tutorials 311

GeoNode Documentation, Release 2.8

3. If not yet configured the Authentication Filter geonode-oauth2 - Authentication using
a GeoNode OAuth2, choose GeoNode OAuth2 - Authenticates by looking up for a
valid GeoNode OAuth2 access_token key sent as URL parameter

4. Create / update the geonode-oauth2 - Authentication using a GeoNode OAuth2 accord-
ingly

• Name; Must be geonode-oauth2

• Enable Redirect Authentication EntryPoint; It is recommended to put this to
False, otherwise GeoServer won’t allow you to connect to its Admin GUI through the Form
but only through GeoNode

• Login Authentication EndPoint; Unless you have specific needs, keep the default
value /j_spring_oauth2_geonode_login

• Logout Authentication EndPoint; Unless you have specific needs, keep the default
value /j_spring_oauth2_geonode_logout

312 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

• Force Access Token URI HTTPS Secured Protocol; This must be False un-
less you enabled a Secured Connection on GeoNode. In that case you will need to trust
the GeoNode Certificate on the GeoServer JVM Kaystore. Please see details below

• Access Token URI; Set this to http://<geonode_host_base_url>/o/token/

• Force User Authorization URI HTTPS Secured Protocol; This must be
False unless you enabled a Secured Connection on GeoNode. In that case you will
need to trust the GeoNode Certificate on the GeoServer JVM Kaystore. Please see details
below

• User Authorization URI; Set this to http://<geonode_host_base_url>/o/
authorize/

• Redirect URI; Set this to http://<geoserver_host>/geoserver. This address
must be presenet on the Reditect uris of GeoNode OAuth2 > Applications >
GeoServer (see above)

• Check Token Endpoint URL; Set this to http://<geonode_host_base_url>/
api/o/v4/tokeninfo/

• Logout URI; Set this to http://<geonode_host_base_url>/account/logout/

• Scopes; Unless you have specific needs, keep the default value read,write,groups

• Client ID; The Client id alphanumeric key generated by the GeoNode OAuth2 >
Applications > GeoServer (see above)

• Client Secret; The Client secret alphanumeric key generated by the GeoNode
OAuth2 > Applications > GeoServer (see above)

• Role source; In order to authorize the user against GeoNode, choose Role service >
geonode REST role service

Configuration of the GeoServer Filter Chains

The following steps ensure GeoServer can adopt more Authentication methods. As stated above, it is possible to
Authenticate to GeoServer using different protocols.

3.2. Tutorials 313

GeoNode Documentation, Release 2.8

GeoServer scans the authentication filters chain associated to the specified path and tries them one by one sequen-
tially. The first one matching the protocol and able to grant access to the user, breaks the cycle by creating a User
Principal and injecting it into the GeoServer SecurityContext. The Authentication process, then, ends here
and the control goes to the Authorization one, which will try to retrieve the authenticated user’s Roles through the
available GeoServer Role Services associated to the Authentication Filter that granted the access.

Preliminary checks

• GeoServer is up and running and you have admin rights

• GeoServer must reach the GeoNode instance via HTTP

• The geonode-oauth2 - Authentication using a GeoNode OAuth2 Authentication Filter and
the geonode REST role service have been correctly configured

Setup of the GeoServer Filter Chains

1. Access the Security > Authentication section

2. Identify the section Filter Chains

3. Make sure the web Filter Chain is configured as shown below

Warning: Every time you modify a Filter Chain, don’t forget to save the Authentication
settings. This must be done for each change.

4. Make sure the rest Filter Chain is configured as shown below

Warning: Every time you modify a Filter Chain, don’t forget to save the Authentication
settings. This must be done for each change.

5. Make sure the gwc Filter Chain is configured as shown below

Warning: Every time you modify a Filter Chain, don’t forget to save the Authentication
settings. This must be done for each change.

314 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 315

GeoNode Documentation, Release 2.8

6. Make sure the default Filter Chain is configured as shown below

Warning: Every time you modify a Filter Chain, don’t forget to save the Authentication
settings. This must be done for each change.

7. Add the GeoNode Login Endpoints to the comma-delimited list of the webLogin Filter Chain

Warning: Every time you modify a Filter Chain, don’t forget to save the Authentication
settings. This must be done for each change.

8. Add the GeoNode Logout Endpoints to the comma-delimited list of the webLogout Filter Chain

Warning: Every time you modify a Filter Chain, don’t forget to save the Authentication
settings. This must be done for each change.

9. Add the GeoNode Logout Endpoints to the comma-delimited list of the formLogoutChain XML
node in <GEOSERVER_DATA_DIR>/security/filter/formLogout/config.xml

You will need a text editor to modify the file.

Note: If the <formLogoutChain> XML node does not exist at all, create a new one as specified
below

316 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 317

GeoNode Documentation, Release 2.8

<logoutFilter>
...
<redirectURL>/web/</redirectURL>
<formLogoutChain>/j_spring_security_logout,/j_spring_security_logout/,/

→˓j_spring_oauth2_geonode_logout,/j_spring_oauth2_geonode_logout/</
→˓formLogoutChain>
</logoutFilter>

Warning: The value j_spring_oauth2_geonode_logout must be the same
specified as Logout Authentication EndPoint in the geonode-oauth2 -
Authentication using a GeoNode OAuth2 above.

Setup and test of the GeoFence Server and Default Rules

In order to work correctly, GeoServer needs the GeoFence Embedded Server plugin to be installed and configured on
the system.

The GeoServer configuration provided for GeoNode, has the plugin already installed with a default configuration. In
that case double check that the plugin works correctly and the default rules have been setup by following the next
steps.

Preliminary checks

• GeoServer is up and running and you have admin rights

• The GeoFence Embedded Server plugin has been installed on GeoServer

Setup of the GeoServer Filter Chains

1. Access the Security > Authentication section

2. Identify the section Authentication Providers and make sure the geofence Authentication Provider
is present

3. Make sure the Provider Chain is configured as shown below

318 Chapter 3. Table of contents

http://docs.geoserver.org/latest/en/user/community/geofence-server/index.html
http://docs.geoserver.org/latest/en/user/community/geofence-server/index.html

GeoNode Documentation, Release 2.8

Warning: Every time you modify a Authentication Providers, don’t forget to save the
Authentication settings. This must be done for each change.

Setup of the GeoFence Server and Rules

1. Make sure GeoFence server works and the default settings are correctly configured

• Access the Security > GeoFence section

• Make sure the Options are configured as follows and the server works well when performing a Test
Connection

– Allow remote and inline layers in SLD; Set it to True

– Allow SLD and SLD_BODY parameters in requests; Set it to True

– Authenticated users can write; Set it to True

– Use GeoServer roles to get authorizations; Set it to False

2. Check the GeoFence default Rules

• Access the Security > GeoFence Data Rules section

• Make sure the DENY ALL Rule is present by default, otherwise your data will be accessible to everyone

3.2. Tutorials 319

GeoNode Documentation, Release 2.8

Note: This rule is always the last one

Warning: If that rule does not exists at the very bottom (this rule is always the last one),
add it manually.

• Access the Security > GeoFence Admin Rules section

• No Rules needed here

Throubleshooting and Advanced Features

Common Issues and Fixes

• GeoServer/GeoNode OAuth2 does not authenticate as Administrator even using GeoNode admin users

Symptoms

When trying to authenticate with an admin user using OAuth2, the process correctly redi-
rects to GeoServer page but I’m not a GeoServer Administrator.

Cause

That means that somehow GeoServer could not successfully complete the Authorization
and Authentication process.

The possible causes of the problem may be the following ones:

1. The OAuth2 Authentication fails on GeoServer side

This is usually due to an exception while trying to complete the Authentication
process.

320 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 321

GeoNode Documentation, Release 2.8

322 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

– A typical cause is that GeoServer tries to use HTTPS connections but the GeoN-
ode certificate is not trusted;

In that case please refer to the section below. Also take a look at the logs
(in particular the GeoServer one) as explained in Debugging GeoNode In-
stallations. The GeoServer logs should contain a detailed Exception ex-
plaining the cause of the problem. If no exception is listed here (even after
raised the log level to DEBUG), try to check for the GeoNode Role Service
as explained below.

– Another possible issue is that somehow the OAuth2 handshake cannot complete
successfully;

1. Login into GeoServer as administrator through its WEB login form.

2. Double check that all the geonode-oauth2 - Authentication
using a GeoNode OAuth2 parameters are correct. If everything is ok,
take a look at the logs (in particular the GeoServer one) as explained in De-
bugging GeoNode Installations. The GeoServer logs should contain a de-
tailed Exception explaining the cause of the problem. If no exception is listed
here (even after raised the log level to DEBUG), try to check for the GeoNode
Role Service as explained below.

2. GeoServer is not able to retrieve the user Role from a Role Service

Always double check both HTTP Server and GeoServer log as specified in
section Debugging GeoNode Installations. This might directly guide you to
the cause of the problem.

– Check that the GeoServer host is granted to access GeoNode Role Service
REST APIs in the AUTH_IP_WHITELIST of the settings.py

– Check that the geonode REST role service is the default Role ser-
vice and that the GeoServer OAuth2 Plugin has been configured to use it by
default

– Check that the GeoNode REST Role Service APIs are functional and pro-
duce correct JSON.

This is possible by using simple cUrl GET calls like

curl http://localhost/api/adminRole
$> {"adminRole": "admin"}

curl http://localhost/api/users
$> {"users": [{"username": "AnonymousUser", "groups
→˓": ["anonymous"]}, {"username": "afabiani",
→˓"groups": ["anonymous", "test"]}, {"username":
→˓"admin", "groups": ["anonymous", "test", "admin"]}
→˓]}

(continues on next page)

3.2. Tutorials 323

GeoNode Documentation, Release 2.8

(continued from previous page)

curl http://localhost/api/roles
$> {"groups": ["anonymous", "test", "admin"]}

curl http://localhost/api/users/admin
$> {"users": [{"username": "admin", "groups": [
→˓"anonymous", "test", "admin"]}]}

How to setup HTTPS secured endpoints

In a production system it is a good practice to encrypt the connection between GeoServer and GeoNode. That would
be possible by enabling HTTPS Protocol on the GeoNode REST Role Service APIs and OAuth2 Endpoints.

Most of the times you will rely on a self-signed HTTPS connection using a generated certificate. That makes the
connection untrasted and you will need to tell to the GeoServer Java Virtual Machine to trust it.

This can be done by following the steps below.

For any issue take a look at the logs (in particular the GeoServer one) as explained in Debugging GeoNode Installa-
tions. The GeoServer logs should contain a detailed Exception explaining the cause of the problem.

SSL Trusted Certificates

When using a custom Keystore or trying to access a non-trusted or self-signed SSL-protected OAuth2 Provider
from a non-SSH connection, you will need to add the certificates to the JVM Keystore.

In order to do this you can follow the next steps:

In this example we are going to

1. Retrieve SSL Certificate from GeoNode domain:

“Access Token URI” = https://<geonode_host_base_url>/o/token/ there-
fore we need to trust https://<geonode_host_base_url> or
(<geonode_host_base_url>:443)

Note: You will need to get and trust certificates from every different HTTPS URL used
on OAuth2 Endpoints.

2. Store SSL Certificates on local hard-disk

3. Add SSL Certificates to the Java Keystore

4. Enable the JVM to check for SSL Certificates from the Keystore

1. Retrieve the SSL Certificate from GeoNode domain

Use the openssl command in order to dump the certificate

For https://<geonode_host_base_url>

openssl s_client -connect <geonode_host_base_url>:443

2. Store SSL Certificate on local hard-disk

324 Chapter 3. Table of contents

https:/

GeoNode Documentation, Release 2.8

3.2. Tutorials 325

GeoNode Documentation, Release 2.8

Copy-and-paste the section -BEGIN CERTIFICATE-, -END CERTIFICATE- and save it into
a .cert file

Note: .cert file are plain text files containing the ASCII characters included on the -BEGIN
CERTIFICATE-, -END CERTIFICATE- sections

geonode.cert (or whatever name you want with .cert extension)

3. Add SSL Certificates to the Java Keystore

You can use the Java command keytool like this

geonode.cert (or whatever name you want with .cert extension)

keytool -import -noprompt -trustcacerts -alias geonode -
→˓file geonode.cert -keystore ${KEYSTOREFILE} -storepass $
→˓{KEYSTOREPASS}

or, alternatively, you can use some graphic tool which helps you managing the SSL Certificates and
Keystores, like Portecle

java -jar c:\apps\portecle-1.9\portecle.jar

4. Enable the JVM to check for SSL Certificates from the Keystore

In order to do this, you need to pass a JAVA_OPTION to your JVM:

-Djavax.net.ssl.trustStore=F:\tmp\keystore.key

5. Restart your server

Note: Here below you can find a bash script which simplifies the Keystore SSL Certificates importing. Use it at your
conveninece.

326 Chapter 3. Table of contents

http://portecle.sourceforge.net/

GeoNode Documentation, Release 2.8

3.2. Tutorials 327

GeoNode Documentation, Release 2.8

328 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 329

GeoNode Documentation, Release 2.8

330 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 331

GeoNode Documentation, Release 2.8

332 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 333

GeoNode Documentation, Release 2.8

334 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 335

GeoNode Documentation, Release 2.8

HOST=myhost.example.com
PORT=443
KEYSTOREFILE=dest_keystore
KEYSTOREPASS=changeme

get the SSL certificate
openssl s_client -connect ${HOST}:${PORT} </dev/null \

| sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > ${HOST}.cert

create a keystore and import certificate
keytool -import -noprompt -trustcacerts \

-alias ${HOST} -file ${HOST}.cert \
-keystore ${KEYSTOREFILE} -storepass ${KEYSTOREPASS}

verify we've got it.
keytool -list -v -keystore ${KEYSTOREFILE} -storepass ${KEYSTOREPASS} -alias ${HOST}

GeoFence Advanced Features

GeoFence Rules Management and Tutorials

• This tutorial shows how to install and configure the Geofence Internal Server plug-in. It shows how to create
rules in two ways: using the GUI and REST methods.

• GeoFence Rules can be created / updated / deleted through a REST API, accessible only by a GeoServer Admin
user. You can find more details on how the GeoFence REST API works here.

GeoFence Rules Storage Configuration

By default GeoFence is configured to use a filesystem based DB stored on the GeoServer Data Dir
<GEOSERVER_DATA_DIR/geofence.

• It is possible also to configure GeoFence in order to use an external PostgreSQL / PostGIS Database. In order
to do that please refer to the official GeoFence documentation here.

3.2.1.4.2 Usage of the GeoNode’s Django Administration Panel

GeoNode has an administration panel based on the Django admin which can be used to do some database operations.
Although most of the operations can and should be done through the normal GeoNode interface, the admin panel
provides a quick overview and management tool over the database.

It should be highlighted that the sections not covered in this guide are meant to be managed through GeoNode.

Accessing the admin panel

Only the staff users (including the superusers) can access the admin interface.

Note: User’s staff membership can be set by the admin panel itself, see how in the Manage users and groups through
the admin panel section.

336 Chapter 3. Table of contents

http://docs.geoserver.org/latest/en/user/community/geofence-server/tutorial.html
https://github.com/geoserver/geofence/wiki/REST-API
https://github.com/geoserver/geofence/wiki/GeoFence-configuration

GeoNode Documentation, Release 2.8

The link to access the admin interface can be found by clicking in the upper right corner on the user name, see figure

Manage users and groups through the admin panel

The admin section called Auth has the link to access the Groups while the section called People has the link to access
the Users, see figure

Users

3.2. Tutorials 337

GeoNode Documentation, Release 2.8

Adding a user

By clicking on the “add” link on the right of the Users link is possible to add a new user to the GeoNode site. A simple
form asking for username and password will be presented, see figure

Upon clicking “save” a new form will be presented asking for some personal information and the rights the user should
have.

For a normal, not privileged user is enough to just fill the personal information and then confirm with “save”.

If the user has to access the admin panel or be a superuser it’s enough just to tick the “staff” and “superuser” check-
boxes.

Changing a user

To modify an existing user click on “Users” then on a username in the list. The same form will be presented.

Groups

Although the “Groups” permissions system is not implemented yet in GeoNode is possible to create new groups with
set of permissions which will be inherited by all the group members.

The creation and management of a Group is done in a very similar way that the user one.

Manage profiles using the admin panel

So far GeoNode implements two distinct roles, that can be assigned to resources such as layers, maps or documents:

• party who authored the resource

• party who can be contacted for acquiring knowledge about or acquisition of the resource

These two profiles can be set in the GeoNode interface by accessing the metadata page and setting the “Point of
Contact” and “Metadata Author” fields respectively.

338 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 339

GeoNode Documentation, Release 2.8

Is possible for an administrator to add new roles if needed, by clicking on the “Add Role” button in the “Base” ->
“Contact Roles” section:

Clicking on the “People” section (see figure) will open a web for with some personal information plus a section called
“Users”.

Is important that this last section is not modified here unless the administrator is very confident in that operation.

Manage the metadata categories using the admin panel

In the “Base” section of the admin panel there are the links to manage the metadata categories used in GeoNode

The metadata categories are:

• Regions

• Restriction Code Types

• Spatial Representation Types

• Topic Categories

The other links available should not be used.

Regions

The Regions can be updated, deleted and added on needs. Just after a GeoNode fresh installation the regions contain
all of the world countries, identified by their ISO code.

Restriction Code Types

Being GeoNode strictly tied to the standards, the restrictions cannot be added/deleted or modified in their identifier.
This behavior is necessary to keep the consistency in case of federation with the CSW catalogues.

340 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 341

GeoNode Documentation, Release 2.8

The Restrictions GeoNode description field can in any case be modified if some kind of customisation is necessary,
since it’s just the string that will appear on the layer metadata page. If some of the restrictions are not needed within
the GeoNode instance, it is possible to hide them by unchecking the “Is choice” field.

Spatial Representation Types

For this section the same concepts of the Restriction Code Types applies.

Topic Categories

Also for the Topic Categories the only part editable is the GeoNode description. Being standard is assumed that
every possible data type will fall under these category identifiers. If some of the categories are not needed within the
GeoNode instance, it is possible to hide them by unchecking the “Is choice” field.

342 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Manage layers using the admin panel

Some of the layers information can be edited directly through the admin interface although the best place is in the
layer -> metadata page in GeoNode.

Is not recommended to modify the Attributes neither the Styles.

Clicking on the Layers link will present a list of layers. Metadata information can be changed for multiple layers at
once with “Metadata batch edit” action. By clicking one of the layers presents you with the page for modifing some of
the information like metadata, keywords etc. It’s strongly recommended to limit the edits to the metadata and similar
information.

Manage the maps using the admin panel

Currently the maps admin panel allows more metadata options that the GeoNode maps metadata page. Thus is a good
place where to add some more detailed information.

The “Map Layers” section should not be used.

By clicking on a map in the maps list the metadata web form will be presented. Is possible to add or modify the
information here. As for the layers, the more specific entries like the layers stack or the map coordinates should not
be modified. Just like for layers, you can edit metadata for multiple maps at once with “Metadata batch edit” action.

3.2. Tutorials 343

GeoNode Documentation, Release 2.8

Manage the documents using the admin panel

As for the layers, most of the information related to the documents can and should be modified using the GeoNode’s
document metadata page.

Through the document detail page is possible to edit the metadata information. The fields related to the bounding box
or the file attached should not be edited directly. Metadata information can be changed for multiple documents at once
with “Metadata batch edit” action, just like for layers.

3.2.1.4.3 Management Commands for GeoNode

GeoNode comes with administrative commands to help with day to day tasks.

Below is the list of the ones that come from the GeoNode application, the full list can be obtained by doing:

python manage.py help

importlayers

Imports a file or folder with geospatial files to GeoNode.

It supports data in Shapefile and GeoTIFF format. It also picks up the styles if a .sld file is present.

Usage:

python manage.py importlayers <data_dir>

Additional options:

Usage: manage.py importlayers [options] path [path...]

Brings a data file or a directory full of data files into a GeoNode site. Layers are
→˓added to the Django database, the GeoServer configuration, and the GeoNetwork
→˓metadata index.

Options:
-v VERBOSITY, --verbosity=VERBOSITY

Verbosity level; 0=minimal output, 1=normal output,
2=verbose output, 3=very verbose output

--settings=SETTINGS The Python path to a settings module, e.g.
"myproject.settings.main". If this isn't provided, the
DJANGO_SETTINGS_MODULE environment variable will be
used.

--pythonpath=PYTHONPATH
A directory to add to the Python path, e.g.
"/home/djangoprojects/myproject".

--traceback Raise on exception
-u USER, --user=USER Name of the user account which should own the imported

layers

(continues on next page)

344 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

-i, --ignore-errors Stop after any errors are encountered.
-o, --overwrite Overwrite existing layers if discovered (defaults

False)
-k KEYWORDS, --keywords=KEYWORDS

The default keywords, separated by comma, for the
imported layer(s). Will be the same for all imported
layers if multiple imports are
done in one command

-c CATEGORY, --category=CATEGORY
The category for the imported
layer(s). Will be the same for all imported layers
if multiple imports are done in one command

-r REGIONS, --regions=REGIONS
The default regions, separated by comma, for the
imported layer(s). Will be the same for all imported
layers if multiple imports are
done in one command

-t TITLE, --title=TITLE
The title for the imported
layer(s). Will be the same for all imported layers
if multiple imports are done in one command

-p, --private Make layer viewable only to owner
--version show program's version number and exit
-h, --help show this help message and exit

updatelayers

Update the GeoNode application with data from GeoServer.

This is useful to add data in formats that are not supported in GeoNode by default, and for example to link it it
to ArcSDE datastores. The updatelayers command provides several options that can be used to control how layer
information is read from GeoServer and updated in GeoNode. Refer to ‘Additional Options’.

Usage:

python manage.py updatelayers

Additional options:

Usage: manage.py updatelayers [options]

Update the GeoNode application with data from GeoServer

Options:
-v VERBOSITY, --verbosity=VERBOSITY

Verbosity level; 0=minimal output, 1=normal output,
2=verbose output, 3=very verbose output

--settings=SETTINGS The Python path to a settings module, e.g.
"myproject.settings.main". If this isn't provided, the
DJANGO_SETTINGS_MODULE environment variable will be
used.

--pythonpath=PYTHONPATH
A directory to add to the Python path, e.g.
"/home/djangoprojects/myproject".

--traceback Raise on exception

(continues on next page)

3.2. Tutorials 345

GeoNode Documentation, Release 2.8

(continued from previous page)

-i, --ignore-errors Stop after any errors are encountered.
--skip-unadvertised Skip processing unadvertised layers from GeoSever.
--skip-geonode-registered

Just processing GeoServer layers still not registered
in GeoNode.

--remove-deleted Remove GeoNode layers that have been deleted from
GeoSever.

-u USER, --user=USER Name of the user account which should own the imported
layers

-f FILTER, --filter=FILTER
Only update data the layers that match the given
filter

-s STORE, --store=STORE
Only update data the layers for the given geoserver
store name

-w WORKSPACE, --workspace=WORKSPACE
Only update data on specified workspace

--version show program's version number and exit
-h, --help show this help message and exit

createvectorlayer

Create an empty PostGIS vector layer in GeoNode.

Usage:

python manage.py createvectorlayer name [options]

Additional options:

manage.py createvectorlayer [-h] [--version] [-v {0,1,2,3}]
[--settings SETTINGS]
[--pythonpath PYTHONPATH] [--traceback]
[--no-color] [--user USER]
[--geometry GEOMETRY]
[--attributes ATTRIBUTES] [--title TITLE]
name

Create an empty PostGIS vector layer in GeoNode.

positional arguments:
name

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
-v {0,1,2,3}, --verbosity {0,1,2,3}

Verbosity level; 0=minimal output, 1=normal output,
2=verbose output, 3=very verbose output

--settings SETTINGS The Python path to a settings module, e.g.
"myproject.settings.main". If this isn't provided, the
DJANGO_SETTINGS_MODULE environment variable will be
used.

--pythonpath PYTHONPATH
A directory to add to the Python path, e.g.

(continues on next page)

346 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

"/home/djangoprojects/myproject".
--traceback Raise on CommandError exceptions
--no-color Don't colorize the command output.
--user USER Name of the user account which should own the created

layer
--geometry GEOMETRY Geometry type of the layer to be created. Can be

Point, LineString or Polygon. Default is Point
--attributes ATTRIBUTES

A json representation of the attributes to create.
Example: { "field_str": "string", "field_int":
"integer", "field_date": "date", "field_float":
"float"}

--title TITLE Title for the layer to be created.

fixsitename

Uses SITENAME and SITEURL to set the values of the default site object.

This information is used in the page titles and when sending emails from GeoNode, for example, new registrations.

Usage:

python manage.py fixsitename

Additional options:

Usage: manage.py fixsitename [options]

Options:
-v VERBOSITY, --verbosity=VERBOSITY

Verbosity level; 0=minimal output, 1=normal output,
2=verbose output, 3=very verbose output

--settings=SETTINGS The Python path to a settings module, e.g.
"myproject.settings.main". If this isn't provided, the
DJANGO_SETTINGS_MODULE environment variable will be
used.

--pythonpath=PYTHONPATH
A directory to add to the Python path, e.g.
"/home/djangoprojects/myproject".

--traceback Raise on exception
--version show program's version number and exit
-h, --help show this help message and exit

delete_orphaned_files

Deletes orphaned files of deleted documents.

Usage:

python manage.py delete_orphaned_files

3.2. Tutorials 347

GeoNode Documentation, Release 2.8

delete_orphaned_thumbs

Deletes orphaned thumbnails of deleted GeoNode resources (Layers, Maps and Documents).

Usage:

python manage.py delete_orphaned_thumbs

fix_baselayers

Fix base layers for all of the GeoNode maps or for a given map.

Usage:

fix base layers for all of the GeoNode map
python manage.py fix_baselayers

fix base layers for a given map
python manage.py fix_baselayers map_id

sync_geofence

Synchronize GeoNode permissions in GeoFence. This can be useful when upgrading GeoNode.

Usage:

synchronize all layers
python manage.py sync_geofence

synchronize all layers which contain a given search string in their name
python manage.py sync_geofence --layername cambridge

find_geoserver_broken_layers

Find GeoNode layers with a missing GeoServer resource.

Usage:

search the whole catalog
python manage.py find_geoserver_broken_layers

search all layers which contain a given search string in their name and owned by a
→˓given user
python manage.py sync_geofence --layername cambridge --owner bob

remove layers which are broken
python manage.py find_geoserver_broken_layers --remove

3.2.1.4.4 Configuring Alternate CSW Backends

pycsw is the default CSW server implementation provided with GeoNode. This section will explain how to configure
GeoNode to operate against alternate CSW server implementations.

348 Chapter 3. Table of contents

http://pycsw.org/

GeoNode Documentation, Release 2.8

Supported CSW server implementations

GeoNode additionally supports the following CSW server implementations:

• GeoNetwork opensource

• deegree

Since GeoNode communicates with alternate CSW configurations via HTTP, the CSW server can be installed and
deployed independent of GeoNode if desired.

Installing the CSW

GeoNetwork opensource Installation

• Deploy GeoNetwork opensource by downloading geonetwork.war (see http://geonetwork-opensource.org/
downloads.html) and deploying into your servlet container

• Follow the instructions at http://geonetwork-opensource.org/manuals/3.0.5/eng/users/user-guide/quick-start/
index.html to complete the installation

• test the server with a GetCapabilities request (http://localhost:8080/geonetwork/srv/en/csw?service=CSW&
version=2.0.2&request=GetCapabilities)

See http://geonetwork-opensource.org/docs.html for further documentation.

deegree Installation

• Deploy deegree by downloading the deegree3 cswDemo .war (see http://wiki.deegree.org/deegreeWiki/
DownloadPage) and deploying into your servlet container

• Create a PostGIS-enabled PostgreSQL database

• Follow the instructions at http://wiki.deegree.org/deegreeWiki/deegree3/CatalogueService#Run_your_own_
installation to complete the installation

• test the server with a GetCapabilities request (http://localhost:8080/deegree-csw-demo-3.0.4/services?service=
CSW&version=2.0.2&request=GetCapabilities)

See http://wiki.deegree.org/deegreeWiki/deegree3/CatalogueService for further documentation.

Customizing GeoNode CSW configuration

At this point, the CSW alternate backend is ready for GeoNode integration. GeoNode’s CSW configuration (in
geonode/settings.py) must be updated to point to the correct CSW. The example below exemplifies GeoNet-
work as an alternate CSW backend:

CSW settings
CATALOGUE = {

'default': {
The underlying CSW implementation
default is pycsw in local mode (tied directly to GeoNode Django DB)
#'ENGINE': 'geonode.catalogue.backends.pycsw_local',
pycsw in non-local mode
#'ENGINE': 'geonode.catalogue.backends.pycsw',

(continues on next page)

3.2. Tutorials 349

http://geonetwork-opensource.org/
http://www.deegree.org/
http://geonetwork-opensource.org/downloads.html
http://geonetwork-opensource.org/downloads.html
http://geonetwork-opensource.org/manuals/3.0.5/eng/users/user-guide/quick-start/index.html
http://geonetwork-opensource.org/manuals/3.0.5/eng/users/user-guide/quick-start/index.html
http://localhost:8080/geonetwork/srv/en/csw?service=CSW&version=2.0.2&request=GetCapabilities
http://localhost:8080/geonetwork/srv/en/csw?service=CSW&version=2.0.2&request=GetCapabilities
http://geonetwork-opensource.org/docs.html
http://wiki.deegree.org/deegreeWiki/DownloadPage
http://wiki.deegree.org/deegreeWiki/DownloadPage
http://wiki.deegree.org/deegreeWiki/deegree3/CatalogueService#Run_your_own_installation
http://wiki.deegree.org/deegreeWiki/deegree3/CatalogueService#Run_your_own_installation
http://localhost:8080/deegree-csw-demo-3.0.4/services?service=CSW&version=2.0.2&request=GetCapabilities
http://localhost:8080/deegree-csw-demo-3.0.4/services?service=CSW&version=2.0.2&request=GetCapabilities
http://wiki.deegree.org/deegreeWiki/deegree3/CatalogueService

GeoNode Documentation, Release 2.8

(continued from previous page)

GeoNetwork opensource
'ENGINE': 'geonode.catalogue.backends.geonetwork',
deegree and others
#'ENGINE': 'geonode.catalogue.backends.generic',

The FULLY QUALIFIED base url to the CSW instance for this GeoNode
#'URL': '%scatalogue/csw' % SITEURL,
'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
#'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',

login credentials (for GeoNetwork)
'USER': 'admin',
'PASSWORD': 'admin',

}
}

3.2.1.4.5 LDAP configuration

Library Dependencies

LDAP support requires LDAP development libraries

Centos/RHEL

$sudo yum install -y openldap-devel

Ubuntu

$sudo apt-get install -y libldap2-dev

Install

$pip install python-ldap django-auth-ldap

Configure

Add the following to your local_settings.py

Note: Example only - more details can be found here

import ldap
from django_auth_ldap.config import LDAPSearch

AUTHENTICATION_BACKENDS = (
'django_auth_ldap.backend.LDAPBackend',
'django.contrib.auth.backends.ModelBackend',
'guardian.backends.ObjectPermissionBackend',

)
AUTH_LDAP_SERVER_URI = 'ldap://ldap.example.com'
LDAP_SEARCH_DN = 'ou=users,dc=example,dc=com'
AUTH_LDAP_USER = '(uid=%(user)s)'

(continues on next page)

350 Chapter 3. Table of contents

https://pythonhosted.org/django-auth-ldap/authentication.html

GeoNode Documentation, Release 2.8

(continued from previous page)

AUTH_LDAP_BIND_DN = '{ADD_BIND_DN_IF_REQUIRED}'
AUTH_LDAP_BIND_PASSWORD = '{ADD_BIND_PASSWORD_IF_REQUIRED}'
AUTH_LDAP_USER_ATTR_MAP = {

'first_name': 'givenName', 'last_name': 'sn', 'email': 'mail',
}
AUTH_LDAP_USER_SEARCH = LDAPSearch(LDAP_SEARCH_DN,

ldap.SCOPE_SUBTREE, AUTH_LDAP_USER)

3.2.1.4.6 Customize the look and feel

Warning: These instructions are only valid if you’ve installed GeoNode following the guide at Setup & Configure
HTTPD !!

Since version 2.8.1, it is possible to do change some elements of look and feel (such as colors, logo, etc.) using the
Geonode Theme application from the administration. For more advanced changes, you first have to set up your own
geonode project from a template. If you’ve successfully done this, you can go further and start theming your geonode
project.

Setup steps

Warning: These instructions are only valid if you’ve installed GeoNode following the guide at Setup & Configure
HTTPD !!

If you are working remotely, you should first connect to the machine that has your GeoNode installation. You will
need to perform the following steps in a directory where you intend to keep your newly created project.

1 $ apt-get install python-django
2 $ django-admin startproject my_geonode --template=https://github.com/GeoNode/geonode-

→˓project/archive/master.zip -epy,rst
3 $ cd my_geonode
4 $ sudo pip install -e . --upgrade --no-cache
5 $ python manage.py migrate

Note: You should NOT use the name geonode for your project as it will conflict with your default geonode package
name.

These commands create a new template based on the geonode example project.

Make sure that the directories are reachable and have the correct rights for the users geonode and www-data:

1 $ sudo chown -Rf geonode: *
2 $ sudo chmod -Rf 775 my_geonode

If you have a brand new installation of GeoNode, rename the /home/geonode/geonode/local_settings.py.sample to
local_settings.py and edit it’s content by setting the SITEURL and SITENAME. This file will be your main settings
file for your project. It inherits all the settings from the original one plus you can override the ones that you need.

3.2. Tutorials 351

GeoNode Documentation, Release 2.8

Note: You can also decide to copy the /home/geonode/geonode/local_settings.py.sample to
/path/to/my_geonode/my_geonode/local_settings.py in order to keep all the custom settings confined into the
new project.

Warning: In order for the edits to the local_settings.py file to take effect, you have to restart apache.

Edit the file /etc/apache2/sites-available/geonode.conf and change the following directive from:

WSGIScriptAlias / /home/geonode/geonode/wsgi/geonode.wsgi

to:

WSGIScriptAlias / /path/to/my_geonode/my_geonode/wsgi.py

Edit the file /path/to/my_geonode/my_geonode/wsgi.py and add the following lines at the beginning:

1 from django.core.wsgi import get_wsgi_application

Edit the file /etc/apache2/sites-available/geonode.conf and modify the DocumentRoot as follows:

Note: It’s a good practice to make copies and backups of the configuration files before modifying or updating them
in order to revert the configuration at the previous state if something goes wrong.

1 <VirtualHost *:80>
2 ServerName http://localhost
3 ServerAdmin webmaster@localhost
4 DocumentRoot /home/geonode/my_geonode/my_geonode
5

6 ErrorLog /var/log/apache2/error.log
7 LogLevel warn
8 CustomLog /var/log/apache2/access.log combined
9

10 WSGIProcessGroup geonode
11 WSGIPassAuthorization On
12 WSGIScriptAlias / /home/geonode/my_geonode/my_geonode/wsgi.py
13

14 <Directory "/home/geonode/my_geonode/my_geonode/">
15 <Files wsgi.py>
16 Order deny,allow
17 Allow from all
18 Require all granted
19 </Files>
20

21 Order allow,deny
22 Options Indexes FollowSymLinks
23 Allow from all
24 IndexOptions FancyIndexing
25 </Directory>
26

27 ...

Then regenerate the static JavaScript and CSS files from /path/to/my_geonode/ and restart apache

352 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

1 $ python manage.py collectstatic
2 $ sudo service apache2 restart

Customize the Look & Feel

Now you can edit the templates in my_geonode/templates, the CSS and images to match your needs like shown in
customize.theme_admin!

Note: After going through the theming guide you’ll have to return to this site to execute one more command in order
to finish the theming!

When you’ve done the changes, run the following command in the my_geonode folder:

1 $ cd /home/geonode/my_geonode
2 $ python manage.py collectstatic

And now you should see all the changes you’ve made to your GeoNode.

Source code revision control

It is recommended that you immediately put your new project under source code revision control. The GeoNode
development team uses Git and GitHub and recommends that you do the same. If you do not already have a GitHub
account, you can easily set one up. A full review of Git and distributed source code revision control systems is beyond
the scope of this tutorial, but you may find the Git Book useful if you are not already familiar with these concepts.

1. Create a new repository in GitHub. You should use the GitHub user interface to create a new repository for your
new project.

Fig. 75: Creating a new GitHub Repository From GitHub’s Homepage

2. Initialize your own repository in the my_geonode folder:

1 $ sudo git init

3. Add the remote repository reference to your local git configuration:

3.2. Tutorials 353

https://git-scm.com/book

GeoNode Documentation, Release 2.8

Fig. 76: Specifying new GitHub Repository Parameters

Fig. 77: Your new Empty GitHub Repository

354 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

1 $ sudo git remote add origin <https url of your custom repo>

4. Add your project files to the repository:

1 $ sudo git add .

5. Commit your changes:

1 # Those two command must be issued ONLY once
2 $ sudo git config --global user.email "my@email"
3 $ sudo git config --global user.name "myuser"
4

5 $ sudo git commit -am "Initial commit"

6. Push to the remote repository:

1 $ sudo git push origin master

Further Reading

• If you want more information on how to GitHub works and how to contribute to GeoNode project, go to the
section “Contributing to GeoNode”

• If you want to customize the Logo and Style of my_geonode, go to the section “Theming your GeoNode project”

Here below you can find some more details about the custom project structure and info on some of the most important
Python files you may want to edit.

The following section is mostly oriented to advanced users and developers.

Project structure

Your GeoNode project will now be structured as depicted below:

|-- README.rst
|-- manage.py
|-- my_geonode
| |-- __init__.py
| |-- settings.py
| |-- local_settings.py
| |-- static
| | |-- README
| | |-- css
| | | |-- site_base.css
| | |-- img
| | | |-- README
| | |-- js
| | |-- README
| |-- templates
| | |-- site_base.html
| | |-- site_index.html
| |-- urls.py
| |-- wsgi.py
|-- setup.py

You can also view your project on GitHub.

3.2. Tutorials 355

GeoNode Documentation, Release 2.8

Fig. 78: Viewing your project on GitHub

Each of the key files in your project are described below.

manage.py

manage.py is the main entry point for managing your project during development. It allows running all the man-
agement commands from each app in your project. When run with no arguments, it will list all of the management
commands.

settings.py

settings.py is the primary settings file for your project. It imports the settings from the system geonode and adds
the local paths. It is quite common to put all sensible defaults here and keep deployment specific configuration in
the local_settings.py file. All of the possible settings values and their meanings are detailed in the Django
documentation.

A common paradigm for handing ‘local settings’ (and in other areas where some python module may not be available)
is:

try: from local_settings import *

except: pass

This is not required and there are many other solutions to handling varying deployment configuration requirements.

356 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

urls.py

urls.py is where your application specific URL routes go. Additionally, any overrides can be placed here, too.

wsgi.py

This is a generated file to make deploying your project to a WSGI server easier. Unless there is very specific configu-
ration you need, wsgi.py can be left alone.

setup.py

There are several packaging options in python but a common approach is to place your project metadata (version,
author, etc.) and dependencies in setup.py.

This is a large topic and not necessary to understand while getting started with GeoNode development but will be
important for larger projects and to make development easier for other developers.

More: https://docs.python.org/2/distutils/setupscript.html

static

The static directory will contain your fixed resources: CSS, HTML, images, etc. Everything in this directory will
be copied to the final media directory (along with the static resources from other apps in your project).

templates

All of your projects templates go in the templates directory. While no organization is required for your project
specific templates, when overriding or replacing a template from another app, the path must be the same as the template
to be replaced.

Staying in sync with mainline GeoNode

Warning: These instructions are only valid if you’ve installed GeoNode using apt-get !!

One of the primary reasons to set up your own GeoNode project using this method is so that you can stay in sync with
the mainline GeoNode as the core development team makes new releases. Your own project should not be adversely
affected by these changes, but you will receive bug fixes and other improvements by staying in sync.

Upgrade GeoNode:

$ apt-get update
$ apt-get install geonode

Verify that your new project works with the upgraded GeoNode:

$ python manage.py runserver

Navigate to http://localhost:8000.

3.2. Tutorials 357

https://docs.python.org/2/distutils/setupscript.html
http://localhost:8000

GeoNode Documentation, Release 2.8

Warning: These instructions are only valid if you’ve installed GeoNode following the guide at Setup & Configure
HTTPD !!

Upgrading from source code repo:

Upgrade GeoNode:

$ cd /home/geonode/geonode
$ git pull origin master

Verify that your new project works with the upgraded GeoNode:

$ python manage.py runserver

Navigate to http://localhost:8000.

Theming your GeoNode project

There are a range of options available to you if you want to change the default look and feel of your GeoNode project.
Since GeoNode’s style is based on Bootstrap you will be able to make use of all that Bootstrap has to offer in terms of
theme customization. You should consult Bootstrap’s documentation as your primary guide once you are familiar with
how GeoNode implements Bootstrap and how you can override GeoNode’s theme and templates in your own project.

Logos and graphics

GeoNode intentionally does not include a large number of graphics files in its interface. This keeps page loading
time to a minimum and makes for a more responsive interface. That said, you are free to customize your GeoNode’s
interface by simply changing the default logo, or by adding your own images and graphics to deliver a GeoNode
experience the way you envision int.

Your GeoNode project has a directory already set up for storing your own images at <my_geonode>/static/
img. You should place any image files that you intend to use for your project in this directory.

Let’s walk through an example of the steps necessary to change the default logo.

1. Change to the img directory:

$ cd <my_geonode>/static/img

2. If you haven’t already, obtain your logo image. The URL below is just an example, so you will need to change
this URL to match the location of your file or copy it to this location:

$ sudo wget http://www2.sta.uwi.edu/~anikov/UWI-logo.JPG
$ sudo chown -Rf geonode: .

3. Change to the css directory:

$ cd ../../..

4. Override the CSS that displays the logo by editing <my_geonode>/static/css/site_base.css with
your favorite editor and adding the following lines, making sure to update the width, height, and URL to match
the specifications of your image.

358 Chapter 3. Table of contents

http://localhost:8000
http://getbootstrap.com/

GeoNode Documentation, Release 2.8

$ sudo vi site_base.css

.navbar-brand {
width: 373px;
height: 79px;
background: transparent url("../img/UWI-logo.JPG") no-repeat scroll 15px 0px;

}

5. Restart your GeoNode project and look at the page in your browser:

$ cd /home/geonode
$ sudo rm -Rf geonode/geonode/static_root/*
$ cd my_geonode
$ python manage.py collectstatic
$ sudo service apache2 restart

Note: It is a good practice to cleanup the static_folder and the Browser Cache before reloading in order to be sure
that the changes have been correctly taken and displayed on the screen.

Visit your site at http://localhost/ or the remote URL for your site.

Fig. 79: Custom logo

You can see that the header has been expanded to fit your graphic. In the following sections you will learn how to
customize this header to make it look and function the way you want.

Note: You should commit these changes to your repository as you progress through this section, and get in the habit
of committing early and often so that you and others can track your project on GitHub. Making many atomic commits

3.2. Tutorials 359

http://localhost/

GeoNode Documentation, Release 2.8

and staying in sync with a remote repository makes it easier to collaborate with others on your project.

Cascading Style Sheets

In the last section you already learned how to override GeoNode’s default CSS rules to include your own logo. You
are able to customize any aspect of GeoNode’s appearance this way. In the last screenshot, you saw that the main area
in the homepage is covered up by the expanded header.

First, we’ll walk through the steps necessary to displace it downward so it is no longer hidden, then change the
background color of the header to match the color in our logo graphic.

1. Reopen <my_geonode>/static/css/site_base.css in your editor and add the following rule after
the one added in the previous step:

$ cd /home/geonode/my_geonode/my_geonode/static/css
$ sudo vi site_base.css

#wrap {
margin: 75px 75px;

}

2. Add a rule to change the background color of the header to match the logo graphic we used:

.navbar-inverse {
background: #0e60c3;

}

3. Your project CSS file should now look like this:

.navbar-brand {
width: 373px;
height: 79px;
background: url(../img/UWI-logo.JPG) no-repeat;

}

#wrap {
margin: 75px 75px;

}

.navbar-inverse {
background: #0e60c3;

}

4. Restart the development server and reload the page:

$ python manage.py collectstatic
$ sudo service apache2 restart

Note: You can continue adding rules to this file to override the styles that are in the GeoNode base CSS file which is
built from base.less. You may find it helpful to use your browser’s development tools to inspect elements of your site
that you want to override to determine which rules are already applied. See the screenshot below. Another section of
this workshop covers this topic in much more detail.

360 Chapter 3. Table of contents

https://github.com/GeoNode/geonode/blob/master/geonode/static/geonode/less/base.less

GeoNode Documentation, Release 2.8

Fig. 80: CSS overrides

Fig. 81: Screenshot of using Chrome’s debugger to inspect the CSS overrides

3.2. Tutorials 361

GeoNode Documentation, Release 2.8

Templates and static pages

Now that we have changed the default logo and adjusted our main content area to fit the expanded header, the next
step is to update the content of the homepage itself. Your GeoNode project includes two basic templates that you will
use to change the content of your pages.

The file site_base.html (in <my_geonode>/templates/) is the basic template that all other templates
inherit from and you will use it to update things like the header, navbar, site-wide announcement, footer, and also
to include your own JavaScript or other static content included in every page in your site. It’s worth taking a look
at GeoNode’s base file on GitHub. You have several blocks available to you to for overriding, but since we will be
revisiting this file in future sections of this workshop, let’s just look at it for now and leave it unmodified.

Open <my_geonode>/templates/site_base.html in your editor:

$ cd /home/geonode/my_geonode/my_geonode/templates
$ sudo vi site_base.html

.. code-block:: html

{% extends "base.html" %}
{% block extra_head %}

<link href="{{ STATIC_URL }}css/site_base.css" rel="stylesheet"/>
{% endblock %}

You will see that it extends from base.html, which is the GeoNode template referenced above and it currently only
overrides the extra_head block to include our project’s site_base.css which we modified in the previous
section. You can see on line 22 of the GeoNode base.html template that this block is included in an empty state and is
set up specifically for you to include extra CSS files as your project is already set up to do.

Now that we have looked at site_base.html, let’s actually override a different template.

The file site_index.html is the template used to define your GeoNode project’s homepage. It extends GeoNode’s
default index.html template and gives you the option to override specific areas of the homepage like the hero area,
but also allows you leave area like the “Latest Layers” and “Maps” and the “Contribute” section as they are. You are
of course free to override these sections if you choose and this section shows you the steps necessary to do that below.

1. Open <my_geonode>/templates/site_index.html in your editor.

2. Edit the <h1> element on line 9 to say something other than “Welcome”:

<h1>{% trans "UWI GeoNode" %}</h1>

3. Edit the introductory paragraph to include something specific about your GeoNode project:

<p>
{% blocktrans %}
UWI's GeoNode is setup for students and faculty to collaboratively
create and share maps for their class projects. It is maintained by the
UWI Geographical Society.
{% endblocktrans %}

</p>

4. Change the Getting Started link to point to another website:

For more information about the UWI Geographical society,
visit our website

362 Chapter 3. Table of contents

https://github.com/GeoNode/geonode/blob/master/geonode/templates/base.html
https://github.com/GeoNode/geonode/blob/master/geonode/templates/base.html#L22

GeoNode Documentation, Release 2.8

5. Add a graphic to the hero area above the paragraph replaced in step 3:

6. Your edited site_index.html file should now look like this:

{% extends 'index.html' %}
{% load i18n %}
{% comment %}
This is where you can override the hero area block. You can simply modify the
→˓content below or replace it wholesale to meet your own needs.
{% endcomment %}
{% block hero %}
<div class="jumbotron">
<div class="container">

<h1>{% trans "UWI GeoNode" %}</h1>
<div class="hero-unit-content"/>
<div class="intro">

<img src = 'http://uwigsmona.weebly.com/uploads/1/3/2/4/13241997/
→˓1345164334.png'>

</div>
<p>

{% blocktrans %}
UWI's GeoNode is setup for students and faculty to collaboratively
create and share maps for their class projects. It is maintained by

→˓the
UWI Geographical Society.
{% endblocktrans %}

</p>

For more information about the UWI Geographical society,
visit our website

</div>

</div>
{% endblock %}

7. Refresh your GeoNode project and view the changes in your browser at http://localhost/ or the remote URL for
your site:

$ python manage.py collectstatic
$ sudo service apache2 restart

From here you can continue to customize your site_index.html template to suit your needs. This workshop will
also cover how you can add new pages to your GeoNode project site.

Other theming options

You are able to change any specific piece of your GeoNode project’s style by adding CSS rules to site_base.css,
but since GeoNode is based on Bootstrap, there are many pre-defined themes that you can simply drop into your
project to get a whole new look. This is very similar to WordPress themes and is a powerful and easy way to change
the look of your site without much effort.

3.2. Tutorials 363

http://localhost/
http://wordpress.com

GeoNode Documentation, Release 2.8

Bootswatch

Bootswatch is a site where you can download ready-to-use themes for your GeoNode project site. The following steps
will show you how to use a theme from Bootswatch in your own GeoNode site.

1. Visit http://bootswatch.com and select a theme (we will use Sandstone for this example). Select the download
bootstrap.css option in the menu:

2. Put this file into <my_geonode>/static/css.

$ cd /home/geonode/my_geonode/my_geonode/static/css

3. Update the site_base.html template to include this file. It should now look like this:

$ cd /home/geonode/my_geonode/my_geonode/templates
$ sudo vi site_base.html

{% extends "base.html" %}
{% block extra_head %}

<link href="{{ STATIC_URL }}css/site_base.css" rel="stylesheet"/>
<link href="{{ STATIC_URL }}css/bootstrap.css" rel="stylesheet"/>

{% endblock %}

4. Refresh the development server and visit your site:

$ python manage.py collectstatic
$ sudo service apache2 restart

Your GeoNode project site is now using the Sandstone theme in addition to the changes you have made.

364 Chapter 3. Table of contents

http://bootswatch.com
http://bootswatch.com

GeoNode Documentation, Release 2.8

3.2. Tutorials 365

GeoNode Documentation, Release 2.8

Setup steps Setup your own geonode project

Theming your GeoNode project Theme your geonode project

3.2.1.4.7 Debugging GeoNode Installations

There are several mechanisms to debug GeoNode installations, the most common ones are discussed in the following
sections.

Viewing the logs

There are many kinds of logs in GeoNode, most of them are located in /var/log/geonode/ and will be explained
below in order of relevance:

• GeoNode main log: This is the output of the Django application generated by Apache, it may
contain detailed information about uploads and high level problems.

The default location is /var/log/geonode/apache.log or /var/log/apache2/
error.log.

It is set to a very low level (not very much information is logged) by default, but it’s
output can be increased by setting the logging level to DEBUG in /etc/geonode/
local_settings.py.

• GeoServer log: It contains most of the information related to problems with data, rendering and
styling errors.

This one can be accessed at GEOSERVER_DATA_DIR/logs/geoserver.log, which is
usually /var/lib/tomcat7/webapps/geoserver/data/logs/geoserver.log or
/var/lib/geoserver/geonode-data/logs/geoserver.log.

It may also be symlinked in /var/log/geonode/geoserver.log.

• Tomcat logs: Tomcat logs could indicate problems loading GeoServer.

They can be found at /var/lib/tomcat7/logs/catalina.out or /var/lib/
tomcat/geoserver/logs/catalina.out.

• PostgreSQL logs: PostgreSQL is accessed by GeoServer and Django, therefore information about
errors which are very hard to debug may be found by looking at PostgreSQL’s logs.

They are located at /var/log/postgresql/postgresql-$(psql_version)-main.
log where $(psql_version) depends on your local installation.

Enabling DEBUG mode

Django can be set to return nicely formatted exceptions which are useful for debugging instead of generic 500
errors.

This is enabled by setting DEBUG=True in /home/geonode/geonode/geonode/local_settings.py (or
/etc/geonode/local_settings.py if GeoNode has been installed using apt-get).

After enabling DEBUG, the Apache server has to be restarted for the changes to be picked up. In Ubuntu:

service apache2 restart

366 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Other tips and tricks

Modifying GeoServer’s output strategy

Up to version 1.1, GeoNode used by default the SPEED output strategy of GeoServer, this meant that proper error
messages were being sacrificed for performance. Unfortunately, this caused many errors to be masked as XML parsing
errors when layers were not properly configured.

It is recommended to verify the output strategy is set at least to PARTIAL_BUFFER2 (or a safer one, e.g. ‘‘FILE‘‘)
with a high value for the buffer size. More information about the different strategies and the performance vs correctness
trade off is available at GeoServer’s web.xml file.

The typical location of the file that needs to be modified is /var/lib/tomcat7/webapps/geoserver/
WEB-INF/web.xml as shown below:

<context-param>
<param-name>serviceStrategy</param-name>
<param-value>FILE</param-value>

</context-param>

Add the Django Debug Toolbar

Warning: The Debug Toolbar module must be disabled whe running the server in production (with Apache2
HTTPD Server WSGI)

The Django Debug Toolbar offers a lot of information on about how the page you are seeing is created and used. From
the database hits to the views involved. It is a configurable set of panels that display various debug information about
the current request/response and when clicked, display more details about the panel’s content.

To install it:

$ pip install django-debug-toolbar

1. Then edit your settings /home/geonode/geonode/geonode/settings.py (or /etc/geonode/
settings.py if GeoNode has been installed using apt-get) and add the following to the bottom of the file:

#debug_toolbar settings
if DEBUG:

INTERNAL_IPS = ('127.0.0.1',)
MIDDLEWARE_CLASSES += (

'debug_toolbar.middleware.DebugToolbarMiddleware',
)

INSTALLED_APPS += (
'debug_toolbar',

)

DEBUG_TOOLBAR_PANELS = [
'debug_toolbar.panels.versions.VersionsPanel',
'debug_toolbar.panels.timer.TimerPanel',
'debug_toolbar.panels.settings.SettingsPanel',
'debug_toolbar.panels.headers.HeadersPanel',
'debug_toolbar.panels.request.RequestPanel',

(continues on next page)

3.2. Tutorials 367

GeoNode Documentation, Release 2.8

(continued from previous page)

'debug_toolbar.panels.sql.SQLPanel',
'debug_toolbar.panels.staticfiles.StaticFilesPanel',
'debug_toolbar.panels.templates.TemplatesPanel',
'debug_toolbar.panels.cache.CachePanel',
'debug_toolbar.panels.signals.SignalsPanel',
'debug_toolbar.panels.logging.LoggingPanel',
'debug_toolbar.panels.redirects.RedirectsPanel',

]

DEBUG_TOOLBAR_CONFIG = {
'INTERCEPT_REDIRECTS': False,

}

2. Stop Apache and start the server in Development Mode:

$ service apache2 stop
$ python manage.py runserver

3. Redirect the browser to http://localhost:8000. You should be able to see the Debug Panel on the right of the
screen.

Fig. 82: DJango Debug Toolbar Enabled In Devel Mode

More: For more set up and customize the panels read the official docs here

http://django-debug-toolbar.readthedocs.io/en/latest/

368 Chapter 3. Table of contents

http://django-debug-toolbar.readthedocs.io/en/latest/

GeoNode Documentation, Release 2.8

3.2.1.4.8 Changing the Default Language

GeoNode’s default language is English, but GeoNode users can change the interface language with the pulldown
menu at the top-right of most GeoNode pages. Once a user selects a language GeoNode remembers that language for
subsequent pages.

GeoNode Configuration

As root edit the geonode config file /home/geonode/geonode/geonode/settings.py (or /etc/
geonode/settings.py if GeoNode has been installed using apt-get) and change LANGUAGE_CODE to the de-
sired default language.

Note: A list of language codes can be found in the global django config file /usr/local/lib/python2.
7/dist-packages/django/conf/global_settings.py (or /var/lib/geonode/lib/python2.
7/site-packages/django/conf/global_settings.py if GeoNode has been installed using apt-get).

For example, to make French the default language use:

LANGUAGE_CODE = 'fr'

Unfortunately Django overrides this setting, giving the language setting of a user’s browser priority. For example, if
LANGUAGE_CODE is set to French, but the user has configured their operating system for Spanish they may see the
Spanish version when they first visit GeoNode.

Additional Steps

If this is not the desired behaviour, and all users should initially see the default LANGUAGE_CODE, regardless of their
browser’s settings, do the following steps to ensure Django ignores the browser language settings. (Users can always
use the pulldown language menu to change the language at any time.)

As root create a new directory within GeoNode’s site packages:

mkdir /usr/lib/python2.7/dist-packages/setmydefaultlanguage

or:: mkdir /var/lib/geonode/lib/python2.7/site-packages/setmydefaultlanguage

if GeoNode has been installed using apt-get.

As root create and edit a new file /usr/lib/python2.7/dist-packages/setmydefaultlanguage/
__init__.py and add the following lines:

class ForceDefaultLanguageMiddleware(object):
"""
Ignore Accept-Language HTTP headers

This will force the I18N machinery to always choose settings.LANGUAGE_CODE
as the default initial language, unless another one is set via sessions or cookies

Should be installed *before* any middleware that checks request.META['HTTP_ACCEPT_
→˓LANGUAGE'],

namely django.middleware.locale.LocaleMiddleware
"""
def process_request(self, request):

(continues on next page)

3.2. Tutorials 369

GeoNode Documentation, Release 2.8

(continued from previous page)

if request.META.has_key('HTTP_ACCEPT_LANGUAGE'):
del request.META['HTTP_ACCEPT_LANGUAGE']

At the end of the GeoNode configuration file /home/geonode/geonode/geonode/settings.py (or /etc/
geonode/settings.py if GeoNode has been installed using apt-get) add the following lines to ensure the above
class is executed:

MIDDLEWARE_CLASSES += (
'setmydefaultlanguage.ForceDefaultLanguageMiddleware',

)

Restart

Finally restart Apache as root with:

service apache2 restart

Please refer to Translating GeoNode for information on editing GeoNode pages in different languages and create new
GeoNode Translations.

3.2.1.4.9 More on Security and Permissions

Security and Permissions

This tutorial will guide you through the steps that can be done in order to restrict the access on your data uploaded to
geonode.

First of all it will be shown how a user can be created and what permissions he can have. Secondly we will take a
closer look on to layers, maps and documents and the different opportunities you have in order to ban certain users
from viewing or editing your data.

Users

Your first step will be to create a user. There are three options to do so, depending on which kind of user you want
to create you may choose a different option. We will start with creating a superuser, because this user is the most
important. A superuser has all the permissions without explicitly assigning them.

The easiest way to create a superuser (in linux) is to open your terminal and type:

$ python manage.py createsuperuser

You will be asked a username (in this tutorial we will call the superuser you now create your_superuser), an email
address and a password.

Now you’ve created a superuser you should become familiar with the Django Admin Interface. As a superuser you
are having access to this interface, where you can manage users, layers, permission and more. To learn more detailed
about this interface check this LINK. For now it will be enough to just follow the steps. To attend the Django Admin
Interface, go to your geonode website and sign in with your_superuser. Once you’ve logged in, the name of your user
will appear on the top right. Click on it and the following menu will show up:

Clicking on Admin causes the interface to show up.

370 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 371

GeoNode Documentation, Release 2.8

372 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Go to Auth -> Users and you will see all the users that exist at the moment. In your case it will only be your_superuser.
Click on it, and you will see a section on Personal Info, one on Permissions and one on Important dates. For the
moment, the section on Permissions is the most important.

As you can see, there are three boxes that can be checked and unchecked. Because you’ve created a superuser, all
three boxes are checked as default. If only the box active would have been checked, the user would not be a superuser
and would not be able to access the Django Admin Interface (which is only available for users with the staff status).
Therefore keep the following two things in mind:

• a superuser is able to access the Django Admin Interface and he has all permissions on the data uploaded to
GeoNode.

• an ordinary user (created from the GeoNode interface) only has active permissions by default. The user will not
have the ability to access the Django Admin Interface and certain permissions have to be added for him.

Until now we’ve only created superusers. So how do you create an ordinary user? You have two options:

1. Django Admin Interface

First we will create a user via the Django Admin Interface because we’ve still got it open. Therefore go back to
Auth -> Users and you should find a button on the right that says Add user.

Click on it and a form to fill out will appear. Name the new user test_user, choose a password and click save at
the right bottom of the site.

Now you should be directed to the site where you could change the permissions on the user test_user. As default
only active is checked. If you want this user also to be able to attend this admin interface you could also check
staff status. But for now we leave the settings as they are!

To test whether the new user was successfully created, go back to the GeoNode web page and try to sign in.

2. GeoNode website

3.2. Tutorials 373

GeoNode Documentation, Release 2.8

To create an ordinary user you could also just use the GeoNode website. If you installed GeoNode using a release, you should
see a Register button on the top, beside the Sign in button (you might have to log out before).

Hit the button and again a form will appear for you to fill out. This user will be named geonode_user

By hitting Sign up the user will be signed up, as default only with the status active.

As mentioned before, this status can be changed as well. To do so, sign in with your_superuser again and attend the
admin interface. Go again to Auth -> Users, where now three users should appear:

We now want to change the permission of the geonode_user so that he will be able to attend the admin interface as
well. Click on to geonode_user and you will automatically be moved to the site where you can change the permissions.
Check the box staff status and hit save to store the changes.

To sum it up, we have now created three users with different kind of permissions.

• your_superuser: This user is allowed to attend the admin interface and has all available permissions on layers,
maps etc.

• geonode_user: This user is permitted to attend the admin interface, but permissions on layers, maps etc. have
to be assigned.

• test_user: This user is not able to attend the admin interface, permissions on layers, maps etc. have also to be
assigned.

You should know have an overview over the different kinds of users and how to create and edit them. You’ve also
learned about the permissions a certain user has and how to change them using the Django Admin Interface.

Note: If you’ve installed GeoNode in developing mode, the Register button won’t be seen from the beginning.
To add this button to the website, you have to change the REGISTRATION_OPEN = False in the settings.py to
REGISTRATION_OPEN = True. Then reload GeoNode and you should also be able to see the Register button.

374 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Layers

Now that we’ve already created some users, we will take a closer look on the security of layers, how you can protect
your data not to be viewed or edited by unwanted users.

Hint: As already mentioned before it is important to know that a superuser does have unrestricted access to all your
uploaded data. That means you cannot ban a superuser from viewing, downloading or editing a layer!

The permissions on a certain layer can already be set when uploading your files. When the upload form appears
(Layers -> Upload Layer) you will see the permission section on the right side:

As it can be seen here, the access on your layer is split up into three groups:

• view and download data

• edit data

• manage and edit data

The difference between manage and edit layer and edit layer is that a user assigned to edit layer is not able to change
the permissions on the layer whereas a user assigned to manage and edit layer can change the permissions. You can
now choose whether you want your layer to be viewed and downloaded by

• anyone

• any registered user

• a certain user (or group)

We will now upload our test layer like shown HERE. If you want your layer only be viewed by certain users or a
group, you have to choose Only users who can edit in the part Who can view and download this data. In the section
Who can edit this data you write down the names of the users you want to have admission on this data. For this first
layer we will choose the settings like shown in the following image:

If you now log out, your layer can still be seen, but the unregistered users won’t be able to edit your layer. Now sign
in as geonode_user and click on the test layer. Above the layer you can see this:

3.2. Tutorials 375

GeoNode Documentation, Release 2.8

The geonode_user is able to edit the test_layer. But before going deeper into this, we have to first take a look on
another case. As an administrator you might also upload your layers to GeoServer and then make them available on
GeoNode using updatelayers. Or you even add the layers via the terminal using importlayers (LINK TUTORIAL). To
set the permissions on this layer, click on the test layer (you’ve uploaded via updatelayers) and you will see the same
menu as shown in the image above. Click Edit layer and the menu will appear.

Choose edit permissions and a window with the permission settings will appear. This window can also be opened by
scrolling down the website. On the right-hand side of the page you should be able to see a button like this.

Click on it and you will see the same window as before.

Now set the permissions of this layer using the following settings:

When you assign a user to be able to edit your data, this user is allowed to execute all of the following actions:

• edit metadata

• edit styles

• manage styles

• replace layer

• remove layer

So be aware that each user assigned to edit this layer can even remove it! In our case, only the user test_user and
your_superuser do have the rights to do so. Geonode_user is neither able to view nor to download or edit this layer.

Now you are logged in as the user test_user. Below the test_layer you can see the following:

By clicking Edit Layer and Edit Metadata on top of the layer, you can change this information. The test_user is able
to change all the metadata of this layer. We now want to change to point of contact, therefore scroll down until you
see this:

Change the point of contact from _who_ever_created_this to test_user. Save your changes and you will now be able
to see the following:

376 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 377

GeoNode Documentation, Release 2.8

Warning: If you allow a user to view and download a layer, this user will also be able to edit the styles, even if
he is not assigned to edit the layer! Keep this in mind!

To learn how you can edit metadata or change the styles go to this section LINK.

Maps

The permission on maps are basically the same as on layers, just that there are fewer options on how to edit the map.
Let’s create a map (or already TUTORIAL?). Click on test_map and scroll down till you see this:

Here you can set the same permissions as known from the layer permissions! Set the permissions of this map as seen
here:

Save your changes and then log out and log in as test_user. You should now be able to view the test_map and click on
to Edit map.

As you may recognize, this user is not able to change the permissions on this map. If you log in as the user geon-
ode_user you should be able to see the button change map permissions when you scroll down the page.

378 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Documents

All the same is also valid for your uploaded documents.

3.2.1.4.10 Loading Data into a GeoNode

This module will walk you through the various options available to load data into your GeoNode from GeoServer, on
the command-line or programmatically. You can choose from among these techniques depending on what kind of data
you have and how you have your geonode setup.

Warning: Some parts of this section have been taken from the GeoServer project and training documentation.

Using importlayers to import Data into GeoNode

The geonode.layers app includes 2 management commands that you can use to load or configure data in your GeoN-
ode. Both of these are invoked by using the manage.py script. This section will walk you through how to use the
importlayers management command and the subsequent section will lead you through the process of using updatelay-
ers.

The first thing to do is to use the –help option to the importlayers command to investigate the options to this manage-
ment command. You can display this help by executing the following command:

$ python manage.py importlayers --help

This will produce output that looks like the following:

Usage: manage.py importlayers [options] path [path...]

Brings a data file or a directory full of data files into aGeoNode site. Layers are
→˓added to the Django database, theGeoServer configuration, and the GeoNetwork
→˓metadata index.

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-v VERBOSITY, --verbosity=VERBOSITY

Verbosity level; 0=minimal output, 1=normal output,
2=verbose output, 3=very verbose output

--settings=SETTINGS The Python path to a settings module, e.g.
"myproject.settings.main". If this isn't provided, the
DJANGO_SETTINGS_MODULE environment variable will be
used.

--pythonpath=PYTHONPATH
A directory to add to the Python path, e.g.
"/home/djangoprojects/myproject".

--traceback Print traceback on exception
--no-color Don't colorize the command output.
-u USER, --user=USER Name of the user account which should own the imported

layers
-i, --ignore-errors Stop after any errors are encountered.
-o, --overwrite Overwrite existing layers if discovered (defaults

False)
-k KEYWORDS, --keywords=KEYWORDS

(continues on next page)

3.2. Tutorials 379

http://geoserver.org

GeoNode Documentation, Release 2.8

(continued from previous page)

The default keywords for the imported layer(s). Will
be the same for all imported layers if multiple
imports are done in one command

-l LICENSE, --license=LICENSE
The license for the imported layer(s). Will be the
same for all imported layers if multiple imports are
done in one command

-c CATEGORY, --category=CATEGORY
The category for the imported layer(s). Will be the
same for all imported layers if multiple imports are
done in one command

-r REGIONS, --regions=REGIONS
The default regions, separated by comma, for the
imported layer(s). Will be the same for all imported
layers if multiple imports are done in one command

-n LAYERNAME, --name=LAYERNAME
The name for the imported layer(s). Can not be used
with multiple imports

-t TITLE, --title=TITLE
The title for the imported layer(s). Will be the same
for all imported layers if multiple imports are done
in one command

-a ABSTRACT, --abstract=ABSTRACT
The abstract for the imported layer(s). Will be the
same forall imported layers if multiple imports are
donein one command

-d DATE, --date=DATE The date and time for the imported layer(s). Will be
the same for all imported layers if multiple imports
are done in one command. Use quotes to specify both
the date and time in the format 'YYYY-MM-DD HH:MM:SS'.

-p, --private Make layer viewable only to owner
-m, --metadata_uploaded_preserve

Force metadata XML to be preserved
-C CHARSET, --charset=CHARSET

Specify the charset of the data

While the description of most of the options should be self explanatory, its worth reviewing some of the key options
in a bit more detail.

• The -i option will force the command to stop when it first encounters an error. Without this option specified, the
process will skip over errors that have layers and continue loading the other layers.

• The -o option specifies that layers with the same name as the base name will be loaded and overwrite the existing
layer.

• The -u option specifies which will be the user that owns the imported layers. The same user will be the point of
contact and the metadata author as well for that layer

• The -k option is used to add keywords for all of the layers imported.

• The -C option specifies the character encoding of the data.

The import layers management command is invoked by specifying options as described above and specifying the path
to a single layer file or to a directory that contains multiple files. For purposes of this exercise, lets use the default set
of testing layers that ship with geonode. You can replace this path with the directory to your own shapefiles:

$ python manage.py importlayers -v 3 /var/lib/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/

380 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

This command will produce the following output to your terminal:

Verifying that GeoNode is running ...
Found 8 potential layers.
No handlers could be found for logger "pycsw"
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/san_andres_y_providencia_administrative.shp' (1/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/san_andres_y_providencia_coastline.shp' (2/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/san_andres_y_providencia_highway.shp' (3/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/san_andres_y_providencia_location.shp' (4/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/san_andres_y_providencia_natural.shp' (5/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/san_andres_y_providencia_poi.shp' (6/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/san_andres_y_providencia_water.shp' (7/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/single_point.shp' (8/8)

Detailed report of failures:

Finished processing 8 layers in 30.0 seconds.

8 Created layers
0 Updated layers
0 Skipped layers
0 Failed layers
3.750000 seconds per layer

If you encounter errors while running this command, you can use the -v option to increase the verbosity of the output
so you can debug the problem. The verbosity level can be set from 0-3 with 0 being the default. An example of what
the output looks like when an error is encountered and the verbosity is set to 3 is shown below:

Verifying that GeoNode is running ...
Found 8 potential layers.
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/san_andres_y_providencia_administrative.shp' (1/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/san_andres_y_providencia_coastline.shp' (2/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/san_andres_y_providencia_highway.shp' (3/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/san_andres_y_providencia_location.shp' (4/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/san_andres_y_providencia_natural.shp' (5/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/san_andres_y_providencia_poi.shp' (6/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/san_andres_y_providencia_water.shp' (7/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/
→˓gisdata/data/good/vector/single_point.shp' (8/8)

Detailed report of failures:

(continues on next page)

3.2. Tutorials 381

GeoNode Documentation, Release 2.8

(continued from previous page)

/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/
→˓san_andres_y_providencia_administrative.shp
================
Traceback (most recent call last):

File "/Users/jjohnson/projects/geonode/geonode/layers/utils.py", line 682, in upload
keywords=keywords,

File "/Users/jjohnson/projects/geonode/geonode/layers/utils.py", line 602, in file_
→˓upload

keywords=keywords, title=title)
File "/Users/jjohnson/projects/geonode/geonode/layers/utils.py", line 305, in save
store = cat.get_store(name)

File "/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/geoserver/catalog.
→˓py", line 176, in get_store

for ws in self.get_workspaces():
File "/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/geoserver/catalog.

→˓py", line 489, in get_workspaces
description = self.get_xml("%s/workspaces.xml" % self.service_url)

File "/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/geoserver/catalog.
→˓py", line 136, in get_xml

response, content = self.http.request(rest_url)
File "/Library/Python/2.7/site-packages/httplib2/__init__.py", line 1445, in request
(response, content) = self._request(conn, authority, uri, request_uri, method,

→˓body, headers, redirections, cachekey)
File "/Library/Python/2.7/site-packages/httplib2/__init__.py", line 1197, in _

→˓request
(response, content) = self._conn_request(conn, request_uri, method, body, headers)

File "/Library/Python/2.7/site-packages/httplib2/__init__.py", line 1133, in _conn_
→˓request

conn.connect()
File "/Library/Python/2.7/site-packages/httplib2/__init__.py", line 799, in connect
raise socket.error, msg

error: [Errno 61] Connection refused

Note: This last section of output will be repeated for all layers, and only the first one is show above.

This error indicates that GeoNode was unable to connect to GeoServer to load the layers. To solve this, you should
make sure GeoServer is running and re-run the command.

If you encounter errors with this command that you cannot solve, you should bring them up on the geonode users
mailing list.

You should now have the knowledge necessary to import layers into your GeoNode project from a directory on the
servers filesystem and can use this to load many layers into your GeoNode at once.

Note: If you do not use the -u command option, the ownership of the imported layers will be assigned to the primary
superuser in your system. You can use GeoNodes Django Admin interface to modify this after the fact if you want
them to be owned by another user.

382 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

GeoServer Data Configuration

While it is possible to import layers directly from your servers filesystem into your GeoNode, you may have an
existing GeoServer that already has data in it, or you may want to configure data from a GeoServer which is not
directly supported by uploading data.

GeoServer supports a wide range of data formats and connections to database, and while many of them are not sup-
ported as GeoNode upload formats, if they can be configured in GeoServer, you can add them to your GeoNode by
following the procedure described below.

GeoServer supports 3 types of data: Raster, Vector and Databases. For a list of the supported formats for each type of
data, consult the following pages:

• http://docs.geoserver.org/latest/en/user/data/vector/index.html#data-vector

• http://docs.geoserver.org/latest/en/user/data/raster/index.html

• http://docs.geoserver.org/latest/en/user/data/database/index.html

Note: Some of these raster or vector formats or database types require that you install specific plugins in your
GeoServer in order to use the. Please consult the GeoServer documentation for more information.

Lets walk through an example of configuring a new PostGIS database in GeoServer and then configuring those layers
in your GeoNode.

First visit the GeoServer administration interface on your server. This is usually on port 8080 and is available at
http://localhost:8080/geoserver/web/

You should login with the superuser credentials you setup when you first configured your GeoNode instance.

Once you are logged in to the GeoServer Admin interface, you should see the following.

3.2. Tutorials 383

http://docs.geoserver.org/latest/en/user/data/vector/index.html#data-vector
http://docs.geoserver.org/latest/en/user/data/raster/index.html
http://docs.geoserver.org/latest/en/user/data/database/index.html
http://localhost:8080/geoserver/web/

GeoNode Documentation, Release 2.8

Note: The number of stores, layers and workspaces may be different depending on what you already have configured
in your GeoServer.

Next you want to select the “Stores” option in the left hand menu, and then the “Add new Store” option. The following
screen will be displayed.

In this case, we want to select the PostGIS store type to create a connection to our existing database. On the next
screen you will need to enter the parameters to connect to your PostGIS database (alter as necessary for your own
database).

Note: If you are unsure about any of the settings, leave them as the default.

The next screen lets you configure the layers in your database. This will of course be different depending on the layers
in your database.

Select the “Publish” button for one of the layers and the next screen will be displayed where you can enter metadata
for this layer. Since we will be managing this metadata in GeoNode, we can leave these alone for now.

The things that must be specified are the Declared SRS and you must select the “Compute from Data” and “Compute
from native bounds” links after the SRS is specified.

Click save and this layer will now be configured for use in your GeoServer.

The next step is to configure these layers in GeoNode. The updatelayers management command is used for this
purpose. As with importlayers, its useful to look at the command line options for this command by passing the –help
option:

384 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 385

GeoNode Documentation, Release 2.8

$ python manage.py updatelayers --help

This help option displays the following:

Usage: manage.py updatelayers [options]

Update the GeoNode application with data from GeoServer

Options:
-v VERBOSITY, --verbosity=VERBOSITY

Verbosity level; 0=minimal output, 1=normal output,
2=verbose output, 3=very verbose output

--settings=SETTINGS The Python path to a settings module, e.g.
"myproject.settings.main". If this isn't provided, the
DJANGO_SETTINGS_MODULE environment variable will be
used.

--pythonpath=PYTHONPATH
A directory to add to the Python path, e.g.
"/home/djangoprojects/myproject".

--traceback Print traceback on exception
-i, --ignore-errors Stop after any errors are encountered.
-u USER, --user=USER Name of the user account which should own the imported

layers
-w WORKSPACE, --workspace=WORKSPACE

Only update data on specified workspace
--version show program's version number and exit
-h, --help show this help message and exit

For this sample, we can use the default options. So enter the following command to configure the layers from our
GeoServer into our GeoNode:

386 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 387

GeoNode Documentation, Release 2.8

$ python manage.py updatelayers

The output will look something like the following:

[created] Layer Adult_Day_Care (1/11)
[created] Layer casinos (2/11)
[updated] Layer san_andres_y_providencia_administrative (3/11)
[updated] Layer san_andres_y_providencia_coastline (4/11)
[updated] Layer san_andres_y_providencia_highway (5/11)
[updated] Layer san_andres_y_providencia_location (6/11)
[updated] Layer san_andres_y_providencia_natural (7/11)
[updated] Layer san_andres_y_providencia_poi (8/11)
[updated] Layer san_andres_y_providencia_water (9/11)
[updated] Layer single_point (10/11)
[created] Layer ontdrainage (11/11)

Finished processing 11 layers in 45.0 seconds.

3 Created layers
8 Updated layers
0 Failed layers
4.090909 seconds per layer

Note: This example picked up 2 additional layers that were already in our GeoServer, but were not already in our
GeoNode.

For layers that already exist in your GeoNode, they will be updated and the configuration synchronized between
GeoServer and GeoNode.

388 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

You can now view and use these layers in your GeoNode.

Using GDAL and OGR to convert your Data for use in GeoNode

GeoNode supports uploading data in shapefiles, GeoTIFF, CSV and KML formats (for the last two formats only if
you are using the geonode.importer backend in the UPLOAD variable in settings.py). If your data is in other formats,
you will need to convert it into one of these formats for use in GeoNode. This section will walk you through the steps
necessary to convert your data into formats suitable for uploading into GeoNode.

You will need to make sure that you have the GDAL library installed on your system. On Ubuntu you can install this
package with the following command:

$ sudo apt-get install gdal-bin

OGR (Vector Data)

OGR is used to manipulate vector data. In this example, we will use MapInfo .tab files and convert them to shapefiles
with the ogr2ogr command. We will use sample MapInfo files from the website linked below.

http://services.land.vic.gov.au/landchannel/content/help?name=sampledata

You can download the Admin;(Postcode) layer by issuing the following command:

$ wget http://services.land.vic.gov.au/sampledata/mif/admin_postcode_vm.zip

You will need to unzip this dataset by issuing the following command:

$ unzip admin_postcode_vm.zip

This will leave you with the following files in the directory where you executed the above commands:

|-- ANZVI0803003025.htm
|-- DSE_Data_Access_Licence.pdf
|-- VMADMIN.POSTCODE_POLYGON.xml
|-- admin_postcode_vm.zip
--- vicgrid94

--- mif
--- lga_polygon

--- macedon\ ranges
|-- EXTRACT_POLYGON.mid
|-- EXTRACT_POLYGON.mif
--- VMADMIN

|-- POSTCODE_POLYGON.mid
--- POSTCODE_POLYGON.mif

First, lets inspect this file set using the following command:

$ ogrinfo -so vicgrid94/mif/lga_polygon/macedon\ ranges/VMADMIN/POSTCODE_POLYGON.mid
→˓POSTCODE_POLYGON

The output will look like the following:

Had to open data source read-only.
INFO: Open of `vicgrid94/mif/lga_polygon/macedon ranges/VMADMIN/POSTCODE_POLYGON.mid'

using driver `MapInfo File' successful.

(continues on next page)

3.2. Tutorials 389

http://services.land.vic.gov.au/landchannel/content/help?name=sampledata

GeoNode Documentation, Release 2.8

(continued from previous page)

Layer name: POSTCODE_POLYGON
Geometry: 3D Unknown (any)
Feature Count: 26
Extent: (2413931.249367, 2400162.366186) - (2508952.174431, 2512183.046927)
Layer SRS WKT:
PROJCS["unnamed",

GEOGCS["unnamed",
DATUM["GDA94",

SPHEROID["GRS 80",6378137,298.257222101],
TOWGS84[0,0,0,-0,-0,-0,0]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]],

PROJECTION["Lambert_Conformal_Conic_2SP"],
PARAMETER["standard_parallel_1",-36],
PARAMETER["standard_parallel_2",-38],
PARAMETER["latitude_of_origin",-37],
PARAMETER["central_meridian",145],
PARAMETER["false_easting",2500000],
PARAMETER["false_northing",2500000],
UNIT["Meter",1]]

PFI: String (10.0)
POSTCODE: String (4.0)
FEATURE_TYPE: String (6.0)
FEATURE_QUALITY_ID: String (20.0)
PFI_CREATED: Date (10.0)
UFI: Real (12.0)
UFI_CREATED: Date (10.0)
UFI_OLD: Real (12.0)

This gives you information about the number of features, the extent, the projection and the attributes of this layer.

Next, lets go ahead and convert this layer into a shapefile by issuing the following command:

$ ogr2ogr -t_srs EPSG:4326 postcode_polygon.shp vicgrid94/mif/lga_polygon/macedon\
→˓ranges/VMADMIN/POSTCODE_POLYGON.mid POSTCODE_POLYGON

Note that we have also reprojected the layer to the WGS84 spatial reference system with the -t_srs ogr2ogr option.

The output of this command will look like the following:

Warning 6: Normalized/laundered field name: 'FEATURE_TYPE' to 'FEATURE_TY'
Warning 6: Normalized/laundered field name: 'FEATURE_QUALITY_ID' to 'FEATURE_QU'
Warning 6: Normalized/laundered field name: 'PFI_CREATED' to 'PFI_CREATE'
Warning 6: Normalized/laundered field name: 'UFI_CREATED' to 'UFI_CREATE'

This output indicates that some of the field names were truncated to fit into the constraint that attributes in shapefiles
are only 10 characters long.

You will now have a set of files that make up the postcode_polygon.shp shapefile set. We can inspect them by issuing
the following command:

$ ogrinfo -so postcode_polygon.shp postcode_polygon

The output will look similar to the output we saw above when we inspected the MapInfo file we converted from:

390 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

INFO: Open of `postcode_polygon.shp'
using driver `ESRI Shapefile' successful.

Layer name: postcode_polygon
Geometry: Polygon
Feature Count: 26
Extent: (144.030296, -37.898156) - (145.101137, -36.888878)
Layer SRS WKT:
GEOGCS["GCS_WGS_1984",

DATUM["WGS_1984",
SPHEROID["WGS_84",6378137,298.257223563]],

PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]]

PFI: String (10.0)
POSTCODE: String (4.0)
FEATURE_TY: String (6.0)
FEATURE_QU: String (20.0)
PFI_CREATE: Date (10.0)
UFI: Real (12.0)
UFI_CREATE: Date (10.0)
UFI_OLD: Real (12.0)

These files can now be loaded into your GeoNode instance via the normal uploader.

Visit the upload page in your GeoNode, drag and drop the files that composes the shapefile that you have gener-
ated using the GDAL ogr2ogr command (postcode_polygon.dbf, postcode_polygon.prj, postcode_polygon.shp, post-
code_polygon.shx). Give the permissions as needed and then click the “Upload files” button.

As soon as the import process completes, you will have the possibility to go straight to the layer info page (“Layer
Info” button), or to edit the metadata for that layer (“Edit Metadata” button), or to manage the styles for that layer
(“Manage Styles”).

3.2. Tutorials 391

GeoNode Documentation, Release 2.8

GDAL (Raster Data)

Now that we have seen how to convert vector layers into shapefiles using ogr2ogr, we will walk through the steps
necessary to perform the same operation with Raster layers. For this example, we will work with Arc/Info Binary and
ASCII Grid data and convert it into GeoTIFF format for use in GeoNode.

First, you need to download the sample data to work with it. You can do this by executing the following command:

$ wget http://84.33.2.26/geonode/sample_asc.tar

You will need to uncompress this file by executing this command:

$ tar -xvf sample_asc.tar

You will be left with the following files on your filesystem:

|-- batemans_ele
| |-- dblbnd.adf
| |-- hdr.adf
| |-- metadata.xml
| |-- prj.adf
| |-- sta.adf
| |-- w001001.adf
| |-- w001001x.adf
|-- batemans_elevation.asc

The file batemans_elevation.asc is an Arc/Info ASCII Grid file and the files in the batemans_ele directory are an
Arc/Info Binary Grid file.

You can use the gdalinfo command to inspect both of these files by executing the following command:

$ gdalinfo batemans_elevation.asc

The output should look like the following:

392 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Driver: AAIGrid/Arc/Info ASCII Grid
Files: batemans_elevation.asc
Size is 155, 142
Coordinate System is `'
Origin = (239681.000000000000000,6050551.000000000000000)
Pixel Size = (100.000000000000000,-100.000000000000000)
Corner Coordinates:
Upper Left (239681.000, 6050551.000)
Lower Left (239681.000, 6036351.000)
Upper Right (255181.000, 6050551.000)
Lower Right (255181.000, 6036351.000)
Center (247431.000, 6043451.000)
Band 1 Block=155x1 Type=Float32, ColorInterp=Undefined

NoData Value=-9999

You can then inspect the batemans_ele files by executing the following command:

$ gdalinfo batemans_ele

And this should be the corresponding output:

Driver: AIG/Arc/Info Binary Grid
Files: batemans_ele

batemans_ele/dblbnd.adf
batemans_ele/hdr.adf
batemans_ele/metadata.xml
batemans_ele/prj.adf
batemans_ele/sta.adf
batemans_ele/w001001.adf
batemans_ele/w001001x.adf

Size is 155, 142
Coordinate System is:
PROJCS["unnamed",

GEOGCS["GDA94",
DATUM["Geocentric_Datum_of_Australia_1994",

SPHEROID["GRS 1980",6378137,298.257222101,
AUTHORITY["EPSG","7019"]],

TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6283"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4283"]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",153],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",10000000],
UNIT["METERS",1]]

Origin = (239681.000000000000000,6050551.000000000000000)
Pixel Size = (100.000000000000000,-100.000000000000000)
Corner Coordinates:
Upper Left (239681.000, 6050551.000) (150d 7'28.35"E, 35d39'16.56"S)
Lower Left (239681.000, 6036351.000) (150d 7'11.78"E, 35d46'56.89"S)
Upper Right (255181.000, 6050551.000) (150d17'44.07"E, 35d39'30.83"S)

(continues on next page)

3.2. Tutorials 393

GeoNode Documentation, Release 2.8

(continued from previous page)

Lower Right (255181.000, 6036351.000) (150d17'28.49"E, 35d47'11.23"S)
Center (247431.000, 6043451.000) (150d12'28.17"E, 35d43'13.99"S)
Band 1 Block=256x4 Type=Float32, ColorInterp=Undefined

Min=-62.102 Max=142.917
NoData Value=-3.4028234663852886e+38

You will notice that the batemans_elevation.asc file does not contain projection information while the batemans_ele
file does. Because of this, lets use the batemans_ele files for this exercise and convert them to a GeoTiff for use in
GeoNode. We will also reproject this file into WGS84 in the process. This can be accomplished with the following
command.

$ gdalwarp -t_srs EPSG:4326 batemans_ele batemans_ele.tif

The output will show you the progress of the conversion and when it is complete, you will be left with a bate-
mans_ele.tif file that you can upload to your GeoNode.

You can inspect this file with the gdalinfo command:

$ gdalinfo batemans_ele.tif

Which will produce the following output:

Driver: GTiff/GeoTIFF
Files: batemans_ele.tif
Size is 174, 130
Coordinate System is:
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4326"]]

Origin = (150.119938943722502,-35.654598806259330)
Pixel Size = (0.001011114155919,-0.001011114155919)
Metadata:

AREA_OR_POINT=Area
Image Structure Metadata:

INTERLEAVE=BAND
Corner Coordinates:
Upper Left (150.1199389, -35.6545988) (150d 7'11.78"E, 35d39'16.56"S)
Lower Left (150.1199389, -35.7860436) (150d 7'11.78"E, 35d47' 9.76"S)
Upper Right (150.2958728, -35.6545988) (150d17'45.14"E, 35d39'16.56"S)
Lower Right (150.2958728, -35.7860436) (150d17'45.14"E, 35d47' 9.76"S)
Center (150.2079059, -35.7203212) (150d12'28.46"E, 35d43'13.16"S)
Band 1 Block=174x11 Type=Float32, ColorInterp=Gray

You can then follow the same steps we used above to upload the GeoTIFF file we created into the GeoNode, and you
will see your layer displayed in the Layer Info page.

Now that you have seen how to convert layers with both OGR and GDAL, you can use these techniques to work with
your own data and get it prepared for inclusion in your own GeoNode.

394 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2.1.4.11 Implementing S3 Bucket for Static and Media Files

If you have access to an Amazon S3 bucket, using this resource for your site’s static and media files can improve your
site’s performance. We’ll assume you have an account and can create new users and S3 buckets already. This tutorial
will walk you through implementing your GeoNode instance to use an S3 bucket for static and media files.

Configuring S3 Bucket

Before proceeding, preserving the security and manageability of the system should be considered. Therefore, we’re
going to suggest creating a new user account to have access to this S3 bucket. With the new username and password
only being related to this one bucket, any compromise to the system will only affect this bucket. Additionally, creating
a new user account just for the site will allow you to pass on the information to a new maintainer in the future.

Instructions

Creating Resources

• Create the S3 bucket

• Create a new user: Go to AWS IAM. Select “Create new users” and follow the instructions, making sure you
leave “Generate an access key for each User” selected.

• Download the user’s access keys (access key and secret access key). Go to the new user’s Security Credentials
and click “Manage access keys”. Download the credentials for the access key that was created and put the
information somewhere safe. You will not be able to download this information again.

• Retrieve the new user’s ARN (Amazon Resource Name). Go to the user’s Summary tab to get the information.
For example: arn:aws:iam::123456789012:user/username

3.2. Tutorials 395

http://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html
https://console.aws.amazon.com/iam/home?#users

GeoNode Documentation, Release 2.8

Adding Bucket Policy

Next, the bucket policy needs to be set. In the S3 management console head to the bucket properties and add a new
bucket policy with the information below. Use the name of the bucket you created for S3_BUCKET_NAME and the
user’s ARN retrieved in the previous step for USER_ARN.

{
"Statement": [

{
"Sid":"PublicReadForGetBucketObjects",
"Effect":"Allow",
"Principal": {

"AWS": "*"
},

"Action":["s3:GetObject"],
"Resource":["arn:aws:s3:::S3_BUCKET_NAME/*"
]

},
{

"Action": "s3:*",
"Effect": "Allow",
"Resource": [

"arn:aws:s3:::S3_BUCKET_NAME",
"arn:aws:s3:::S3_BUCKET_NAME/*"

],
"Principal": {

"AWS": [
"USER_ARN"

]
}

}
]

}

Applying CORS

Since assets are going to be served on the site from an external domain now (the S3 bucket), it needs to be configured
with CORS. To do so, go to the S3 bucket’s Properties > Permissions > Add CORS Configuration and paste this in:

<CORSConfiguration>
<CORSRule>
<AllowedOrigin>*</AllowedOrigin>
<AllowedMethod>GET</AllowedMethod>
<MaxAgeSeconds>3000</MaxAgeSeconds>
<AllowedHeader>Authorization</AllowedHeader>

</CORSRule>
</CORSConfiguration>

Additional Users

If you wish to configure more users, just follow all the steps after creating the S3 bucket with additional users. Add
the following to the S3 bucket policy in the Statement:

396 Chapter 3. Table of contents

https://console.aws.amazon.com/s3/home

GeoNode Documentation, Release 2.8

{
"Action": "s3:ListBucket",
"Effect": "Allow",
"Resource": "arn:aws:s3:::S3_BUCKET_NAME",
"Principal": {

"AWS": [
"USER_ARN"

]
}

}

Setting Environment Variables

GeoNode already has settings ready to be configured with the created S3 bucket. Simply set the following environment
variables with the appropriate information gained from the steps above:

• S3_BUCKET_NAME, the name of what the bucket created in the first step.

• AWS_ACCESS_KEY_ID, the access key id downloaded earlier, e.g. AKIAIOSFODNN7EXAMPLE

• AWS_SECRET_ACCESS_KEY, the secret access key downloaded earlier, e.g. wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY

Static Files

In order to serve your static files through the S3 bucket, you’ll additionally need to set the environment variable
S3_STATIC_ENABLED to True.

Media Files

In order to serve your media files through the S3 bucket, you’ll additionally need to set the environment variable
S3_MEDIA_ENABLED to True.

Migrating an Existing Site’s Data

If you already have a GeoNode site running and want to change it so your data is served through an S3 bucket instead,
you will need to move your previously existing data into the bucket. Moving your data is beyond the scope of this
tutorial, but Amazon provides helpful tools for managing your bucket such as the AWS CLI tools.

3.2.1.4.12 Backup & Restore GeoNode - Data Migration

The admin command to backup and restore GeoNode, allows to extract consistently the GeoNode and GeoServer
data models in a serializable meta-format which is being interpreted later by the restore procedure in order to exactly
rebuild the whole structure, according to the current instance version (which may also be different from the starting
one).

In particular the tool helps developers and admins to correctly extract and serialize the following resources are on the
storage and deserialize on the target GeoNode/GeoServer instance:

• GeoNode (Resource Base Model):

1. Layers (both raster and vectors)

3.2. Tutorials 397

GeoNode Documentation, Release 2.8

2. Maps

3. Documents

4. People with Credentials

5. Permissions

6. Associated Styles

7. Static data and templates

• GeoServer (Catalog):

1. OWS Services configuration and limits

2. Security model along with auth filters configuration, users and credentials

3. Workspaces

4. Stores (both DataStores and CoverageStores)

5. Layers

6. Styles

The tool exposes two GeoNode Management Commands, ‘backup’ and ‘restore’.

The commands allow to:

1. Fully backup GeoNode data and fixtures on a zip archive

2. Fully backup GeoServer configuration (physical datasets - tables, shapefiles, geotiffs)

3. Fully restore GeoNode and GeoServer fixtures and catalog from the zip archive

4. Migrate fixtures from old GeoNode models to the new one

The usage of those commands is quite easy and straight. It is possible to run the backup and restore commands from
the GeoNode Admin panel also.

The first step is to ensure that everything is correctly configured and the requisites respected in order to successfully
perform a backup and restore of GeoNode.

Warning: It is worth notice that this functionality requires the latest GeoServer Extension (2.9.x or greater) for
GeoNode in order to correctly work.

Note: GeoServer full documentation is also available here GeoServer Docs

Requisites and Setup

Before running a GeoNode backup / restore, it is necessary to ensure everything is correctly configured and setup.

Settings

Accordingly to the admin needs, the file settings.ini must be tuned up a bit before running a backup / restore.

It can be found at geonode/base/management/commands/settings.ini and by default it contains the
following properties:

398 Chapter 3. Table of contents

https://build.geo-solutions.it/geonode/geoserver/latest//
http://docs.geoserver.org/latest/en/user/community/backuprestore/index.html

GeoNode Documentation, Release 2.8

[database]
pgdump = pg_dump
pgrestore = pg_restore

[geoserver]
datadir = /opt/gs_data_dir
dumpvectordata = yes
dumprasterdata = yes

[fixtures]
#NOTE: Order is important
apps = people,account,avatar.avatar,base.backup,base.license,base.topiccategory,
→˓base.region,base.resourcebase,base.contactrole,base.link,base.restrictioncodetype,
→˓base.spatialrepresentationtype,guardian.userobjectpermission,guardian.
→˓groupobjectpermission,layers.uploadsession,layers.style,layers.layer,layers.
→˓attribute,layers.layerfile,maps.map,maps.maplayer,maps.mapsnapshot,documents.
→˓document,taggit

dumps = people,accounts,avatars,backups,licenses,topiccategories,regions,
→˓resourcebases,contactroles,links,restrictioncodetypes,spatialrepresentationtypes,
→˓useropermissions,groupopermissions,uploadsessions,styles,layers,attributes,
→˓layerfiles,maps,maplayers,mapsnapshots,documents,tags

Migrate from GN 2.0 to GN 2.4
#migrations = base.resourcebase,layers.layer,layers.attribute,maps.map,maps.maplayer
#manglers = gn20_to_24.ResourceBaseMangler,gn20_to_24.LayerMangler,gn20_to_24.
→˓LayerAttributesMangler,gn20_to_24.MapMangler,gn20_to_24.MapLayersMangler

Migrate from GN 2.4 to GN 2.4
migrations = base.resourcebase,layers.layer,layers.attribute,maps.map,maps.maplayer
manglers = gn24_to_24.ResourceBaseMangler,gn24_to_24.LayerMangler,gn24_to_24.
→˓LayerAttributesMangler,gn24_to_24.DefaultMangler,gn24_to_24.MapLayersMangler

The settings.ini has few different sections that must carefully checked before running a backup / restore com-
mand.

Settings: [database] Section

[database]
pgdump = pg_dump
pgrestore = pg_restore

This section is quite simple. It contains only two (2) properties:

• pgdump; the path of the pg_dump local command.

• pgrestore; the path of the pg_restore local command.

Warning: Those properties are ignored in case GeoNode is not configured to use a DataBase as backend (see
settings.py and local_settings.py sections)

Note: Database connection settings (both for GeoNode and GeoServer) will be taken from settings.py and
local_settings.py configuration files. Be sure they are correctly configured (on the target GeoNode instance

3.2. Tutorials 399

GeoNode Documentation, Release 2.8

too) and the DataBase server is accessible while executing a backup / restore command.

Settings: [geoserver] Section

[geoserver]
datadir = /opt/gs_data_dir
dumpvectordata = yes
dumprasterdata = yes

This section allows to enable / disable a full data backup / restore of GeoServer.

• datadir; the full path of GeoServer Data Dir, by default /opt/gs_data_dir. The path must be accessi-
ble and fully writable by the geonode and / or httpd server users when executing a backup / restore
command.

• dumpvectordata; a boolean allowing to disable dump of vectorial data from GeoServer (shapefiles or DB tables).
If false (or no) vectorial data won’t be stored / re-stored.

• dumprasterdata; a boolean allowing to disable dump of raster data from GeoServer (geotiffs). If false (or no)
raster data won’t be stored / re-stored.

Warning: Enabling those options requires that the GeoServer Data Dir is accessible and fully writable by the
geonode and / or httpd server users when executing a backup / restore command.

Settings: [fixtures] Section

[fixtures]
#NOTE: Order is important
apps = people,account,avatar.avatar,base.backup,base.license,base.topiccategory,
→˓base.region,base.resourcebase,base.contactrole,base.link,base.restrictioncodetype,
→˓base.spatialrepresentationtype,guardian.userobjectpermission,guardian.
→˓groupobjectpermission,layers.uploadsession,layers.style,layers.layer,layers.
→˓attribute,layers.layerfile,maps.map,maps.maplayer,maps.mapsnapshot,documents.
→˓document,taggit

dumps = people,accounts,avatars,backups,licenses,topiccategories,regions,
→˓resourcebases,contactroles,links,restrictioncodetypes,spatialrepresentationtypes,
→˓useropermissions,groupopermissions,uploadsessions,styles,layers,attributes,
→˓layerfiles,maps,maplayers,mapsnapshots,documents,tags

Migrate from GN 2.0 to GN 2.4
#migrations = base.resourcebase,layers.layer,layers.attribute,maps.map,maps.maplayer
#manglers = gn20_to_24.ResourceBaseMangler,gn20_to_24.LayerMangler,gn20_to_24.
→˓LayerAttributesMangler,gn20_to_24.MapMangler,gn20_to_24.MapLayersMangler

Migrate from GN 2.4 to GN 2.4
migrations = base.resourcebase,layers.layer,layers.attribute,maps.map,maps.maplayer
manglers = gn24_to_24.ResourceBaseMangler,gn24_to_24.LayerMangler,gn24_to_24.
→˓LayerAttributesMangler,gn24_to_24.DefaultMangler,gn24_to_24.MapLayersMangler

This section is the most complex one. Usually you don’t need to modify it. Only an expert user who knows Python
and GeoNode model structure should modify this section.

400 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

What its properties mean:

• apps; this is an ordered list of GeoNode Object Models (or DJango apps). The backup / restore procedure will
dump / restore the fixtures in a portable format.

• dumps; this is the list of files associated to the Django apps. The order must be the same of the property
above. Each name represents the file name where to dump / read the single app fixture.

• migrations; some fixtures must be enriched or updated before restored on the target model. This section allows
to associate specific manglers to the fixtures. Manglers are simple Python classes which simply converts some
attributes to other formats.

• manglers; the Python mangler class to execute accordingly to the fixture indicated by the migrations property.
Manglers classes must be located into he geonode/base/management/commands/lib‘ folder.

Note: Manglers must be used when migrating from a GeoNode version to another one, i.e. where the original
model differs from the target one. With the default distribution are provided manglers to convert from GeoNode 2.0 to
GeoNode 2.4. Other versions may require other manglers or updates to the default ones.

Mangler Example

As specified on the section above, manglers are Python classes allowing developers to enrich / modify a fixture in
order to fit the target GeoNode model.

The structure of a mangler is quite simple. Lets examine the ResourceBaseMangler of the gn_20_to_24
library, a mangler used to convert a GeoNode 2.0 Resource Base to a GeoNode 2.4 one.

class ResourceBaseMangler(DefaultMangler):

def default(self, obj):
Let the base class default method raise the TypeError
return json.JSONEncoder.default(self, obj)

def decode(self, json_string):
"""
json_string is basically a string that you give to json.loads method
"""
default_obj = super(ResourceBaseMangler, self).decode(json_string)

manipulate your object any way you want
....
upload_sessions = []
for obj in default_obj:

obj['pk'] = obj['pk'] + self.basepk

obj['fields']['featured'] = False
obj['fields']['rating'] = 0
obj['fields']['popular_count'] = 0
obj['fields']['share_count'] = 0
obj['fields']['is_published'] = True
obj['fields']['thumbnail_url'] = ''

if 'distribution_url' in obj['fields']:
if not obj['fields']['distribution_url'] is None and 'layers' in obj[

→˓'fields']['distribution_url']:

(continues on next page)

3.2. Tutorials 401

GeoNode Documentation, Release 2.8

(continued from previous page)

obj['fields']['polymorphic_ctype'] = ["layers", "layer"]

try:
p = '(?P<protocol>http.*://)?(?P<host>[^:/]+).?(?P<port>[0-

→˓9]*)(?P<details_url>.*)'
m = re.search(p, obj['fields']['distribution_url'])
if 'http' in m.group('protocol'):

obj['fields']['detail_url'] = self.siteurl + m.group(
→˓'details_url')

else:
obj['fields']['detail_url'] = self.siteurl + obj['fields

→˓']['distribution_url']
except:

obj['fields']['detail_url'] = obj['fields']['distribution_url
→˓']

else:
obj['fields']['polymorphic_ctype'] = ["maps", "map"]

try:
obj['fields'].pop("distribution_description", None)

except:
pass

try:
obj['fields'].pop("distribution_url", None)

except:
pass

try:
obj['fields'].pop("thumbnail", None)

except:
pass

upload_sessions.append(self.add_upload_session(obj['pk'], obj['fields'][
→˓'owner']))

default_obj.extend(upload_sessions)

return default_obj

def add_upload_session(self, pk, owner):
obj = dict()

obj['pk'] = pk
obj['model'] = 'layers.uploadsession'

obj['fields'] = dict()
obj['fields']['user'] = owner
obj['fields']['traceback'] = None
obj['fields']['context'] = None
obj['fields']['error'] = None
obj['fields']['processed'] = True
obj['fields']['date'] = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")

return obj

402 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

1. It extends the DefaultMangler.

The DefaultMangler is a basic class implementing a JSONDecoder

class DefaultMangler(json.JSONDecoder):

def __init__(self, *args, **kwargs):

self.basepk = kwargs.get('basepk', -1)
self.owner = kwargs.get('owner', 'admin')
self.datastore = kwargs.get('datastore', '')
self.siteurl = kwargs.get('siteurl', '')

super(DefaultMangler, self).__init__(*args)

def default(self, obj):
Let the base class default method raise the TypeError
return json.JSONEncoder.default(self, obj)

def decode(self, json_string):
"""
json_string is basicly string that you give to json.

→˓loads method
"""
default_obj = super(DefaultMangler, self).decode(json_

→˓string)

manipulate your object any way you want
....

return default_obj

By default this mangler unmarshalls GeoNode Object Model from JSON and returns it to the man-
agement command.

The GeoNode Object Model can be modified while decoding by extending the def
decode(self, json_string) method.

• json_string; actual parameter contains the JSON representation of the fixture.

• default_obj; is the Python object decoded from the JSON representation of the fixture.

2. It overrides the def decode(self, json_string) method.

The decoded Python object can be enriched / modified before returning it to the management com-
mand.

From Command Line

The following sections shows instructions on how to perform backup / restore from the command line by using the
Admin Management Commands.

In order to obtain a basic user guide for the management command from the command line, just run

python manage.py backup --help

python manage.py restore --help

--help will provide the list of available command line options with a brief description.

3.2. Tutorials 403

GeoNode Documentation, Release 2.8

It is worth notice that both commands allows the following option

python manage.py restore

-f, --force # Forces the execution without asking
→˓for confirmation
-c CONFIG, --config=CONFIG # Use custom settings.ini configuration
→˓file
--geoserver-data-dir=GS_DATA_DIR # Geoserver data directory
--dump-geoserver-vector-data # Dump geoserver vector data
--no-geoserver-vector-data # Don't dump geoserver vector data
--dump-geoserver-raster-data # Dump geoserver raster data
--no-geoserver-raster-data # Don't dump geoserver raster data
--skip-geoserver # Skips geoserver backup
--backup-file=BACKUP_FILE # Backup archive containing GeoNode
→˓data to restore.
--backup-dir=BACKUP_DIR # Backup directory containing GeoNode
→˓data to restore.

python manage.py backup

-f, --force # Forces the execution without asking
→˓for confirmation
-c CONFIG, --config=CONFIG # Use custom settings.ini configuration
→˓file
--geoserver-data-dir=GS_DATA_DIR # Geoserver data directory
--dump-geoserver-vector-data # Dump geoserver vector data
--no-geoserver-vector-data # Don't dump geoserver vector data
--dump-geoserver-raster-data # Dump geoserver raster data
--no-geoserver-raster-data # Don't dump geoserver raster data
--skip-geoserver # Skips geoserver backup
--backup-dir=BACKUP_DIR # Destination folder where to store the
→˓backup archive.

It must be writable.

Which will instruct the management command to not ask for confirmation from the user. It enables basically a non-
interactive mode.

Backup

In order to perform a backup just run the command:

python manage.py backup --backup-dir=<target_bk_folder_path>

The management command will automatically generate a .zip archive file on the target folder in case of success.

Restore

In order to perform a restore just run the command:

python manage.py restore --backup-file=<target_restore_file_path>

Restore requires the path of one .zip archive containing the backup fixtures.

404 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Warning: The Restore will overwrite the whole target GeoNode / GeoServer users, catalog and database, so be
very careful.

From GeoNode Admin GUI

1. Login as admin and click on Admin menu option

2. Look for Backups on Base section

3. Add a new backup

4. Insert a Name and a Description; also you must provide the Base folder where the backups will be
stored

Warning: the Base folder must be fully writable from both geonode and httpd
server system users.

5. Click on save and go back to the Backups list main section

6. The new Backup is not ready until you perform the Run Backup action; in order to do that select the backup
to run and from the Action menu select Run the Backup

Note: A Backup is not ready until the Location attribute is filled

7. Click on Yes, I'msure on the next section in order to perform the Backup

Note: The server page will wait for the Backup to finish (or fail).

8. The server page will wait for the Backup to finish (or fail); at the end of the Backup you will be redirected to
the main list page.

Note: At a successfull run, the Location attribute is filled with the full path of the backup
archive

Warning: A Backup can always being updated later and / or executed again. The Location
attribute will be updated accorndingly.

9. Execute as many Backups as you want; they can all point to the same Base Folder, the new backups will
generate new unique archive files any time.

3.2. Tutorials 405

GeoNode Documentation, Release 2.8

406 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 407

GeoNode Documentation, Release 2.8

408 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 409

GeoNode Documentation, Release 2.8

10. In order to Restore a zip archive, just select the instance to restore from the list and from the Action menu
lunch the Run the Restore option.

11. Click on Yes, I'msure on the next section in order to perform the Backup

Note: The server page will wait for the Backup to finish (or fail).

Warning: The following target GeoNode folders must be fully writable from both geonode and httpd
server system users

• geoserver_data_dir/data

410 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

• geonode / settings.MEDIA_ROOT

• geonode / settings.STATIC_ROOT

• geonode / settings.STATICFILES_DIRS

• geonode / settings.TEMPLATE_DIRS

• geonode / settings.LOCALE_PATHS

Warning: The Restore will overwrite the whole target GeoNode / GeoServer users, catalog and database, so be
very careful.

3.2.1.4.13 GeoNode Monitoring

Contents

• GeoNode Monitoring

– Internal Monitoring Application (geonode.contrib.monitoring)

* Base concepts and objects

* Installation

* Enable the collect_metrics cron

· cront job

· supervisor

* Configuration

* Usage

· Dashboard

· Top bar and indicators

· Software Performance

· Hartware Performance

· Errors

· Alerts

– Integration with GeoHealthCheck

Internal Monitoring Application (geonode.contrib.monitoring)

Note: This application requires MaxMind’s GeoIP database file.

3.2. Tutorials 411

GeoNode Documentation, Release 2.8

Base concepts and objects

GeoNode monitoring is a configurable monitoring application, that allows internal resources and hardware
resources monitoring for GeoNode installations, including GeoServer deployments.

Monitoring application is configurable, so different deployment scenarios could be handled - from GeoN-
ode and GeoServer running on single host, through distributed installations, where GeoServer is deployed
to several hosts.

Monitoring application uses three base entity classes to describe elements of reality: Host, Service Type
and Service.

• Host is an object describing physical (or virtual) instance of operating system on which GN or GS
is running. This object exists only for grouping and is not used directly by monitoring.

• Service Type is a description of kind of Service. Depending on service type, different metrics are
stored, and different data collection mechanisms are used. Additionally, for system monitoring,
it’s not conducted directly, but with GeoNode or GeoServer as monitoring agent. That means,
no additional software installation is needed to monitor system, but also, hosts that don’t have
GeoNode or GeoServer installed, won’t be monitored. There are four service types:

– hostgeonode, hostgeoserver - those types describe system monitoring probes that are running
with GeoNode or GeoServer respectively,

– geonode, geoserver - application-level probes that monitor one specific GeoNode or
GeoServer instance.

• Service describes one specific instance of probe, either host-level or application-level. Service
references Host and Service Type. Each service must be named, and name should be system-wide
unique.

As mentioned above, each Service Type keeps a set of metrics, specific for that type. A metric is a
description of measured value, for example: number of requests, response size or time, cpu usage, free
memory etc. Each Service Type has it’s own metrics set. Metric value may be either value counter (like
country of user), numeric counter (like number of requests) or rate (like bytes in/out on network interface).

Besides metric data, monitoring will also store exception information for exceptions that were captured
during request handling.

Data are collected periodically (at most every 1 minute), aggregated and stored in aggregated form. User
can see data from predefined relative periods (last minute, last 10 minutes, last hour, last day, last week).

User can enable and configure automated checks, which will be run after each collection/aggregation
cycle, and will emit notifications if metric values in that run exceed configured thresholds.

Installation

Warning: This plugin requires a Potgresql DB backend enabled

• ensure UTC Timezone to your DB

psql -c 'set timezone=UTC;'

• enable MONITORING_ENABLED flag and ensure that following code is in your settings:

412 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

CORS_ORIGIN_ALLOW_ALL = True

MONITORING_ENABLED = True
add following lines to your local settings to enable monitoring
if MONITORING_ENABLED:

INSTALLED_APPS += ('geonode.contrib.monitoring',)
MIDDLEWARE_CLASSES += ('geonode.contrib.monitoring.middleware.MonitoringMiddleware

→˓',)
MONITORING_CONFIG = None
MONITORING_HOST_NAME = 'localhost'
MONITORING_SERVICE_NAME = 'local-geonode'
MONITORING_HOST_NAME = SITE_HOST_NAME

INSTALLED_APPS += ('geonode.contrib.ows_api',)

GEOIP_PATH = os.path.join(os.path.dirname(__file__), '..', 'GeoLiteCity.dat')

• run DJANGO_SETTINGS_MODULE=<project_name>.settings python manage.py migrate
monitoring to apply db schema changes and insert initial data

• run DJANGO_SETTINGS_MODULE=<project_name>.settings python manage.py
updategeoip to fetch MaxMind’s GeoIP database file. It will be written to path specified by GEOIP_PATH
setting.

• run DJANGO_SETTINGS_MODULE=<project_name>.settings python manage.py
collect_metrics -n -t xml -f --since='<yyyy-mm-dd HH:mm:ss>' to create first
metrics.

Warning: Replace <yyyy-mm-dd HH:mm:ss> with a real date time to start with.

• update Sites from admin; make sure it contains a correct host name

• do not forget to enable notifications and configure them from user profile

Enable the collect_metrics cron

Warning: Here below you will find instructions for a Ubuntu 16.04 based machine, but the
procedure is similar for other OSs. The basic concept is that you must allow the system to
run the command DJANGO_SETTINGS_MODULE=<project_name>.settings python manage.py
collect_metrics -n -t xml (without -f and since) every minute.

cront job

sudo crontab -e

Add the following line at the bottom; this will run the supervisor command every
→˓minute

* * * * * supervisorctl start geonode-monitoring

3.2. Tutorials 413

GeoNode Documentation, Release 2.8

supervisor

sudo apt install supervisor
sudo service supervisor restart
sudo update-rc.d supervisor enable

sudo vim /etc/supervisor/conf.d/geonode-monitoring.conf

[program:geonode-monitoring]
command=<path_to_virtualenv>/geonode/bin/python -W ignore <path_to_your_project>/
→˓geonode/manage.py collect_metrics -n -t xml
directory = <path_to_your_project>
environment=DJANGO_SETTINGS_MODULE="<your_project>.settings"
user=<your_user>
numproc=1
stdout_logfile=/var/log/geonode-celery.log
stderr_logfile=/var/log/geonode-celery.log
autostart = true
autorestart = true
startsecs = 10
stopwaitsecs = 600
priority = 998

sudo service supervisor restart
sudo supervisorctl start geonode-monitoring
sudo supervisorctl status geonode-monitoring

sudo vim /etc/hosts

127.0.0.1 localhost
<public_ip> <your_host.your_domain> <your_host>

The following lines are desirable for IPv6 capable hosts

Configuration

In order to have working monitoring, at least Service should be configured. Let’s assume following deployment scenario:

• there’s one machine, geo01

• geo01 hosts both GeoNode and GeoServer (including PostgreSQL).

• applications are served with nginx+uwsgi, on port 80, but they are reachable on localhost address.

• GeoServer is served from /geoserver/ path

• GeoNode is served from / path

Here’s step-by-step instruction how to create monitoring setup for deployment scenario:

1. Log in as admin, and go to admin section:

414 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

2. Go to monitoring section (or type /admin/monitoring/ as a path in URL):

3. Go to Hosts:

3.2. Tutorials 415

GeoNode Documentation, Release 2.8

4. Click on Add host +:

5. Enter following information: * host: localhost * ip: 127.0.0.1 Note, that host value is arbitrary. You can enter
other name if you like. Don’t forget to save.

416 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

6. Go to Services:

7. Click on Add service +:

3.2. Tutorials 417

GeoNode Documentation, Release 2.8

8. Enter following information:

• name: local-geonode

• host: localhost

• service type: geonode

9. Add another Service Enter following information:

• name: local-system-geonode

• host: localhost

• service type: hostgeonode

• url: http://localhost/ (should point to GeoNode home page)

418 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

10. Add another Service and enter following information:

• name: local-geoserver

• host: localhost

• service type: geoserver

• url: http://localhost/geoserver/ (should point to GeoServer home page)

3.2. Tutorials 419

GeoNode Documentation, Release 2.8

To summarize, following entries should be created in admin/monitoring:

• Host: localhost, with ip: 127.0.0.1

• Service: local-geonode:

– host localhost

– type geonode

• Service: local-geoserver:

– url http://localhost/geoserver/

– host localhost

– type geoserver

• Service: local-system-geonode

– url http://localhost/

420 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

– host localhost

– type hostgeonode

Usage

Monitoring interface is available for superusers only. It’s available in profile menu:

Dashboard

Main view offers overview of recent situation in GeoNode deployment.

3.2. Tutorials 421

GeoNode Documentation, Release 2.8

Top bar and indicators

With top bar buttons User can:

• go back from nested interface elements (charts, alerts, errors)

• select time window from which data will be aggregated and shown (last 10 minutes, last 1 hour, last day or last
week from now)

• see what’s currently used time window

• enable/disable autorefresh

Below there are four main health indicators:

• aggregated Health Check information. This element will be:

– green if there is no alerts nor errors

– yellow if there are alerts

422 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

– red if there are errors

• Uptime that shows GeoNode’s system uptime.

• Alerts shows number of notifications from defined checks. When clicked, Alerts box will show detailed infor-
mation . See Notifications description for details.

• Errors - shows how many errors were captured during request processing. When clicked, Errors box will show
detailed list of captured errors. See Errros description for details.

Indicators in error state

Software Performance

Software Performance view shows GeoServer web service statistics, for all requests monitored and detailed, OWS-
specific, per service type (WMS, WFS, OCS etc).

3.2. Tutorials 423

GeoNode Documentation, Release 2.8

Clicking on

will show charts with data history for overall performance and per-OWS performance:

424 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Hartware Performance

Hardware performance box shows hardware usage statistics for selected host (monitored with any of hostgeonode or
hostgeoserver type Service): % of CPU usage and average memory consumption. User can select from which host
data will be presented.

3.2. Tutorials 425

GeoNode Documentation, Release 2.8

Clicking on

will show charts with data history for selected host and time period

426 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Errors

Errors view will show list of captured errors in GeoNode and GeoServer. List contents is displayed for selected time
window.

For each error, details are available:

• error class, message and stack trace

• basic request context (IP, path, user agent)

3.2. Tutorials 427

GeoNode Documentation, Release 2.8

Alerts

An alert is a descriptive information on situation when observed metric contains values outside allowed range (for
example, response time is above 30 seconds, or no requests were served within last 30 minutes). Alerts are generated
by notifications mechanism described below.

Alerts view will show list of alerts for current moment (alerts that were generated in past are not displayed here):

Each alert contains more descriptive information what is wrong:

428 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Notifications

Notification mechanism (not to be confused with notifications application in GeoNode) is a way to inform selected
users about situations, where collected metric data would indicate a problem with deployment. Notifications are
accessible from Alerts view:

There can be several notification configurations available.

Each notification configuration contains two main elements:

• list of email addressess which should be notified when alert is generated

• list of checks (at least one check must be in invalid state to generate alert)

3.2. Tutorials 429

GeoNode Documentation, Release 2.8

User can add arbitrary number of emails. Email address doesn’t need to point to user registered in GeoNode instance.
If email provided doesn’t belong to any of users, alert will be send as a regular email. If email provided can be
associated with specific user, notifications application (and thus, notification settings for that user) will be used to send
alert.

Integration with GeoHealthCheck

GeoNode can also be easily monitored with external tools, like GeoHealthCheck. See Documentation on adding
resources for details.

3.2.1.4.14 Use datastore shards in GeoNode

Many organizations have hundreds of layers uploaded to GeoNode. In such a case using the default GeoNode config-
uration, with just one PostGIS database and one GeoServer PostGIS store for all of the layers has several limitations,
such as:

• Layer upload and creation time become very large Layer upload and creation time tends to become very
large when the PostGIS database starts containing many layers. We have seen cases where even 4/5
minutes were needed for uploading a small sized shapefile). This issue is caused by the actual implemen-
tation of the PostgreSQL JDBC driver and has been reported in details in GeoServer bug GEOS-7533:
https://osgeo-org.atlassian.net/browse/GEOS-7533

• Large backups When data are not edited in GeoNode, it is easier to backup smaller PostgreSQL databases
rather than a big one, where only a few tables have been changed since the last backup. When using a
single database for all of the uploads this is not possible

These problems can be tackled using the Datastore Shards GeoNode contrib module, which automatically creates new
shards when some defined conditions changes.

How to use the datastore_shards module

As a first thing, add the module in the INSTALLED_APPS section of the settings file:

INSTALLED_APPS = (
...,
'geonode.contrib.datastore_shards',

(continues on next page)

430 Chapter 3. Table of contents

http://geohealthcheck.org/
http://docs.geohealthcheck.org/en/latest/admin.html#adding-resources
http://docs.geohealthcheck.org/en/latest/admin.html#adding-resources
https://osgeo-org.atlassian.net/browse/GEOS-7533

GeoNode Documentation, Release 2.8

(continued from previous page)

...
)

Here is a typical extract of the settings that must be used for GeoNode to use the datatabase shards module:

SHARD DATABASES SETTINGS
SHARD_STRATEGY may be yearly, monthly, layercount
SHARD_STRATEGY = 'layercount'
SHARD_LAYER_COUNT = 100
SHARD_PREFIX = 'wm_'
SHARD_SUFFIX = ''
DATASTORE_URL = 'postgis://user:password@localhost:5432/data'

Now syncronize the module models with the database:

python manage.py migrate datastore_shards

Now you are set and datastore shards will be used as soon as GeoNode is restarted. The datastore_shards application
will automatically create a new shard whenever it is needed.

Note: The PostrgreSQL ROLE which is used (user in DATASTORE_URL) must have CREATEDB option assigned
in order to be able to create the PostgreSQL shards.

Database shards settings

SHARD_STRATEGY

This setting can currently be set to ‘yearly’, ‘monthly’, ‘layercount’:

• yearly a database shard is created and used each year. PostgreSQL database and GeoServer store name is in
the form: prefix_YYYY_suffix

• monthly a database shard is created and used each month. PostgreSQL database and GeoServer store name is
in the form: prefix_YYYYMM_suffix

• layercount a database shard is created when previous shard reaches a certain number of layers (which is set by
the SHARD_LAYER_COUNT setting). PostgreSQL database and GeoServer store name is in the form:
prefix_01234_suffix. 01234 is a progressive number starting from 0.

SHARD_PREFIX and SHARD_SUFFIX

When these settings are used, a prefix and a suffix is appended to the name of the shard.

For example, if SHARD_PREFIX = ‘foo’ and SHARD_SUFFIX = ‘bar’, when using a SHARD_STRATEGY set to
‘yearly’, the shard for 2017 will be named foo_2017_bar.

SHARD_LAYER_COUNT

This setting is used when SHARD_STRATEGY is set to “layercount”, and it represents the maximum number a shard
can contain before next shard is created and used.

3.2. Tutorials 431

GeoNode Documentation, Release 2.8

Here is how it looks GeoServer when using a SHARD_STRATEGY set to “layercount” and
SHARD_LAYER_COUNT set to 3:

As you can easily see a GeoServer PostGIS store is created every time the store contains three layers. Each store links
to a different PostGIS database.

3.2.1.4.15 Asynchronous signals handling

Asynchronous signals handling is a part of GeoNode scalabilty architecture. It allows to offload post-processing tasks
from main web application process, also to integrate closely with GeoServer.

In this setup GeoNode produces events (small messages with serialized configuration) that are queued by external
broker (AMQP broker, prefferably RabbitMQ), and later, are consumed (processed) by separate worker process. Addi-
tionally, GeoServer can be attached and used as producer as well, so two-way data synchronization between GeoNode
and GeoServer can be established.

Note: Default configuration (in-memory queue) doesn’t require AMQP broker, and will process signals syn-
chronously. Also, default configuration won’t allow two-way synchronization with GeoServer, even if GS is con-
figured to work with external broker.

Async signals handling components

GeoNode

GeoNode can be switched to asynchronous signals processing by specifying ASYNC_SIGNALS_BROKER_URL set-
ting in settings. See GeoNode settings. This setting is consumed by kombu library. You can set type of transport with
connection details (credentials, host), for example: amqp://localhost/ will connect to AMQP broker (Rab-
bitMQ) running locally, without any authentication.

432 Chapter 3. Table of contents

http://kombu.readthedocs.io/

GeoNode Documentation, Release 2.8

Note: while this is easiest to use asynchronous signals handling, it is not recommended setup due to security issues.

GeoServer (optional)

See GeoServer documentation for Notification module.

RabbitMQ (AMQP broker)

Asynchronous signals infrastructure can be used with different protocols (supported by Kombu library), but AMQP
with RabbitMQ broker is recommended.

Install and run RabbitMQ instance:

sudo apt-get install rabbitmq-server
sudo service rabbitmq-server start

Additional information about RabbitMQ configuration is available in Documentation.

Consumer process

To handle events produced by GeoNode and GeoServer, a receiver, consumer process is needed. GeoNode provides
runmessaging django command. This will start long-running process, which will handle incoming messages. For
production deployments, it should be configured with process managers like supervisord or runit.

Following is sample configuration for supervisord:

[program:geonode-runmessaging]
command=/bin/bash -c "(source /path/to/virtualenv/bin/activate && django-admin.py
→˓runmessaging --autoscale 2,1 --loglevel DEBUG)"
directory = # /path/to/rundir
environment=DJANGO_SETTINGS_MODULE="geonode.local_settings"
user=geonode
numproc=1
stdout_logfile=/path/to/log/output.log
stderr_logfile=/path/to/log/output.log
autostart = true
autorestart = true
startsecs = 10
stopwaitsecs = 600
priority = 998

This file is also available in scripts/misc/runmessaging.supervisord.conf file in GeoNode repository.

To use it, you should have supervisord installed and configured:

sudo apt-get install supervisor
sudo supervisor start
vi /etc/supervisor/conf.d/runmessaging.supervisord.conf # adjust paths and variables.
sudo supervisorctl reload

3.2. Tutorials 433

http://docs.geoserver.org/stable/en/user/community/notification/index.html
https://www.rabbitmq.com/configure.html

GeoNode Documentation, Release 2.8

Notes

Technical details and motivation is described in GNIP.

3.2.1.4.16 GeoNode Social Accounts

Contents

• GeoNode Social Accounts

– Allow GeoNode to Login throguh Social Accounts (Facebook and Linkedin)

* Base concepts and objects

* Installation

* Configuration

* Usage

· LinkedIn Application

· Facebook Application

* Login by using Existing Accounts on GeoNode

Allow GeoNode to Login throguh Social Accounts (Facebook and Linkedin)

Base concepts and objects

In order to harmonize the various authentication flows between local accounts and remote social accounts,
the whole user registration and authentication codebase has been refactored.

Major changes:

• geonode-user-accounts has been retired and is not used anymore. This app was only capable of
managing local accounts;

• django-allauth has been integrated as a dependency of geonode. It provides a solution for managing
both local and remote user accounts. It is now used for dealing with most user registration and auth
flows;

• django-invitations has also been integrated as a dependency of geonode and is used for managing
invitations to new users. This functionality was previously provided by geonode-user-accounts;

• django-allauth has been extended in order to provide the following additional features:

– Automatically registering an e-mail with a user when the e-mail is used to connect to a social
account;

– Automatically extract information from the user’s social account and use that to enhance the
user’s profile fields on geonode. This was implemented in a pluggable way, allowing custom
installs to configure it for other providers;

– Allow approval of new registrations by staff members before allowing new users to login.
This functionality was previously provided by geonode-user-accounts.

434 Chapter 3. Table of contents

https://github.com/GeoNode/geonode/issues/2889
https://github.com/GeoNode/geonode-user-accounts
https://github.com/pennersr/django-allauth
https://github.com/bee-keeper/django-invitations
http://django-allauth.readthedocs.io/en/latest/

GeoNode Documentation, Release 2.8

• There are now extra sections on the user’s profile to manage connected social accounts and e-mail
accounts

• When properly configured, the login and register pages now display the possibility to login with
social accounts

Installation

• Install the new allauth plugin and remove any of the old dependencies

3.2. Tutorials 435

GeoNode Documentation, Release 2.8

pip install -r requirements.txt --upgrade
pip install -e . --upgrade --no-cache
pip uninstall geonode-user-accounts -y
pip uninstall django-user-accounts -y

• ensure sure the DJango model is updated and the templates updated to the static folder

DJANGO_SETTINGS_MODULE=geonode.local_settings python -W ignore manage.py
→˓makemigrations
DJANGO_SETTINGS_MODULE=geonode.local_settings python -W ignore manage.py
→˓migrate
DJANGO_SETTINGS_MODULE=geonode.local_settings python -W ignore manage.py
→˓collectstatic --noinput

• ensure that Social Providers are enabled in your settings:

prevent signing up by default
ACCOUNT_OPEN_SIGNUP = True
ACCOUNT_EMAIL_REQUIRED = True
ACCOUNT_EMAIL_VERIFICATION = 'optional'
ACCOUNT_EMAIL_CONFIRMATION_EMAIL = True
ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = True
ACCOUNT_CONFIRM_EMAIL_ON_GET = True
ACCOUNT_APPROVAL_REQUIRED = True

SOCIALACCOUNT_ADAPTER = 'geonode.people.adapters.SocialAccountAdapter'

SOCIALACCOUNT_AUTO_SIGNUP = False

INSTALLED_APPS += (
'allauth.socialaccount.providers.linkedin_oauth2',
'allauth.socialaccount.providers.facebook',

)

SOCIALACCOUNT_PROVIDERS = {
'linkedin_oauth2': {

'SCOPE': [
'r_emailaddress',
'r_basicprofile',

],
'PROFILE_FIELDS': [

'emailAddress',
'firstName',
'headline',
'id',
'industry',
'lastName',
'pictureUrl',
'positions',
'publicProfileUrl',
'location',
'specialties',
'summary',

]
},
'facebook': {

'METHOD': 'oauth2',

(continues on next page)

436 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

'SCOPE': [
'email',
'public_profile',

],
'FIELDS': [

'id',
'email',
'name',
'first_name',
'last_name',
'verified',
'locale',
'timezone',
'link',
'gender',

]
},

}

Comment out this in case you wont to diable Social login
SOCIALACCOUNT_PROFILE_EXTRACTORS = {

"facebook": "geonode.people.profileextractors.FacebookExtractor",
"linkedin_oauth2": "geonode.people.profileextractors.

→˓LinkedInExtractor",
}

Configuration

1. Go to GeoNode/Django Admin Dashboard and add the Social Apps you want to configure:

admin/socialaccount/socialapp/

• Linkedin

3.2. Tutorials 437

GeoNode Documentation, Release 2.8

• Facebook

438 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Warning: Make sure to add the sites you want to enable.

Usage

You need first to create and configure OAuth2 Applications on your Social Providers.

This will require a persoanl or business account, which can access to the developers sections of
LinkedIn and Facebook and create and configure new Applications.

That account won’t be visibile to the GeoNode users. This is needed only to generate OAuth2 Client
ID and Client Secret Authorization Keys.

In the following sections we will see in details how to configure them for both LinkedIn and Facebook.

LinkedIn Application

(ref.: http://django-allauth.readthedocs.io/en/latest/providers.html)

1. Go to https://www.linkedin.com/developer/apps and select Create Application

2. Create a new Company

3.2. Tutorials 439

http://django-allauth.readthedocs.io/en/latest/providers.html
https://www.linkedin.com/developer/apps

GeoNode Documentation, Release 2.8

3. Fill the informations

Note: The logo must have precise square dimensions

4. Select the following Default Application Permissions

Warning: Be sure to select the r_basicprofile and r_emailaddress application permissions.

440 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

5. Add OAuth 2.0 Authorized Redirect URLs:

http://geonode.geo-solutions.it/account/linkedin_oauth2/login/callback/
http://geonode.geo-solutions.it/account/linkedin/login/callback/

6. Save

3.2. Tutorials 441

GeoNode Documentation, Release 2.8

7. Take note of the Authentication Keys

8. Go to GeoNode/Django admin, Social Applications and select the LinkedIn one

(/admin/socialaccount/socialapp/)

442 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

9. Cut and Paste the Client ID and Client Secret on the related fields

10. Save

3.2. Tutorials 443

GeoNode Documentation, Release 2.8

Facebook Application

(ref.: http://django-allauth.readthedocs.io/en/latest/providers.html) (ref.: https://www.webforefront.com/django/
setupdjangosocialauthentication.html)

1. Go to https://developers.facebook.com/apps and Add a New Application

2. Create the App ID and go to the Dashboard

444 Chapter 3. Table of contents

http://django-allauth.readthedocs.io/en/latest/providers.html
https://www.webforefront.com/django/setupdjangosocialauthentication.html
https://www.webforefront.com/django/setupdjangosocialauthentication.html
https://developers.facebook.com/apps

GeoNode Documentation, Release 2.8

3. Take note of the Authentication Keys

4. Go to GeoNode/Django admin, Social Applications and select the LinkedIn one

(/admin/socialaccount/socialapp/)

3.2. Tutorials 445

GeoNode Documentation, Release 2.8

5. Cut and Paste the App ID and Secret Key on the related fields

ClientID <--> App Id
Client Secret <--> Secret Key

6. Save

7. Go back to the Facebook Application Dashboard and select Settings

8. Add your App Domain

446 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

9. Click on Add Platform

10. Select Web Site

3.2. Tutorials 447

GeoNode Documentation, Release 2.8

11. Add the URL

12. And Save

448 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

13. Go to Add Product

14. Select Facebook Login

3.2. Tutorials 449

GeoNode Documentation, Release 2.8

15. Select Web

16. Go to Settings

450 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

17. Make sure Allow client OAuth and Access via OAuth Web are enabled

18. Add the valid redirect URIs:

http://geonode.geo-solutions.it/account/facebook/login/callback/
http://geondoe.geo-solutions.it/account/login/

19. Save

3.2. Tutorials 451

GeoNode Documentation, Release 2.8

Login by using Existing Accounts on GeoNode

If you want to enable an already existing user account to login through social apps, you need to associate
it to social accounts.

Usually this could be done only by the current user, since this operation requires authentication on its
social accounts.

In order to do that you need to go to the User Profile Settings

Click on “Connected social accounts”

452 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

And actually connect them

GeoNode and GeoServer Advanced Security GeoNode interacts with GeoServer through an advanced security mech-
anism based on OAuth2 Protocol and GeoFence. This section is a walk through of the configuration and setup
of GeoNode and GeoServer Advanced Security.

Usage of the GeoNode’s Django Administration Panel GeoNode has an administration panel based on the Django
admin which can be used to do some database operations. Although most of the operations can and should be
done through the normal GeoNode interface, the admin panel provides a quick overview and management tool
over the database.

Management Commands for GeoNode GeoNode comes with administrative commands to help with day to day tasks.
This section shows the list of the ones that come from the GeoNode application.

3.2. Tutorials 453

GeoNode Documentation, Release 2.8

Configuring Alternate CSW Backends pycsw is the default CSW server implementation provided with GeoNode.
This section will explain how to configure GeoNode to operate against alternate CSW server implementations.

LDAP configuration This module will allow you to add LDAP authentication to your GeoNode instance.

Customize the look and feel You might want to change the look of GeoNode, editing the colors and the logo of the
website and adjust the templates for your needs. To do so, you first have to set up your own geonode project
from a template. If you’ve successfully done this, you can go further and start theming your geonode project.

Debugging GeoNode Installations There are several mechanisms to debug GeoNode installations, the most common
ones are discussed in this section.

Changing the Default Language GeoNode’s default language is English, but GeoNode users can change the interface
language with the pulldown menu at the top-right of most GeoNode pages. Once a user selects a language
GeoNode remembers that language for subsequent pages.

More on Security and Permissions This tutorial will guide you through the steps that can be done in order to restrict
the access on your data uploaded to geonode.

First of all it will be shown how a user can be created and what permissions he can have. Secondly we will take
a closer look on to layers, maps and documents and the different opportunities you have in order to ban certain
users from viewing or editing your data.

Loading Data into a GeoNode This module will walk you through the various options available to load data into
your GeoNode from GeoServer, on the command-line or programmatically. You can choose from among these
techniques depending on what kind of data you have and how you have your geonode setup.

Implementing S3 Bucket for Static and Media Files This section will show you how to configure your GeoNode in-
stance to utilize an Amazon S3 Bucket for your site’s static and media files.

Backup & Restore GeoNode - Data Migration How to perform a full backup / restore of GeoNode and GeoServer
catalogs and how to migrate data. Customization backup / restore fixtures and data manglers.

GeoNode Monitoring How to set up and use internal monitoring application.

Use datastore shards in GeoNode How to use the PostGIS datastore shards contrib application in order to have
GeoServer stores containing a fewer number of layers. Useful for organizations with hundreds of layers.

Asynchronous signals handling How to set up asynchronous signals handling.

GeoNode Social Accounts How to set up and login trhgough LinkedIn and Facebook Social Accounts.

3.2.1.5 Developers Workshop

Welcome to the GeoNode Training Developers Workshop documentation v2.8.

This workshop will teach how to develop with and for the GeoNode software application. This module will introduce
you to the components that GeoNode is built with, the standards that it supports and the services it provides based on
those standards, and an overview its architecture.

Prerequisites GeoNode is a web based GIS tool, and as such, in order to do development on GeoNode itself or to
integrate it into your own application, you should be familiar with basic web development concepts as well as
with general GIS concepts.

3.2.1.5.1 Introduction to GeoNode development

This module will introduce you to the components that GeoNode is built with, the standards that it supports and the
services it provides based on those standards, and an overview its architecture.

454 Chapter 3. Table of contents

http://pycsw.org/
http://geonode.org

GeoNode Documentation, Release 2.8

GeoNode is a web based GIS tool, and as such, in order to do development on GeoNode itself or to integrate it into your
own application, you should be familiar with basic web development concepts as well as with general GIS concepts.

A set of reference links on these topics is included at the end of this module.

Standards

GeoNode is based on a set of Open Geospatial Consortium (OGC) standards. These standards enable GeoNode
installations to be interoperable with a wide variety of tools that support these OGC standards and enable federation
with other OGC compliant services and infrastructure. Reference links about these standards are also included at the
end of this module.

GeoNode is also based on Web Standards . . .

Open Geospatial Consortium (OGC) Standards

Web Map Service (WMS)

The Web Map Service (WMS) specification defines an interface for requesting rendered map images
across the web. It is used within GeoNode to display maps in the pages of the site and in the GeoExplorer
application to display rendered layers based on default or custom styles.

Web Feature Service (WFS)

The Web Feature Service (WFS) specification defines an interface for reading and writing geographic
features across the web. It is used within GeoNode to enable downloading of vector layers in various
formats and within GeoExplorer to enable editing of Vector Layers that are stored in a GeoNode.

Web Coverage Service (WCS)

The Web Coverage Service (WCS) specification defines an interface for reading and writing geospatial
raster data as “coverages” across the web. It is used within GeoNode to enable downloading of raster
layers in various formats.

Catalogue Service for Web (CSW)

The Catalogue Service for Web (CSW) specification defines an interface for exposing a catalogue of
geospatial metadata across the web. It is used within GeoNode to enable any application to search GeoN-
ode’s catalogue or to provide federated search that includes a set of GeoNode layers within another appli-
cation.

Tile Mapping Service (TMS/WMTS)

The Tile Mapping Service (TMS) specification defines and interface for retrieving rendered map tiles
over the web. It is used within geonode to enable serving of a cache of rendered layers to be included
in GeoNode’s web pages or within the GeoExplorer mapping application. Its purpose is to improve
performance on the client vs asking the WMS for rendered images directly.

3.2. Tutorials 455

GeoNode Documentation, Release 2.8

Web Standards

HTML

HyperText Markup Language, commonly referred to as HTML, is the standard markup language used
to create web pages.1 Web browsers can read HTML files and render them into visible or audible web
pages. HTML describes the structure of a website semantically along with cues for presentation, making
it a markup language, rather than a programming language.

HTML elements form the building blocks of all websites. HTML allows images and objects to be em-
bedded and can be used to create interactive forms. It provides a means to create structured documents by
denoting structural semantics for text such as headings, paragraphs, lists, links, quotes and other items.

The language is written in the form of HTML elements consisting of tags enclosed in angle brackets (like
< >). Browsers do not display the HTML tags and scripts, but use them to interpret the content of the
page.

HTML can embed scripts written in languages such as JavaScript which affect the behavior of HTML
web pages. Web browsers can also refer to Cascading Style Sheets (CSS) to define the look and layout of
text and other material. The World Wide Web Consortium (W3C), maintainer of both the HTML and the
CSS standards, has encouraged the use of CSS over explicit presentational HTML since 1997.

CSS

Cascading Style Sheets (CSS) is a style sheet language used for describing the presentation of a doc-
ument written in a markup language.2 Although most often used to set the visual style of web pages
and user interfaces written in HTML and XHTML, the language can be applied to any XML document,
including plain XML, SVG and XUL, and is applicable to rendering in speech, or on other media. Along
with HTML and JavaScript, CSS is a cornerstone technology used by most websites to create visually en-
gaging webpages, user interfaces for web applications, and user interfaces for many mobile applications.3

CSS is designed primarily to enable the separation of document content from document presentation, in-
cluding aspects such as the layout, colors, and fonts.4 This separation can improve content accessibility,
provide more flexibility and control in the specification of presentation characteristics, enable multiple
HTML pages to share formatting by specifying the relevant CSS in a separate .css file, and reduce com-
plexity and repetition in the structural content, such as semantically insignificant tables that were widely
used to format pages before consistent CSS rendering was available in all major browsers. CSS makes
it possible to separate presentation instructions from the HTML content in a separate file or style section
of the HTML file. For each matching HTML element, it provides a list of formatting instructions. For
example, a CSS rule might specify that “all heading 1 elements should be bold”, leaving pure semantic
HTML markup that asserts “this text is a level 1 heading” without formatting code such as a <bold> tag
indicating how such text should be displayed.

This separation of formatting and content makes it possible to present the same markup page in different
styles for different rendering methods, such as on-screen, in print, by voice (when read out by a speech-
based browser or screen reader) and on Braille-based, tactile devices. It can also be used to display the
web page differently depending on the screen size or device on which it is being viewed. Although

1 Hypertext Markup Language | Definition of hypertext markup language by Merriam-Webster
2 “CSS developer guide”. Mozilla Developer Network. Retrieved 2015-09-24
3 “Web-based Mobile Apps of the Future Using HTML 5, CSS and JavaScript”. HTMLGoodies. Retrieved October 2014.
4 “What is CSS?”. World Wide Web Consortium. Retrieved December 2010.

456 Chapter 3. Table of contents

http://www.merriam-webster.com/dictionary/hypertext%20markup%20language
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS
http://www.htmlgoodies.com/beyond/article.php/3893911/Web-based-Mobile-Apps-of-the-Future-Using-HTML-5-CSS-and-JavaScript.htm
http://www.w3.org/standards/webdesign/htmlcss#whatcss

GeoNode Documentation, Release 2.8

REST

In computing, Representational State Transfer (REST) is the software architectural style of the World
Wide Web.567 REST gives a coordinated set of constraints to the design of components in a distributed
hypermedia system that can lead to a higher performing and more maintainable architecture.

To the extent that systems conform to the constraints of REST they can be called RESTful. RESTful
systems typically, but not always, communicate over the Hypertext Transfer Protocol with the same HTTP
verbs (GET, POST, PUT, DELETE, etc.) which web browsers use to retrieve web pages and to send data
to remote servers.8 REST interfaces usually involve collections of resources with identifiers, for example
/people/tom, which can be operated upon using standard verbs, such as DELETE /people/tom.

Exercises

Components and Services

Note: Hint, if bash-completion is installed, try <TAB><TAB> to get completions.

1. Start/stop services

$ sudo service apache2
$ sudo service apache2 reload
$ sudo service tomcat7
$ sudo service postgresql

2. Basic psql interactions

$ sudo su - postgres
$ psql
=> help # get help
=> \? # psql specific commands
=> \l # list databases
=> \c geonode # switch database
=> \ds # list tables
=> \dS layers_layer # describe table

OGC Standards

WMS

1. Use the layer preview functionality in GeoServer to bring up a web map.

5 Fielding, R. T.; Taylor, R. N. (2000). “Principled design of the modern Web architecture”. pp. 407–416. doi:10.1145/337180.337228.
6 Richardson, Leonard; Sam Ruby (2007), RESTful web service, O’Reilly Media, ISBN 978-0-596-52926-0, retrieved 18 January 2011, The

main topic of this book is the web service architectures which can be considered RESTful: those which get a good score when judged on the criteria
set forth in Roy Fielding’s dissertation.”

7 Richardson, Leonard; Mike Amundsen (2013), RESTful web APIs, O’Reilly Media, ISBN 978-1-449-35806-8, retrieved 15 September 2015,
The Fielding disertation explains the decisions behind the design of the Web.”

8 Fielding, Roy Thomas (2000). “Chapter 5: Representational State Transfer (REST)”. Architectural Styles and the Design of Network-based
Software Architectures (Ph.D.). University of California, Irvine. This chapter introduced the Representational State Transfer (REST) architectural
style for distributed hypermedia systems. REST provides a set of architectural constraints that, when applied as a whole, emphasizes scalability
of component interactions, generality of interfaces, independent deployment of components, and intermediary components to reduce interaction
latency, enforce security, and encapsulate legacy systems.”

3.2. Tutorials 457

http://dl.acm.org/citation.cfm?doid=337180.337228
http://books.google.com/books?id=XUaErakHsoAC
https://en.wikipedia.org/wiki/Special:BookSources/978-0-596-52926-0
http://www.amazon.com/RESTful-Web-APIs-Leonard-Richardson/dp/1449358063/ref=sr_1_1?ie=UTF8&qid=1442372039&sr=8-1&keywords=restful+web+apis
https://en.wikipedia.org/wiki/Special:BookSources/978-1-449-35806-8
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

GeoNode Documentation, Release 2.8

2. Copy the URL for the image in the map.

3. Alter URL parameters for the request.

4. Use curl to get the capabilities document

$ curl 'http://localhost/geoserver/wms?request=getcapabilities'

More: http://docs.geoserver.org/stable/en/user/services/wms/index.html

WFS

1. Describe a feature type using curl (replace ws:name with your layer)

$ curl 'http://localhost/geoserver/wfs?request=describefeaturetype&
→˓name=ws:name

More: http://docs.geoserver.org/stable/en/user/services/wfs/reference.html

Development References

Basic Web based GIS Concepts and Background

• OGC Services

– http://www.opengeospatial.org/

– https://en.wikipedia.org/wiki/Open_Geospatial_Consortium

• Web Application Architecture

– https://en.wikipedia.org/wiki/Web_application

– http://www.w3.org/2001/tag/2010/05/WebApps.html

– http://www.amazon.com/Web-Application-Architecture-Principles-Protocols/dp/047051860X

• AJAX and REST

– https://en.wikipedia.org/wiki/Ajax_(programming)

– https://en.wikipedia.org/wiki/Representational_state_transfer

• OpenGeo Suite

– http://workshops.boundlessgeo.com/suiteintro/

– http://suite.opengeo.org/opengeo-docs/

• GeoServer Administration

– http://suite.opengeo.org/opengeo-docs/geoserver/

– http://suite.opengeo.org/docs/sysadmin/index.html#sysadmin

• PostgreSQL and PostGIS Administration - http://workshops.boundlessgeo.com/postgis-intro/ - http://
workshops.boundlessgeo.com/postgis-spatialdbtips/

458 Chapter 3. Table of contents

http://docs.geoserver.org/stable/en/user/services/wms/index.html
http://docs.geoserver.org/stable/en/user/services/wfs/reference.html
http://www.opengeospatial.org/
https://en.wikipedia.org/wiki/Open_Geospatial_Consortium
https://en.wikipedia.org/wiki/Web_application
http://www.w3.org/2001/tag/2010/05/WebApps.html
http://www.amazon.com/Web-Application-Architecture-Principles-Protocols/dp/047051860X
https://en.wikipedia.org/wiki/Ajax_(programming
https://en.wikipedia.org/wiki/Representational_state_transfer
http://workshops.boundlessgeo.com/suiteintro/
http://suite.opengeo.org/opengeo-docs/
http://suite.opengeo.org/opengeo-docs/geoserver/
http://suite.opengeo.org/docs/sysadmin/index.html#sysadmin
http://workshops.boundlessgeo.com/postgis-intro/
http://workshops.boundlessgeo.com/postgis-spatialdbtips/
http://workshops.boundlessgeo.com/postgis-spatialdbtips/

GeoNode Documentation, Release 2.8

Core development tools and libraries

• Python

– https://docs.python.org/2/tutorial/

– http://www.learnpython.org/

– https://learnpythonthehardway.org/book/

– http://www.guru99.com/python-tutorials.html

• Django

– https://docs.djangoproject.com/en/dev/intro/tutorial01/

– https://code.djangoproject.com/wiki/Tutorials

• Javascript

– http://www.crockford.com/javascript/inheritance.html

– http://geoext.org/v1/tutorials/quickstart.html

• jQuery

– http://www.w3schools.com/jquery/default.asp

– http://learn.jquery.com/using-jquery-core/

– http://www.jquery-tutorial.net/

• Bootstrap

– http://getbootstrap.com/

– http://www.w3resource.com/twitter-bootstrap/tutorial.php

• GeoTools/GeoScript/GeoServer

– http://docs.geotools.org/stable/tutorials/feature/csv2shp.html

– http://geoscript.org/tutorials/index.html

– http://docs.geotools.org/stable/tutorials/

– https://github.com/boundlessgeo/gsconfig/blob/master/README.rst

• geopython

– http://pycsw.org/docs/

– http://geopython.github.io/OWSLib/

– https://github.com/toblerity/shapely

– https://github.com/sgillies/Fiona

– https://pypi.python.org/pypi/pyproj

• GDAL/OGR

– http://www.gdal.org/gdal_utilities.html

– http://www.gdal.org/ogr_utilities.html

3.2. Tutorials 459

https://docs.python.org/2/tutorial/
http://www.learnpython.org/
https://learnpythonthehardway.org/book/
http://www.guru99.com/python-tutorials.html
https://docs.djangoproject.com/en/dev/intro/tutorial01/
https://code.djangoproject.com/wiki/Tutorials
http://www.crockford.com/javascript/inheritance.html
http://geoext.org/v1/tutorials/quickstart.html
http://www.w3schools.com/jquery/default.asp
http://learn.jquery.com/using-jquery-core/
http://www.jquery-tutorial.net/
http://getbootstrap.com/
http://www.w3resource.com/twitter-bootstrap/tutorial.php
http://docs.geotools.org/stable/tutorials/feature/csv2shp.html
http://geoscript.org/tutorials/index.html
http://docs.geotools.org/stable/tutorials/
https://github.com/boundlessgeo/gsconfig/blob/master/README.rst
http://pycsw.org/docs/
http://geopython.github.io/OWSLib/
https://github.com/toblerity/shapely
https://github.com/sgillies/Fiona
https://pypi.python.org/pypi/pyproj
http://www.gdal.org/gdal_utilities.html
http://www.gdal.org/ogr_utilities.html

GeoNode Documentation, Release 2.8

3.2.1.5.2 Django Overview

This section introduces some basic concepts of Django, the Python based web framework on top of which GeoNode
has been developed.

The main objective of Django is to facilitate the creation of complex sites oriented databases. Django emphasizes
reusability and “pluggability” of components, rapid development, and the principle of not repeating yourself. Python
is used everywhere, even for settings, files, and data models.

Django also provides an administrative interface to create, read, update and delete models that is dynamically generated
by introspection and configured through the Administrative Templates.

Warning: Some parts of this section have been taken from the DJango project and training documentation.

Getting Started With Django

Object-relational mapper

Data models can be defined entirely in Python. Django makes available a rich, dynamic database-access API for free,
but it is still possible to write SQL if needed.

Hint: The following documentation is based on official documentation of the project Django.

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

1 class Band(models.Model):
2 """A model of a rock band."""
3 name = models.CharField(max_length=200)
4 can_rock = models.BooleanField(default=True)
5

6

7 class Member(models.Model):
8 """A model of a rock band member."""
9 name = models.CharField("Member's name", max_length=200)

10 instrument = models.CharField(choices=(
11 ('g', "Guitar"),
12 ('b', "Bass"),
13 ('d', "Drums"),
14),
15 max_length=1
16)
17 band = models.ForeignKey("Band")

Models

A model is a Python class containing the essential fields and behaviors of the data stored on the DB. Generally, each
model maps to a single database table.

460 Chapter 3. Table of contents

https://www.djangoproject.com
https://docs.djangoproject.com/en/1.8

GeoNode Documentation, Release 2.8

• Each model is a Python class that subclasses django.db.models.Model.

• Each attribute of the model represents a database field.

• A model is an automatically-generated database-access API; see Making queries.

Quick example

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

This example model defines a Person, which has a first_name and last_name:

1 from django.db import models
2

3 class Person(models.Model):
4 first_name = models.CharField(max_length=30)
5 last_name = models.CharField(max_length=30)

first_name and last_name are fields of the model. Each field is specified as a class attribute, and each attribute maps
to a database column.

The above Person model would create a database table like this:

1 CREATE TABLE myapp_person (
2 "id" serial NOT NULL PRIMARY KEY,
3 "first_name" varchar(30) NOT NULL,
4 "last_name" varchar(30) NOT NULL
5);

Some technical notes:

• The name of the table, myapp_person, is automatically derived from some model metadata but can be overrid-
den.

• An id field is added automatically, but this behavior can be overridden.

• The CREATE TABLE SQL in this example is formatted using PostgreSQL syntax, but it’s worth noting Django
uses SQL tailored to the database backend specified in the settings file.

Using models

Once models have been defined, Django must be instructed on how to use those models. This is possible by editing
the Django settings file and changing the INSTALLED_APPS setting to add the name of the module that contains the
model class.

For example, if the models for the application is defined in the module myapp.models, INSTALLED_APPS should
read, in part:

1 INSTALLED_APPS = (
2 #...
3 'myapp',
4 #...
5)

3.2. Tutorials 461

GeoNode Documentation, Release 2.8

Warning: When you add new apps to INSTALLED_APPS, be sure to run manage.py migrate, optionally
making migrations for them first with manage.py makemigrations.

Note: GeoNode uses the specific command manage.py migrate to perform the models update and migration.

Fields

The list of DB fields is reflected (and specified) by the model class attributes.

Warning: Be careful not to choose field names that conflict with the models API like clean, save, or delete.

Example:

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

1 from django.db import models
2

3 class Musician(models.Model):
4 first_name = models.CharField(max_length=50)
5 last_name = models.CharField(max_length=50)
6 instrument = models.CharField(max_length=100)
7

8 class Album(models.Model):
9 artist = models.ForeignKey(Musician)

10 name = models.CharField(max_length=100)
11 release_date = models.DateField()
12 num_stars = models.IntegerField()

More: Field Types

Model methods

Custom methods on a model can be used to add custom “row-level” functionality to an object. This is a valuable
technique for keeping business logic in one place.

For example, the following model has a few custom methods:

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

1 from django.db import models
2

3 class Person(models.Model):
4 first_name = models.CharField(max_length=50)
5 last_name = models.CharField(max_length=50)

(continues on next page)

462 Chapter 3. Table of contents

https://docs.djangoproject.com/en/1.8/topics/db/models/#field-types

GeoNode Documentation, Release 2.8

(continued from previous page)

6 birth_date = models.DateField()
7

8 def baby_boomer_status(self):
9 "Returns the person's baby-boomer status."

10 import datetime
11 if self.birth_date < datetime.date(1945, 8, 1):
12 return "Pre-boomer"
13 elif self.birth_date < datetime.date(1965, 1, 1):
14 return "Baby boomer"
15 else:
16 return "Post-boomer"
17

18 def _get_full_name(self):
19 "Returns the person's full name."
20 return '%s %s' % (self.first_name, self.last_name)
21 full_name = property(_get_full_name)

The last method in this example is a property.

The model instance reference has a complete list of methods automatically given to each model. It is possible to
override most of these; see overriding predefined model methods

More: Models Methods

Making queries

Django automatically gives a database-abstraction API that allows to create, retrieve, update and delete objects.

As an example:

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

1 from django.db import models
2

3 class Blog(models.Model):
4 name = models.CharField(max_length=100)
5 tagline = models.TextField()
6

7 def __str__(self): # __unicode__ on Python 2
8 return self.name
9

10 class Author(models.Model):
11 name = models.CharField(max_length=50)
12 email = models.EmailField()
13

14 def __str__(self): # __unicode__ on Python 2
15 return self.name
16

17 class Entry(models.Model):
18 blog = models.ForeignKey(Blog)
19 headline = models.CharField(max_length=255)
20 body_text = models.TextField()
21 pub_date = models.DateField()

(continues on next page)

3.2. Tutorials 463

https://docs.djangoproject.com/en/1.8/glossary/#term-property
https://docs.djangoproject.com/en/1.8/ref/models/instances/
https://docs.djangoproject.com/en/1.8/ref/models/instances/#model-instance-methods
https://docs.djangoproject.com/en/1.8/topics/db/models/#overriding-predefined-model-methods
https://docs.djangoproject.com/en/1.8/topics/db/models/#model-methods

GeoNode Documentation, Release 2.8

(continued from previous page)

22 mod_date = models.DateField()
23 authors = models.ManyToManyField(Author)
24 n_comments = models.IntegerField()
25 n_pingbacks = models.IntegerField()
26 rating = models.IntegerField()
27

28 def __str__(self): # __unicode__ on Python 2
29 return self.headline

Creating objects

As already said before, a model class represents a database table, and an instance of that class represents a particular
record in the database table.

To create an object, instantiate it using keyword arguments to the model class, then call save() to save it to the database.

Assuming models live in a file mysite/blog/models.py, here’s an example:

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

1 >>> from blog.models import Blog
2 >>> b = Blog(name='Beatles Blog', tagline='All the latest Beatles news.')
3 >>> b.save()

This performs an INSERT SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call
save(). The save() method has no return value.

1 >>> b5.name = 'New name'
2 >>> b5.save()

This performs an UPDATE SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call
save().

Retrieving objects

Retrieving objects from the database can be done by constructing a QuerySet via a Manager on the model class.

A QuerySet represents a collection of objects from the database. It can have zero, one or many filters. Filters narrow
down the query results based on the given parameters. In SQL terms, a QuerySet equates to a SELECT statement,
and a filter is a limiting clause such as WHERE or LIMIT.

Each model has at least one Manager, and it’s called objects by default.

It can be accessed directly via the model class, like so:

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

464 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

1 >>> Blog.objects
2 <django.db.models.manager.Manager object at ...>
3 >>> b = Blog(name='Foo', tagline='Bar')
4 >>> b.objects
5 Traceback:
6 ...
7 AttributeError: "Manager isn't accessible via Blog instances."
8 Note

Managers are accessible only via model classes, rather than from model instances, to enforce a separation between
“table-level” operations and “record-level” operations. The Manager is the main source of QuerySets for a model.
For example, Blog.objects.all() returns a QuerySet that contains all Blog objects in the database.

The simplest way to retrieve objects from a table is to get all of them. To do this, use the all() method on a Manager:

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

1 >>> all_entries = Entry.objects.all()

The all() method returns a QuerySet of all the objects in the database. The QuerySet returned by all() describes all
objects in the database table. To select only a subset of the complete set of objects, it must be refined by adding filter
conditions.

The two most common ways to refine a QuerySet are:

filter(**kwargs)

Returns a new QuerySet containing objects that match the given lookup parameters.

exclude(**kwargs)

Returns a new QuerySet containing objects that do not match the given lookup parameters. The lookup parameters
(**kwargs in the above function definitions) should be in the format described in Field lookups below.

For example, to get a QuerySet of blog entries from the year 2006, use filter() like so:

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

1 Entry.objects.filter(pub_date__year=2006)

With the default manager class, it is the same as:

1 Entry.objects.all().filter(pub_date__year=2006)

The result of refining a QuerySet is itself a QuerySet, so it’s possible to chain refinements together.

For example:

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

3.2. Tutorials 465

GeoNode Documentation, Release 2.8

1 >>> Entry.objects.filter(
2 ... headline__startswith='What'
3 ...).exclude(
4 ... pub_date__gte=datetime.date.today()
5 ...).filter(
6 ... pub_date__gte=datetime(2005, 1, 30)
7 ...)

This takes the initial QuerySet of all entries in the database, adds a filter, then an exclusion, then another filter. The
final result is a QuerySet containing all entries with a headline that starts with “What”, that were published between
January 30, 2005, and the current day.

More: Making queries

URLs and views

A clean elegant URL scheme is an important detail in a high-quality Web application. Django encourages beautiful
URL design and does not put junk in URLs, like .php or .asp.

In Django, a Python module called urls.py is like a table of contents for the application. It contains a simple mapping
between URL patterns and views.

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

1 from django.conf.urls import url
2 from . import views
3

4 urlpatterns = [
5 url(r'^bands/$', views.band_listing, name='band-list'),
6 url(r'^bands/(\d+)/$', views.band_detail, name='band-detail'),
7 url(r'^bands/search/$', views.band_search, name='band-search'),
8]

1 from django.shortcuts import render
2

3 def band_listing(request):
4 """A view of all bands."""
5 bands = models.Band.objects.all()
6 return render(request, 'bands/band_listing.html', {'bands': bands})

More: URL dispatcher

Templates

Django’s template language allows developers to put logic into the HTML:

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

466 Chapter 3. Table of contents

https://docs.djangoproject.com/en/1.8/topics/db/queries/#making-queries
https://docs.djangoproject.com/en/1.8/topics/http/urls/

GeoNode Documentation, Release 2.8

1 <html>
2 <head>
3 <title>Band Listing</title>
4 </head>
5 <body>
6 <h1>All Bands</h1>
7
8 {% for band in bands %}
9

10 <h2>{{ band.name }}</h2>
11 {% if band.can_rock %}<p>This band can rock!</p>{% endif %}
12
13 {% endfor %}
14
15 </body>
16 </html>

More: Templates

Forms

Django provides a library that handles rendering HTML forms, validation of data submitted by users, and converting
the data to native Python types. Django also provides a way to generate forms from your existing models and to use
these forms to create and update data.

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

1 from django import forms
2

3 class BandContactForm(forms.Form):
4 subject = forms.CharField(max_length=100)
5 message = forms.CharField()
6 sender = forms.EmailField()
7 cc_myself = forms.BooleanField(required=False)

GET and POST

GET and POST are the only HTTP methods to use when dealing with forms.

Django’s login form is returned using the POST method, in which the browser bundles up the form data, encodes it
for transmission, sends it to the server, and then receives back its response.

GET, by contrast, bundles the submitted data into a string, and uses this to compose a URL. The URL contains the
address where the data must be sent, as well as the data keys and values. You can see this in action if you do a search
in the Django documentation, which will produce a URL of the form https://docs.djangoproject.com/
search/?q=forms&release=1.

GET and POST are typically used for different purposes.

Any request that could be used to change the state of the system - for example, a request that makes changes in the
database - should use POST. GET should be used only for requests that do not affect the state of the system.

3.2. Tutorials 467

https://docs.djangoproject.com/en/1.8/topics/templates/

GeoNode Documentation, Release 2.8

GET would also be unsuitable for a password form, because the password would appear in the URL, and thus, also in
browser history and server logs, all in plain text. Neither would it be suitable for large quantities of data, or for binary
data, such as an image. A Web application that uses GET requests for admin forms is a security risk: it can be easy
for an attacker to mimic a form’s request to gain access to sensitive parts of the system. POST, coupled with other
protections like Django’s CSRF protection offers more control over access.

On the other hand, GET is suitable for things like a web search form, because the URLs that represent a GET request
can easily be bookmarked, shared, or resubmitted.

More: Working With Forms

Authentication

Django supports a full-featured and secure authentication system. It handles user accounts, groups, permissions and
cookie-based user sessions.

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

1 from django.contrib.auth.decorators import login_required
2 from django.shortcuts import render
3

4 @login_required
5 def my_protected_view(request):
6 """A view that can only be accessed by logged-in users"""
7 return render(request, 'protected.html', {'current_user': request.user})

More: User authentication in Django

Admin

One of the most powerful parts of Django is its automatic admin interface. It reads metadata from models in order to
provide a powerful and ready-to-use GUI for CRUD operations against the model.

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

1 from django.contrib import admin
2 from bands.models import Band, Member
3

4 class MemberAdmin(admin.ModelAdmin):
5 """Customize the look of the auto-generated admin for the Member model"""
6 list_display = ('name', 'instrument')
7 list_filter = ('band',)
8

9 admin.site.register(Band) # Use the default options
10 admin.site.register(Member, MemberAdmin) # Use the customized options

Note: The advanced workshop for Developers will provide more details on GeoNode specific models and admin
interface

468 Chapter 3. Table of contents

https://docs.djangoproject.com/en/1.8/topics/forms/#working-with-forms
https://docs.djangoproject.com/en/1.8/topics/auth/

GeoNode Documentation, Release 2.8

More: The Django admin site

Internationalization

Django offers full support for translating text into different languages, plus locale-specific formatting of dates, times,
numbers and time zones. It lets developers and template authors specify which parts of their apps should be translated
or formatted for local languages and cultures, and it uses these hooks to localize Web applications for particular users
according to their preferences.

Note: The following examples are taken from the official Django documentation for the sole purpose of introducing
the general concepts.

1 from django.shortcuts import render
2 from django.utils.translation import ugettext
3

4 def homepage(request):
5 """
6 Shows the homepage with a welcome message that is translated in the
7 user's language.
8 """
9 message = ugettext('Welcome to our site!')

10 return render(request, 'homepage.html', {'message': message})

1 {% load i18n %}
2 <html>
3 <head>
4 <title>{% trans 'Homepage - Hall of Fame' %}</title>
5 </head>
6 <body>
7 {# Translated in the view: #}
8 <h1>{{ message }}</h1>
9 <p>

10 {% blocktrans count member_count=bands.count %}
11 Here is the only band in the hall of fame:
12 {% plural %}
13 Here are all the {{ member_count }} bands in the hall of fame:
14 {% endblocktrans %}
15 </p>
16
17 {% for band in bands %}
18
19 <h2>{{ band.name }}</h2>
20 {% if band.can_rock %}<p>{% trans 'This band can rock!' %}</p>{% endif %}
21
22 {% endfor %}
23
24 </body>
25 </html>

Note: The advanced workshop for Developers will provide more details on how to create languages and translations
on GeoNode using Transifex

More: Internationalization and localization

3.2. Tutorials 469

https://docs.djangoproject.com/en/1.8/ref/contrib/admin/
https://www.transifex.com/
https://docs.djangoproject.com/en/1.8/topics/i18n/

GeoNode Documentation, Release 2.8

Security

Django provides multiple protections against:

• Clickjacking Clickjacking is a type of attack where a malicious site wraps another site in a frame. This attack
can result in an unsuspecting user being tricked into performing unintended actions on the target site.

The X-Frame-Options middleware contained in a form allow a supporting browser to prevent a site from
being rendered inside a frame

• Cross site scripting (XSS) XSS attacks allow a user to inject client side scripts into the browsers of other
users. This is usually achieved by storing the malicious scripts in the database where it will be retrieved
and displayed to other users, or by getting users to click a link which will cause the attacker’s JavaScript
to be executed by the user’s browser. However, XSS attacks can originate from any untrusted source of
data, such as cookies or Web services, whenever the data is not sufficiently sanitized before including in
a page.

• Cross site request forgery (CSRF) CSRF attacks allow a malicious user to execute actions using the creden-
tials of another user without that user’s knowledge or consent.

CSRF protection works by checking for a nonce in each POST request. This ensures that a malicious user
cannot simply “replay” a form POST to your Web site and have another logged in user unwittingly submit
that form. The malicious user would have to know the nonce, which is user specific (using a cookie).

• SQL injection SQL injection is a type of attack where a malicious user is able to execute arbitrary SQL code
on a database. This can result in records being deleted or data leakage.

• Host header validation Django uses the Host header provided by the client to construct URLs in certain cases.
While these values are sanitized to prevent Cross Site Scripting attacks, a fake Host value can be used for
Cross-Site Request Forgery, cache poisoning attacks, and poisoning links in emails.

Because even seemingly-secure web server configurations are susceptible to fake Host headers,
Django validates Host headers against the ALLOWED_HOSTS setting in the django.http.
HttpRequest.get_host() method.

This validation only applies via get_host(); if your code accesses the Host header directly from re-
quest.META you are bypassing this security protection.

• SSL/HTTPS It is always better for security, though not always practical in all cases, to deploy your site behind
HTTPS. Without this, it is possible for malicious network users to sniff authentication credentials or any
other information transferred between client and server, and in some cases – active network attackers – to
alter data that is sent in either direction.

Django provides some settings to secure your site under SSL/HTTPS.

Warning: While Django provides good security protection out of the box, it is still important to properly deploy
your application and take advantage of the security protection of the Web server, operating system and other
components.

• Make sure that your Python code is outside of the Web server’s root. This will ensure that your Python code
is not accidentally served as plain text (or accidentally executed).

• Take care with any user uploaded files.

• Django does not throttle requests to authenticate users. To protect against brute-force attacks against the
authentication system, you may consider deploying a Django plugin or Web server module to throttle these
requests.

• Keep your SECRET_KEY a secret.

470 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

• It is a good idea to limit the accessibility of your caching system and database using a firewall.

More: Security in Django

3.2.1.5.3 Development Prerequisites and Core Modules

This module will introduce you to the basic tools and skills required to start actively developing GeoNode.

GeoNode’s Development Prerequisites

Basic Shell Tools

ssh and sudo

SSH and sudo are very basic terminal skills which you will need to deploy, maintain and develop with GeoNode. If
you are not already familiar with their usage, you should review the basic descriptions below and follow the external
links to learn more about how to use them effectively as part of your development workflow.

ssh is the network protocol used to connect to a remote server where you run your GeoNode instance whether on
your own network or on the cloud. You will need to know how to use the ssh command from the terminal on your
Unix machine or how to use a ssh client like putty or WinSCP on windows. You may need to use PKI certificates to
connect to your remove server, and should be familiar with the steps and options necessary to connect this way. More
information about ssh can be found in the links below.

• http://winscp.net/eng/docs/ssh

sudo is the command used to execute a terminal command as the superuser when you are logged in with a normal user.
You will to use sudo in order to start, stop and restart key services on your GeoNode instance. If you are not able to
grant yourself these privileges on the machine you are using for your GeoNode instance, you may need to consult with
your network administrator to arrange for your user to be granted sudo permissions. More information about sudo can
be found in the links below.

• https://en.wikipedia.org/wiki/Sudo

bash

Bash is the most common Unix shell which will usually be the default on servers where you will be deploying your
GeoNode instance. You should be familiar with the most common bash commands in order to be able to deploy,
maintain and modify a geonode instance. More information about Bash and common bash commands can be found in
the links below.

• https://en.wikipedia.org/wiki/Bash_(Unix_shell)

apt

apt is the packaging tool that is used to install GeoNode on ubuntu and other Debian based systems. You will need
to be familiar with adding Personal Package Archives to your list of install sources, and will need to be familiar with
basic apt commands. More information about apt can be found in the links below.

• https://en.wikipedia.org/wiki/Advanced_Packaging_Tool

3.2. Tutorials 471

https://docs.djangoproject.com/en/1.8/topics/security/
http://winscp.net/eng/docs/ssh
https://en.wikipedia.org/wiki/Sudo
https://en.wikipedia.org/wiki/Bash_(Unix_shell
https://en.wikipedia.org/wiki/Advanced_Packaging_Tool

GeoNode Documentation, Release 2.8

Python Development Tools

The GeoNode development process relies on several widely used python development tools in order to make things
easier for developers and other users of the systems that GeoNode developers work on or where GeoNodes are de-
ployed. They are considered best practices for modern python development, and you should become familiar with
these basic tools and be comfortable using them on your own projects and systems.

virtualenv

virtualenv is a tool used to create isolated python development environments such that the versions of project depen-
dencies are sandboxed from the system-wide python packages. This eliminates the commonly encountered problem
of different projects on the same system using different versions of the same library. You should be familiar with how
to create and activate virtual environments for the projects you work on. More information about virtualenv can be
found in the links below.

• https://virtualenv.pypa.io/en/stable/

• https://pypi.python.org/pypi/virtualenv

virtualenvwrapper is a wrapper around the virtualenv package that makes it easier to create and switch between virtual
environments as you do development. Using it will make your life much easier, so its recommended that you install
and configure it and use its commands as part of your virtualenv workflow. More info about virtualenvwrapper can be
found in the links below.

• https://bitbucket.org/dhellmann/virtualenvwrapper

pip

pip is a tool for installing and managing python packages. Specifically it is used to install and upgrade packages found
in the Python Package Index (PyPI). GeoNode uses pip to install itself, and to manage all of the python dependencies
that are needed as part of a GeoNode instance. As you learn to add new modules to your geonode, you will need
to become familiar with the use of pip and about basic python packaging usage. More information about pip can be
found in the links below.

• https://pip.pypa.io/en/latest/

• https://pypi.python.org/pypi/pip

• https://en.wikipedia.org/wiki/Pip_(package_manager)

miscellaneous

ipython is a set of tools to make your python development and debugging experience easier. The primary tool you
want to use is an interactive shell that adds introspection, integrated help and command completion and more. While
not strictly required to do GeoNode development, learning how to use ipython will make your development more
productive and pleasant. More information about ipython can be found in the links below.

• http://ipython.org/

• https://pypi.python.org/pypi/ipython

• https://github.com/ipython/ipython

• https://en.wikipedia.org/wiki/IPython

472 Chapter 3. Table of contents

https://virtualenv.pypa.io/en/stable/
https://pypi.python.org/pypi/virtualenv
https://bitbucket.org/dhellmann/virtualenvwrapper
https://pip.pypa.io/en/latest/
https://pypi.python.org/pypi/pip
https://en.wikipedia.org/wiki/Pip_(package_manager
http://ipython.org/
https://pypi.python.org/pypi/ipython
https://github.com/ipython/ipython
https://en.wikipedia.org/wiki/IPython

GeoNode Documentation, Release 2.8

pdb is a standard python module that is used to interactively debug your python code. It supports setting conditional
breakpoints so you can step through the code line by line and inspect your variables and perform arbitrary execution of
statements. Learning how to effectively use pdb will make the process of debugging your application code significantly
easier. More information about pdb can be found in the links below.

• https://docs.python.org/2/library/pdb.html

Django

GeoNode is built on top of the Django web framework, and as such, you will need to become generally familiar with
Django itself in order to become a productive GeoNode developer. Django has excellent documentation, and you
should familiarize yourself with Django by following the Django workshop and reading through its documentation as
required.

Model Template View

Django is based on the Model Template View paradigm (more commonly called Model View Controller). Models are
used to define objects that you use in your application and Django’s ORM is used to map these models to a database.
Views are used to implement the business logic of your application and provide objects and other context for the
templates. Templates are used to render the context from views into a page for display to the user. You should become
familiar with this common paradigm used in most modern web frameworks, and how it is specifically implemented
and used in Django. The Django tutorial itself is a great place to start. More information about MTV in Django can
be found in the links below.

• https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

• https://blog.codinghorror.com/understanding-model-view-controller/

• https://docs.djangoproject.com/en/1.8/

HTTP Request Response

Django and all other web frameworks are based on the HTTP Request Response cycle. Requests come in to the
server from remote clients which are primarily web browsers, but also can be API clients, and the server returns with
a Response. You should be familiar with these very basic HTTP principles and become familiar with the way that
Django implements them. More information about HTTP, Requests and Responses and Django’s implementation in
the links below.

• https://www.jmarshall.com/easy/http/

• https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

• https://docs.djangoproject.com/en/dev/ref/request-response/

Management Commands

Django projects have access to a set of management commands that are used to manage your project. Django itself
provides a set of these commands, and Django apps (including GeoNode) can provide their own. Management com-
mands are used to do things like synchronize your models with your database, load data from fixtures or back up your
database with fixtures, start the development server, initiate the debugger and many other things. GeoNode provides
management commands for synchronizing with a GeoServer or updating the layers already in your GeoNode. You
should become familiar with the basic management commands that come with Django, and specifically with the com-
mands that are part of GeoNode. The GeoNode specific commands are covered in section. More information about
management commands can be found in the links below.

3.2. Tutorials 473

https://docs.python.org/2/library/pdb.html
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://blog.codinghorror.com/understanding-model-view-controller/
https://docs.djangoproject.com/en/1.8/
https://www.jmarshall.com/easy/http/
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://docs.djangoproject.com/en/dev/ref/request-response/

GeoNode Documentation, Release 2.8

• https://docs.djangoproject.com/en/dev/ref/django-admin/

Django Admin Interface

Django provides a build-in management console that administrators and developers can use to look at the data in
the database that is part of the installed applications. Administrators can use this console to perform many common
administration tasks that are a necessary part of running a GeoNode instance, and as a developer, you will use this in-
terface during your development process to inspect the database and the data stored in your models. More information
about the Django admin interface can be found in the links below.

• https://docs.djangoproject.com/en/dev/ref/contrib/admin/

Template Tags

Django templates make use of a set of tags to inject, file and format content into a rendered HTML page. Django itself
includes a set of built-in template tags and filters that you will use in your own templates, and GeoNode provides a
geonode specific set of tags that are used in the GeoNode templates. You should become familiar with the built-in tag
set and with GeoNode’s specific tags as you work on developing your own templates or extending from GeoNode’s.
More information about Django template tags can be found in the links below.

• https://docs.djangoproject.com/en/dev/ref/templates/builtins/

GeoNode’s Core Modules

GeoNode is made up of a set of core Django pluggable modules (known as apps in Django) that provide the function-
ality of the application. Together they make up the key components of a GeoNode site. While your own use case and
implementation may not require that you work directly on these models, it is important that you become familiar with
their layout, structure and the functionality that they provide. You may need to import these apps into your own apps,
and as such, becoming familiar with them is an important step in becoming a proficient GeoNode developer.

geonode.layers

geonode.layers is the most key GeoNode module. It is used to represent layers of data stored in a GeoNode’s paired
GeoServer. The layer model class inherits fields from the ResourceBase class which provides all of the fields necessary
for the metadata catalogue, and adds fields that map the object to its corresponding layer in GeoServer. When your
users upload a layer via the user interface, the layer is imported to GeoServer and a record is added to GeoNode’s
database to represent that GeoServer layer within GeoNode itself.

The Layer model class provides a set of helper methods that are used to perform operations on a Layer object, and
also to return things such as the list of Download or Metadata links for that layer. Additional classes are used to model
the layers Attributes, Styles, Contacts and Links. The Django signals framework is used to invoke specific functions
to synchronize with GeoServer before and after the layer is saved.

The views in the layers app are used to perform functions such as uploading, replacing, removing or changing the
points of contact for a layer, and views are also used to update layer styles, download layers in bulk or change a layers
permissions.

The forms module in the layer app is used to drive the user interface forms necessary for performing the business logic
that the views provide.

The Layers app also includes a set of templates that are paired with views and used to drive the user interface. A small
set of layer template tags is also used to help drive the layer explore and search pages.

474 Chapter 3. Table of contents

https://docs.djangoproject.com/en/dev/ref/django-admin/
https://docs.djangoproject.com/en/dev/ref/contrib/admin/
https://docs.djangoproject.com/en/dev/ref/templates/builtins/

GeoNode Documentation, Release 2.8

Some helper modules such as geonode.layers.metadata and geonode.layers.ows are used by the layer views to perform
specific functions and help keep the main views module more concise and legible.

Additionally, the GeoNode specific management commands are a part of the geonode.layers app.

You should spend some time to review the layers app through GitHub’s code browsing interface.

https://github.com/GeoNode/geonode/tree/master/geonode/layers

geonode.maps

The geonode.maps app is used to group together GeoNode’s multi layer map functionality. The Map and MapLayer
objects are used to model and implement maps created with the GeoExplorer application. The Map object also extends
from the ResourceBase class which provides the ability to manage a full set of metadata fields for a Map.

The views in the maps app perform many of the same functions as the views in the layers app such as adding, changing,
replacing or removing a map and also provide the endpoints for returning the map configuration from the database that
is used to initialize the GeoExplorer app.

The maps app also includes a set of forms, customization of the Django admin, some utility functions and a set of
templates and template tags.

You can familiarize yourself with the maps app on GitHub.

https://github.com/GeoNode/geonode/tree/master/geonode/maps

geonode.security

The geonode.security app is used to provide object level permissions within the GeoNode Django application. It is a
custom Django authentication backend and is used to assign Generic, User and Group Permissions to Layers, Maps
and other objects in the GeoNode system. Generic permissions are used to enable public anonymous or authenticated
viewing and/or editing of your data layers and maps, and User and Group specific permissions are used to allow
specific users or groups to access and edit your layers.

geonode.search

The geonode.search module provides the search API that is used to drive the GeoNode search pages. It is configured
to index layers, maps, documents and profiles, but is extensible to allow you to use it to index your own model classes.
This module is currently based on the Django ORM and as such has a limited set of search features, but the GeoNode
development team is actively working on making it possible to use this module with more feature-rich search engines.

geonode.catalogue

The geonode.catalogue app provides a key set of metadata catalogue functions within GeoNode itself. GeoNode is
configured to use an integrated version of the pycsw library to perform these functions, but can also be configured to
use any OGC compliant CS-W implementation such as GeoNetwork or Deegree. The metadata app allows users to
import and/or edit metadata for their layers, maps and documents, and it provides an OGC compliant search interface
for use in federating with other systems.

3.2. Tutorials 475

https://github.com/GeoNode/geonode/tree/master/geonode/layers
https://github.com/GeoNode/geonode/tree/master/geonode/maps

GeoNode Documentation, Release 2.8

geonode.geoserver

The geonode.geoserver module is used to interact with GeoServer from within GeoNode’s python code. It re-
lies heavily on the gsconfig library which addresses GeoServer’s REST configuration API. Additionally, the geon-
ode.geoserver.uploader module is used to interact with GeoServer’s Importer API for uploading and configuring lay-
ers.

geonode.people

The geonode.people module is used to model and store information about both GeoNode users and people outside of
the system who are listed as Points of Contact for particular layers. It is the foundational module for GeoNode’s social
features. It provides a set of forms for users to edit and manage their own profiles as well as to view and interact with
the profiles of other users.

geoexplorer

GeoNode’s core GIS client functions are performed by GeoExplorer. The GeoExplorer app is in turn based on GeoExt,
OpenLayers and ExtJS. It provides functionality for constructing maps, styling layers and connecting to remote ser-
vices. GeoExplorer is the reference implementation of the OpenGeo Suite SDK which is based on GXP. GeoNode
treats GeoExplorer as an external module that is used out of the box in GeoNode, but it is possible for you to create
your own Suite SDK app and integrate it with GeoNode.

Static Site

The front end of GeoNode is composed of a set of core templates, specific templates for each module, cascading style
sheets to style those pages and a set of Javascript modules that provide the interactive functionality in the site.

Templates

GeoNode includes a basic set of core templates that use Django’s template inheritance system to provide a modular
system for constructing the web pages in GeoNode’s interface. These core templates drive the overall page layout
and things like the home page. You will start the process of customizing your GeoNode instance by overriding these
templates, so you should familiarize yourself with their structure and how they inherit from each other to drive the
pages.

Additionally, most of the apps described above have their own set of templates that are used to drive the pages for each
module. You may also want to override these templates for your own purposes and as such should familiarize yourself
with a few of the key ones.

CSS

GeoNode’s CSS is based on Twitter’s Bootstrap Library which uses the lessc dynamic stylesheet language. GeoNode
extends from the basic Bootstrap style and you are able to create your own bootstrap based style to customize the
look and feel of your own GeoNode instance. Sites like bootswatch.com also provide ready made styles that you can
simply drop in to your project to change the style.

476 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Javascript

The interactive functionality in GeoNode pages is provided by the jQuery Javascript framework and a set of jQuery
plugins. The core set of GeoNode Javascript modules closely aligns with the apps described above, and there are also
a few pieces of functionality provided as Javascript modules that are used through out all of the apps. You are able to
add your own jQuery code and/or plugins to perform interactive functionality in your own application.

Exercises

Shell and Utilities

1. ssh into your virtual machine or other instance

2. sudo to modify the sshd_config settings to verify disabling of DNS resolution (UseDNS=no)

3. Install a command line helper

$ sudo apt-get install bash-completion

4. Exercise command completion

$ apt-get install <TAB><TAB>

5. Activate/deactivate the virtualenv on your instance

$ source /var/lib/geonode/bin/activate
$ deactivate

6. Set the DJANGO_SETTINGS_MODULE environment variable

$ export DJANGO_SETTINGS_MODULE=geonode.settings

7. Install the httpie utility via pip

$ pip install httpie
$ http http://localhost/geoserver/rest
$ http -a admin http://localhost/geoserver/rest
<type in password - geoserver>

Python

1. Launch ipython and experiment

> x = "some text"
> x.<TAB><TAB>
> x.split.__doc__
> ?

2. Execute a script with ipython and open the REPL

$ echo "twos = [x*2 for x in range(5)]" > test.py
$ ipython -i test.py
> twos

3.2. Tutorials 477

GeoNode Documentation, Release 2.8

3.2.1.5.4 Install GeoNode for Development

In order to install Geonode 2.4 in development mode on Ubuntu 14.04 the following steps are required:

For Windows: (win_devinstall)

For CentOS 7: (Install GeoNode on CentOS 7 (dev mode))

Summary of the installation steps

1. Retrieve latest apt-get list

2. Install build tools and libraries

3. Install dependencies (Python, Postgresql and Java) and supporting tools

4. Add Node.js PPA and other tools required for static development

5. Set up a virtual environment (virtualenv)

6. Clone geonode from GitHub and install it in the virtual environment

7. Run paver to get install GeoServer and start the development servers

8. Compile and Start the server

9. Start Geonode instance

10. To stop the server

11. Next create a Django superuser for your GeoNode

Note: The following steps have to be executed in your terminal. The steps have to be done as a root user, therefore
don´t forget to type sudo in front!

Warning: Don’t forget to stop the GeoNode Production services if enabled

service apache2 stop
service tomcat7 stop

1. If possible log as root user, open a terminal and cd /home/geonode/dev

2. Retrieve latest apt-get list

$ sudo apt-get update

3. Install build tools and libraries

$ sudo apt-get install -y build-essential libxml2-dev libxslt1-dev libpq-dev
→˓zlib1g-dev

4. Install dependencies

Python native dependencies

$ sudo apt-get install -y python-dev python-imaging python-lxml python-pyproj
→˓python-shapely python-nose python-httplib2 python-pip python-software-properties

Install Python Virtual Environment

478 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

$ sudo pip install virtualenvwrapper

PostgreSQL & PostGIS

Note: The following steps must be executed only if you don’t have PostgreSQL and
PostGIS already installed on your system (see Install GeoNode Application)

$ sudo apt-get install -y postgresql-9.3-postgis-2.1 postgresql-9.3-postgis-scripts

Change postgres UNIX password

$ sudo passwd -u postgres # change password expiry infromation

$ sudo passwd postgres # change unix password for postgres

Create GeoNode role and database

.. code-block:: console

$ su postgres
$ createdb geonode_dev
$ createdb geonode_dev-imports
$ psql
postgres=#
postgres=# \password postgres
postgres=# CREATE USER geonode_dev WITH PASSWORD 'geonode_dev';

→˓# should be same as password in setting.py
postgres=# GRANT ALL PRIVILEGES ON DATABASE "geonode_dev" to

→˓geonode_dev;
postgres=# GRANT ALL PRIVILEGES ON DATABASE "geonode_dev-imports

→˓" to geonode_dev;
postgres=# \q

$ psql -d geonode_dev-imports -c 'CREATE EXTENSION postgis;'
$ psql -d geonode_dev-imports -c 'GRANT ALL ON geometry_columns

→˓TO PUBLIC;'
$ psql -d geonode_dev-imports -c 'GRANT ALL ON spatial_ref_sys TO

→˓PUBLIC;'

$ exit

Edit PostgreSQL configuration file

sudo gedit /etc/postgresql/9.3/main/pg_hba.conf

Scroll to the bottom of the file and edit this line

"local" is for Unix domain socket connections only
local all all peer

As follows

"local" is for Unix domain socket connections only
local all all trust

3.2. Tutorials 479

GeoNode Documentation, Release 2.8

Restart PostgreSQL to make the changes effective

sudo service postgresql restart

Java dependencies

Note: The following steps must be executed only if you don’t have a Java JDK or JRE already
installed on your system (see Install GeoNode Application)

$ sudo apt-get install -y openjdk-7-jdk –no-install-recommends

Supporting tools

$ sudo apt-get install -y git gettext libjpeg62 libjpeg62-dev

5. Set up a virtual environment

This is the local environment where Geonode will later be running.

Add the virtualenvwrapper to your new environment.

$ cd /home/geonode/dev

$ export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python
$ export WORKON_HOME=/home/geonode/dev/.venvs
$ source /usr/local/bin/virtualenvwrapper.sh
$ export PIP_DOWNLOAD_CACHE=$HOME/.pip-downloads

On Ubuntu, you can add the above settings to your .bashrc file and reload the settings running

$ echo export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python >> ~/.bashrc
$ echo export WORKON_HOME=/home/geonode/dev/.venvs >> ~/.bashrc
$ echo source /usr/local/bin/virtualenvwrapper.sh >> ~/.bashrc
$ echo export PIP_DOWNLOAD_CACHE=$HOME/.pip-downloads >> ~/.bashrc

$ source ~/.bashrc

Set up the local virtual environment for Geonode

$ mkvirtualenv geonode
$ workon geonode # or $ source /home/geonode/dev/.venvs/geonode/bin/
→˓activate

This creates a new directory where you want your project to be and creates a new virtualenvironment

6. Get the GeoNode source code

To download the latest GeoNode version from GitHub, the command clone is used

Note: If you are following the GeoNode training, skip the following command. You can find the cloned
repository in /home/geonode/dev

$ git clone https://github.com/GeoNode/geonode.git

480 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

7. Add Node.js PPA and other tools required for static development

This is required for static development

Note: If you are following GeoNode’s training, nodejs is already installed in the Virtual Machine
skip the first three command and jump to cd geonode/geonode/static

$ sudo add-apt-repository -y ppa:chris-lea/node.js
$ sudo apt-get update
$ sudo apt-get install -y nodejs
$ cd geonode/geonode/static
$ npm install --save-dev

If the last command does not work, you can run it manually
→˓like this:

$ npm install bower --save-dev
$ npm install grunt-cli --save-dev
$ npm install grunt-contrib-jshint --save-dev
$ npm install grunt-contrib-less --save-dev
$ npm install grunt-contrib-concat --save-dev
$ npm install grunt-contrib-copy --save-dev
$ npm install grunt-text-replace --save-dev
$ npm install grunt-contrib-uglify --save-dev
$ npm install grunt-contrib-cssmin --save-dev
$ npm install grunt-contrib-watch --save-dev

Note: Every time you want to update the static files after making changes to the sources, go to geonode/static
and run ‘grunt production’.

8. Install GeoNode in the new active local virtualenv

$ cd /home/geonode/dev
$ pip install pip --upgrade
$ pip install -e geonode --use-mirrors

$ cd geonode

If the install fails because of an error related to pyproj not being verified (happens on pip 1.5), use the following:

$ pip install -e geonode --use-mirrors --allow-external pyproj --allow-unverified
→˓pyproj

9. Create local_settings.py

Add the local_settings.py to your GeoNode installation

$ cd /home/geonode/dev/geonode
$ cp geonode/local_settings.py.sample geonode/local_settings.py
$ gedit geonode/local_settings.py

Add the following lines to the local_settings.py

3.2. Tutorials 481

GeoNode Documentation, Release 2.8

...

SITEURL = "http://localhost:8000/"

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'geonode_dev',
'USER': 'geonode_dev',
'PASSWORD': 'geonode_dev',

},
vector datastore for uploads
'datastore' : {

'ENGINE': 'django.contrib.gis.db.backends.postgis',
#'ENGINE': '', # Empty ENGINE name disables
'NAME': 'geonode_dev-imports',
'USER' : 'geonode_dev',
'PASSWORD' : 'geonode_dev',
'HOST' : 'localhost',
'PORT' : '5432',

}
}

OGC (WMS/WFS/WCS) Server Settings
OGC_SERVER = {

'default' : {
'BACKEND' : 'geonode.geoserver',
'LOCATION' : 'http://localhost:8080/geoserver/',
'PUBLIC_LOCATION' : 'http://localhost:8080/geoserver/',
'USER' : 'admin',
'PASSWORD' : 'geoserver',
'MAPFISH_PRINT_ENABLED' : True,
'PRINT_NG_ENABLED' : True,
'GEONODE_SECURITY_ENABLED' : True,
'GEOGIG_ENABLED' : False,
'WMST_ENABLED' : False,
'BACKEND_WRITE_ENABLED': True,
'WPS_ENABLED' : False,
'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.path.abspath(os.

→˓path.join(PROJECT_ROOT, os.pardir)),
Set to name of database in DATABASES dictionary to enable
'DATASTORE': 'datastore',

}
}

CATALOGUE = {
'default': {

The underlying CSW implementation
default is pycsw in local mode (tied directly to GeoNode Django DB)
'ENGINE': 'geonode.catalogue.backends.pycsw_local',
pycsw in non-local mode
'ENGINE': 'geonode.catalogue.backends.pycsw_http',
GeoNetwork opensource
'ENGINE': 'geonode.catalogue.backends.geonetwork',
deegree and others
'ENGINE': 'geonode.catalogue.backends.generic',

(continues on next page)

482 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

The FULLY QUALIFIED base url to the CSW instance for this GeoNode
'URL': '%scatalogue/csw' % SITEURL,
'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',

login credentials (for GeoNetwork)
'USER': 'admin',
'PASSWORD': 'admin',

}
}

...

10. Compile and Start the server for the first time

Align the database structure

$ cd /home/geonode/dev/geonode
$ python manage.py migrate

Warning: If the start fails because of an import error related to osgeo, then please consult the in-
stall_gdal_devmode.

The last step is to compile GeoServer and setup, then initialize the database

$ paver setup
$ paver sync

11. Now we can start our GeoNode instance

Warning: Don’t forget to stop the GeoNode Production services if enabled

service apache2 stop
service tomcat7 stop

$ paver start

Visit the GeoNode site by typing http://localhost:8000 into your browser window.

If you are using a different IP address (e.g 1.1.1.1), then start paver using the command below.

$ paver start -b 1.1.1.1:8000

Warning: If the start fails because of an import error related to osgeo, then please consult the in-
stall_gdal_devmode.

12. To stop the server

Press Ctrl-C on your keyboard to stop the server.

then type:

3.2. Tutorials 483

http://localhost:8000

GeoNode Documentation, Release 2.8

$ paver stop # to stop all django, geoserver services

13. Create a Django superuser for your GeoNode

Create a superuser so you can log on to your local GeoNode installation at http://localhost:8000

$ python manage.py createsuperuser

3.2.1.5.5 Start working on Geonode the next day after install

With every restart of your machine, you have to restart GeoNode as well. That means, you will not be able
to open http://localhost:8000 directly after starting your machine new. In order to be able to use GeoNode
now, you have to activate your virtualenv and to start the development servers.

Note: username is the name of your machine and personal folder!

1. Activate virtualenv

To activate your virtualenv you just need to type

$ workon geonode

or

$ source /home/geonode/dev/.venvs/geonode/bin/activate

Note: Be careful with the path, it might not be the same for you!

2. Start the server

Warning: Don’t forget to stop the GeoNode Production services if enabled

service apache2 stop
service tomcat7 stop

$ cd geonode
$ paver start_geoserver
$ paver start_django

Now you are able to access http://localhost:8000 again.

Note: Remember that you have to do these steps each time you restart your machine!!

Hint: Now you’ve followed these installation instructions, GeoNode is running in development mode. This also
means that you are using all the default settings of GeoNode. If you want to change them, e.g use Tomcat instead
of Jetty, or Postgresql instead of sqlite3, you may follow the steps from the section Configure Manually in cus-
tom_install.

484 Chapter 3. Table of contents

http://localhost:8000
http://localhost:8000
http://localhost:8000

GeoNode Documentation, Release 2.8

3.2.1.5.6 GeoNode debugging techniques

GeoNode can be difficult to debug as there are several different components involved:

• Browser - includes HTML/CSS issues, JavaScript, etc.

• Django - GeoNode HTML views and web APIs

• GeoServer - Core Wxx services and Platform REST APIs

When attempting to diagnose a specific problem, often the order of investigation mirrors the order above - that is, start
with the client: Is this a bug in code running on the browser. If not, step to the next level: the Django responses to client
requests. Often this is possible via the browser using the correct tools. Many requests require Django communications
with GeoServer. This is the next stage of investigation if a specific bug does not appear to originate in Django or the
client.

The following section covers techniques to help diagnose and debug errors.

Debugging GeoNode in the Browser

This section covers some techniques for debugging browser and Django related response bugs using the Firefox web
browser extension named Firebug. The concepts covered apply to other browser’s tools but may vary in terminology.

Another Firefox extension worth noting is ‘JSONView’. This extension supports formatted viewing of JSON responses
and integrates well with Firebug.

References:

• https://getfirebug.com/faq/

• https://jsonview.com/

Net Tab

The net tab allows viewing all of the network traffic from the browser. The subtabs (like the selected “Images” tab)
allow filtering by the type of traffic.

In this screen-shot, the mouse hover displays the image content and the full URL requested. One can right-click to
copy-paste the URL or view in a separate tab. This is useful for obtaining test URLs. The grayed out entries show that
the resource was cached via conditional-get (the 304 not modified). Other very useful advanced information includes
the size of the response and the loading indicator graphics on the right. At the bottom, note the total size and timing
information.

Net Tab Exercises

1. Go to layers/maps/search pages and look at the various requests. Note the XHR subtab. Look at the various
request specific tabs: headers, params, etc.

2. Use the ‘disable browser cache’ option and see how it affects page loads. Discuss advantages/challenges of
caching.

DOM Tab

The DOM tab displays all of the top-level window objects. By drilling down, this can be a useful way to find out
what’s going on in a page.

3.2. Tutorials 485

https://getfirebug.com/faq/
https://jsonview.com/

GeoNode Documentation, Release 2.8

Fig. 83: Firebug Net Tab

486 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 84: Firebug DOM Tab

3.2. Tutorials 487

GeoNode Documentation, Release 2.8

In this example, the mouse is hovering over the app object. Note the high level view of objects and their fields. The
console tab allows interacting with the objects.

DOM Tab Exercises

1. Drill down in the DOM tab.

2. Use the console to interactively exercise jQuery.

3. Use the console to interact with the app/map or other page objects

Script Tab

The script tab allows viewing scripts and debugging.

The screen-shot displays a breakpoint set at line 3, the current code is stopped at line 8 and the mouse hover is
displaying the value of the variable ‘class_list’. On the right, the ‘Watch’ tab displays the various variables and scopes
and offers a drill down view similar to the DOM view. The stack tab displays the execution stack context outside the
current frame.

Script Tab Exercises

1. Step through some code

2. Look at various features: variables, scopes, DOM drill-down

HTML Tab

The HTML tag allows viewing and drilling down into the DOM. This is an incredibly useful feature when doing CSS
or HTML work.

The screen-shot displays a search result ‘article’ element highlighted with padding and margin in yellow and purple.
The DOM structure is displayed on the left and the right panel displays the specific style rules while the computed
tab displays the effective style rules. The layout tab displays rulers and property values while the DOM tab displays a
debug/DOM-like view of the actual object’s properties.

HTML Tab Exercises

1. Identify elements by looking at the tabs on the right.

2. Change styles, adding new rules and styles.

3. Edit existing HTML elements via the raw view and the tree view.

Debugging GeoExplorer

In case you want to debug the GeoExplorer behaviour in your browser with Firebug of Chromium Developer toolbar,
you may do the following:

Install Boundless Suite:

488 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 489

GeoNode Documentation, Release 2.8

490 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

$ git clone git://github.com/GeoNode/suite.git
$ cd suite
$ git submodule update --init --recursive

Run GeoExplorer in debug mode:

$ cd geoexplorer
$ ant debug

Check if GeoExplorer is running at this URL: http://localhost:9080

Edit the layers/templates/layers/layer_geoext_map.html file and replace this line:

{% include "geoext/geo_header.html" %}

with this one:

{% include "geoext/geo_header_debug.html" %}

Debugging GeoNode’s Python Components

Logging

References:

• https://docs.python.org/2/library/logging.html

• https://docs.djangoproject.com/en/1.8/topics/logging/

Logging is controlled by the contents of the logging data structure defined in the settings.py. The default settings
distributed with GeoNode are configured to only log errors. During development, it’s a good idea to override the
logging data structure with something a bit more verbose.

Output

In production, logging output will go into the Apache error log. This is located in /var/log/apache2/error.
log. During development, logging output will, by default, go to standard error.

Configuring

• Ensure the ‘console’ handler is at the appropriate level. It will ignore log messages below the set level.

• Ensure the specific logger you’d like to use is set at the correct level.

• If attempting to log SQL, ensure DEBUG=True in your local_settings.py.

Debugging SQL

• To trace all SQL in Django, configure the django.db.backends logger to DEBUG

• To examine a specific query object, you can use the query field: str(Layer.objects.all().query)

• You can gather more information by using django.db.connection.queries. When DEBUG is enabled,
query SQL and timing information is stored in this list.

3.2. Tutorials 491

http://localhost:9080
https://docs.python.org/2/library/logging.html
https://docs.djangoproject.com/en/1.8/topics/logging/

GeoNode Documentation, Release 2.8

Hints

• Don’t use print statements. They are easy to use in development mode but in production they will cause failure.

• Take advantage of python. Instead of:

logging.info('some var ' + x + ' is not = ' + y)

Use:

logging.info('some var %s is not = %s', x, y)

Excercises:

1. Enable logging of all SQL statements. Visit some pages and view the logging output.

2. Using the python shell, use the queries object to demonstrate the results of specific queries.

PDB

Reference:

• https://docs.python.org/2/library/pdb.html

For the adventurous, pdb allows for an interactive debugging session. This is only possible when running in a shell
via manage.py runserver or paver runserver.

To set a breakpoint, insert the following code before the code to debug.

import pdb; pdb.set_strace()

When execution reaches this statement, the debugger will activate. The commands are noted in the link above. In
addition to those debugger specific commands, general python statements are supported. For example, typing the
name of a variable in scope will yield the value via string coercion. Typing “n” will execute the next line, “c” will
continue the execution of the program, “q” will quit.

Debugging GeoServer

Resources:

• http://docs.geoserver.org/latest/en/user/production/troubleshooting.html

• http://docs.geoserver.org/latest/en/user/production/troubleshooting.html

This section does not attempt to cover developer-level debugging in GeoServer as this is a much larger topic involving
many more tools. The goal here is to provide ‘black-box’ techniques to help resolve and report problems.

Logging

GeoServer logging, while sometimes containing too much information, is the best way to start diagnosing an issue
in GeoNode once the other. To create a proper error report for use in requesting support, providing any contextual
logging information is critical.

When using a standard GeoServer installation, the GeoServer logs are located at /usr/share/geoserver/
data/logs/geoserver.log. The properties files that control the varying rules are also located here.

492 Chapter 3. Table of contents

https://docs.python.org/2/library/pdb.html
http://docs.geoserver.org/latest/en/user/production/troubleshooting.html
http://docs.geoserver.org/latest/en/user/production/troubleshooting.html

GeoNode Documentation, Release 2.8

Exercises

1. Switch logging levels for various loggers.

2. Look at the different logging profiles and discuss the loggers and levels.

3. Learn how to read stack traces, nested or otherwise.

Advanced Troubleshooting

JVM diagnostics and advanced troubleshooting techniques are covered in the GeoServer documents linked to above.
When providing information for a bug report, these can be helpful but in-depth Java knowledge is required to fully
comprehend the output from some of these tools.

Exercises

1. Look at jstack output

Using Django to Help Debug

The gsconfig library provides a rich interface to interacting with GeoServer’s REST API. This allows high-level
functions as well as viewing raw REST responses.

cat = Layer.objects.gs_catalog
cat.get_layers() # list of gsconfig layer objects
OR, for a specific layer
lyr = Layer.objects.get(id=1)
lyr.resource # specific gsconfig layer object
lyr.resource.fetch() # get the XML from REST
lyr.resource.dom # reference to the parsed XML
from xml.etree.ElementTree import tostring
tostring(lyr.resource.dom)

3.2.1.5.7 GeoNode APIs

GeoServer REST interface

This module is a walkthrough the GeoServer REST capabilities and APIs. Here also will be presented and deeply
inspected several methods and frameworks to handle with REST APIs and functions.

What you will learn

In this section you will learn:

Introducing REST concepts

REST (REpresentational State Transfer) is a simple approach to web services strongly based on the basic
HTTP infrastructure, such as URLs, HTTP methods and HTTP response codes.

The basic elements of a REST service are:

3.2. Tutorials 493

GeoNode Documentation, Release 2.8

• Resource: each business entity is linked to a unique URL that represents it, and allows for its
retrieval and eventual modification. In GeoServer such resources are layers, stores, styles and so on

• Connectedness: the various resources are linked to one another following significant relationships.
For example, in GeoServer a store contains a list of feature types or coverages, a layer is linked to
a style and a feature type/coverage, and so on (in other terms, the set of resources is supposed to be
crawable just like a web site).

• Representation: each resource can be represented in one or more way. For example in GeoServer
resources are normally represented as HTML, XML and JSON.

• Stateless-ness: each communication with the server is atomic and not related to the communi-
cations happened before or after it. Whatever state needs to be managed needs to be stored as a
publicly accessible resource.

• HTTP methods reuse: each resource is manipulated via the common HTTP methods each having
a common meaning, summarized by the following table

Method Description
GET Retrieves the resource in the specified representation. Query parame-

ters are often used to filter the contents of the returned resource, and
sometimes to specify the desired representation format.

HEAD Similar to GET, but instead of returning the full response it returns only
the HTTP headers, which might contain information such as the last
modification date of the resource

PUT Stores the representation of a resource at a given URL. Used when the
client already knows what the final URL of the resource will be

POST Creates a new resource by either getting its contents in the request,
or having some parameters to compute it. The main different is that
the final URL of the created resource is not known to the client, and
is returned by the server after creation via a redirect. It is also used
to have the server perform certain actions that cannot be encoded as
another method, for example, have it send a SMS (assuming creating a
resource representing the SMS is not desirable)

DELETE Destroys the specified resource.

The above results in a web services protocols that is easy to understand, implement and connect to from
various languages, and with good scalability characteristics.

The GeoServer rest interface is located at http://localhost:8083/geoserver/rest, by de-
fault a browser will show resources in HTML format allowing for a simple browsable interface to the
GeoServer configuration.

http://localhost:8083/geoserver/rest

Follow the links into workspaces and then geosolutions and switch the format from .html to
xml to see the XML representation:

http://localhost:8083/geoserver/rest/workspaces/geosolutions.xml

Using REST module

This section contains a number of examples which illustrate various uses of the REST data configuration
API.

The GeoServer REST configuration module uses the REST principles to expose services allowing to edit
the catalog, in particular to manage workspaces, stores, layers, styles and groups.

494 Chapter 3. Table of contents

http://localhost:8083/geoserver/rest
http://localhost:8083/geoserver/rest/workspaces/geosolutions.xml

GeoNode Documentation, Release 2.8

Fig. 85: Browsing the REST interface with HTML format

3.2. Tutorials 495

GeoNode Documentation, Release 2.8

Fig. 86: The GeoSolutions workspace represented as XML

Note: The REST configuration extension has normally to be installed separately, it is not come out of
the box.

The examples in this section use the cURL utility, which is a handy command line tool for executing
HTTP requests and transferring files.

1. Open the Terminal and enter the following command:

curl -u admin:geoserver -v -XPOST -H "Content-type: text/xml" -d "
→˓<workspace><name>myworkspace</name></workspace>" http://localhost:8083/
→˓geoserver/rest/workspaces

The response should contain the following:

1. Go to the Workspaces section via Web interface to show the new workspace created

2. Get the new created workspace details entering the following:

curl -u admin:geoserver -XGET -H "Accept: text/xml" http://
→˓localhost:8083/geoserver/rest/workspaces/myworkspace

3. Publish the shapefile pointlands using the myworkspace workspace entering the following

• Linux:

496 Chapter 3. Table of contents

https://curl.haxx.se/

GeoNode Documentation, Release 2.8

Fig. 87: Create a new workspace via REST

Fig. 88: GET request to abtain new workspace details

Fig. 89: GET request to obtain new workspace details

3.2. Tutorials 497

GeoNode Documentation, Release 2.8

curl -u admin:geoserver -H "Content-type: application/zip" -T /.../
→˓pointlands.zip http://localhost:8083/geoserver/rest/workspaces/
→˓myworkspace/datastores/pointlands/file.shp

• Windows:

curl -u admin:geoserver -H "Content-type: application/zip" -T /.../
→˓pointlands.zip http://localhost:8083/geoserver/rest/workspaces/
→˓myworkspace/datastores/pointlands/file.shp

4. Go to the Layer Preview to show the layers in a OpenLayers Map.

Fig. 90: Showing the new layer created

Note: If you previously followed the security portion of the workshop the layer won’t be accessible
because the administrator does not have the required roles. Go back in the service security section
and remove the rule limiting the GetMap requests.

5. Retrieves the created data store as XML entering the following:

curl -u admin:geoserver -XGET http://localhost:8083/geoserver/rest/
→˓workspaces/myworkspace/datastores/pointlands.xml

<dataStore>
<name>pointlands</name>
<type>Shapefile</type>
<enabled>true</enabled>
<workspace>

<name>myworkspace</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel=

→˓"alternate" href="http://localhost:8083/geoserver/rest/workspaces/
→˓myworkspace.xml" type="application/xml"/>
</workspace>
<connectionParameters>

<entry key="url">file:${TRAINING_ROOT}/geoserver_data/data/
→˓myworkspace/pointlands/</entry>

<entry key="namespace">http://myworkspace</entry>
</connectionParameters>
<__default>false</__default>
<featureTypes>

<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel=
→˓"alternate" href="http://localhost:8083/geoserver/rest/workspaces/
→˓myworkspace/datastores/pointlands/featuretypes.xml" type="application/
→˓xml"/>

(continues on next page)

498 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 91: The new layers created

3.2. Tutorials 499

GeoNode Documentation, Release 2.8

(continued from previous page)

</featureTypes>
</dataStore>

Note: By default when a shapefile is uploaded a feature type resource and the associated layer are
automatically created.

6. Retrieve the layer as XML entering the following:

curl -u admin:geoserver -XGET http://localhost:8083/geoserver/rest/
→˓layers/myworkspace:pointlands.xml

<layer>
<name>pointlands</name>
<type>VECTOR</type>
<defaultStyle>

<name>point</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel=

→˓"alternate" href="http://localhost:8083/geoserver/rest/styles/point.xml
→˓" type="application/xml"/>
</defaultStyle>
<resource class="featureType">

<name>pointlands</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel=

→˓"alternate" href="http://localhost:8083/geoserver/rest/workspaces/
→˓myworkspace/datastores/pointlands/featuretypes/pointlands.xml" type=
→˓"application/xml"/>
</resource>
<attribution>

<logoWidth>0</logoWidth>
<logoHeight>0</logoHeight>

</attribution>
</layer>

Note: When the layer is created a default style named point is assigned to it.

7. Create a new style named landmarks with the following SLD (using the GeoServer Admin UI):

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd
→˓"
xmlns="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<!-- a Named Layer is the basic building block of an SLD document -->
<NamedLayer>

<Name>default_point</Name>
<UserStyle>
<!-- Styles can have names, titles and abstracts -->
<Title>Default Point</Title>
<Abstract>A sample style that draws a point</Abstract>

(continues on next page)

500 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

<!-- FeatureTypeStyles describe how to render different
→˓features -->

<!-- A FeatureTypeStyle for rendering points -->
<FeatureTypeStyle>

<Rule>
<Name>rule1</Name>
<Title>Red Square</Title>
<Abstract>A 6 pixel square with a red fill and no

→˓stroke</Abstract>
<PointSymbolizer>

<Graphic>
<Mark>
<WellKnownName>triangle</WellKnownName>
<Stroke>

<CssParameter name="stroke">
→˓#66FF66</CssParameter>

</Stroke>
<Fill>

<CssParameter name="fill">#66FF66
→˓</CssParameter>

</Fill>
</Mark>

<Size>10</Size>
</Graphic>

</PointSymbolizer>
</Rule>

</FeatureTypeStyle>
</UserStyle>

</NamedLayer>
</StyledLayerDescriptor>

8. Apply the existing landmarks style to the layer created myworkspace:pointlands (this
operation does not overwrite the entire layer definition, updates it instead):

curl -u admin:geoserver -XPUT -H "Content-type: text/xml" -d "<layer>
→˓<defaultStyle><name>landmarks</name></defaultStyle><enabled>true</
→˓enabled></layer>" http://localhost:8083/geoserver/rest/layers/
→˓myworkspace:pointlands

9. Go to the Layer Preview to show the layers with the new landmarks style.

REST configuration examples

This section contains a number of examples which illustrate various uses of the REST configuration API.
The examples are grouped by the language or environment used.

cURL

The examples in this section use cURL, a command line tool for executing HTTP requests and transferring
files, to generate requests to GeoServer’s REST interface. Although the examples are based on cURL,
they could be adapted for any HTTP-capable tool or library. Please be aware that cURL doesn’t act
exactly the same as a web browser. In contrast to Mozilla Firefox or Google Chrome, cURL will not
escape special characters in your request string automatically. To make sure, that your requests can be
processed correctly, make sure, that characters like parenthesis, commas and the like are escaped before

3.2. Tutorials 501

https://curl.haxx.se/

GeoNode Documentation, Release 2.8

Fig. 92: Viewing the layers with the new created style landmarks

502 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

sending them via cURL. If you use libcurl in PHP 5.5 or newer you can prepare the URL-string using the
function curl_escape. In older versions of PHP htmlspecialchars should do the job also.

Adding a new workspace

The following creates a new workspace named “acme” with a POST request:

Note: Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "<workspace>
→˓<name>acme</name></workspace>" http://localhost/geoserver/rest/workspaces

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created
...
< Location: http://localhost/geoserver/rest/workspaces/acme

Note the Location response header, which specifies the location (URI) of the newly created workspace.

The workspace information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/
→˓geoserver/rest/workspaces/acme

The response should look like this:

<workspace>
<name>acme</name>
<dataStores>

<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost/geoserver/rest/workspaces/acme/datastores.xml"
type="application/xml"/>

</dataStores>
<coverageStores>

<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost/geoserver/rest/workspaces/acme/coveragestores.xml

→˓"
type="application/xml"/>

</coverageStores>
<wmsStores>

<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost/geoserver/rest/workspaces/acme/wmsstores.xml"
type="application/xml"/>

</wmsStores>
</workspace>

This shows that the workspace can contain “dataStores” (for vector data), “coverageStores” (for
raster data), and “wmsStores” (for cascaded WMS servers).

Note: The Accept header is optional. The following request omits the Accept header, but will return
the same response as above.

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/
→˓acme.xml

3.2. Tutorials 503

GeoNode Documentation, Release 2.8

Uploading a shapefile

In this example, a new store will be created by uploading a shapefile.

The following request uploads a zipped shapefile named roads.zip and creates a new store named
roads.

Note: Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPUT -H "Content-type: application/zip" --data-
→˓binary @roads.zip http://localhost/geoserver/rest/workspaces/acme/
→˓datastores/roads/file.shp

The roads identifier in the URI refers to the name of the store to be created. To create a store named
somethingelse, the URI would be http://localhost/geoserver/rest/workspaces/
acme/datastores/somethingelse/file.shp

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

The store information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/
→˓acme/datastores/roads.xml

The response should look like this:

<dataStore>
<name>roads</name>
<type>Shapefile</type>
<enabled>true</enabled>
<workspace>

<name>acme</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost/geoserver/rest/workspaces/acme.xml" type=

→˓"application/xml"/>
</workspace>
<connectionParameters>

<entry key="url">file:/C:/path/to/data_dir/data/acme/roads/</entry>
<entry key="namespace">http://acme</entry>

</connectionParameters>
<__default>false</__default>
<featureTypes>

<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost/geoserver/rest/workspaces/acme/datastores/roads/

→˓featuretypes.xml"
type="application/xml"/>

</featureTypes>
</dataStore>

By default when a shapefile is uploaded, a feature type is automatically created. The feature type infor-
mation can be retrieved as XML with a GET request:

504 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/
→˓acme/datastores/roads/featuretypes/tiger_roads.xml

If executed correctly, the response will be:

<featureType>
<name>roads</name>
<nativeName>roads</nativeName>
<namespace>

<name>acme</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost/geoserver/rest/namespaces/acme.xml" type=

→˓"application/xml"/>
</namespace>
...

</featureType>

The remainder of the response consists of layer metadata and configuration information.

Note: Notice that the name of the Layer (and of the FeatureType) corresponds to the physical name of
the ShapeFile contained into the archive.

Adding an existing shapefile

In the previous example a shapefile was uploaded directly to GeoServer by sending a zip file in the body
of a PUT request. This example shows how to publish a shapefile that already exists on the server.

Consider a directory on the server /data/shapefiles that contains the shapefile rivers.shp. The
following adds a new store for the shapefile:

Note: In order to execute the exercise, create a folder shapefiles somewhere on the server and extract
there the shapefiles.zip.

curl -v -u admin:geoserver -XPUT -H "Content-type: text/plain" -d "file:///
→˓home/geonode/data/shapefiles/rivers.shp" http://localhost/geoserver/rest/
→˓workspaces/acme/datastores/rivers/external.shp

The external.shp part of the request URI indicates that the file is coming from outside the catalog.

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

The shapefile will be added to the existing store and published as a layer.

To verify the contents of the store, execute a GET request. Since the XML response only provides details
about the store itself without showing its contents, execute a GET request for HTML:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/
→˓acme/datastores/rivers.html

3.2. Tutorials 505

GeoNode Documentation, Release 2.8

Adding a directory of existing shapefiles

This example shows how to load and create a store that contains a number of shapefiles, all with a single
operation. This example is very similar to the example above of adding a single shapefile.

Consider a directory on the server /data/shapefiles that contains multiple shapefiles. The follow-
ing adds a new store for the directory.

Note: In order to execute the exercise, create a folder shapefiles somewhere on the server and extract
there the shapefiles.zip.

curl -v -u admin:geoserver -XPUT -H "Content-type: text/plain" -d "file:///
→˓home/geonode/data/shapefiles/" "http://localhost/geoserver/rest/workspaces/
→˓acme/datastores/shapefiles/external.shp?configure=all"

Note the configure=all query string parameter, which sets each shapefile in the directory to be loaded
and published.

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

To verify the contents of the store, execute a GET request. Since the XML response only provides details
about the store itself without showing its contents, execute a GET request for HTML:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/
→˓acme/datastores/shapefiles.html

Creating a layer style

This example will create a new style on the server and populate it the contents of a local SLD file.

The following creates a new style named roads_style:

Note: Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "<style>
→˓<name>roads_style</name><filename>roads.sld</filename></style>" http://
→˓localhost/geoserver/rest/styles

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

This request uploads a file called roads.sld file and populates the roads_style with its contents:

curl -v -u admin:geoserver -XPUT -H "Content-type: application/vnd.ogc.
→˓sld+xml" -d @roads.sld http://localhost/geoserver/rest/styles/roads_style

If executed correctly, the response should contain the following:

< HTTP/1.1 200 OK

506 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

The SLD itself can be downloaded through a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/styles/
→˓roads_style.sld

Changing a layer style

This example will alter a layer style. Prior to making any changes, it is helpful to view the existing
configuration for a given layer.

Note: Each code block below contains a single command that may be extended over multiple lines.

The following retrieves the “acme:roads” layer information as XML:

curl -v -u admin:geoserver -XGET "http://localhost/geoserver/rest/layers/
→˓acme:tiger_roads.xml"

The response in this case would be:

<layer>
<name>tiger_roads</name>
<type>VECTOR</type>
<defaultStyle>

<name>line</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href=

→˓"http://localhost/geoserver/rest/styles/line.xml" type="application/xml"/>
</defaultStyle>
<resource class="featureType">

<name>tiger_roads</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href=

→˓"http://localhost/geoserver/rest/workspaces/acme/datastores/roads/
→˓featuretypes/tiger_roads.xml" type="application/xml"/>
</resource>
<attribution>

<logoWidth>0</logoWidth>
<logoHeight>0</logoHeight>

</attribution>
</layer>

When the layer is created, GeoServer assigns a default style to the layer that matches the geometry of
the layer. In this case a style named line is assigned to the layer. This style can viewed with a WMS
request:

http://localhost/geoserver/wms/reflect?layers=acme:tiger_roads

In this next example a new style will be created called roads_style and assigned to the “acme:roads”
layer:

curl -v -u admin:geoserver -XPUT -H "Content-type: text/xml" -d "<layer>
→˓<defaultStyle><name>roads_style</name></defaultStyle></layer>" http://
→˓localhost/geoserver/rest/layers/acme:tiger_roads

If executed correctly, the response should contain the following:

3.2. Tutorials 507

GeoNode Documentation, Release 2.8

< HTTP/1.1 200 OK

The new style can be viewed with the same WMS request as above:

http://localhost/geoserver/wms/reflect?layers=acme:tiger_roads

Note that if you want to upload the style in a workspace (ie, not making it a global style), and then assign
this style to a layer in that workspace, you need first to create the style in the given workspace:

curl -u admin:geoserver -XPOST -H 'Content-type: text/xml' -d '<style><name>
→˓roads_style</name><filename>roads.sld</filename></style>' http://localhost/
→˓geoserver/rest/workspaces/acme/styles

Upload the file within the workspace:

curl -u admin:geoserver -XPUT -H 'Content-type: application/vnd.ogc.sld+xml'
→˓-d @roads.sld http://localhost/geoserver/rest/workspaces/acme/styles/roads_
→˓style

And finally apply that style to the layer. Note the use of the <workspace> tag in the XML:

curl -u admin:geoserver -XPUT -H 'Content-type: text/xml' -d '<layer>
→˓<defaultStyle><name>roads_style</name><workspace>acme</workspace></
→˓defaultStyle></layer>' http://localhost/geoserver/rest/layers/acme:tiger_
→˓roads

Adding a PostGIS database

In this example, a PostGIS database named nyc will be added as a new store.

Warning: This section assumes that a PostGIS database named nyc is present on the local system
and is accessible by the user bob.

Note: In order to create and setup the database locally, follow the instructions at setup_nyc_db

Create a new text file and add the following content to it. This will represent the new store. Save the file
as nycDataStore.xml.

<dataStore>
<name>nyc</name>
<connectionParameters>

<host>localhost</host>
<port>5432</port>
<database>nyc</database>
<user>bob</user>
<passwd>postgres</passwd>
<dbtype>postgis</dbtype>

</connectionParameters>
</dataStore>

The following will add the new PostGIS store to the GeoServer catalog:

508 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Note: Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -T nycDataStore.xml -H "Content-type: text/
→˓xml" http://localhost/geoserver/rest/workspaces/acme/datastores

If executed correctly, the response should contain the following:

< HTTP/1.1 200 OK

The store information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/
→˓acme/datastores/nyc.xml

The response should look like the following:

<dataStore>
<name>nyc</name>
<type>PostGIS</type>
<enabled>true</enabled>
<workspace>

<name>acme</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost/geoserver/rest/workspaces/acme.xml" type=

→˓"application/xml"/>
</workspace>
<connectionParameters>

<entry key="port">5432</entry>
<entry key="dbtype">postgis</entry>
<entry key="host">localhost</entry>
<entry key="user">bob</entry>
<entry key="database">nyc</entry>
<entry key="namespace">http://acme</entry>

</connectionParameters>
<__default>false</__default>
<featureTypes>

<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/

→˓featuretypes.xml"
type="application/xml"/>

</featureTypes>
</dataStore>

Adding a PostGIS table

In this example, a table from the PostGIS database created in the previous example will be added as a
featuretype.

Warning: This example assumes the table has already been created and the tiger_roads Layer
deleted in case you have executed the previous steps.

The following adds the table tiger_roads as a new feature type:

3.2. Tutorials 509

GeoNode Documentation, Release 2.8

Note: Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "
→˓<featureType><name>tiger_roads</name></featureType>" http://localhost/
→˓geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

The featuretype information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/
→˓acme/datastores/nyc/featuretypes/tiger_roads.xml

This layer can viewed with a WMS GetMap request:

http://localhost/geoserver/wms/reflect?layers=acme:tiger_roads

Creating a PostGIS table

In the previous example, a new feature type was added based on a PostGIS table that already existed in
the database. The following example will not only create a new feature type in GeoServer, but will also
create the PostGIS table itself.

Create a new text file and add the following content to it. This will represent the definition of the new
feature type and table. Save the file as annotations.xml.

<featureType>
<name>annotations</name>
<nativeName>annotations</nativeName>
<title>Annotations</title>
<srs>EPSG:4326</srs>
<attributes>

<attribute>
<name>the_geom</name>
<binding>com.vividsolutions.jts.geom.Point</binding>

</attribute>
<attribute>
<name>description</name>
<binding>java.lang.String</binding>

</attribute>
<attribute>
<name>timestamp</name>
<binding>java.util.Date</binding>

</attribute>
</attributes>

</featureType>

This request will perform the feature type creation and add the new table:

Note: Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -T annotations.xml -H "Content-type: text/
→˓xml" http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/
→˓featuretypes

510 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

The result is a new, empty table named “annotations” in the “nyc” database, fully configured as a feature
type.

The featuretype information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/
→˓acme/datastores/nyc/featuretypes/annotations.xml

Creating a layer group

Warning: This example assumes the tables has already been created and the tiger_roads,
poly_landmarks, poi, giant_polygon Layers have been created.

$ curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "
→˓<featureType><name>giant_polygon</name></featureType>" http://localhost/
→˓geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

$ curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "
→˓<featureType><name>poi</name></featureType>" http://localhost/geoserver/
→˓rest/workspaces/acme/datastores/nyc/featuretypes

$ curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "
→˓<featureType><name>poly_landmarks</name></featureType>" http://localhost/
→˓geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

In this example, a layer group will be created, based on layers that already exist on the server.

Create a new text file and add the following content to it. This file will represent the definition of the new
layer group. Save the file as nycLayerGroup.xml.

<layerGroup>
<name>nyc</name>
<layers>

<layer>poi</layer>
<layer>poly_landmarks</layer>
<layer>tiger_roads</layer>

</layers>
<styles>

<style>point</style>
<style>polygon</style>
<style>roads_style</style>

</styles>
</layerGroup>

The following request creates the new layer group:

Note: Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -d @nycLayerGroup.xml -H "Content-type:
→˓text/xml" http://localhost/geoserver/rest/layergroups

Note: The argument -d@filename.xml in this example is used to send a file as the body of an HTTP

3.2. Tutorials 511

GeoNode Documentation, Release 2.8

request with a POST method. The argument -T filename.xml used in the previous example was
used to send a file as the body of an HTTP request with a PUT method.

This layer group can be viewed with a WMS GetMap request:

http://localhost/geoserver/wms/reflect?layers=nyc&format=openlayers

Retrieving component versions

This example shows how to retrieve the versions of the main components: GeoServer, GeoTools, and
GeoWebCache:

Note: The code block below contains a single command that is extended over multiple lines.

curl -v -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/
→˓geoserver/rest/about/version.xml

The response will look something like this:

<about>
<resource name="GeoServer">

<Build-Timestamp>04-Aug-2015 11:00</Build-Timestamp>
<Git-Revision>bca94d09e2e18839814a4b663ba8b0fca2130e47</Git-Revision>
<Version>2.7-SNAPSHOT</Version>

</resource>
<resource name="GeoTools">
<Build-Timestamp>29-Jul-2015 10:13</Build-Timestamp>
<Git-Revision>f50be97a039cd06d43a87ec3cc101626f0ac9fd2</Git-Revision>
<Version>13-SNAPSHOT</Version>

</resource>
<resource name="GeoWebCache">
<Git-Revision>f6e0d39c29c2317d2839c52a84676935e5b046cf/

→˓f6e0d39c29c2317d2839c52a84676935e5b046cf</Git-Revision>
<Version>1.7-SNAPSHOT</Version>

</resource>
</about>

Retrieving manifests

This collection of examples shows how to retrieve the full manifest and subsets of the manifest as known
to the ClassLoader.

Note: The code block below contains a single command that is extended over multiple lines.

curl -v -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/
→˓geoserver/rest/about/manifest.xml

The result will be a very long list of manifest information. While this can be useful, it is often desirable
to filter this list.

512 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Filtering over resource name

It is possible to filter over resource names using regular expressions. This example will retrieve only
resources where the name attribute matches gwc-.*:

Note: The code block below contains a single command that is extended over multiple lines.

curl -v -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/
→˓geoserver/rest/about/manifest.xml?manifest=gwc-.*

The result will look something like this (edited for brevity):

<about>
<resource name="gwc-2.3.0">

...
</resource>
<resource name="gwc-core-1.4.0">

...
</resource>
<resource name="gwc-diskquota-core-1.4.0">

...
</resource>
<resource name="gwc-diskquota-jdbc-1.4.0">

...
</resource>
<resource name="gwc-georss-1.4.0">

...
</resource>
<resource name="gwc-gmaps-1.4.0">

...
</resource>
<resource name="gwc-kml-1.4.0">

...
</resource>
<resource name="gwc-rest-1.4.0">

...
</resource>
<resource name="gwc-tms-1.4.0">

...
</resource>
<resource name="gwc-ve-1.4.0">
...

</resource>
<resource name="gwc-wms-1.4.0">
...

</resource>
<resource name="gwc-wmts-1.4.0">

...
</resource>

</about>

3.2. Tutorials 513

GeoNode Documentation, Release 2.8

Filtering over resource properties

Filtering is also available over resulting resource properties. This example will retrieve only resources
with a property equal to GeoServerModule.

Note: The code blocks below contain a single command that is extended over multiple lines.

curl -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/
→˓geoserver/rest/about/manifest.xml?key=GeoServerModule

The result will look something like this (edited for brevity):

<about>
<resource name="control-flow-2.3.0">
<GeoServerModule>extension</GeoServerModule>
...

</resource>
...
<resource name="wms-2.3.0">
<GeoServerModule>core</GeoServerModule>
...

</resource>
</about>

It is also possible to filter against both property and value. To retrieve only resources where a prop-
erty named GeoServerModule has a value equal to extension, append the above request with
&value=extension:

curl -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/
→˓geoserver/rest/about/manifest.xml?key=GeoServerModule&value=extension

Uploading and modifying a image mosaic

The following command uploads a polyphemus.zip file containing the definition of a mosaic (along
with at least one granule of the mosaic to initialize the resolutions, overviews and the like) and will
configure all the coverages in it as new layers.

Note: The code blocks below contain a single command that is extended over multiple lines.

curl -u admin:geoserver -XPUT -H "Content-type:application/zip" --data-
→˓binary @polyphemus.zip http://localhost/geoserver/rest/workspaces/topp/
→˓coveragestores/polyphemus/file.imagemosaic

The following instead instructs the mosaic to harvest (or re-harvest) a single file into the mosaic, collecting
its properties and updating the mosaic index:

curl -v -u admin:geoserver -XPOST -H "Content-type: text/plain" -d "file:///
→˓path/to/the/file/polyphemus_20130302.nc" "http://localhost/geoserver/rest/
→˓workspaces/topp/coveragestores/poly-incremental/external.imagemosaic"

Harvesting can also be directed towards a whole directory, as follows:

514 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

curl -v -u admin:geoserver -XPOST -H "Content-type: text/plain" -d "file:///
→˓path/to/the/mosaic/folder" "http://localhost/geoserver/rest/workspaces/
→˓topp/coveragestores/poly-incremental/external.imagemosaic"

The image mosaic index structure can be retrieved using something like:

curl -v -u admin:geoserver -XGET "http://localhost/geoserver/rest/workspaces/
→˓topp/coveragestores/polyphemus-v1/coverages/NO2/index.xml"

Which will result in the following:

<Schema>
<attributes>

<Attribute>
<name>the_geom</name>
<minOccurs>0</minOccurs>
<maxOccurs>1</maxOccurs>
<nillable>true</nillable>
<binding>com.vividsolutions.jts.geom.Polygon</binding>

</Attribute>
<Attribute>

<name>location</name>
<minOccurs>0</minOccurs>
<maxOccurs>1</maxOccurs>
<nillable>true</nillable>
<binding>java.lang.String</binding>

</Attribute>
<Attribute>

<name>imageindex</name>
<minOccurs>0</minOccurs>
<maxOccurs>1</maxOccurs>
<nillable>true</nillable>
<binding>java.lang.Integer</binding>

</Attribute>
<Attribute>

<name>time</name>
<minOccurs>0</minOccurs>
<maxOccurs>1</maxOccurs>
<nillable>true</nillable>
<binding>java.sql.Timestamp</binding>

</Attribute>
<Attribute>

<name>elevation</name>
<minOccurs>0</minOccurs>
<maxOccurs>1</maxOccurs>
<nillable>true</nillable>
<binding>java.lang.Double</binding>

</Attribute>
<Attribute>

<name>fileDate</name>
<minOccurs>0</minOccurs>
<maxOccurs>1</maxOccurs>
<nillable>true</nillable>
<binding>java.sql.Timestamp</binding>

</Attribute>
<Attribute>

<name>updated</name>

(continues on next page)

3.2. Tutorials 515

GeoNode Documentation, Release 2.8

(continued from previous page)

<minOccurs>0</minOccurs>
<maxOccurs>1</maxOccurs>
<nillable>true</nillable>
<binding>java.sql.Timestamp</binding>

</Attribute>
</attributes>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href=

→˓"http://localhost/geoserver/rest/workspaces/topp/coveragestores/polyphemus-
→˓v1/coverages/NO2/index/granules.xml" type="application/xml"/>
</Schema>

Listing the existing granules can be performed as follows:

curl -v -u admin:geoserver -XGET "http://localhost/geoserver/rest/workspaces/
→˓topp/coveragestores/polyphemus-v1/coverages/NO2/index/granules.xml?limit=2"

This will result in a GML description of the granules, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<wfs:FeatureCollection xmlns:gf="http://www.geoserver.org/rest/granules"
→˓xmlns:ogc="http://www.opengis.net/ogc" xmlns:wfs="http://www.opengis.net/
→˓wfs" xmlns:gml="http://www.opengis.net/gml">
<gml:boundedBy>

<gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<gml:coord>
<gml:X>5.0</gml:X>
<gml:Y>45.0</gml:Y>

</gml:coord>
<gml:coord>
<gml:X>14.875</gml:X>
<gml:Y>50.9375</gml:Y>

</gml:coord>
</gml:Box>

</gml:boundedBy>
<gml:featureMember>

<gf:NO2 fid="NO2.1">
<gf:the_geom>
<gml:Polygon>
<gml:outerBoundaryIs>
<gml:LinearRing>
<gml:coordinates>5.0,45.0 5.0,50.9375 14.875,50.9375 14.875,45.

→˓0 5.0,45.0</gml:coordinates>
</gml:LinearRing>

</gml:outerBoundaryIs>
</gml:Polygon>

</gf:the_geom>
<gf:location>polyphemus_20130301.nc</gf:location>
<gf:imageindex>336</gf:imageindex>
<gf:time>2013-03-01T00:00:00Z</gf:time>
<gf:elevation>10.0</gf:elevation>
<gf:fileDate>2013-03-01T00:00:00Z</gf:fileDate>
<gf:updated>2013-04-11T10:54:31Z</gf:updated>

</gf:NO2>
</gml:featureMember>
<gml:featureMember>

<gf:NO2 fid="NO2.2">
<gf:the_geom>

(continues on next page)

516 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

<gml:Polygon>
<gml:outerBoundaryIs>
<gml:LinearRing>
<gml:coordinates>5.0,45.0 5.0,50.9375 14.875,50.9375 14.875,45.

→˓0 5.0,45.0</gml:coordinates>
</gml:LinearRing>

</gml:outerBoundaryIs>
</gml:Polygon>

</gf:the_geom>
<gf:location>polyphemus_20130301.nc</gf:location>
<gf:imageindex>337</gf:imageindex>
<gf:time>2013-03-01T00:00:00Z</gf:time>
<gf:elevation>35.0</gf:elevation>
<gf:fileDate>2013-03-01T00:00:00Z</gf:fileDate>
<gf:updated>2013-04-11T10:54:31Z</gf:updated>

</gf:NO2>
</gml:featureMember>

</wfs:FeatureCollection>

Removing all the granules originating from a particular file (a NetCDF file can contain many) can be done
as follows:

curl -v -u admin:geoserver -XDELETE "http://localhost/geoserver/rest/
→˓workspaces/topp/coveragestores/polyphemus-v1/coverages/NO2/index/granules.
→˓xml?filter=location='polyphemus_20130301.nc'"

Creating an empty mosaic and harvest granules

The next command uploads an empty.zip file. This archive contains the definition of an empty mosaic
(no granules in this case) through the following files:

datastore.properties (the postgis datastore connection params)
indexer.xml (The mosaic Indexer, note the CanBeEmpty=true parameter)
polyphemus-test.xml (The auxiliary file used by the NetCDF reader to parse
→˓schemas and tables)

Note: Make sure to update the datastore.properties file with your connection params and refresh the
zip when done, before uploading it.

Note: The code blocks below contain a single command that is extended over multiple lines.

Note: The configure=none parameter allows for future configuration after harvesting

curl -u admin:geoserver -XPUT -H "Content-type:application/zip" --data-
→˓binary @empty.zip http://localhost/geoserver/rest/workspaces/topp/
→˓coveragestores/empty/file.imagemosaic?configure=none

The following instead instructs the mosaic to harvest a single polyphemus_20120401.nc file into
the mosaic, collecting its properties and updating the mosaic index:

3.2. Tutorials 517

GeoNode Documentation, Release 2.8

curl -v -u admin:geoserver -XPOST -H "Content-type: text/plain" -d "file:///
→˓path/to/the/file/polyphemus_20120401.nc" "http://localhost/geoserver/rest/
→˓workspaces/topp/coveragestores/empty/external.imagemosaic"

Once done you can get the list of coverages/granules available on that store.

curl -v -u admin:geoserver -XGET "http://localhost/geoserver/rest/workspaces/
→˓topp/coveragestores/empty/coverages.xml?list=all"

Which will result in the following:

<list>
<coverageName>NO2</coverageName>
<coverageName>O3</coverageName>

</list>

Next step is configuring ONCE for coverage (as an instance NO2), an available coverage.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xm" -d @"/path/to/
→˓coverageconfig.xml" "http://localhost/geoserver/rest/workspaces/topp/
→˓coveragestores/empty/coverages"

Where coverageconfig.xml may look like this

<coverage>
<name>NO2</name>

</coverage>

Note: When specifying only the coverage name, the coverage will be automatically configured

Master Password Change

The master password can be fetched wit a GET request.

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/security/
→˓masterpw.xml

A generated master password may be -“}3a^Kh. Next step is creating an XML file.

File changes.xml

<masterPassword>
<oldMasterPassword>-"}3a^Kh</oldMasterPassword>
<newMasterPassword>geoserver1</newMasterPassword>

</masterPassword>

Changing the master password using the file:

curl -v -u admin:geoserver -XPUT -H "Content-type: text/xml" -d @change.xml
→˓http://localhost/geoserver/rest/security/masterpw.xml

518 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

PHP

The examples in this section use the server-side scripting language PHP, a popular language for dynamic
webpages. PHP has cURL functions , as well as XML functions, making it a convenient method for
performing batch processing through the GeoServer REST interface. The following scripts execute single
requests, but can be easily modified with looping structures to perform batch processing.

Note: In order to execute the examples just copy the script content into a test.php file and execute
the following command:

$ php test.php

POST with PHP/cURL

The following script attempts to add a new workspace.

<?php
// Open log file
$logfh = fopen("GeoserverPHP.log", 'w') or die("can't open log file");

// Initiate cURL session
$service = "http://localhost:8080/geoserver/"; // replace with your URL
$request = "rest/workspaces"; // to add a new workspace
$url = $service . $request;
$ch = curl_init($url);

// Optional settings for debugging
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true); //option to return string
curl_setopt($ch, CURLOPT_VERBOSE, true);
curl_setopt($ch, CURLOPT_STDERR, $logfh); // logs curl messages

//Required POST request settings
curl_setopt($ch, CURLOPT_POST, True);
$passwordStr = "admin:geoserver"; // replace with your username:password
curl_setopt($ch, CURLOPT_USERPWD, $passwordStr);

//POST data
curl_setopt($ch, CURLOPT_HTTPHEADER,

array("Content-type: application/xml"));
$xmlStr = "<workspace><name>test_ws</name></workspace>";
curl_setopt($ch, CURLOPT_POSTFIELDS, $xmlStr);

//POST return code
$successCode = 201;

$buffer = curl_exec($ch); // Execute the curl request

// Check for errors and process results
$info = curl_getinfo($ch);
if ($info['http_code'] != $successCode) {

$msgStr = "# Unsuccessful cURL request to ";
$msgStr .= $url." [". $info['http_code']. "]\n";
fwrite($logfh, $msgStr);

(continues on next page)

3.2. Tutorials 519

http://php.net/index.php/
http://php.net/manual/en/ref.curl.php/
http://www.php.net/manual/en/refs.xml.php/

GeoNode Documentation, Release 2.8

(continued from previous page)

} else {
$msgStr = "# Successful cURL request to ".$url."\n";
fwrite($logfh, $msgStr);

}
fwrite($logfh, $buffer."\n");

curl_close($ch); // free resources if curl handle will not be reused
fclose($logfh); // close logfile

?>

The logfile should look something like:

* About to connect() to www.example.com port 80 (#0)

* Trying 123.456.78.90... * connected

* Connected to www.example.com (123.456.78.90) port 80 (#0)

* Server auth using Basic with user 'admin'
> POST /geoserver/rest/workspaces HTTP/1.1
Authorization: Basic sDsdfjkLDFOIedlsdkfj
Host: www.example.com
Accept: */*
Content-type: application/xml
Content-Length: 43

< HTTP/1.1 201 Created
< Date: Fri, 21 May 2010 15:44:47 GMT
< Server: Apache-Coyote/1.1
< Location: http://www.example.com/geoserver/rest/workspaces/test_ws
< Content-Length: 0
< Content-Type: text/plain
<

* Connection #0 to host www.example.com left intact
Successful cURL request to http://www.example.com/geoserver/rest/workspaces

* Closing connection #0

If the cURL request fails, a code other than 201 will be returned. Here are some possible values:

Code Meaning
0 Couldn’t resolve host; possibly a typo in host name
201 Successful POST
30x Redirect; possibly a typo in the URL
401 Invalid username or password
405 Method not Allowed: check request syntax
500 GeoServer is unable to process the request, e.g. the workspace already exists, the XML is

malformed, . . .

For other codes see cURL Error Codes and HTTP Codes.

GET with PHP/cURL

The script above can be modified to perform a GET request to obtain the names of all workspaces by
replacing the code blocks for required settings, data and return code with the following:

520 Chapter 3. Table of contents

https://curl.haxx.se/libcurl/c/libcurl-errors.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

GeoNode Documentation, Release 2.8

<?php
// Required GET request settings
// curl_setopt($ch, CURLOPT_GET, True); // CURLOPT_GET is True by default

//GET data
curl_setopt($ch, CURLOPT_HTTPHEADER, array("Accept: application/xml"));

//GET return code
$successCode = 200;

?>

The logfile should now include lines like:

> GET /geoserver/rest/workspaces HTTP/1.1

< HTTP/1.1 200 OK

DELETE with PHP/cURL

To delete the (empty) workspace we just created, the script is modified as follows:

<?php
$request = "rest/workspaces/test_ws"; // to delete this workspace

?>

<?php
//Required DELETE request settings
curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "DELETE");
$passwordStr = "admin:geoserver"; // replace with your username:password
curl_setopt($ch, CURLOPT_USERPWD, $passwordStr);

//DELETE data
curl_setopt($ch, CURLOPT_HTTPHEADER,

array("Content-type: application/atom+xml"));

//DELETE return code
$successCode = 200;

?>

The log file will include lines like:

> DELETE /geoserver/rest/workspaces/test_ws HTTP/1.1

< HTTP/1.1 200 OK

Python

We are looking for volunteers to flesh out this section with examples.

In the meantime, anyone looking to do python scripting of the GeoServer REST config API should use
gsconfig.py. It is quite capable, and is used in production as part of GeoNode, so examples can be found
in that codebase. Documentation and examples can be found at the section GeoNode’s Ad-Hoc API.

3.2. Tutorials 521

https://github.com/boundlessgeo/gsconfig/wiki
http://geonode.org

GeoNode Documentation, Release 2.8

Java

We are looking for volunteers to flesh out this section with examples.

In the meantime, anyone looking to do Java scripting of the GeoServer REST API should use GeoServer
Manager, a REST client library with minimal dependencies on external libraries.

Another option is gsrcj. This project is a GeoServer REST client written in Java with no extra depen-
dencies on GeoServer/GeoTools, unlike the standard GeoServer REST module. The project has minimal
documentation, but does include a Quickstart.

Ruby

The examples in this section use rest-client, a REST client for Ruby. There is also a project to create a
GeoServer-specific REST client in Ruby: RGeoServer.

Once installed on a system, rest-client can be included in a Ruby script by adding require
'rest-client'.

GET and PUT Settings

Note: In order to execute the example just copy the script content into a test.ruby file and execute
the following command:

$ ruby test.ruby

This example shows how to read the settings using GET, make a change and then use PUT to write the
change to the server.

require 'json'
require 'rest-client'

url = 'http://admin:geoserver@localhost:8080/geoserver/rest/'

get the settings and parse the JSON into a Hash
json_text = RestClient.get(url + 'settings.json')
settings = JSON.parse(json_text)

settings can be found with the appropriate keys
global_settings = settings["global"]
jai_settings = global_settings["jai"]

change a value
jai_settings["allowInterpolation"] = true

put changes back to the server
RestClient.put(url + 'settings, settings.to_json, :content_type => :json)

GeoServer Importer

The Importer extension gives a GeoServer administrator an alternate, more-streamlined method for uploading and
configuring new layers.

522 Chapter 3. Table of contents

https://github.com/geosolutions-it/geoserver-manager/wiki/
https://github.com/geosolutions-it/geoserver-manager/wiki/
http://code.google.com/p/gsrcj/
http://code.google.com/p/gsrcj/wiki/Quickstart
https://github.com/archiloque/rest-client
https://github.com/rnz0/rgeoserver

GeoNode Documentation, Release 2.8

There are two primary advantages to using the Importer over the standard GeoServer data-loading workflow:

1. Supports batch operations (loading and publishing multiple spatial files or database tables in one operation)

2. Creates unique styles for each layer, rather than linking to the same (existing) styles.

This section will discuss the Importer extension.

Installing the Importer extension

The Importer extension is an official extension, available on the GeoServer download page.

1. Download the extension for your version of GeoServer. (If you see an option, select Core.)

Warning: Make sure to match the version of the extension to the version of GeoServer.

2. Extract the archive and copy the contents into the GeoServer WEB-INF/lib directory.

3. Restart GeoServer.

4. To verify that the extension was installed successfully, open the web_admin and look for an Import Data option
in the Data section on the left-side menu.

Fig. 93: Importer extension successfully installed.

For additional information please see the section on Using the Importer extension.

Using the Importer extension

Here are step-by-step instructions to import multiple shapefiles in one operation. For more details on different types
of operations, please see the Importer interface reference

1. Find a directory of shapefiles and copy into your data_directory.

Note: You can always use the Natural Earth Quickstart data for this task.

2. Log in as an administrator and navigate to the Data –> Import Data page.

3.2. Tutorials 523

http://geoserver.org/download
http://www.naturalearthdata.com/downloads/

GeoNode Documentation, Release 2.8

3. For select Spatial Files as the data source.

Fig. 94: Data source

4. Click Browse to navigate to the directory of shapefiles to be imported.

5. The web-based file browser will show as options your home directory, data directory, and the root of your file
system (or drive). In this case, select Data directory

Fig. 95: Directory

6. Back on the main form, select Create new next to Workspace, and enter ne to denote the workspace.

Note: Make sure the Store field reads Create new as well.

Fig. 96: Import target workspace

7. Click Next to start the import process.

8. On the next screen, any layers available for import will be shown.

Note: Non-spatial files will be ignored.

9. In most cases, all files will be ready for import, but if the spatial reference system (SRS) is not recognized, you
will need to manually input this but clicking Advanced

Note: You will need to manually input the SRS if you used the Natural Earth data above. For each layer click
on Advanced and set reprojection to EPSG:4326.

10. Check the box next to each layer you wish to import.

524 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 97: Import layer list

Fig. 98: Advanced import settings

3.2. Tutorials 525

GeoNode Documentation, Release 2.8

Fig. 99: Setting the layers to import

11. When ready, click Import.

Warning: Don’t click Done at this point, otherwise the import will be canceled.

12. The results of the import process will be shown next to each layer.

13. When finished, click Done.

Note: Recent import processes are listed at the bottom of the page. You may wish to visit these pages to check
if any difficulties were encountered during the import process or import additional layers.

Fig. 100: Recent imports

Importer interface reference

The Layer Importer user interface is a component of the GeoServer web interface. You can access it from the
GeoServer web interface by clicking the Import Data link, found on the left side of the screen after logging in.

526 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Data sources page

The front page of the Layer Importer is where the data source and format are set. The following options are displayed:

Choose a data source to import from

Select one of the following data sources to use for the import:

• Spatial Files (see Supported data formats for more details)

• PostGIS database

• Oracle database

• SQL Server database

Fig. 101: Choose a data source

The contents of the next section is dependent on the data source chosen here.

Configure the data source: Spatial Files

There is a single box for selecting a file or directory. Click the Browse link to bring up a file chooser. To select a file,
click on it. To select a directory, click on a directory name to open it and then click OK.

Fig. 102: Spatial file data source

3.2. Tutorials 527

GeoNode Documentation, Release 2.8

Fig. 103: File chooser for selecting spatial files

528 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Configure the data source: PostGIS

Fill out fields for Connection type (Default or JNDI) Host, Port, Database name, Schema, Username to connect with,
and Password.

There are also advanced connection options, which are common to the standard PostGIS store loading procedure. (See
the PostGIS data store page in the GeoServer reference documentation.)

Fig. 104: PostGIS data source connection

Configure the data source: Oracle

The parameter fields for the Oracle import are identical to that of PostGIS. The fields aren’t populated with default
credentials with the exception of the port, which is set to 1521 by default.

Note: This option is only enabled if the Oracle extension is installed.

Fig. 105: Oracle data source connection

3.2. Tutorials 529

GeoNode Documentation, Release 2.8

Configure the data source: SQL Server

The parameter fields for the SQL Server import are identical to that of PostGIS. The fields aren’t populated with
default credentials with the exception of the port, which is set to 4866 by default.

Note: This option is only enabled if the SQL Server extension is installed.

Fig. 106: SQL Server data source connection

Specify the target for the import

This area specifies where in the GeoServer catalog the new data source will be stored. This does not affect file
placement.

Select the name of an existing workspace and store.

Fig. 107: Target workspace and store in GeoServer

Alternately, select Create New and type in a names for a new workspace or store. During the import process, these
will be created.

530 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 108: Creating a new workspace and store

Recent imports

This section will list previous imports, and whether they were successful or not. Items can be removed from this list
with the Remove button, but otherwise cannot be edited.

Fig. 109: Recent imports

When ready to continue to the next page, click Next.

Layer listing page

On the next page will be a list of layers found by the Layer Importer. The layers will be named according to the source
content’s name (file name of database table name). For each entry there will be a Status showing if the source is ready
to be imported.

All layers will be selected for import by default, but can be deselected here by unchecking the box next to each entry.

A common issue during the import process is when a CRS cannot be determined for a given layer. In this case, a
dialog box will display where the CRS can be declared explicitly. Enter the CRS and Click Apply.

When ready to perform the import, click Import.

Each selected layer will be added to the GeoServer catalog inside a new or existing store, and published as a layer.

After the import is complete the status area will refresh showing if the import was successful for each layer. If
successful, a dialog box for previewing the layer will be displayed, with options for Layer Preview (OpenLayers),
Google Earth, and GeoExplorer.

Advanced import settings page

The Advanced link next to each layer will lead to the Advanced import settings page.

On this page, data can be set to be reprojected from one CRS to another during the import process. To enable
reprojection, select the Reprojection box, and enter the source and target CRS.

3.2. Tutorials 531

GeoNode Documentation, Release 2.8

Fig. 110: List of layers to be imported

Fig. 111: Declaring a CRS

Fig. 112: Layers successfully imported

532 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

In addition, on this page attributes can be renamed and their type changed. Click on the Add link under Attribute
Remapping to select the attribute to alter, its type, and its new name. Click Apply when done.

Click Save when finished.

Fig. 113: Advanced layer list page

Supported data formats

The importer supports any format that GeoServer can use a data store or coverage store. These include the most
commonly used formats:

• Shapefile

• GeoTIFF

And a few additional formats:

• CSV

• KML

The following databases are supported:

• PostGIS

• Oracle

• Microsoft SQL Server

3.2. Tutorials 533

GeoNode Documentation, Release 2.8

Note: Oracle and SQL Server require extra drivers to be installed.

• Install instructions for Oracle

• Install instructions for SQL Server

REST API

Importer concepts

The importer REST API is built around a tree of objects representing a single import, structured as follows:

• import

– target workspace

– data

– task (one or more)

* data

* layer

* transformation (one or more)

An import refers to the top level object and is a “session” like entity the state of the entire import. It maintains
information relevant to the import as a whole such as user information, timestamps along with optional information
that is uniform along all tasks, such as a target workspace, the shared input data (e.g., a directory, a database). An
import is made of any number of task objects.

A data is the description of the source data of a import (overall) or a task. In case the import has a global data
definition, this normally refers to an aggregate store such as a directory or a database, and the data associated to the
tasks refers to a single element inside such aggregation, such as a single file or table.

A task represents a unit of work to the importer needed to register one new layer, or alter an existing one, and contains
the following information:

• The data being imported

• The target store that is the destination of the import

• The target layer

• The data of a task, referred to as its source, is the data to be processed as part of the task.

• The transformations that we need to apply to the data before it gets imported

This data comes in a variety of forms including:

• A spatial file (Shapefile, GeoTiff, KML, etc. . .)

• A directory of spatial files

• A table in a spatial database

• A remote location that the server will download data from

A task is classified as either “direct” or “indirect”. A direct task is one in which the data being imported requires no
transformation to be imported. It is imported directly. An example of such a task is one that involves simply importing
an existing Shapefile as is. An indirect task is one that does require a transformation to the original import data.
An example of an indirect task is one that involves importing a Shapefile into an existing PostGIS database. Another

534 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

example of indirect task might involve taking a CSV file as an input, turning a x and y column into a Point, remapping
a string column into a timestamp, and finally import the result into a PostGIS.

REST API Reference

All the imports

/imports

Method Action Status Code/Headers Input Output Parameters
GET Retrieve all imports 200 n/a Import Collection n/a
POST Create a new import 201 with Location header n/a Imports async=false/true

Retrieving the list of all imports

GET /imports

results in:

Status: 200 OK
Content-Type: application/json

{
"imports": [{
"id": 0,
"state": "COMPLETE",
"href": "http://localhost:8080/geoserver/rest/imports/0"

}, {
"id": 1,
"state": "PENDING",
"href": "http://localhost:8080/geoserver/rest/imports/1"

}]
}

Creating a new import

Posting to the /imports path a import JSON object creates a new import session:

Content-Type: application/json

{
"import": {

"targetWorkspace": {
"workspace": {

"name": "scratch"
}

},
"targetStore": {

"dataStore": {

(continues on next page)

3.2. Tutorials 535

GeoNode Documentation, Release 2.8

(continued from previous page)

"name": "shapes"
}

},
"data": {

"type": "file",
"file": "/data/spearfish/archsites.shp"

}
}

}

The parameters are:

Name Optional Description
targetWorkspaceY The target workspace to import to
targetStore Y The target store to import to
data Y The data to be imported

The mere creation does not start the import, but it may automatically populate its tasks depending on the target. For
example, by referring a directory of shapefiles to be importer, the creation will automatically fill in a task to import
each of the shapefiles as a new layer.

The response to the above POST request will be:

Status: 201 Created
Location: http://localhost:8080/geoserver/rest/imports/2
Content-Type: application/json

{
"import": {
"id": 2,
"href": "http://localhost:8080/geoserver/rest/imports/2",
"state": "READY",
"targetWorkspace": {

"workspace": {
"name": "scratch"

}
},
"targetStore": {

"dataStore": {
"name": "shapes",
"type": "PostGIS"

}
},
"data": {

"type": "file",
"format": "Shapefile",
"href": "http://localhost:8080/geoserver/rest/imports/2/data",
"file": "archsites.shp"

},
"tasks": [

{
"id": 0,
"href": "http://localhost:8080/geoserver/rest/imports/2/tasks/0",
"state": "READY"

}
]

(continues on next page)

536 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

}
}

The operation of populating the tasks can require time, especially if done against a large set of files, or against a
“remote” data (more on this later), in this case the POST request can include ?async=true at the end of the URL to
make the importer run it asynchronously. In this case the import will be created in INIT state and will remain in such
state until all the data transfer and task creation operations are completed. In case of failure to fetch data the import
will immediately stop, the state will switch to the INIT_ERROR state, and a error message will appear in the import
context “message” field.

Import object

/imports/<importId>

MethodAction Status
Code/Headers

In-
put

Out-
put

Pa-
ram-
e-
ters

GET Retrieve import with id <importId> 200 n/a Im-
ports

n/a

POST Execute import with id <importId> 204 n/a n/a async=true/false
PUT Create import with proposed id <importId>. If the proposed id is ahead of

the current (next) id, the current id will be advanced. If the proposed id is
less than or equal to the current id, the current will be used. This allows an
external system to dictate the id management.

201
with
Loca-
tion
header

n/a Im-
ports

n/a

DELETERemove import with id <importId> 200 n/a n/a n/a

The representation of a import is the same as the one contained in the import creation response. The execution of a
import can be a long task, as such, it’s possible to add async=true to the request to make it run in a asynchronous
fashion, the client will have to poll the import representation and check when it reaches the “COMPLETE” state.

Data

A import can have a “data” representing the source of the data to be imported. The data can be of different types, in
particular, “file”, “directory”, “mosaic”, “database” and “remote”. During the import initialization the importer will
scan the contents of said resource, and generate import tasks for each data found in it.

Most data types are discussed in the task section, the only type that’s specific to the whole import context is the
“remote” one, that is used to ask the importer to fetch the data from a remote location autonomously, without asking
the client to perform an upload.

The representation of a remote resource looks as follows:

"data": {
"type": "remote",
"location": "ftp://fthost/path/to/importFile.zip",
"username": "user",
"password": "secret",
"domain" : "mydomain"

}

3.2. Tutorials 537

GeoNode Documentation, Release 2.8

The location can be any URI supported by Commons VFS, including HTTP and FTP servers. The username,
password and domain elements are all optional, and required only if the remote server demands an authentication
of sorts. In case the referred file is compressed, it will be unpacked as the download completes, and the tasks will be
created over the result of unpacking.

Tasks

/imports/<importId>/tasks

Method Action Status
Code/Headers

Input Output

GET Retrieve all tasks for import with id <im-
portId>

200 n/a Task Collec-
tion

POST Create a new task 201 with Location
header

Multipart form
data

Tasks

Getting the list of tasks

GET /imports/0/tasks

Results in:

Status: 200 OK
Content-Type: application/json

{
"tasks": [
{

"id": 0,
"href": "http://localhost:8080/geoserver/rest/imports/2/tasks/0",
"state": "READY"

}
]

}

Creating a new task as a file upload

A new task can be created by issuing a POST to imports/<importId>/tasks as a “Content-type:
multipart/form-data” multipart encoded data as defined by RFC 2388. One or more file can be uploaded this way,
and a task will be created for importing them. In case the file being uploaded is a zip file, it will be unzipped on the
server side and treated as a directory of files.

The response to the upload will be the creation of a new task, for example:

Status: 201 Created
Location: http://localhost:8080/geoserver/rest/imports/1/tasks/1
Content-type: application/json

{
"task": {

(continues on next page)

538 Chapter 3. Table of contents

http://commons.apache.org/proper/commons-vfs/filesystems.html
https://www.ietf.org/rfc/rfc2388.txt

GeoNode Documentation, Release 2.8

(continued from previous page)

"id": 1,
"href": "http://localhost:8080/geoserver/rest/imports/2/tasks/1",
"state": "READY",
"updateMode": "CREATE",
"data": {

"type": "file",
"format": "Shapefile",
"href": "http://localhost:8080/geoserver/rest/imports/2/tasks/1/data",
"file": "bugsites.shp"

},
"target": {

"href": "http://localhost:8080/geoserver/rest/imports/2/tasks/1/target",
"dataStore": {

"name": "shapes",
"type": "PostGIS"

}
},
"progress": "http://localhost:8080/geoserver/rest/imports/2/tasks/1/progress",
"layer": {

"name": "bugsites",
"href": "http://localhost:8080/geoserver/rest/imports/2/tasks/1/layer"

},
"transformChain": {

"type": "vector",
"transforms": []

}
}

}

Creating a new task from form upload

This creation mode assumes the POST to imports/<importId>/tasks of form URL encoded data containing
a url parameter:

Content-type: application/x-www-form-urlencoded

url=file:///data/spearfish/

The creation response will be the same as the multipart upload.

Single task resource

/imports/<importId>/task/<taskId>

Method Action Status
Code/Headers

In-
put

Out-
put

GET Retrieve task with id <taskId> within import with id <im-
portId>

200 n/a Task

PUT Modify task with id <taskId> within import with id <im-
portId>

200 Task Task

DELETE Remove task with id <taskId> within import with id <im-
portId>

200 n/a n/a

3.2. Tutorials 539

GeoNode Documentation, Release 2.8

The representation of a task resource is the same one reported in the task creation response.

Updating a task

A PUT request over an existing task can be used to update its representation. The representation can be partial, and
just contains the elements that need to be updated.

The updateMode of a task normally starts as “CREATE”, that is, create the target resource if missing. Other possible
values are “REPLACE”, that is, delete the existing features in the target layer and replace them with the task source
ones, or “APPEND”, to just add the features from the task source into an existing layer.

The following PUT request updates a task from “CREATE” to “APPEND” mode:

Content-Type: application/json

{
"task": {

"updateMode": "APPEND"
}

}

Directory files representation

The following operations are specific to data objects of type directory.

/imports/<importId>/task/<taskId>/data/files

Method Action Status
Code/Headers

In-
put

Out-
put

GET Retrieve the list of files for a task with id <taskId> within import
with id <importId>

200 n/a Task

The response to a GET request will be:

Status: 200 OK
Content-Type: application/json

{
files: [

{
file: "tasmania_cities.shp",
href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/

→˓files/tasmania_cities.shp"
},
{
file: "tasmania_roads.shp",
href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/

→˓files/tasmania_roads.shp"
},
{
file: "tasmania_state_boundaries.shp",
href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/

→˓files/tasmania_state_boundaries.shp"
(continues on next page)

540 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

},
{
file: "tasmania_water_bodies.shp",
href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/

→˓files/tasmania_water_bodies.shp"
}

]
}

/imports/<importId>/task/<taskId>/data/files/<fileId>

Method Action Status
Code/Headers

In-
put

Out-
put

GET Retrieve the file with id <fileId> from the data of a task with id <taskId>
within import with id <importId>

200 n/a Task

DELETERemove a specific file from the task with id <taskId> within import
with id <importId>

200 n/a n/a

Following the links we’ll get to the representation of a single file, notice how in this case a main file can be associate
to sidecar files:

Status: 200 OK
Content-Type: application/json

{
type: "file",
format: "Shapefile",
location: "C:\devel\gs_data\release\data\taz_shapes",
file: "tasmania_cities.shp",
href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/files/

→˓tasmania_cities.shp",
prj: "tasmania_cities.prj",
other: [

"tasmania_cities.dbf",
"tasmania_cities.shx"

]
}

Mosaic extensions

In case the input data is of mosaic type, we have all the attributes typical of a directory, plus support for directly
specifying the timestamp of a particular granule.

In order to specify the timestamp a PUT request can be issued against the granule:

Content-Type: application/json

{
"timestamp": "2004-01-01T00:00:00.000+0000"

}

and the response will be:

3.2. Tutorials 541

GeoNode Documentation, Release 2.8

Status: 200 OK
Content-Type: application/json

{
"type": "file",
"format": "GeoTIFF",
"href": "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/files/bm_

→˓200401.tif",
"location": "/data/bluemarble/mosaic",
"file": "bm_200401.tiff",
"prj": null,
"other": [],
"timestamp": "2004-01-01T00:00:00.000+0000"

}

Database data

The following operations are specific to data objects of type database. At the time or writing, the REST API does
not allow the creation of a database data source, but it can provide a read only description of one that has been created
using the GUI.

/imports/<importId>/tasks/<taskId>/data

MethodAction Status
Code/Headers

In-
put

Output

GET Retrieve the database connection parameters for a
task with id <taskId> within import with id <impor-
tId>

200 n/a List of database connection
parameters and available ta-
bles

Performing a GET on a database type data will result in the following response:

{
type: "database",
format: "PostGIS",
href: "http://localhost:8080/geoserver/rest/imports/0/data",
parameters: {

schema: "public",
fetch size: 1000,
validate connections: true,
Connection timeout: 20,
Primary key metadata table: null,
preparedStatements: true,
database: "gttest",
port: 5432,
passwd: "cite",
min connections: 1,
dbtype: "postgis",
host: "localhost",
Loose bbox: true,
max connections: 10,
user: "cite"

},

(continues on next page)

542 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

tables: [
"geoline",
"geopoint",
"lakes",
"line3d",

]
}

Database table

The following operations are specific to data objects of type table. At the time or writing, the REST API does not
allow the creation of a database data source, but it can provide a read only description of one that has been created
using the GUI. A table description is normally linked to task, and refers to a database data linked to the overall import.

/imports/<importId>/tasks/<taskId>/data

Method Action Status
Code/Headers

In-
put

Output

GET Retrieve the table description for a task with id <taskId>
within import with id <importId>

200 n/a A table repre-
sentation

Performing a GET on a database type data will result in the following response:

{
type: "table",
name: "abc",
format: "PostGIS",
href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data"

}

Task target layer

/imports/<importId>/tasks/<taskId>/layer

The layer defines how the target layer will be created

Method Action Status
Code/Headers

In-
put

Output

GET Retrieve the layer of a task with id <taskId> within import
with id <importId>

200 n/a A layer JSON rep-
resentation

PUT Modify the target layer for a task with id <taskId> within
import with id <importId>

200 Task Task

Requesting the task layer will result in the following:

Status: 200 OK
Content-Type: application/json

(continues on next page)

3.2. Tutorials 543

GeoNode Documentation, Release 2.8

(continued from previous page)

{
layer: {
name: "tasmania_cities",
href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/layer",
title: "tasmania_cities",
originalName: "tasmania_cities",
nativeName: "tasmania_cities",
srs: "EPSG:4326",
bbox: {

minx: 147.2909004483,
miny: -42.85110181689001,
maxx: 147.2911004483,
maxy: -42.85090181689,
crs: "GEOGCS["WGS 84", DATUM["World Geodetic System 1984", SPHEROID[

→˓"WGS 84", 6378137.0, 298.257223563, AUTHORITY["EPSG","7030"]], AUTHORITY["EPSG",
→˓"6326"]], PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]], UNIT["degree", 0.
→˓017453292519943295], AXIS["Geodetic longitude", EAST], AXIS["Geodetic latitude",
→˓NORTH], AUTHORITY["EPSG","4326"]]"

},
attributes: [

{
name: "the_geom",
binding: "com.vividsolutions.jts.geom.MultiPoint"

},
{

name: "CITY_NAME",
binding: "java.lang.String"

},
{

name: "ADMIN_NAME",
binding: "java.lang.String"

},
{

name: "CNTRY_NAME",
binding: "java.lang.String"

},
{

name: "STATUS",
binding: "java.lang.String"

},
{

name: "POP_CLASS",
binding: "java.lang.String"

}
],
style: {

name: "cite_tasmania_cities",
href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/

→˓layer/style"
}

}
}

All the above attributes can be updated using a PUT request. Even if the above representation is similar to the REST
config API, it should not be confused with it, as it does not support all the same properties, in particular the supported
properties are all the ones listed above.

544 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Task transformations

/imports/<importId>/tasks/<taskId>/transforms

MethodAction Status
Code/Headers

Input Output

GET Retrieve the list of transformations of a task with
id <taskId> within import with id <importId>

200 n/a A list of transfro-
mations in JSON
format

POST Create a new transormation and append it inside a
task with id <taskId> within import with id <im-
portId>

201 A JSON transfor-
mation represen-
tation

The transform lo-
cation

Retrieving the transformation list

A GET request for the list of transformations will result in the following response:

Status: 200 OK
Content-Type: application/json

{
"transforms": [
{

"type": "ReprojectTransform",
"href": "http://localhost:8080/geoserver/rest/imports/0/tasks/1/transforms/0",
"source": null,
"target": "EPSG:4326"

},
{

"type": "DateFormatTransform",
"href": "http://localhost:8080/geoserver/rest/imports/0/tasks/1/transforms/1",
"field": "date",
"format": "yyyyMMdd"

}
]

}

Appending a new transformation

Creating a new transformation requires posting a JSON document with a type property identifying the class of the
transformation, plus any extra attribute required by the transformation itself (this is transformation specific, each one
will use a different set of attributes).

The following POST request creates an attribute type remapping:

Content-Type: application/json

{
"type": "AttributeRemapTransform",
"field": "cat",
"target": "java.lang.Integer"

}

3.2. Tutorials 545

GeoNode Documentation, Release 2.8

The response will be:

Status: 201 OK
Location: http://localhost:8080/geoserver/rest/imports/0/tasks/1/transform/2

/imports/<importId>/tasks/<taskId>/transforms/<transformId>

MethodAction Status
Code/Headers

Input Output

GET Retrieve a transformation identified by
<transformId> inside a task with id <taskId>
within import with id <importId>

200 n/a A single
transforma-
tion in JSON
format

PUT Modifies the definition of a transformation
identified by <transformId> inside a task
with id <taskId> within import with id <im-
portId>

200 A JSON transformation repre-
sentation (eventually just the
portion of it that needs to be
modified)

The full
transfor-
mation
representa-
tion

DELETERemoves the transformation identified by
<transformId> inside a task with id <taskId>
within import with id <importId>

200 A JSON transformation repre-
sentation (eventually just the
portion of it that needs to be
modified)

The full
transfor-
mation
representa-
tion

Retrieve a single transformation

Requesting a single transformation by identifier will result in the following response:

Status: 200 OK
Content-Type: application/json

{
"type": "ReprojectTransform",
"href": "http://localhost:8080/geoserver/rest/imports/0/tasks/1/transforms/0",
"source": null,
"target": "EPSG:4326"

}

Modify an existing transformation

Assuming we have a reprojection transformation, and that we need to change the target SRS type, the following PUT
request will do the job:

Content-Type: application/json
{

"type": "ReprojectTransform",
"target": "EPSG:3005"

}

The response will be:

546 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Status: 200 OK
Content-Type: application/json

{
"type": "ReprojectTransform",
"href": "http://localhost:8080/geoserver/rest/imports/0/tasks/1/transform/0",
"source": null,
"target": "EPSG:3005"

}

Transformation reference

AttributeRemapTransform

Remaps a certain field to a given target data type

Parameter Optional Description
field N The name of the field to be remapped
target N The “target” field type, as a fully qualified Java class name

AttributesToPointGeometryTransform

Transforms two numeric fields latField and lngField into a point geometry representation
POINT(lngField,latField), the source fields will be removed.

Parameter Optional Description
latField N The “latitude” field
lngField N The “longitude” field

CreateIndexTransform

For database targets only, creates an index on a given column after importing the data into the database

Parameter Optional Description
field N The field to be indexed

DateFormatTransform

Parses a string representation of a date into a Date/Timestamp object

Pa-
ram-
eter

Op-
tional

Description

field N The field to be parsed
for-
mat

Y A date parsing pattern, setup using the Java SimpleDateFormat syntax. In case it’s missing, a
number of built-in formats will be tried instead (short and full ISO date formats, dates without any
separators).

3.2. Tutorials 547

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

GeoNode Documentation, Release 2.8

IntegerFieldToDateTransform

Takes a integer field and transforms it to a date, interpreting the integer field as a date

Parameter Optional Description
field N The field containing the year information

ReprojectTransform

Reprojects a vector layer from a source CRS to a target CRS

Parame-
ter

Op-
tional

Description

source Y Identifier of the source coordinate reference system (the native one will be used if miss-
ing)

target N Identifier of the target coordinate reference system

GdalTranslateTransform

Applies gdal_translate to a single file raster input. Requires gdal_translate to be inside the PATH used
by the web container running GeoServer.

Param-
eter

Op-
tional

Description

options N Array of options that will be passed to gdal_translate (beside the input and output
names, which are internally managed)

GdalWarpTransform

Applies gdalwarp to a single file raster input. Requires gdalwarp to be inside the PATH used by the web container
running GeoServer.

Param-
eter

Op-
tional

Description

options N Array of options that will be passed to gdalwarp (beside the input and output names,
which are internally managed)

GdalAddoTransform

Applies gdaladdo to a single file raster input. Requires gdaladdo to be inside the PATH used by the web container
running GeoServer.

Parame-
ter

Op-
tional

Description

options N Array of options that will be passed to gdaladdo (beside the input file name, which is
internally managed)

levels N Array of integers with the overview levels that will be passed to gdaladdo

548 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Importer REST API examples

Mass configuring a directory of shapefiles

In order to initiate an import of the c:\data\tasmania directory into the existing tasmania workspace the
following JSON will be POSTed to GeoServer:

{
"import": {

"targetWorkspace": {
"workspace": {

"name": "tasmania"
}

},
"data": {

"type": "directory",
"location": "C:/data/tasmania"

}
}

}

This curl command can be used for the purpose:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @import.json
→˓"http://localhost:8080/geoserver/rest/imports"

The importer will locate the files to be imported, and automatically prepare the tasks, returning the following response:

{
"import": {
"id": 9,
"href": "http://localhost:8080/geoserver/rest/imports/9",
"state": "PENDING",
"archive": false,
"targetWorkspace": {

"workspace": {
"name": "tasmania"

}
},
"data": {

"type": "directory",
"format": "Shapefile",
"location": "C:\\data\\tasmania",
"href": "http://localhost:8080/geoserver/rest/imports/9/data"

},
"tasks": [

{
"id": 0,
"href": "http://localhost:8080/geoserver/rest/imports/9/tasks/0",
"state": "READY"

},
{

"id": 1,
"href": "http://localhost:8080/geoserver/rest/imports/9/tasks/1",
"state": "READY"

},
{

(continues on next page)

3.2. Tutorials 549

GeoNode Documentation, Release 2.8

(continued from previous page)

"id": 2,
"href": "http://localhost:8080/geoserver/rest/imports/9/tasks/2",
"state": "READY"

},
{

"id": 3,
"href": "http://localhost:8080/geoserver/rest/imports/9/tasks/3",
"state": "READY"

}
]

}
}

After checking every task is ready, the import can be initiated by executing a POST on the import resource:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/9"

The resource can then be monitored for progress, and eventually final results:

curl -u admin:geoserver -XGET "http://localhost:8080/geoserver/rest/imports/9"

Which in case of successful import will look like:

{
"import": {
"id": 9,
"href": "http://localhost:8080/geoserver/rest/imports/9",
"state": "COMPLETE",
"archive": false,
"targetWorkspace": {

"workspace": {
"name": "tasmania"

}
},
"data": {

"type": "directory",
"format": "Shapefile",
"location": "C:\\data\\tasmania",
"href": "http://localhost:8080/geoserver/rest/imports/9/data"

},
"tasks": [

{
"id": 0,
"href": "http://localhost:8080/geoserver/rest/imports/9/tasks/0",
"state": "COMPLETE"

},
{

"id": 1,
"href": "http://localhost:8080/geoserver/rest/imports/9/tasks/1",
"state": "COMPLETE"

},
{

"id": 2,
"href": "http://localhost:8080/geoserver/rest/imports/9/tasks/2",
"state": "COMPLETE"

},
{

(continues on next page)

550 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

"id": 3,
"href": "http://localhost:8080/geoserver/rest/imports/9/tasks/3",
"state": "COMPLETE"

}
]

}
}

Configuring a shapefile with no projection information

In this case, let’s assume we have a single shapefile, tasmania_cities.shp, that does not have the ancillary .prj file (the
example is equally good for any case where the prj file contents cannot be matched to an official EPSG code).

We are going to post the following import definition:

{
"import": {

"targetWorkspace": {
"workspace": {

"name": "tasmania"
}

},
"data": {

"type": "file",
"file": "C:/data/tasmania/tasmania_cities.shp"

}
}

}

With the usual curl command:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @import.json
→˓"http://localhost:8080/geoserver/rest/imports"

The response in case the CRS is missing will be:

{
"import": {
"id": 13,
"href": "http://localhost:8080/geoserver/rest/imports/13",
"state": "PENDING",
"archive": false,
"targetWorkspace": {

"workspace": {
"name": "tasmania"

}
},
"data": {

"type": "file",
"format": "Shapefile",
"file": "tasmania_cities.shp"

},
"tasks": [

{
"id": 0,

(continues on next page)

3.2. Tutorials 551

GeoNode Documentation, Release 2.8

(continued from previous page)

"href": "http://localhost:8080/geoserver/rest/imports/13/tasks/0",
"state": "NO_CRS"

}
]

}
}

Drilling down to the task layer, we can see the SRS information is missing:

{
"layer": {
"name": "tasmania_cities",
"href": "http://localhost:8080/geoserver/rest/imports/13/tasks/0/layer",
"title": "tasmania_cities",
"originalName": "tasmania_cities",
"nativeName": "tasmania_cities",
"bbox": {

"minx": 146.2910004483,
"miny": -43.85100181689,
"maxx": 148.2910004483,
"maxy": -41.85100181689

},
"attributes": [

{
"name": "the_geom",
"binding": "com.vividsolutions.jts.geom.MultiPoint"

},
{

"name": "CITY_NAME",
"binding": "java.lang.String"

},
{

"name": "ADMIN_NAME",
"binding": "java.lang.String"

},
{

"name": "CNTRY_NAME",
"binding": "java.lang.String"

},
{

"name": "STATUS",
"binding": "java.lang.String"

},
{

"name": "POP_CLASS",
"binding": "java.lang.String"

}
],
"style": {

"name": "tasmania_tasmania_cities2",
"href": "http://localhost:8080/geoserver/rest/imports/13/tasks/0/layer/style"

}
}

}

The following PUT request will update the SRS:

552 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

curl -u admin:geoserver -XPUT -H "Content-type: application/json" -d @layerUpdate.
→˓json "http://localhost:8080/geoserver/rest/imports/13/tasks/0/layer/"

Where layerUpdate.json is:

{
layer : {

srs: "EPSG:4326"
}

}

Getting the import definition again, we’ll find it ready to execute:

{
"import": {
"id": 13,
"href": "http://localhost:8080/geoserver/rest/imports/13",
"state": "PENDING",
"archive": false,
"targetWorkspace": {

"workspace": {
"name": "tasmania"

}
},
"data": {

"type": "file",
"format": "Shapefile",
"file": "tasmania_cities.shp"

},
"tasks": [

{
"id": 0,
"href": "http://localhost:8080/geoserver/rest/imports/13/tasks/0",
"state": "READY"

}
]

}
}

A POST request will make it execute:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/13"

And eventually succeed:

{
"import": {
"id": 13,
"href": "http://localhost:8080/geoserver/rest/imports/13",
"state": "COMPLETE",
"archive": false,
"targetWorkspace": {

"workspace": {
"name": "tasmania"

}
},
"data": {

(continues on next page)

3.2. Tutorials 553

GeoNode Documentation, Release 2.8

(continued from previous page)

"type": "file",
"format": "Shapefile",
"file": "tasmania_cities.shp"

},
"tasks": [

{
"id": 0,
"href": "http://localhost:8080/geoserver/rest/imports/13/tasks/0",
"state": "COMPLETE"

}
]

}
}

Uploading a CSV file to PostGIS while transforming it

A remote sensing tool is generating CSV files with some locations and measurements, that we want to upload into
PostGIS as a new spatial table. The CSV file looks as follows:

AssetID, SampleTime, Lat, Lon, Value
1, 2015-01-01T10:00:00, 10.00, 62.00, 15.2
1, 2015-01-01T11:00:00, 10.10, 62.11, 30.25
1, 2015-01-01T12:00:00, 10.20, 62.22, 41.2
1, 2015-01-01T13:00:00, 10.31, 62.33, 27.6
1, 2015-01-01T14:00:00, 10.41, 62.45, 12

First, we are going to create a empty import with an existing PostGIS store as the target:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @import.json
→˓"http://localhost:8080/geoserver/rest/imports"

Where import.json is:

{
"import": {

"targetWorkspace": {
"workspace": {

"name": "topp"
}

},
"targetStore": {

"dataStore": {
"name": "gttest"

}
}

}
}

Then, we are going to POST the CSV file to the tasks list, in order to create an import task for it:

curl -u admin:geoserver -F name=test -F filedata=@values.csv "http://localhost:8080/
→˓geoserver/rest/imports/0/tasks"

And we are going to get back a new task definition, with a notification that the CRS is missing:

554 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

{
"task": {
"id": 0,
"href": "http://localhost:8080/geoserver/rest/imports/16/tasks/0",
"state": "NO_CRS",
"updateMode": "CREATE",
"data": {

"type": "file",
"format": "CSV",
"file": "values.csv"

},
"target": {

"href": "http://localhost:8080/geoserver/rest/imports/16/tasks/0/target",
"dataStore": {

"name": "values",
"type": "CSV"

}
},
"progress": "http://localhost:8080/geoserver/rest/imports/16/tasks/0/progress",
"layer": {

"name": "values",
"href": "http://localhost:8080/geoserver/rest/imports/16/tasks/0/layer"

},
"transformChain": {

"type": "vector",
"transforms": [

]
}

}
}

As before, we are going to force the CRS by updating the layer:

curl -u admin:geoserver -XPUT -H "Content-type: application/json" -d @layerUpdate.
→˓json "http://localhost:8080/geoserver/rest/imports/0/tasks/0/layer/"

Where layerUpdate.json is:

{
layer : {

srs: "EPSG:4326"
}

}

Then, we are going to create a transformation mapping the Lat/Lon columns to a point:

{
"type": "AttributesToPointGeometryTransform",
"latField": "Lat",
"lngField": "Lon"

}

The above will be uploaded to GeoServer as follows:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @toPoint.json
→˓"http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"

3.2. Tutorials 555

GeoNode Documentation, Release 2.8

Now the import is ready to run, and we’ll execute it using:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/0"

If all goes well the new layer is created in PostGIS and registered in GeoServer as a new layer.

In case the features in the CSV need to be appended to an existing layer a PUT request against the task might be per-
formed, changing its updateMode from “CREATE” to “APPEND”. Changing it to “REPLACE” instead will preserve
the layer, but remove the old contents and replace them with the newly uploaded ones.

Uploading and optimizing a GeoTiff with ground control points

A data supplier is periodically providing GeoTIFFs that we need to configure in GeoServer. The GeoTIFF is referenced
via Ground Control Points, is organized by stripes, and has no overviews. The objective is to rectify, optimize and
publish it via the importer.

First, we are going to create a empty import with no store as the target:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @import.json
→˓"http://localhost:8080/geoserver/rest/imports"

Where import.json is:

{
"import": {

"targetWorkspace": {
"workspace": {

"name": "sf"
}

}
}

}

Then, we are going to POST the GeoTIFF file to the tasks list, in order to create an import task for it:

curl -u admin:geoserver -F name=test -F filedata=@box_gcp_fixed.tif "http://
→˓localhost:8080/geoserver/rest/imports/0/tasks"

We are then going to append the transformations to rectify (gdalwarp), retile (gdal_translate) and add overviews
(gdaladdo) to it:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @warp.json
→˓"http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"
curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @gtx.json
→˓"http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"
curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @gad.json
→˓"http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"

warp.json is:

{
"type": "GdalWarpTransform",
"options": ["-t_srs", "EPSG:4326"]

}

gtx.json is:

556 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

{
"type": "GdalTranslateTransform",
"options": ["-co", "TILED=YES", "-co", "BLOCKXSIZE=512", "-co", "BLOCKYSIZE=512"]

}

gad.json is:

{
"type": "GdalAddoTransform",
"options": ["-r", "average"],
"levels" : [2, 4, 8, 16]

}

Now the import is ready to run, and we’ll execute it using:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/0"

A new layer box_gcp_fixed layer will appear in GeoServer, with an underlying GeoTIFF file ready for web
serving.

Adding a new granule into an existing mosaic

A data supplier is periodically providing new time based imagery that we need to add into an existing mosaic in
GeoServer. The imagery is in GeoTIFF format, and lacks a good internal structure, which needs to be aligned with the
one into the other images.

First, we are going to create a import with an indication of where the granule is located, and the target store:

curl -u admin:geoserver -XPOST -H “Content-type: application/json” -d @import.json
“http://localhost:8080/geoserver/rest/imports”

Where import.json is:

{
"import": {

"targetWorkspace": {
"workspace": {

"name": "topp"
}

},
"data": {

"type": "file",
"file": "/home/aaime/devel/gisData/ndimensional/data/world/world.200407.

→˓3x5400x2700.tiff"
},
"targetStore": {

"dataStore": {
"name": "bluemarble"

}
}

}
}

We are then going to append the transformations to harmonize the file with the rest of the mosaic:

3.2. Tutorials 557

GeoNode Documentation, Release 2.8

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @gtx.json
→˓"http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"
curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @gad.json
→˓"http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"

gtx.json is:

{
"type": "GdalTranslateTransform",
"options": ["-co", "TILED=YES"]

}

gad.json is:

{
"type": "GdalAddoTransform",
"options": ["-r", "average"],
"levels" : [2, 4, 8, 16, 32, 64, 128]

}

Now the import is ready to run, and we’ll execute it using:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/0"

The new granule will be ingested into the mosaic, and will thus be available for time based requests.

Asynchronously fetching and importing data from a remote server

We assume a remote FTP server contains multiple shapefiles that we need to import in GeoServer as new layers. The
files are large, and the server has much better bandwidth than the client, so it’s best if GeoServer performs the data
fetching on its own.

In this case a asynchronous request using remote data will be the best fit:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @import.json
→˓"http://localhost:8080/geoserver/rest/imports?async=true"

Where import.json is:

{
"import": {

"targetWorkspace": {
"workspace": {

"name": "topp"
}

},
"data": {

"type": "remote",
"location": "ftp://myserver/data/bc_shapefiles",
"username": "dan",
"password": "secret"

}
}

}

558 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

The request will return immediately with an import context in “INIT” state, and it will remain in such state until the
data is fetched and the tasks created. Once the state switches to “PENDING” the import will be ready for execution.
Since there is a lot of shapefiles to process, also the import run will be done in asynchronous mode:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/0?
→˓async=true"

The response will return immediately in this case as well, and the progress can be followed as the tasks in the import
switch state.

GeoNode’s Ad-Hoc API

gsconfig

gsconfig is a python library for manipulating a GeoServer instance via the GeoServer RESTConfig API.

The project is distributed under a MIT License .

Installing

pip install gsconfig

For developers:

git clone git@github.com:boundlessgeo/gsconfig.git
cd gsconfig
python setup.py develop

Getting Help

There is a brief manual at http://boundlessgeo.github.io/gsconfig/ . If you have questions, please ask them on the
GeoServer Users mailing list: http://geoserver.org/comm/ .

Please use the GitHub project at https://github.com/boundlessgeo/gsconfig for any bug reports (and pull requests are
welcome, but please include tests where possible.)

Sample Layer Creation Code

from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8080/geoserver/")
topp = cat.get_workspace("topp")
shapefile_plus_sidecars = shapefile_and_friends("states")
shapefile_and_friends should look on the filesystem to find a shapefile
and related files based on the base path passed in
#
shapefile_plus_sidecars == {
'shp': 'states.shp',
'shx': 'states.shx',
'prj': 'states.prj',
'dbf': 'states.dbf'
}

(continues on next page)

3.2. Tutorials 559

LICENSE.txt
http://boundlessgeo.github.io/gsconfig/
http://geoserver.org/comm/
https://github.com/boundlessgeo/gsconfig

GeoNode Documentation, Release 2.8

(continued from previous page)

'data' is required (there may be a 'schema' alternative later, for creating empty
→˓featuretypes)
'workspace' is optional (GeoServer's default workspace is used by... default)
'name' is required
ft = cat.create_featurestore(name, workspace=topp, data=shapefile_plus_sidecars)

Running Tests

Since the entire purpose of this module is to interact with GeoServer, the test suite is mostly composed of integration
tests. These tests necessarily rely on a running copy of GeoServer, and expect that this GeoServer instance will be
using the default data directory that is included with GeoServer. This data is also included in the GeoServer source
repository as /data/release/. In addition, it is expected that there will be a PostgreSQL database available at
postgres:password@localhost:5432/db. You can test connecting to this database with the psql com-
mand line client by running $ psql -d db -Upostgres -h localhost -p 5432 (you will be prompted
interactively for the password.)

To override the assumed database connection parameters, the following environment variables are supported:

• DATABASE

• DBUSER

• DBPASS

If present, psycopg will be used to verify the database connection prior to running the tests.

If provided, the following environment variables will be used to reset the data directory:

GEOSERVER_HOME Location of git repository to read the clean data from. If only this option is provided git
clean will be used to reset the data.

GEOSERVER_DATA_DIR Optional location of the data directory GeoServer will be running with. If provided,
rsync will be used to reset the data.

GS_VERSION Optional environment variable allowing the catalog test cases to automatically download and start a
vanilla GeoServer WAR form the web. Be sure that there are no running services on HTTP port 8080.

Here are the commands that I use to reset before running the gsconfig tests:

$ cd ~/geoserver/src/web/app/
$ PGUSER=postgres dropdb db
$ PGUSER=postgres createdb db -T template_postgis
$ git clean -dxff -- ../../../data/release/
$ git checkout -f
$ MAVEN_OPTS="-XX:PermSize=128M -Xmx1024M" \
GEOSERVER_DATA_DIR=../../../data/release \
mvn jetty:run

At this point, GeoServer will be running foregrounded, but it will take a few seconds to actually begin listening for
http requests. You can stop it with CTRL-C (but don’t do that until you’ve run the tests!) You can run the gsconfig
tests with the following command:

$ python setup.py test

Instead of restarting GeoServer after each run to reset the data, the following should allow re-running the tests:

560 Chapter 3. Table of contents

https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/Integration_testing

GeoNode Documentation, Release 2.8

$ git clean -dxff -- ../../../data/release/
$ curl -XPOST --user admin:geoserver http://localhost:8080/geoserver/rest/reload

More Examples - Updated for GeoServer 2.4+

Loading the GeoServer catalog using gsconfig is quite easy. The example below allows you to connect to
GeoServer by specifying custom credentials.

from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8080/geoserver/rest/", "admin", "geoserver")

The code below allows you to create a FeatureType from a Shapefile

geosolutions = cat.get_workspace("geosolutions")
import geoserver.util
shapefile_plus_sidecars = geoserver.util.shapefile_and_friends("C:/work/gsconfig/test/
→˓data/states")
shapefile_and_friends should look on the filesystem to find a shapefile
and related files based on the base path passed in
#
shapefile_plus_sidecars == {
'shp': 'states.shp',
'shx': 'states.shx',
'prj': 'states.prj',
'dbf': 'states.dbf'
}
'data' is required (there may be a 'schema' alternative later, for creating empty
→˓featuretypes)
'workspace' is optional (GeoServer's default workspace is used by... default)
'name' is required
ft = cat.create_featurestore("test", shapefile_plus_sidecars, geosolutions)

It is possible to create JDBC Virtual Layers too. The code below allow to create a new SQL View called
my_jdbc_vt_test defined by a custom sql.

from geoserver.catalog import Catalog
from geoserver.support import JDBCVirtualTable, JDBCVirtualTableGeometry,
→˓JDBCVirtualTableParam

cat = Catalog('http://localhost:8080/geoserver/rest/', 'admin', '****')
store = cat.get_store('postgis-geoserver')
geom = JDBCVirtualTableGeometry('newgeom','LineString','4326')
ft_name = 'my_jdbc_vt_test'
epsg_code = 'EPSG:4326'
sql = 'select ST_MakeLine(wkb_geometry ORDER BY waypoint) As newgeom, assetid,
→˓runtime from waypoints group by assetid,runtime'
keyColumn = None
parameters = None

jdbc_vt = JDBCVirtualTable(ft_name, sql, 'false', geom, keyColumn, parameters)
ft = cat.publish_featuretype(ft_name, store, epsg_code, jdbc_virtual_table=jdbc_vt)

This example shows how to easily update a layer property. The same approach may be used with every catalog
resource

3.2. Tutorials 561

GeoNode Documentation, Release 2.8

ne_shaded = cat.get_layer("ne_shaded")
ne_shaded.enabled=True
cat.save(ne_shaded)
cat.reload()

Deleting a store from the catalog requires to purge all the associated layers first. This can be done by doing
something like this:

st = cat.get_store("ne_shaded")
cat.delete(ne_shaded)
cat.reload()
cat.delete(st)
cat.reload()

There are some functionalities allowing to manage the ImageMosaic coverages. It is possible to create new Image-
Mosaics, add granules to them, and also read the coverages metadata, modify the mosaic Dimensions and finally
query the mosaic granules and list their properties.

The gsconfig methods map the REST APIs for ImageMosaic

In order to create a new ImageMosaic layer, you can prepare a zip file containing the properties files for the mosaic
configuration. Refer to the GeoTools ImageMosaic Plugin guide in order to get details on the mosaic configura-
tion. The package contains an already configured zip file with two granules. You need to update or remove the
datastore.properties file before creating the mosaic otherwise you will get an exception.

from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8180/geoserver/rest")
cat.create_imagemosaic("NOAAWW3_NCOMultiGrid_WIND_test", "NOAAWW3_NCOMultiGrid_WIND_
→˓test.zip")

By default the cat.create_imagemosaic tries to configure the layer too. If you want to create the store only,
you can specify the following parameter

cat.create_imagemosaic("NOAAWW3_NCOMultiGrid_WIND_test", "NOAAWW3_NCOMultiGrid_WIND_
→˓test.zip", "none")

In order to retrieve from the catalog the ImageMosaic coverage store you can do this

store = cat.get_store("NOAAWW3_NCOMultiGrid_WIND_test")

It is possible to add more granules to the mosaic at runtime. With the following method you can add granules already
present on the machine local path.

cat.harvest_externalgranule("file://D:/Work/apache-tomcat-6.0.16/instances/data/data/
→˓MetOc/NOAAWW3/20131001/WIND/NOAAWW3_NCOMultiGrid__WIND_000_20131001T000000.tif",
→˓store)

The method below allows to send granules remotely via POST to the ImageMosaic. The granules will be uploaded
and stored on the ImageMosaic index folder.

cat.harvest_uploadgranule("NOAAWW3_NCOMultiGrid__WIND_000_20131002T000000.zip", store)

To delete an ImageMosaic store, you can follow the standard approach, by deleting the layers first. ATTENTION:
at this time you need to manually cleanup the data directory from the mosaic granules and, in case you used a DB
datastore, you must also drop the mosaic tables.

562 Chapter 3. Table of contents

http://docs.geoserver.org/stable/en/user/rest/examples/curl.html#uploading-and-modifying-a-image-mosaic

GeoNode Documentation, Release 2.8

layer = cat.get_layer("NOAAWW3_NCOMultiGrid_WIND_test")
cat.delete(layer)
cat.reload()
cat.delete(store)
cat.reload()

The method below allows you the load and update the coverage metadata of the ImageMosaic. You need to do this for
every coverage of the ImageMosaic of course.

coverage = cat.get_resource_by_url("http://localhost:8180/geoserver/rest/workspaces/
→˓natocmre/coveragestores/NOAAWW3_NCOMultiGrid_WIND_test/coverages/NOAAWW3_
→˓NCOMultiGrid_WIND_test.xml")
coverage.supported_formats = ['GEOTIFF']
cat.save(coverage)

By default the ImageMosaic layer has not the coverage dimensions configured. It is possible using the coverage
metadata to update and manage the coverage dimensions. ATTENTION: notice that the presentation parameters
accepts only one among the following values {‘LIST’, ‘DISCRETE_INTERVAL’, ‘CONTINUOUS_INTERVAL’}

from geoserver.support import DimensionInfo
timeInfo = DimensionInfo("time", "true", "LIST", None, "ISO8601", None)
coverage.metadata = ({'dirName':'NOAAWW3_NCOMultiGrid_WIND_test_NOAAWW3_NCOMultiGrid_
→˓WIND_test', 'time': timeInfo})
cat.save(coverage)

One the ImageMosaic has been configures, it is possible to read the coverages along with their granule schema and
granule info.

from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8180/geoserver/rest")
store = cat.get_store("NOAAWW3_NCOMultiGrid_WIND_test")
coverages = cat.mosaic_coverages(store)
schema = cat.mosaic_coverage_schema(coverages['coverages']['coverage'][0]['name'],
→˓store)
granules = cat.mosaic_granules(coverages['coverages']['coverage'][0]['name'], store)

The granules details can be easily read by doing something like this:

granules['crs']['properties']['name']
granules['features']
granules['features'][0]['properties']['time']
granules['features'][0]['properties']['location']
granules['features'][0]['properties']['run']

When the mosaic grows up and starts having a huge set of granules, you may need to filter the granules query through
a CQL filter on the coverage schema attributes.

granules = cat.mosaic_granules(coverages['coverages']['coverage'][0]['name'], store,
→˓"time >= '2013-10-01T03:00:00.000Z'")
granules = cat.mosaic_granules(coverages['coverages']['coverage'][0]['name'], store,
→˓"time >= '2013-10-01T03:00:00.000Z' AND run = 0")
granules = cat.mosaic_granules(coverages['coverages']['coverage'][0]['name'], store,
→˓"location LIKE '%20131002T000000.tif'")

3.2. Tutorials 563

GeoNode Documentation, Release 2.8

gsimporter

gsimporter is a python library for using GeoServer’s importer API.

Installing

pip install gsconfig

or

git clone https://github.com/boundlessgeo/gsimporter cd gsimporter pip install .

Getting Help

Please use the GitHub project at https://github.com/boundlessgeo/gsimporter for any bug reports (and pull requests are
welcome, but please include tests where possible.)

Running Tests

The tests are integration tests. These require having a running GeoServer instance with the community/importer
modules installed. Because some of the tests use a PostgreSQL database, a data base is required to run. It is strongly
advised to run with a data directory you don’t care about.

The test suite will first attempt to verify a connection to GeoServer and a connection to the database. If the default
values are not appropriate, provide them via environment variables on the command line or via export. For example:

GEOSERVER_BASE_URL=http://localhost:8080 python setup.py test

A convenient way to deal with connection or other settings (besides setting things up to use the defaults) is to put them
all in a bash (or other shell) script.

The tests are designed to create a workspace named importer and importer2 for use in testing. importer will be set to
the default workspace. As much as possible, things are cleaned up after test execution.

To run all of the tests, one way is via setup.py. python setup.py test should do the trick.

If developing and finer grained control is desired, specific tests and other flags can be provided using python
test/uploadtests.py. Supported arguments are:

• –clean delete layers and stores in the test workspaces. Useful for cleanup.

• –skip-teardown don’t delete things after running. May cause errors but useful for a single test.

To run a single case (or drop the method name to run the whole class):

python test/uploadtests.py ErrorTests.test_invalid_file

3.2.1.5.8 Testing in GeoNode

The community encourages Test Driven Development (TDD) and the contribution of new tests to extend test coverage.
Ideally every model, view, and utility should be covered by tests.

GeoNode has Unit, Integration and Javascript tests. The Unit tests are located in the tests file of every Django app
(Maps, Layers, Documents, Catalogue, Search, Security etc).

564 Chapter 3. Table of contents

https://github.com/boundlessgeo/gsimporter
https://github.com/boundlessgeo/gsimporter

GeoNode Documentation, Release 2.8

The Integration, CSW and smoke tests are located under the tests folder).

Warning: The tests are meant to be ran using the SQLite database, some of them may fail using PostgreSQL or
others. Therefore remove or rename your local_settings.py file before running the tests.

If running them in development mode make sure to have the jetty server shut down otherwise the test could get
stuck. To make sure it is run:

$ paver stop

Unit Tests

To run the unit tests make sure you have the virtualenv active (if running GeoNode under virtualenv) then run:

$ paver test # or python setup.py test when testing development versions

This will produce a detailed test report.

It’s possible to run just specific apps tests by using the Django command:

$ python manage.py test app/tests.py

For example:

$ python manage.py test geonode.maps.tests

To run a single test case or method (omit the method name to run the whole class), for example:

$ python manage.py test geonode.maps.tests:MapsTest.test_maps_search

These tests are based on the Python/Django unit test suite.

Integration Tests

To run the unit tests make sure you have the virtualenv active (if running GeoNode under virtualenv) then run:

$ paver test_integration # or python setup.py test_integration when testing
→˓development versions

To run the CSW integration test run:

$ paver test_integration -n geonode.tests.csw

Like the unit tests above, it is also possible to test specific modules, for example:

$ paver test_integration -n geonode.tests.integration:GeoNodeMapTest.test_
→˓search_result_detail

To test with with coverage:

$ python manage.py test geonode.maps.tests -- --with-coverage --cover-
→˓package=geonode.maps

These tests are based on the Python/Django unit test suite.

3.2. Tutorials 565

GeoNode Documentation, Release 2.8

Javascript Tests

Note: Javascript tests has been currently disabled in GeoNode. There is a plan to improve and re-enable them in the
future.

3.2.1.5.9 Pavement.py and Paver

Paver is a python module that automates repetitive tasks like running documentation generators, moving files around,
testing and downloading things using the convenience of Python’s syntax and massive library of code. GeoNode
comes with several paver tasks which save administrators and developers from having to manually perform repetitive
operations from the command line. The tasks are stored in the pavement.py file in your GeoNode root directory and
can be run with `paver <task_name>` from that directory.

Pavement Tasks

Here’s a list of Pavement tasks maintained by the GeoNode development team.

deb

`paver deb`

Creates Debian packages.

Use the key option (or its shorter version -k) to specify the GPG key to sign the package with.

Use the ppa option (or its shorter version -p) to specify the PPA the package should be published to.

package

`paver package`

Creates a distributable tarball for GeoNode.

reset

`paver reset`

Resets the GeoNode development environment by deleting the development database and re-deploying the GeoServer
data directory.

reset_hard

`paver reset_hard`

Cleans the local GeoNode git repository and removes untracked directories.

566 Chapter 3. Table of contents

http://pythonhosted.org/Paver/

GeoNode Documentation, Release 2.8

test

`paver test`

Runs the GeoNode unit tests.

test_integration

`paver test_integration`

Runs the GeoNode integration tests.

setup

`paver setup`

Installs GeoNode’s Python dependencies using pip.

setup_data

`paver setup_data`

Loads sample GIS data from the gisdata python package.

Use the type option (or its shorter version -t) to only import a specific data type. Supported types are “vector”,
“raster”, and “time.”

setup_geoserver

`paver setup_geoserver`

Downloads GeoServer and the Jetty Runner and then moves the GeoServer data directory to the correct location.

start

`paver start`

Starts the GeoNode development web server and GeoServer.

start_django

`paver start_django`

Starts the GeoNode development web server on the local machine.

Use the bind option (or its shorter version -b) to bind the development server to a specific IP address and port
number.

3.2. Tutorials 567

GeoNode Documentation, Release 2.8

start_geoserver

`paver start_geoserver`

Runs the local GeoServer using Jetty.

stop

`paver stop`

Stops the GeoNode development web server and GeoServer.

stop_django

`paver stop_django`

Stops the GeoNode development web server.

stop_geoserver

`paver stop_geoserver`

Stops GeoServer.

sync

`paver sync`

Synchronizes the database according the GeoNode models and loads the GeoNode sample data.

static

`paver static`

Note: This task requires the Node Package Manager to be installed.

Downloads and installs GeoNode’s static file dependencies and creates the production assets.

upgrade_db

`paver upgrade_db`

Updates database schemas from legacy GeoNode versions.

Use the version option (or its shorter version -v) to specify the GeoNode version when running this task.

568 Chapter 3. Table of contents

https://www.npmjs.com/

GeoNode Documentation, Release 2.8

3.2.1.5.10 Introduction to GeoNode Projects

GeoNode enables you to set up a complete site simply by installing the packages and adding your data. If you want
to create your own project based on GeoNode, there are a several options available that enable you to customize the
look and feel of your GeoNode site. You can add additional modules that are necessary for your own use case and to
integrate your GeoNode project with other external sites and services.

This module assumes that you have installed a GeoNode site with the Ubuntu Packages and that you have a working
GeoNode based on that setup. If you want to follow this same methodology on a different platform, you can follow
this module and adapt as necessary for your environment.

Overview

GeoNode is an out-of-the-box, full-featured Spatial Data Infrastructure solution, but many GeoNode implementations
require either customization of the default site or the use of additional modules, whether they be third-party Django
Pluggables or modules developed by a GeoNode implementer.

There are quite a few existing Downstream GeoNode projects some of which follow the methodology described in this
module. You should familiarize yourself with these projects and how and why they extend GeoNode. You should also
carefully think about what customization and additional modules you need for your own GeoNode-based project and
research the options that are available to you. The Django Packages site is a great place to start looking for existing
modules that may meet your needs.

Existing downstream GeoNode projects

• Harvard Worldmap

• MapStory

• Risiko/SAFE

• MetroBoston DataCommon

• WFP GeoNode

• ADRIPLAN

• ROGUE GeoNode

Django template projects

GeoNode follows the Django template projects paradigm introduced in Django 1.4. At a minimum, a Django project
consists of a settings.py file and a urls.py file; Django apps are used to add specific pieces of functionality.
The GeoNode development team has created a template project which contains these required files with all the GeoN-
ode configuration you need to get up and running with your own GeoNode project. If you would like learn more about
Django projects and apps, you should consult the Django Documentation

3.2.1.5.11 Make a GeoNode release

Making a GeoNode release requires a quite complex preparation of the environment while once everything is set up
is a really easy and quick task. As said the complex part is the preparation of the environment since it involves, the
generation of a password key to be uploaded to the Ubuntu servers and imported in launchpad.

If you have already prepared the environment then jump to the last paragraph.

3.2. Tutorials 569

https://djangopackages.org/
https://github.com/cga-harvard/cga-worldmap
https://github.com/MapStory/mapstory
http://metroboston.datacommon.org/
http://geonode.wfp.org/
https://github.com/CNR-ISMAR/adriplan
https://github.com/ROGUE-JCTD/geonode
https://docs.djangoproject.com/en/1.8/

GeoNode Documentation, Release 2.8

Before start, make sure to have a pypi and a launchpad account.

Before doing the release, a GeoNode team member who can already make release has to add you as a launchpad
GeoNode team member.

Creating and importing a gpg key

A GPG key is needed to push and publish the package. There is a complete guide on how to create and import a GPG
key

Preparing the environment

Make sure to have a Ubuntu 12.04 machine. Install the following packages in addition to the python virtualenv tools:

$ sudo apt-get install git-core git-buildpackage dbhelper devscripts

Get the GeoNode code (from master) in a virtualenv:

$ mkvirtualenv geonode
$ git clone https://github.com/GeoNode/geonode.git
$ cd geonode

Edit the .bashrc file and add the following lines (the key ID can be found in “your personal keys” tab:

export GPG_KEY_GEONODE="your_gpg_key_id"
export DEBEMAIL=yourmail@mail.com
export EDITOR=vim
export DEBFULLNAME="Your Full Name"

then close and:

$ source .bashrc

Type “env” to make sure all the variables are correctly exported

Set the correct git email:

$ git config --global user.email "yourmail@mail.com"

Register your credentials:

$ python setup.py register

Make the release

The followings are the only commands needed if the environment and the various registrations have already been done.

Make sure to have pulled the master to the desired commit. Edit the file geonode/__init__.py at line 21 and set the
correct version.

Install GeoNode in the virtualenv (make sure to have the virtualenv activated and be in the geonode folder):

$ pip install -e geonode

Publish the package:

570 Chapter 3. Table of contents

https://pypi.python.org/pypi
https://launchpad.net/
https://help.launchpad.net/YourAccount/ImportingYourPGPKey

GeoNode Documentation, Release 2.8

$ cd geonode
$ paver publish

The last command will:

• Tag the release and push it to GitHub

• Create the debian package and push it at ppa:geonode/testing in launchpad

• Create the .tar.gz sources and push them to Pypi

• Update the changelog and commit it to master

Introduction to GeoNode development This module will introduce you to the components that GeoNode is built with,
the standards that it supports and the services it provides based on those standards, and an overview its architec-
ture.

Pavement.py and Paver Here’s a list of Pavement tasks maintained by the GeoNode development team.

Django Overview This section introduces some basic concepts of Django, the Python based web framework on top
of which GeoNode has been developed.

Django’s primary goal is to ease the creation of complex, database-driven websites. Django emphasizes reusabil-
ity and “pluggability” of components, rapid development, and the principle of don’t repeat yourself. Python is
used throughout, even for settings, files, and data models.

Django also provides an optional administrative create, read, update and delete interface that is generated dy-
namically through introspection and configured via admin models.

Development Prerequisites and Core Modules This module will introduce you to the basic tools and skills required
to start actively developing GeoNode.

install_devmode This module shows a step-by-step guide for the setup of a GeoNode Development Environment on
an Ubuntu system.

For other Linux distributions the commands are similar, the difference is mainly on the packages names.

Note: For Windows: (Windows Binary Installer)

GeoNode debugging techniques GeoNode can be difficult to debug as there are several different components in-
volved. This module shows some techniques to debug the different parts of GeoNode.

GeoNode APIs This module provides an overview of the core modules and libraries used by GeoNode and teach to
the user how to use them through some guided examples.

Testing in GeoNode This section explain how to run the tests on GeoNode.

Introduction to GeoNode Projects GeoNode enables you to set up a complete site simply by installing the packages
and adding your data.

If you want to create your own project based on GeoNode, there are a several options available that enable you
to customize the look and feel of your GeoNode site.

You can add additional modules that are necessary for your own use case and to integrate your GeoNode project
with other external sites and services.

Make a GeoNode release Making a GeoNode release.

3.2. Tutorials 571

GeoNode Documentation, Release 2.8

3.2.1.6 Advanced Workshop

Welcome to the GeoNode Training Advanced Workshop documentation v2.8.

This module introduces advanced techniques and methodologies for the management of the geospatial data and the
maintenance and tuning of the servers on Production Environments.

The last sections of the module will teach also you how to add brand new classes and functionalities to your GeoNode
installation.

Prerequisites You should be familiar with GeoNode, GeoServer, Python framework and development concepts other
than with system administrator and caching concepts and techniques.

3.2.1.6.1 Advanced Data Management and Processing

Warning: Some parts of this section have been taken from the GeoServer project and training documentation.

Loading OSM Data into GeoNode

In this section, we will walk through the steps necessary to load OSM data into your GeoNode project. As discussed
in previous sections, your GeoNode already uses OSM tiles from MapQuest and the main OSM servers as some of the
available base layers. This session is specifically about extracting actual data from OSM and converting it for use in
your project and potentially for Geoprocessing tasks.

The first step in this process is to get the data from OSM. We will be using the OSM Overpass API since it lets us do
more complex queries than the OSM API itself. You should refer to the OSM Overpass API documentation to learn
about all of its features. It is an extremely powerful API that lets you extract data from OSM using a very sophisticated
API.

• http://wiki.openstreetmap.org/wiki/Overpass_API

• http://wiki.openstreetmap.org/wiki/Overpass_API/Language_Guide

In this example, we will be extracting building footprint data around Port au Prince in Haiti. To do this we will
use an interactive tool that makes it easy construct a Query against the Overpass API. Point your browser at http:
//overpass-turbo.eu/ and use the search tools to zoom into Port Au Prince and Cité Soleil specifically.

You will need to cut and paste the query specified below to get all of the appropriate data under the bounding box:

<osm-script>
<union into="_">
<bbox-query {{bbox}}/>
<recurse into="x" type="node-relation"/>
<query type="way">

<bbox-query {{bbox}}/>
<has-kv k="building" v="yes"></has-kv>

</query>
<recurse into="x" type="way-node"/>
<recurse type="way-relation"/>

</union>
<print mode="meta"/>

</osm-script>

This should look like the following.

When you have the bounding box and query set correctly, click the “Export” button on the menu to bring up the export
menu, and then click the API interpreter link to download the OSM data base on the query you have specified.

572 Chapter 3. Table of contents

http://geoserver.org
http://wiki.openstreetmap.org/wiki/Overpass_API
http://wiki.openstreetmap.org/wiki/Overpass_API/Language_Guide
http://overpass-turbo.eu/
http://overpass-turbo.eu/

GeoNode Documentation, Release 2.8

This will download a file named ‘export.osm’ on your file system. You will probably want to rename it something else
more specific. You can do that by issuing the following command in the directory where it was downloaded:

$ mv export.osm cite_soleil_buildings.osm

Note: You can also rename the file in your Operating Systems File management tool (Windows Explorer, Finder etc).

Exporting OSM data to shapefile using QGIS

Now that we have OSM data on our filesystem, we will need to convert it into a format suitable for uploading into
your GeoNode. There are many ways to accomplish this, but for purposes of this example, we will use an OSM QGIS
plugin that makes if fairly easy. Please consult the wiki page that explains how to install this plugin and make sure it
is installed in your QGIS instance. Once its installed, you can use the Web Menu to load your file.

This will bring up a dialog box that you can use to find and convert the OSM file we downloaded.

When the process has completed, you will see your layers in the Layer Tree in QGIS.

Since we are only interested in the polygons, we can turn the other 2 layers off in the Layer Tree.

The next step is to use QGIS to convert this layer into a Shapefile so we can upload it into GeoNode. To do this, select
the layer in the Layer tree, right click and then select the Save As option.

This will bring up the Save Vector Layer as Dialog.

Specify where on disk you want your file saved, and hit Save then OK.

You now have a shapefile of the data you extracted from OSM that you can use to load into GeoNode. Use the
GeoNode Layer Upload form to load the Shapefile parts into your GeoNode, and optionally edit the metadata and then
you can view your layer in the Layer Info page in your geonode.

Note: You may want to switch to an imagery layer in order to more easily see the buildings on the OSM background.

3.2. Tutorials 573

GeoNode Documentation, Release 2.8

574 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 575

GeoNode Documentation, Release 2.8

576 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 577

GeoNode Documentation, Release 2.8

578 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 579

GeoNode Documentation, Release 2.8

Exporting OSM data to shapefile using GDAL

An alternative way to export the .osm file to a shapefile is to use ogr2ogr combined with the GDAL osm driver,
available from GDAL version 1.10.

As a first step, inspect how the GDAL OSM driver sees the .osm file using the ogrinfo command:

$ ogrinfo cite_soleil_buildings.osm
Had to open data source read-only.
INFO: Open of `cite_soleil_buildings.osm'

using driver `OSM' successful.
1: points (Point)
2: lines (Line String)
3: multilinestrings (Multi Line String)
4: multipolygons (Multi Polygon)
5: other_relations (Geometry Collection)

ogrinfo has detected 5 different geometric layers inside the OSM data source. As we are just interested in the buildings,
you will just export the multipolygons layer to a new shapefile using the GDAL ogr2ogr command utility:

$ ogr2ogr cite_soleil_buildings cite_soleil_buildings.osm multipolygons

Now you can upload the shapefile to GeoNode using the GeoNode Upload form in the same manner as you did in the
previous section.

Using GeoGig to load OSM Data into Manage OSM Data

Another alternative for working with OSM data in your GeoNode is to use GeoGig. GeoGig is a tool that draws
inspiration from Git but adapts its core concepts to handle distributed versioning of geospatial data. GeoGig allows
you to load OpenStreetMap data into a repository on your server and either export that data into PostGIS for use in
your GeoNode, or configure the GeoGig GeoServer extension and expose the repo directly from GeoServer. An article
about this process can be found on the Boundless Geo Blog, and will be described below. Much of the impetus for
GeoGig came from the ROGUE JCTD and the technology has been incorporated into Boundless Exchange.

Much more information about how to perform the steps below can be found in the GeoGig documentation page on
Using GeoGig with OpenStreetMap data. The instructions that follow are only a brief overview of the process.

Getting Started

You will first need to install the GeoGig command line tools. These can be found on the projects SourceForge page.
Follow the instructions contained in the installation file in order to install the CLI tools on your GeoNode server. Once
you have the tools installed and added to your path, the geogig command should be available:

$ geogig --version
Project Version : 1.0-SNAPSHOT

Build Time : December 18, 2014 at 03:59:10 UTC
Build User Name : Unknown
Build User Email : Unknown

Git Branch : master
Git Commit ID : a4a80a8dd853dfe497729b35399594947866e8ae

Git Commit Time : December 18, 2014 at 03:44:24 UTC
Git Commit Author Name : Gabriel Roldan

Git Commit Author Email : gabriel.roldan@gmail.com
Git Commit Message : Synchronize DefaultPlatform.getTempDir() to avoid false

→˓precondition check on concurrent access.

580 Chapter 3. Table of contents

http://www.gdal.org/ogr2ogr.html
http://www.gdal.org/drv_osm.html
http://geogig.org/
https://boundlessgeo.com/2014/03/geogit-and-openstreetmap-for-yolanda/
https://boundlessgeo.com/boundless-exchange/
http://geogig.org/docs/interaction/osm.html
https://sourceforge.net/projects/geogig/files/latest/download

GeoNode Documentation, Release 2.8

Once the GeoGig command is available, you will need to create an empty repository to hold your data. Change
directories to a suitable location on your servers filesystem and issue the following command substituting my_repo for
whatever name you choose:

$ cd /somewhere/on/file/system
$ mkdir my_repo
$ geogig init
Initialized empty Geogig repository in /somewhere/on/filesystem/my_repo/.geogig

Loading OSM Data into your Repository

Now that you have an empty repository to store our data, the next step is to load the current snapshot of OSM data into
your repository using the geogig osm download command. At a minimum, you will want to use a bounding box filter
to limit the downloaded data to the area of interest for your geonode installation. The example below is a bounding
box that encompasses the country of Malawi. More information about the GeoGig OSM download command can be
found in the geogig docs.:

$ geogig osm download --bbox -17.129459 32.668991 -9.364680 35.920441 --saveto ./mw-
→˓osm-temp --keep-files

Connecting to http://overpass-api.de/api/interpreter...

Downloaded data will be kept in /somewhere/on/filesystem/my_repo/./mw-osm-temp

Importing into GeoGig repo...
1,164,420
1,164,420 entities processed in 5.892 min

Building trees for [node, way]

Trees built in 7.614 s
0%
Staging features...
100%

Committing features...
100%
Processed entities: 1,164,420.
Nodes: 1,091,572.
Ways: 72,848

GeoGig stores data in trees which are basically equivalent to layers in a normal geospatial context. At this point in the
process, your repo contains 2 trees for ways and nodes from OSM. In order to convert these into layers that may be
more familiar to your users like roads, buildings or medical facilities, you will need to apply a mapping that filters the
complete list of nodes and ways and converts the tags into attributes. There are a great set of sample mappings in the
US State Departments CyberGIS project. You can find them at this link. You should clone this repository along side
your GeoGig repository and then apply them as shown below:

$ geogig osm map ../cybergis-osm-mappings/mappings/basic/buildings_and_roads.json

$ geogig osm map ../cybergis-osm-mappings/mappings/health/medical_centers.json

$ geogig osm map ../cybergis-osm-mappings/mappings/education/schools.json

Now you can inspect the repository using the following commands:

3.2. Tutorials 581

http://geogig.org/manpages/osmdownload.html
https://github.com/state-hiu/cybergis-osm-mappings/tree/master/mappings

GeoNode Documentation, Release 2.8

$ geogig ls-tree
osm_roads
osm_buildings
node
way

$ geogig show osm_roads
TREE ID: 596a4f39ab9fadcbba6ffcaf5c135e29c2bc67d3
SIZE: 20288
NUMBER Of SUBTREES: 0
DEFAULT FEATURE TYPE ID: 0f7cbc6c114727858fb50668eb8a4448667bdc12

DEFAULT FEATURE TYPE ATTRIBUTES
id: <LONG>
geom: <LINESTRING>
status: <STRING>
media: <STRING>
name: <STRING>
ref: <STRING>
highway: <STRING>
lanes: <STRING>
oneway: <STRING>
surface: <STRING>
access: <STRING>
source: <STRING>
motor_vehicle: <STRING>
nodes: <STRING>

Updating the OSM Data in your Repository

As OpenStreetMap is a constantly changing dataset, you will want to periodically update your repo with the latest
changes from OSM. GeoGig provides a way to do this using the geogig osm download command with the –update
flag:

$ geogig osm download --update

Note: If you get an error that looks like the error below, this means that there are no changes in OSM since your last
update and it can be ignored.

Committing features. . .

An unhandled error occurred: Nothing to commit after f249200302d5e808fb1b04f329b39b5853ffb7d0. See the log
for more details.

Serving your GeoGig repository in GeoNode

At this point you have different options on how to serve this repository from your GeoNode. The most basic option
is to export this data to PostGIS and configure the PostGIS database in GeoServer for use in GeoNode. First create a
PostGIS database that will be used to store the data and then use the geogig pg export command to export the layers
into this database for serving. Note you will need to replace the connection parameters below to match you r servers
setup:

582 Chapter 3. Table of contents

http://geogig.org/manpages/pgexport.html

GeoNode Documentation, Release 2.8

$ geogig pg export --host localhost --port 5432 -- schema myschema --database my_osm_
→˓database --user my_user --password my_password osm_train_stations osm_train_stations

Define your new primary key for the table we can’t export (id is the osm id):

INSERT INTO gt_pk_metadata_table (table_schema, table_name, pk_column) VALUES (
→˓'geogig_data','osm_train_stations','id');

Next you need to alter your OSM data table accordingly:

ALTER TABLE geogig_data.osm_train_stations DROP CONSTRAINT osm_train_stations_pkey;

ALTER TABLE geogig_data.osm_train_stations ADD PRIMARY KEY (id);

ALTER TABLE geogig_data.osm_train_stations DROP COLUMN fid;

ALTER TABLE geogig_data.osm_train_stations ADD COLUMN fid character varying(64);

Then you can run the geogig pg export command with the -o option to overwrite the table:

$ geogig pg export -o --host localhost --port 5432 -- schema myschema --database my_
→˓osm_database --user my_user --password my_password osm_train_stations osm_train_
→˓stations

At this point, you need to configure your PostGIS database connection in GeoServer. More information about this
process can be found in the GeoServer documentation.

Once the layers are configured in GeoServer. You want to issue the updatelayers to configure them in your GeoNode:

$ python manage.py updatelayers --store geogig_data --filter osm_train_stations

Using the GeoGig GeoServer Extension

The GeoGig project also contains a GeoServer extension that allows a GeoServer administrator to configure and serve
the GeoGig store directly. This extension basically lets you treat your GeoGig repository as any other store of spatial
data.

Note: This section is still to be completed.

Using the osm-extract script to download OSM Data into PostGIS

osm-extract is a script that allows to download data from OpenStreetMap, perform ETL procedures in order to classify
data into layers and publish it in a PostgreSQL+PostGIS database. It is based on a fork from Terronodo and it is built
around a Makefile with instructions that must be executed with the Linux make command (we assume you are working
on a Linux based OS). Once OSM data have been loaded into PostGIS, they can be published in GeoNode.

The script processes the whole .pbf file provided in input, therefore the processing extent depends on the bounding box
of the .pbf file itself. In addition data can be updated on a fixed frequency, by executing the Makefile with a scheduled
cron job. In such case a sql instruction can be executed in order to update the publication date of the respective
metadata published by GeoNode.

3.2. Tutorials 583

http://docs.geoserver.org/stable/en/user/data/database/postgis.html

GeoNode Documentation, Release 2.8

Steps for putting it in production

1. Download the repo

2. Install the dependencies: osmosis. (GeoNode is assumed to be up and running)

3. Launch the Makefile for the first time

4. Publish the layers in GeoNode, update_layers

5. Customize the sh file

6. Customize the SQL file

7. Schedule the shell file as a cron job

1. Download the repo:

git clone https://github.com/MalawiGeospatialTools/osm-extract.git

2. Install the dependencies

We assume that GeoNode is already installed on your machine. In addition to that you need to install osmosis, which
is used by the Makefile to handle OSM data. In order to do so, follow the instructions at Installing pre-built Osmosis

3. Launch the Makefile for the first time

Set the current directory to the directory where the Makefile is stored. Then launch it by typing the following command:

make all NAME=<country> URL="<Planet.osm mirror>"

Substitute in the command <country> with the name of your country of interest (e.g. malawi), if you’re working on a
specific country (the name is used for naming the staging files created by the procedure).

Also replace <Planet.osm mirror> with one of the mirrors listed in http://wiki.openstreetmap.org/wiki/Planet.osm#
Downloading; make sure that the mirror publishes extracts in .pbf format. One handy mirror is http://download.
openstreetmap.fr/extracts, which published data on a country or area basis: this allows to reduce the processing steps
to a single country or area of interest.

The procedure is going to create a new database in your PostgreSQL instance and store in it the OSM data for your
country. Therefore you should run the Makefile with a user that has enough privileges.

The features and attributes to be included in each table and consequently in each GeoNode layer are defined in config-
uration files which are stored in the conf directory.

A few indications on the computing resources: 30 seconds of computing time are required for processing a .pbf file
sized 38MB (the country of Malawi) with an Amazon m3 medium instance (1 Intel Xeon E5-2670 CPU, 3.75GB
RAM).

4. Publish the layers in GeoNode

We propose to do so in two steps: firstly publish the layers in GeoServer and then in GeoNode. In GeoServer generate
a new Store so that you can keep it separate from the default GeoNode Store. Then publish the layers of your interest
from the ones that were created by the procedure at the previous step (please note that some of them may be empty,
depending on the country of interest). In GeoNode take advantage of the updatelayers command and publish all layers
from the GeoServer Workspace created ad-hoc at the previous step. See the updatelayers documentation for details.

5. Customize the sh file

Customize the osm_update.sh file in order to fit your server and software configuration, namely:

• define the installation path (on line 3) for the osmosis software, so that it can be found by the OS

584 Chapter 3. Table of contents

http://wiki.openstreetmap.org/wiki/Osmosis/Installation#Linux
http://wiki.openstreetmap.org/wiki/Planet.osm#Downloading
http://wiki.openstreetmap.org/wiki/Planet.osm#Downloading
http://download.openstreetmap.fr/extracts
http://download.openstreetmap.fr/extracts
http://docs.geonode.org/en/master/tutorials/admin/admin_mgmt_commands/

GeoNode Documentation, Release 2.8

• change the current directory to a working directory of your interest, where temporary files can be stored, deleted
and updated (on line 4)

• define the name of the country of interest as well as the url (on line 6) as you did in step 3

6. Customize the SQL file

Customize the set_pub_date.sql file in order to fit it for your purpose. In particular substitute the store name
osm_extracts with the name of the store in which your OSM data are in GeoServer.

7. Schedule the shell file as a cron job

Insert the osm_update.sh file in the crontab of your server as a scheduled job. In order to do so, please have a look at
the official cron documentation. If you’re using Ubuntu OS, please have a look here.

Adding Data to GeoServer

Managing GeoServer Data Directory

This section explain how to manage the GeoServer Data Directory.

What you will learn

In this section you will:

Creating and setting a new GeoServer Data Directory

1. Generally if GeoServer is running in Web Archive mode inside of a servlet container, like in this Workshop, the
data directory is located at <web application root>/data (the data directory contains the GeoServer
configuration data).

2. The first thing to do is to correctly configure the GEOSERVER_DATA_DIR. To increase the portability of their
data and to facilitate updates GeoServer, in the default Workshop configuration the GEOSERVER_DATA_DIR
is configured under the directory:

${TRAINING_ROOT}/geoserver_data or %TRAINING_ROOT%\geoserver_data on Windows

Generally this is not an issue, but if you run the system from the Live DVD this folder resides in memory. The
first thing to do is to move this folder into a local persistent storage.

• Move the GEOSERVER_DATA_DIR somewhere in the persistent storage using the command:

sudo mv -f ${TRAINING_ROOT}/geoserver_data <TARGET_DIR>

• Make a symbolic link to the GEOSERVER_DATA_DIR by issuing the command:

ln -s <TARGET_DIR> ${TRAINING_ROOT}/geoserver_data

Warning: Check that the user geo has permissions to read/write all the files/folder inside the
GEOSERVER_DATA_DIR.

3.2. Tutorials 585

https://help.ubuntu.com/community/CronHowto

GeoNode Documentation, Release 2.8

Note: Instead of creating a symbolic link you can configure GeoServer in order to allow it to point to the new
GEOSERVER_DATA_DIR. To do that edit the file /opt/tomcat-geoserver/webapps/geoserver/
WEB-INF/web.xml and modify the context param GEOSERVER_DATA_DIR.

Structure of the GeoServer Data Directory

The following is the GEOSERVER_DATA_DIR structure:

data_directory/
coverages/
data/
demo/
gwc/
gwc-layers/
layergroups/
logs/
palettes/
security/
styles/
temp/
user_projections/
validation/
workspaces/
www/
global.xml
gwc-gs.xml
logging.xml
wcs.xml
wfs.xml
wms.xml
wps.xml

586 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

File Description
coverages Contains some demo raster layers for this training
data Not to be confused with the GeoServer data directory itself, the data directory

is a location where actual data can be stored. This directory is commonly used to store
shapefiles and raster files but can be used for any data that is file based. The main benefit of
storing data files inside of the data directory is portability.

demo The demo directory contains files which define the sample requests available in the Sample
Request Tool.

gwc This directory holds the cache created by the embedded GeoWebCache service.
gwc-layers This directory holds the configuration files created by the embedded GeoWebCache service

for each layer.
layergroups Contains information on the layer groups configurations.
logs This directory contains the GeoServer logging files (log file and logging properties files).
palettes The palettes directory is used to store pre-computed Image Palettes. Image palettes are used

by the GeoServer WMS as way to reduce the size of produced images while maintaining
image quality.

security The security directory contains all the files used to configure the GeoServer security subsys-
tem. This includes a set of property files which define access roles, along with the services
and data each role is authorized to access.

styles The styles directory contains a number of Styled Layer Descriptor (SLD) files which contain
styling information used by the GeoServer WMS.

temp Temporary directory, used by the WPS service.
user_projectionsThe user_projections directory contains extra spatial reference system definitions.

The epsg.properties can be used to add new spatial reference systems, whilst the
epsg_override.properties file can be used to override an official definition with a custom
one.

validation This directory contains the validation rules
workspaces The various workspaces directories contain metadata about stores and layers which

are published by GeoServer. Each layer will have a layer.xml file associated with it, as
well as either a coverage.xml or a featuretype.xml file depending on whether it’s a raster or
vector.

www The www directory is used to allow GeoServer to act like a regular web server and serve
regular files. While not a replacement for a full blown web server the www directory can be
useful to easily serve OpenLayers map applications (this avoids the need to setup a proxy
in order to respect the same origin policy).

global.xml Contains settings that go across services, including contact information, JAI settings, char-
acter sets and verbosity.

gwc-gs.xml Contains various settings for the GeoWebCache service.
logging.xml Specifies the logging level, location, and whether it should log to std out.
wcs.xml Contains the service metadata and various settings for the WCS service.
wfs.xml Contains the service metadata and various settings for the WFS service.
wms.xml Contains the service metadata and various settings for the WMS service.

Adding base types

This section explain how to add some of the base data types into GeoServer. As an example we will learn how to insert
a shapefile and GeoTIFF into GeoServer, as well as how to import a Shapefile into PostGIS and then publish it from
there.

3.2. Tutorials 587

https://en.wikipedia.org/wiki/Same_origin_policy

GeoNode Documentation, Release 2.8

What you will learn

In this section you will:

Adding a Shapefile

The task of adding a Shapefile is one that is core to any GIS tool. This section covers the task of adding and publishing
a Shapefile with GeoServer.

1. Navigate to the workshop directory $TRAINING_ROOT/data/user_data/ (on Windows
%TRAINING_ROOT%\data\user_data) and find the following shapefiles:

Mainrd.shp
Mainrd.shx
Mainrd.dbf
Mainrd.prj

Copy the files to the following directory:

$GEOSERVER_DATA_DIR/data/boulder

for Windows:

%GEOSERVER_DATA_DIR%\data\boulder

Note: Ensure that all four parts of the shapefile are copied. This includes the shp, shx, dbf, and prj
extensions.

2. Navigate to the GeoServer Welcome Page.

3. On the Welcome page locate the Login form located at the top right corner, and enter the username “admin” and
password “Geos”.

4. Click the Add stores link.

5. Select the Shapefile link and click it.

Note: The new data source menu contains a list of all the spatial formats supported by GeoServer. When
creating a new data store one of these formats must be chosen. Formats like Shapefile and PostGIS are supported
by default, and many other formats are available as extensions.

6. On the Edit Vector Data Source page enter “Mainrd” in the Data Source Name and Description fields. Finally
click on browse link in order to set the Shapefile location in the URL field and click Save.

Note: The Mainrd.shp got just copied in the data directory, inside the “data/boulder” folder, and the file browser
opens right in the data directory, so just click on “data” and then “boulder” and you’ll find it

7. After saving, you will be taken to a page that lists all the layers in the shapefile and gives you the option to
publish any of them. Click Publish.

8. The Coordinate Reference Systems have to be manually populated. The Name and Title fields should be auto-
matically populated.

588 Chapter 3. Table of contents

http://localhost:8083/geoserver/web/

GeoNode Documentation, Release 2.8

Fig. 114: GeoServer Login

Fig. 115: Add stores link

3.2. Tutorials 589

GeoNode Documentation, Release 2.8

Fig. 116: Add a new shapefile

Fig. 117: Specifying Shapefile parameters

590 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 118: Publishing a layer from the shapefile

Scroll down the page and generate the bounds for the layer by clicking the Compute from data button in the
Bounding Boxes section.

9. Scroll to the bottom of the page, notice the read only Feature Type Detail table and then click Save.

10. If all went well, you should see something like this:

At this point a shapefile has been added and is ready to be served by GeoServer.

11. Choose the preview link in the main menu and filter the layer list with mainrd:

12. Click on the OpenLayers link to preview the layer in an interactive viewer:

In the next section we will see how to load a shapefile into PostGIS.

Loading a Shapefile into PostGIS

This task shows how to load a shapefile into PostGIS database:

1. Open the terminal window and enter the following command and press enter to creating a new database named
‘shape’:

• Linux:

createdb -U postgres -T postgis20 shape

• Windows:

setenv.bat
createdb -U postgres -T postgis20 shape

1. Enter the following command and press enter to load the shapefile into ‘shape’ database:

• Linux:

shp2pgsql -I ${TRAINING_ROOT}/data/user_data/Mainrd.shp public.main_
→˓roads | psql -d shape

• Windows:

3.2. Tutorials 591

GeoNode Documentation, Release 2.8

Fig. 119: Populate fields.

592 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 120: Generating the layer bounding box

Fig. 121: Submitting the layer configuration

Fig. 122: After a successful save

3.2. Tutorials 593

GeoNode Documentation, Release 2.8

Fig. 123: Selecting the mainrd shapefile in the layer preview.

594 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 124: The mainrd shapefile preview

3.2. Tutorials 595

GeoNode Documentation, Release 2.8

shp2pgsql -I "%TRAINING_ROOT%\data\user_data\Mainrd.shp" public.main_
→˓roads | psql -U postgres -d shape

The shapefile will be loaded within the ‘main_roads’ table of the ‘shape’ database. The
following screenshot shows some of the table contents in pgAdmin III

Fig. 125: A PostGIS table by ShapeFile

In the next section we will see how to add a PostGIS layer into GeoServer.

Adding a Postgis layer

This task shows how to add a PostGIS layer into GeoServer:

1. Navigate to the GeoServer Welcome Page.

2. If you are not already logged in, on the Welcome page locate the Login form located at the top right corner, and
enter the username “admin” and password “Geos”.

3. Click the Add stores link.

4. Select the PostGIS link and click it.

5. On the New Vector Data Source page fill the following parameter:

• Data source name, ‘shape’

• port, ‘5434’

• database, ‘shape’ the name of the database created in previous workshop step.

• user, ‘geonode’ the name of the user database owner.

596 Chapter 3. Table of contents

http://localhost:8083/geoserver/web/

GeoNode Documentation, Release 2.8

Fig. 126: GeoServer Login

Fig. 127: Add stores link

3.2. Tutorials 597

GeoNode Documentation, Release 2.8

Fig. 128: Add new PostGIS Store

598 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

• password, ‘geonode’ the user password.

and click Save.

6. After saving, you will be taken to a page that lists all the layers in the PostGIS database and gives you the option
to publish any of them. Click Publish.

7. The Name and Title fields should be automatically populated. Fill the Declared SRS field to set the Coordinate
Reference Systems and generate the bounds for the layer by clicking the Compute from data and Compute from
native bounds buttons in the Bounding Boxes section

8. Scroll to the bottom of the page, notice the read only Feature Type Detail table and then click Save.

9. If all went well, you should see something like this:

10. At this point the PostGIS layer has been added and is ready to be served by GeoServer. Use the layer preview
to view its contents, filtering on the ‘main_road’ name.

Adding a GeoTIFF

GeoTIFF is a widely used geospatial raster data format. It is composed of a single file containing both the data and the
georeferencing information (not to be confused with the .tiff/.tfw/.prj file triplet, which is considered a “world image”
file in GeoServer). This section provides instructions to add and publish a GeoTIFF file.

1. Open the web browser and navigate to the GeoServer Welcome Page.

2. Select Add stores from the interface.

3. Select GeoTIFF - Tagged Image File Format with Geographic information from the set of available Raster Data
Sources.

4. Specify a proper name (as an instance, 13tde815295_200803_0x6000m_cl) in the Data Source Name
field of the interface.

5. Click on browse link in order to set the GeoTIFF location in the URL field.

Note: The 13tde815295_200803_0x6000m_cl.tif is located at $TRAINING_ROOT/
data/user_data/aerial/13tde815295_200803_0x6000m_cl.tif (on Windows
%TRAINIG_ROOT%\data\user_data\aerial\13tde815295_200803_0x6000m_cl.tif)

6. Click Save.

7. Publish the layer by clicking on the publish link.

8. Check the Coordinate Reference Systems and the Bounding Boxes fields are properly set and click on Save.

9. At this point the GeoTIFF is being published with GeoServer. You can use the layer preview to inspect the data.

Adding a WMS Cascade Layer

WMS cascading allows to expose layers coming from other WMS servers as if they were local layers. This provides
for some interesting advantages:

• Clients connecting to your SDI need to care about less points of origin, which might be important for high
security networks

• It is now possible to ask for maps in formats not supported by the original server, or to reproject the maps
in projections not supported by the original server (GeoServer supports out of the box almost 5000 different
coordinate reference systems)

3.2. Tutorials 599

http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

600 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 129: Setting database connection parameters

3.2. Tutorials 601

GeoNode Documentation, Release 2.8

Fig. 130: Publishing a layer from the PostGIS table

602 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 131: Populating fields and generating the layer bounding box

Fig. 132: Submitting the layer configuration

3.2. Tutorials 603

GeoNode Documentation, Release 2.8

Fig. 133: After a successful save

604 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 605

GeoNode Documentation, Release 2.8

606 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 607

GeoNode Documentation, Release 2.8

• It is now possible to mix the layers with local ones to generate print oriented formats such as PDF

• It is now possible to provide more informations about the layer, such as a better description, more keywords,
which will benefit all clients, in particular catalogues harvesting informations from your capabilities document

Configuration

The configuration as usage of the cascaded layers follows GeoServer traditional ease of use.

1. Open the web browser and navigate to the GeoServer Welcome Page.

2. Select Add stores from the interface.

3. Select WMS - Cascades a remote Web Map Service from the set of available Other Data Sources.

4. Specify a proper name (as an instance, geoserver-enterprise) in the Data Source Name field of the
interface.

5. Specify http://demo1.geo-solutions.it/geoserver-enterprise/ows?
service=wms&version=1.1.1&request=GetCapabilities as the URL of the sample data
in the Capabilities URL field.

6. Click Save.

608 Chapter 3. Table of contents

http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

3.2. Tutorials 609

GeoNode Documentation, Release 2.8

7. Publish the layer by clicking on the publish link near the geosolutions:ne_shaded layer name. Notice that you
can also add more layers later.

8. Check the Coordinate Reference Systems and the Bounding Boxes fields are properly set and click on Save.

9. At this point the new WMS Layer is being published with GeoServer. You can use the layer preview to inspect
the data.

Adding a WFS Cascade Layer

GeoServer has the ability to load data from a remote Web Feature Server (WFS). This is useful if the remote WFS
lacks certain functionality that GeoServer contains. For example, if the remote WFS is not also a Web Map Server
(WMS), data from the WFS can be cascaded through GeoServer to utilize GeoServer’s WMS. If the remote WFS has
a WMS but that WMS cannot output KML, data can be cascaded through GeoServer’s WMS to output KML.

Configuration

The configuration as usage of the cascaded layers follows GeoServer traditional ease of use.

1. Open the web browser and navigate to the GeoServer Welcome Page.

2. Select Add stores from the interface.

3. Select Web Feature Server from the set of available Vector Data Sources.

4. Specify a proper name (as an instance, wfs-cascade) in the Data Source Name field of the interface.

5. Specify http://demo1.geo-solutions.it/geoserver-enterprise/ows?
service=wfs&version=1.0.0&request=GetCapabilities as the URL of the sample data
in the Capabilities URL field.

6. Make sure that the HTTP Authentication fields match the remote server authorization you have on it (In this
case the server is open so we don’t need them).

610 Chapter 3. Table of contents

http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

3.2. Tutorials 611

GeoNode Documentation, Release 2.8

612 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

7. Click Save.

8. Publish the layer by clicking on the publish link near the geosolutions_country layer name. Notice that you can
also add more layers later.

9. Check the Coordinate Reference Systems and the Bounding Boxes fields are properly set and click on Save.

10. At this point the new WMS Layer is being published with GeoServer. You can use the layer preview to inspect
the data.

Adding a SQL Parametric View based Layer

The traditional way to use database backed data is to configure either a table or a database view as a new layer in
GeoServer. Starting with GeoServer 2.1.0 the user can also create a new layer by specifying a raw SQL query, without
the need to actually creating a view in the database. The SQL can also be parametrized, and parameter values passed
in along with a WMS or WFS request.

Creating a plain SQL view

1. In order to create an SQL view the administrator can go into the Add a new resource from the Layers page.

2. Upon selection of a database backed store a list of tables and views available for publication will appear, but at
the bottom of if a new link, Configure new SQL view, will appear:

3. Selecting the link Configure new SQL view will open a new page where the SQL statement can be specified:

SELECT st.obs_year,
st.storm_num,
st.storm_name,
min(st.obs_datetime)
AS storm_start, max(st.obs_datetime)
AS storm_end, max(st.wind)
AS max_wind, st_makeline(st.geom)
AS the_route

FROM (SELECT storm_obs.storm_num,

(continues on next page)

3.2. Tutorials 613

GeoNode Documentation, Release 2.8

614 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 615

GeoNode Documentation, Release 2.8

(continued from previous page)

storm_obs.storm_name,
storm_obs.wind,
storm_obs.press,
storm_obs.obs_datetime,
date_part('year'::text, storm_obs.obs_datetime)
AS obs_year, storm_obs.geom

FROM storm_obs
ORDER BY date_part('year'::text, storm_obs.obs_datetime),

storm_obs.storm_num,
storm_obs.obs_datetime) st

GROUP BY st.obs_year, st.storm_num, st.storm_name
ORDER BY st.obs_year, st.storm_num

Note: The query can be any SQL statement that can be validly executed as part of a subquery in the FROM
clauses, that is select * from (<the sql view>) [as] vtable. This is true for most SQL state-
ments, but specific syntax might be needed to call onto a stored procedure depending on the database. Also,
all the columns returned by the SQL statement must have a name, in some databases aliasing is required when
calling function names

4. Once a valid SQL statement has been specified press the refresh link in the Attributes table to get a list of the
feature type attributes:

Note: GeoServer will do its best to figure out automatically the geometry type and the native srid, but they
should always be double checked and eventually corrected. In particular having the right SRID (spatial reference
id) is key to have spatial queries actually work. In many spatial databases the SRID is equal to the EPSG code
for the specific spatial reference system, but that is not always true (e.g., Oracle has a number of non EPSG
SRID codes).

5. Specify a valid SRID.

Note: If stable feature ids are desired for the view’s features one or more column providing a unique identi-
fication for the features should be checked in the Indentifier column. Always make sure those attributes
generate a actually unique key, or filtering and WFS clients will mishbehave.

616 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 134: Plain SQL View configuration

3.2. Tutorials 617

GeoNode Documentation, Release 2.8

Fig. 135: Forcing manually 4326 SRID in this case

618 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

6. Once the query and the attribute details are set press Save and the usual new layer configuration page will show
up. That page will have a link to a SQL view editor at the bottom of the Data tab:

7. Make sure the CRS is EPSG:4326 and write manually (-180,-90,180,90) values in the Bounding
Boxes sections.

8. Click Save.

At this point the new WMS Layer is being published with GeoServer.

Creating a parametric SQL view

Warning: As a rule of thumb use SQL parameter substitution only if the required functionality cannot
be obtained with safer means, such as dynamic filtering (CQL filters) or SLD parameter substitution.
Only use SQL parameters as a last resort, improperly validated parameters can open the door to SQL
injection attacks.

A parametric SQL view is based on a SQL query containing parameters whose values can be dynamically provided
along WMS or WFS requests. A parameter is bound by % signs, can have a default value, and should always have a
validation regular expression.

1. In order to create a parametric SQL view performs the steps 1 and 2 like before and then insert the following
parameters:

SELECT date_part('year'::text, t1.obs_datetime) AS obs_year, t1.storm_num, t1.
→˓storm_name, t1.wind, t2.wind AS wind_end, t1.press, t2.press AS press_end, t1.
→˓obs_datetime, t2.obs_datetime AS obs_datetime_end, st_makeline(t1.geom, t2.
→˓geom) AS geom
FROM storm_obs t1
JOIN (SELECT storm_obs.id, storm_obs.storm_num, storm_obs.storm_name, storm_obs.
→˓wind, storm_obs.press, storm_obs.obs_datetime, storm_obs.geom

(continues on next page)

3.2. Tutorials 619

https://en.wikipedia.org/wiki/SQL_injection
https://en.wikipedia.org/wiki/SQL_injection

GeoNode Documentation, Release 2.8

620 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 136: Parametric SQL View configuration

3.2. Tutorials 621

GeoNode Documentation, Release 2.8

(continued from previous page)

FROM storm_obs) t2 ON (t1.obs_datetime + '06:00:00'::interval) = t2.
→˓obs_datetime AND t1.storm_name::text = t2.storm_name::text
WHERE

date_part('year'::text, t1.obs_datetime) BETWEEN %MIN_OBS_YEAR% AND %MAX_
→˓OBS_YEAR%
ORDER BY date_part('year'::text, t1.obs_datetime), t1.storm_num, t1.obs_datetime

Note: The query defines two parameters %MIN_OBS_YEAR% and %MAX_OBS_YEAR%.

2. Click on the Guess parameters from SQL. GeoServer will automatically create fields with the parameters speci-
fied in the view:

Note: Always provide default values for each parameter in order to let the layer work properly and also be sure
the regular expression for the values validation are correct.

Examples of Regular Expressions:

• ^[\d\.\+-eE]+$ will check that the parameter value is composed with valid elements for a floating
point number, eventually in scientific notation, but will not check that the provided value is actually a
valid floating point number

• [^;']+ will check the parameter value does not contain quotes or semicolumn, preventing common sql
injection attacks, without actually imposing much on the parameter value structure

3. Fill in some default values for the parameters, so that GeoServer can run the query and inspect the results in the
next steps. Set MAX_OBS_YEAR to 2020 and MIN_OBS_YEAR to 0.

4. Refresh the attributes, check the Geometry SRID and publish the layer like before. Also assign the
storm_track_interval style to the layer as Default Style.

5. Click on the OpenLayers on the Layer Preview list for v_storm_track_interval layer.

6. At a first glance you won’t see anything since the layer is using the default parameters for the observation years.
Specify two years for the view adding this parameter at the end of the GetMap Request:

&viewparams=MIN_OBS_YEAR:2000;MAX_OBS_YEAR:2000

You should obtain a request like this:

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&
→˓request=GetMap&layers=geosolutions:v_storm_track_interval&styles=&bbox=-
→˓180.0,-90.0,180.0,90.0&width=660&height=330&srs=EPSG:4326&
→˓format=application/openlayers&viewparams=MIN_OBS_YEAR:2000;MAX_OBS_
→˓YEAR:2000

622 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 623

GeoNode Documentation, Release 2.8

Now you are able to see the hurricanes from the parametric view and also dynamically choose the observation years
interval of interest.

Fig. 137: Parametric SQL View OL preview

Adding an Image Mosaic to GeoServer

This section covers the task of adding and publishing a ImageMosaic file with GeoServer.

1. Navigate to the GeoServer Welcome Page.

2. On the Welcome page locate the Login form located at the top right corner, and enter the username “admin” and
password “Geos”.

3. Click the Add stores link.

4. Select the ImageMosaic link and click it.

5. On the Add Raster Data Source page enter $TRAINING_ROOT/data/user_data/aerial (on Windows
%TRAINING_ROOT%\data\user_data\aerial\) in the URL field (or browse the filesystem clicking on
Browse), “boulder_bg” in the Data Source Name and Description fields, and click Save.

6. After saving, you will be taken to a page that lists all the layers in the store and gives you the option to publish
any of them. Click Publish.

7. The Coordinate Reference Systems should be automatically populated, as well as the Name, Title and Bounding
Boxes fields.

Note: Change the Name and Title into boulder_bg as shown in the figure.

624 Chapter 3. Table of contents

http://localhost:8083/geoserver/web/

GeoNode Documentation, Release 2.8

Fig. 138: GeoServer Login

Fig. 139: Add stores link

3.2. Tutorials 625

GeoNode Documentation, Release 2.8

Fig. 140: Add a new Image Mosaic

The CRS and BBox fields are auto-filled with information taken from the underlying files. The coverage options
section is filled with default parameters (which will be discussed later on in the training).

8. Scroll to the bottom of the page and then click Save. If all went well you should see something like this:

9. In the Layer Preview section click on the OpenLayers link to preview the layer in an interactive viewer, filtering
by boulder_bg name:

Adding a GDAL Supported Format

In case the GDAL libraries are available, it is possible to access to several GDAL’s supported data formats. Actually,
the available GDAL plugins allow to support DTED, EHdr, ERDASImg, MrSID, JPEG 2000 (via MrSID Driver) and
NITF data formats. Moreover, in case a valid license have been purchased and the proper native library is available,
also ECW, JPEG 2000 (via ECW) and JPEG 2000 (via Kakadu) are supported. This section provides instructions to
add and publish MrSID, ECW and JPEG 2000 datasets.

Warning: This assumes the GeoServer image GDAL plug-in is already installed. The GDAL plugin
is normally an extension.

If the store described in this section are not ava-
iable, install the ‘geoserver-2.2-SNAPSHOT-gdal-plugin’ from
%TRAINING_ROOT%\data\plugins\. Just decompress the zip file into
%TRAINING_ROOT%\webapps\geoserver\WEB-INF\lib\ and restart
GeoServer.

626 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 141: Specifying store parameters

Fig. 142: Publishing a layer from the store

3.2. Tutorials 627

GeoNode Documentation, Release 2.8

628 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 143: The coverage layer gui for the boulder_bg layer.

Fig. 144: The coverage bands details

3.2. Tutorials 629

GeoNode Documentation, Release 2.8

Fig. 145: After a successful save.

630 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 146: Mosaic preview.

3.2. Tutorials 631

GeoNode Documentation, Release 2.8

MrSID Data Set

1. Open the web browser and navigate to the GeoServer Welcome Page.

2. Select Add stores from the interface.

3. Select MrSID - MrSID Coverage Format from the set of available Raster Data Sources.

4. Specify a proper name (as an instance, c3008957_nes_20) in the Data Source Name field of the interface.

5. Specify file:%TRAINING_ROOT%/data/user_data/c3008957_nes_20/c3008957_nes_20.
sid as URL of the sample data in the Connections Parameter’s - URL field. (replace %TRAINING_ROOT%
with your current training root directory)

6. Click Save.

7. Assign a proper layername (e.g c3008957_nes_20) then publish the layer by clicking on the publish link.

632 Chapter 3. Table of contents

http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

3.2. Tutorials 633

GeoNode Documentation, Release 2.8

634 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

8. Click on Save when done.

At this point the MrSID data is being published with GeoServer.

1. Click the Layer Preview link in the left GeoServer menu.

2. Look for a geosolutions:c3008957_nes_20 layer and click the OpenLayers link beside of it.

ECW Data Set

Warning: Attention, you need a license in order to use ECW data sets. Here we are using a free distributed ECW
file only for demonstration.

ECW (Enhanced Compression Wavelet) is a proprietary wavelet compression image format optimized for aerial and
satellite imagery.

1. Open the web browser and navigate to the GeoServer Welcome Page.

2. Select Add stores from the interface.

3. Select ECW - ECW Coverage Format from the set of available Raster Data Sources.

4. Specify a proper name (as an instance, TerraColor_Sydney_AU_15m) in the Data Source Name field of
the interface.

5. Specify file:%TRAINING_ROOT%/data/user_data/tc_sydney_au_ecw/
TerraColor_Sydney_AU_15m.ecw as URL of the sample data in the Connections Parameter’s -
URL field (replace %TRAINING_ROOT% with your current training root directory).

6. Click Save.

7. Assign a proper layername (e.g TerraColor_Sydney_AU_15m) then publish the layer by clicking on the
publish link.

At this point the ECW data is being published with GeoServer.

1. Click the Layer Preview link in the left GeoServer menu.

2. Look for a geosolutions:TerraColor_Sydney_AU_15m layer and click the OpenLayers link beside of it.

JP2K Data Set

JPEG 2000 is a image coding system that uses state-of-the-art compression techniques based on wavelet technology.

1. Open the web browser and navigate to the GeoServer Welcome Page.

2. Select Add stores from the interface.

3. Select JP2ECW - JP2 (ECW) Coverage Format from the set of available Raster Data Sources.

Note: We used JP2ECW - JP2 (ECW) Coverage Format because JP2MrSID - JP2 (MrSID) Coverage Format
is not fully stable, and may not work properly especially with several Linux distributions.

3.2. Tutorials 635

http://localhost:8083/geoserver
http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

636 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 637

GeoNode Documentation, Release 2.8

638 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 639

GeoNode Documentation, Release 2.8

640 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 641

GeoNode Documentation, Release 2.8

642 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

4. Specify a proper name (as an instance, TerraColor_Sydney_AU_15m_JP2K) in the Data Source Name
field of the interface.

5. Specify file:%TRAINING_ROOT%/data/user_data/tc_sydney_au_jp2/
TerraColor_Sydney_AU_15m.jp2 as URL of the sample data in the Connections Parameter’s -
URL field. (replace %TRAINING_ROOT% with your current training root directory)

6. Click Save.

7. Assign a proper layername (e.g TerraColor_Sydney_AU_15m_JP2K) then publish the layer by clicking
on the publish link.

At this point the JPEG 2000 data is being published with GeoServer.

1. Click the Layer Preview link in the left GeoServer menu.

3.2. Tutorials 643

GeoNode Documentation, Release 2.8

644 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 645

GeoNode Documentation, Release 2.8

2. Look for a geosolutions:TerraColor_Sydney_AU_15m_JP2K layer and click the OpenLayers link beside of it.

Pretty maps with GeoServer

This module describes how to manage the GeoServer maps visualization. Will be discussed all those aspects which
relate styles, decorations, Layer Groups and other interesting GeoServer features affecting the WMS protocol.

In this module you will:

Styling with SLD

This section introduces the concepts of the Styled Layer Descriptor (SLD) markup language. SLD is the styling engine
used by GeoServer, and how all WMS portrayal is specified.

What you will learn

In this section you will:

Adding a Style

The most important function of a web map server is the ability to style and render data. This section covers the task of
adding a new style to GeoServer and configuring the default style for a particular layer.

1. From the GeoServer Welcome Page navigate to Style.

Fig. 147: Navigating to Style configuration

646 Chapter 3. Table of contents

http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

2. Click New

Fig. 148: Adding a new style

3. Enter “mainrd” in the Name field and notice the file upload dialogue SLD file.

4. Navigate to the workshop (on Linux) $TRAINING_ROOT/data/user_data/ directory (on Windows
%TRAINING_ROOT%\data\user_data\), select the foss4g_mainrd.sld file, and click Upload.

Note: In GeoServer, styles are represented via SLD (Styled Layer Descriptor) documents. SLD is an XML
format for specifying the symbolization of a layer. When an SLD document is uploaded the contents are shown
in the text editor. The editor can be used to edit the contents of the SLD directly.

5. Add the new style by clicking Submit. Once it’s save, you should see something like this:

6. After having created the style, it’s time to apply it to a vector layer. Click on the Layers link.

7. Select the “Mainrd” on the Layers page.

8. Select the Publish tab.

9. Assign the new created style “mainrd” as the default style.

Warning: Many new users mistake the Available Styles for the Default Style, please take into account that
they are different, the default one allows that style to be used implicitly when no style is specified in a map
request, while the available ones are just optional compatible styles.

Note: Geoserver 2.x assigns a default style depending on the geometry of the objects and the type, for example:
line, poly, raster, point.

10. Scroll to the bottom of the page and hit Save.

11. Use the map preview to show how the style, please note you’ll have to zoom in once to show the data due to the
map scale filters (MaxScaleDenominator directive in the SLD).

Styling Vector data

In previous modules the style for a layer was configured by uploading an existing SLD. In this section the task of
creating a new SLD document from scratch will be covered. In particular we are going to create some styles that can
be applied to vectorial datasets, in the first case by drawing patterns and dash arrays to polygons and lines and in the
second case drawing roads and labels to lines.

3.2. Tutorials 647

GeoNode Documentation, Release 2.8

Fig. 149: Specifying style name and populating from a file.

648 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 150: Submitting style

3.2. Tutorials 649

GeoNode Documentation, Release 2.8

Fig. 151: Navigating to Layers

What you will learn

In this section you will:

Examine an existing style

1. From the GeoServer Welcome Page navigate to Style.

2. From the style list select the citylimits style

3. Inside the Style Editor we have the following style:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld"

xmlns:sld="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:gml="http://www.opengis.net/gml"
version="1.0.0">

<sld:UserLayer>
<sld:LayerFeatureConstraints>
<sld:FeatureTypeConstraint/>

</sld:LayerFeatureConstraints>
<sld:UserStyle>
<sld:Name>BoulderCityLimits</sld:Name>
<sld:Title/>
<sld:IsDefault>1</sld:IsDefault>
<sld:FeatureTypeStyle>

<sld:Name>group 0</sld:Name>
<sld:FeatureTypeName>Feature</sld:FeatureTypeName>

(continues on next page)

650 Chapter 3. Table of contents

http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

Fig. 152: Selecting a layer

3.2. Tutorials 651

GeoNode Documentation, Release 2.8

Fig. 153: Publish tab

Fig. 154: Publish tab

652 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 155: Navigating to Style configuration

(continued from previous page)

<sld:SemanticTypeIdentifier>generic:geometry</
→˓sld:SemanticTypeIdentifier>

<sld:SemanticTypeIdentifier>simple</sld:SemanticTypeIdentifier>
<sld:Rule>
<sld:Name>Filled</sld:Name>
<sld:MinScaleDenominator>75000</sld:MinScaleDenominator>
<sld:PolygonSymbolizer>

<sld:Fill>
<sld:CssParameter name="fill">#7F7F7F</sld:CssParameter>
<sld:CssParameter name="fill-opacity">0.5</

→˓sld:CssParameter>
</sld:Fill>
<sld:Stroke>
<sld:CssParameter name="stroke">#7F7F7F</

→˓sld:CssParameter>
<sld:CssParameter name="stroke-opacity">0.5</

→˓sld:CssParameter>
<sld:CssParameter name="stroke-width">2.0</

→˓sld:CssParameter>
</sld:Stroke>

</sld:PolygonSymbolizer>
<sld:TextSymbolizer>

<sld:Label>
<ogc:Literal>Boulder</ogc:Literal>

</sld:Label>
<sld:Font>
<sld:CssParameter name="font-family">Arial</

→˓sld:CssParameter> (continues on next page)

3.2. Tutorials 653

GeoNode Documentation, Release 2.8

Fig. 156: The styles list

654 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

<sld:CssParameter name="font-size">14.0</
→˓sld:CssParameter>

<sld:CssParameter name="font-style">normal</
→˓sld:CssParameter>

<sld:CssParameter name="font-weight">normal</
→˓sld:CssParameter>

</sld:Font>
<sld:LabelPlacement>
<sld:PointPlacement>

<sld:AnchorPoint>
<sld:AnchorPointX>

<ogc:Literal>0.0</ogc:Literal>
</sld:AnchorPointX>
<sld:AnchorPointY>

<ogc:Literal>0.5</ogc:Literal>
</sld:AnchorPointY>

</sld:AnchorPoint>
<sld:Rotation>
<ogc:Literal>0</ogc:Literal>

</sld:Rotation>
</sld:PointPlacement>

</sld:LabelPlacement>
<sld:Fill>
<sld:CssParameter name="fill">#000000</sld:CssParameter>

</sld:Fill>
<sld:VendorOption name="maxDisplacement">200</

→˓sld:VendorOption>
<sld:VendorOption name="Group">true</sld:VendorOption>

</sld:TextSymbolizer>
</sld:Rule>

</sld:FeatureTypeStyle>
</sld:UserStyle>

</sld:UserLayer>
</sld:StyledLayerDescriptor>

Note: The most important section are:

• The <Rule> tag combines a number of symbolizers (we have also the possibility to define the OGC
filter) to define the portrayal of a feature.

• The <PolygonSymbolizer> styles polygons and contain styling information about their border
(stroke) and their fill.

• The <TextSymbolizer > specifies text labels and their style:

– <Label> Specifies the content of the text label

– Specifies the font information for the labels.

– <LabelPlacement> Sets the position of the label relative its associate feature.

– <Fill> Determines the fill color of the text label.

– VendorOption maxDisplacement Controls the displacement of the label along a line. Normally
GeoServer would label a polygon in its centroid, provided the location is not busy with another label
and that the label is not too big compare to the polygon, or not label it at all otherwise. When the
maxDisplacement is set, the labeller will search for another location within maxDisplacement pixels
from the pre-computed label point.

3.2. Tutorials 655

GeoNode Documentation, Release 2.8

– VendorOption Group Sometimes you will have a set of related features that you only want a single
label for. The grouping option groups all features with the same label text, then finds a representative
geometry for the group.

• The <MaxScaleDenominator> and <MinScaleDenominator> are used to apply a particular
SLD rule to a specific scale. The above SLD makes sure that the Boulder border disappear once we zoom
in enough to see the city details. An alternative approach could be to keep the layer showing, but switch
it to a different style, for example a think red line, so that the details of the city are not disturbed by the
polygon fill.

4. Now from the style list select the rivers style.

5. Inside the Style Editor we have the following style:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld"

xmlns:sld="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:gml="http://www.opengis.net/gml"
version="1.0.0">

<sld:UserLayer>
<sld:LayerFeatureConstraints>
<sld:FeatureTypeConstraint/>

</sld:LayerFeatureConstraints>
<sld:UserStyle>
<sld:Name>Hydrology Line</sld:Name>
<sld:Title/>
<sld:FeatureTypeStyle>

<sld:Rule>
<sld:Name>default rule</sld:Name>
<sld:MaxScaleDenominator>75000</sld:MaxScaleDenominator>
<sld:LineSymbolizer>

<sld:Stroke>
<sld:CssParameter name="stroke-width">0.5</

→˓sld:CssParameter>
<sld:CssParameter name="stroke">#06607F</

→˓sld:CssParameter>
</sld:Stroke>

</sld:LineSymbolizer>
</sld:Rule>

</sld:FeatureTypeStyle>
</sld:UserStyle>

</sld:UserLayer>
</sld:StyledLayerDescriptor>

Note:

This is a very simple Line style. Take into account the LineSymbolizer that styles lines. Lines are
one-dimensional geometry elements that contain position and length. Lines can be comprised of
multiple line segments.

The outermost tag is the <Stroke> tag. This tag is required, and determines the visualization of the
line:

• stroke Specifies the solid color given to the line, in the form #RRGGBB. Default is black
(#000000).

• stroke-width Specifies the width of the line in pixels. Default is 1.

656 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

In this case MaxScaleDenominator is used to make sure that the rivers start showing up when we are
zoomed in enough, and in particular as the city borders disappear

Create a simple style for points

1. From the GeoServer Welcome Page navigate to Style.

Fig. 157: Navigating to Style configuration

2. Click New

Fig. 158: Adding a new style

3. Enter “landmarks” in the Name field.

4. In the SLD Editor enter the following XML:

3.2. Tutorials 657

http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

Fig. 159: Creating a new style

<StyledLayerDescriptor xmlns="http://www.opengis.net/sld" xmlns:xsi="http://www.
→˓w3.org/2001/XMLSchema-instance" version="1.0.0" xsi:schemaLocation="http://www.
→˓opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd">
<NamedLayer>

<Name>landmarks</Name>
<UserStyle>
<Name>landmarks</Name>
<Title>Point Landmarks</Title>
<FeatureTypeStyle>

<Rule>
<Name>default</Name>
<Title>Landmarks</Title>
<PointSymbolizer>

<Graphic>
<Mark>

<WellKnownName>triangle</WellKnownName>
<Fill>
<CssParameter name="fill">#009900</

→˓CssParameter>
<CssParameter name="fill-opacity">0.2</

→˓CssParameter>
</Fill>
<Stroke>
<CssParameter name="stroke">#000000</

→˓CssParameter>
<CssParameter name="stroke-width">2</

→˓CssParameter>
</Stroke>

</Mark>

(continues on next page)

658 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

<Size>12</Size>
</Graphic>

</PointSymbolizer>
</Rule>

</FeatureTypeStyle>
</UserStyle>

</NamedLayer>
</StyledLayerDescriptor>

Note:

Take into account:

• WellKnownName The name of the common shape. Options are circle, square, triangle, star, cross, or x. Default is square.

– fill Specifies how the symbolizer should be filled. Options are a <CssParameter
name="fill"> specifying a color in the form #RRGGBB, or <GraphicFill> for a fill
made with a repeated graphic.

– fill-opacity Determines the opacity (transparency) of symbolizers. Values range from 0
(completely transparent) to 1 (completely opaque). Default is 1.

5. Then click Save button.

6. Open the geosolutions:bptlandmarks vector layer, but this time associate the style as a “Additional
Style”:

7. Click on the Save button.

8. Preview the geosolutions:bptlandmarks layer, which with the default style should be empty due to
scale dependencies. Then click the option button at the top left of the map and select the landmarks style in
the style drop down:

Patterns and Hatches

1. Go and edit the configuration of the bplandmarks layer, enter the publish tab and associate the
cemetery_mark and cemetery_graphics styles as “Additional styles” for the layer, then press “Save”

2. From the Welcome Page navigate to Styles.

Note: You have to be logged in as Administrator in order to activate this function.

3. Select “cemetery_graphics” from the list

4. In the SLD Editor you will see the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor
xmlns="http://www.opengis.net/sld"
xmlns:sld="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.org/1999/xlink" version="1.0.0">

(continues on next page)

3.2. Tutorials 659

http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

Fig. 160: Open the Layers Preview

660 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 161: Open the Layers Preview

3.2. Tutorials 661

GeoNode Documentation, Release 2.8

Fig. 162: Patterns filling SLD

662 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

<sld:UserLayer>
<sld:UserStyle>
<sld:Name>tl 2010 08013 arealm</sld:Name>
<sld:Title/>
<sld:FeatureTypeStyle>

<sld:Rule>
<sld:Name>cemeteries</sld:Name>
<ogc:Filter>

<ogc:PropertyIsEqualTo>
<ogc:PropertyName>MTFCC</ogc:PropertyName>
<ogc:Literal>K2582</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Filter>
<sld:MaxScaleDenominator>500000.0</sld:MaxScaleDenominator>
<sld:PolygonSymbolizer>

<sld:Fill>
<sld:GraphicFill>

<sld:Graphic>
<sld:ExternalGraphic>

<sld:OnlineResource
xlink:type="simple"
xlink:href="./img/landmarks/area/

→˓grave_yard.png" />
<sld:Format>image/png</sld:Format>

</sld:ExternalGraphic>
</sld:Graphic>

</sld:GraphicFill>
</sld:Fill>

</sld:PolygonSymbolizer>
</sld:Rule>

</sld:FeatureTypeStyle>
</sld:UserStyle>

</sld:UserLayer>
</sld:StyledLayerDescriptor>

Fig. 163: Filling with patterns

Note: The above SLD defines a <PolygonSymbolizer> with a <GraphicFill> pointing to a png

3.2. Tutorials 663

GeoNode Documentation, Release 2.8

./img/landmarks/area/grave_yard.png in the GeoServer data directory, which will be used by GeoServer as
pattern to fill the polygon.

5. Like before, select now “cemetery_mark” from the list

Fig. 164: True Type Font filling SLD

6. In the SLD Editor you will see the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor
xmlns="http://www.opengis.net/sld"
xmlns:sld="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.org/1999/xlink" version="1.0.0">

<sld:UserLayer>
<sld:Name>cemeteries</sld:Name>
<sld:UserStyle>

<sld:Name>tl 2010 08013 arealm</sld:Name>
<sld:Title/>
<sld:FeatureTypeStyle>

<sld:Rule>
<sld:Name>cemeteries</sld:Name>
<ogc:Filter>
<ogc:PropertyIsEqualTo>
<ogc:PropertyName>MTFCC</ogc:PropertyName>
<ogc:Literal>K2582</ogc:Literal>

</ogc:PropertyIsEqualTo>
(continues on next page)

664 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

</ogc:Filter>
<sld:MaxScaleDenominator>500000.0</sld:MaxScaleDenominator>
<sld:PolygonSymbolizer>
<sld:Fill>
<sld:CssParameter name="fill">#D3FFD3</sld:CssParameter>
<sld:CssParameter name="fill-opacity">0.5</sld:CssParameter>

</sld:Fill>
<sld:Stroke>
<sld:CssParameter name="stroke">#6DB26D</sld:CssParameter>

</sld:Stroke>
</sld:PolygonSymbolizer>
<sld:PolygonSymbolizer>
<sld:Fill>
<sld:GraphicFill>
<sld:Graphic>
<sld:Mark>
<sld:WellKnownName>ttf://Wingdings#0x0055</sld:WellKnownName>
<sld:Stroke>
<sld:CssParameter name="stroke">#6DB26D</sld:CssParameter>
</sld:Stroke>

</sld:Mark>
<sld:Size>16</sld:Size>

</sld:Graphic>
</sld:GraphicFill>

</sld:Fill>
<sld:VendorOption name="graphic-margin">8</sld:VendorOption>

</sld:PolygonSymbolizer>

</sld:Rule>

</sld:FeatureTypeStyle>
</sld:UserStyle>

</sld:UserLayer>
</sld:StyledLayerDescriptor>

Fig. 165: Filling with TTF fonts

Note: The above SLD defines a <PolygonSymbolizer> with a <GraphicFill> looking for a specific
Windings character which will be used by GeoServer as pattern to fill the polygon. The graphic-margin

3.2. Tutorials 665

GeoNode Documentation, Release 2.8

VendorOption is used to add some space around symbols.

7. Lets now take a look at another way to fill polygons using patterns, the Hatches. From the Welcome Page
navigate to Styles and select “wetlands” from the list.

Note: You may switch to the second page in order to find the style.

Fig. 166: Wetlands style with some hatches

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld" xmlns:sld=

→˓"http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml=
→˓"http://www.opengis.net/gml" version="1.0.0">

<sld:UserLayer>
<sld:LayerFeatureConstraints>
<sld:FeatureTypeConstraint/>

</sld:LayerFeatureConstraints>
<sld:UserStyle>
<sld:Name>Wetlands regulatory area</sld:Name>
<sld:Title/>
<sld:FeatureTypeStyle>

<sld:Rule>
<sld:Name>default rule</sld:Name>
<sld:MaxScaleDenominator>10000.0</sld:MaxScaleDenominator>
<sld:PolygonSymbolizer>

(continues on next page)

666 Chapter 3. Table of contents

http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

(continued from previous page)

<sld:Fill>
<sld:GraphicFill>

<sld:Graphic>
<sld:Mark>

<sld:WellKnownName>shape://times</
→˓sld:WellKnownName>

<sld:Fill/>
<sld:Stroke>
<sld:CssParameter name="stroke">

→˓#ADD8E6</sld:CssParameter>
<sld:CssParameter name="stroke-width

→˓">1.0</sld:CssParameter>
</sld:Stroke>

</sld:Mark>
<sld:Size>

<ogc:Literal>8.0</ogc:Literal>
</sld:Size>

</sld:Graphic>
</sld:GraphicFill>
<!--
<sld:CssParameter name="fill">#7CE3F8</

→˓sld:CssParameter>
<sld:CssParameter name="fill-opacity">0.5</

→˓sld:CssParameter>
-->

</sld:Fill>
</sld:PolygonSymbolizer>

</sld:Rule>
</sld:FeatureTypeStyle>

</sld:UserStyle>
</sld:UserLayer>

</sld:StyledLayerDescriptor>

8. Comment out the following line in order to see the polygons at lower zoom levels too:

<!-- sld:MaxScaleDenominator>10000.0</sld:MaxScaleDenominator -->

9. Click Submit to add the new SLD.

10. To see how the styles work, make sure the default style of the Wetlands_regulatory_area feature type is set to
wetlands.

11. Use the Map Preview to preview the new style.

12. On the previous example we used times as hatches mark. GeoServer makes available different kinds of hatches
marks:

Dashes

1. Lets now familiarize a bit with Dashes. We are going to see how it’s possible to draw several kind of dashes to
represent different types of trails or roads.

2. From the Welcome Page navigate to Styles.

Note: You have to be logged in as Administrator in order to activate this function.

3.2. Tutorials 667

http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.web.demo.MapPreviewPage
http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

Fig. 167: Changing the default style of the Wetlands_regulatory_area feature type to wetlands

668 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 168: Previewing the bplandmarks layer with the hatches applied

3.2. Tutorials 669

GeoNode Documentation, Release 2.8

Fig. 169: Different types of hatches marks.

670 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3. Select “trails” from the list

Fig. 170: Dashes SLD

4. In the SLD Editor you will see the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld" xmlns:sld=

→˓"http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml=
→˓"http://www.opengis.net/gml" version="1.0.0">

<sld:UserLayer>
<sld:LayerFeatureConstraints>
<sld:FeatureTypeConstraint/>

</sld:LayerFeatureConstraints>
<sld:UserStyle>
<sld:Name>Trails</sld:Name>
<sld:Title/>
<sld:FeatureTypeStyle>

<sld:Rule>
<sld:MaxScaleDenominator>75000</sld:MaxScaleDenominator>
<sld:LineSymbolizer>

<sld:Stroke>
<sld:CssParameter name="stroke">#6B4900</

→˓sld:CssParameter>
<sld:CssParameter name="stroke-width">0.1</

→˓sld:CssParameter>
<sld:CssParameter name="stroke-dasharray">2.0 </

→˓sld:CssParameter>
(continues on next page)

3.2. Tutorials 671

GeoNode Documentation, Release 2.8

(continued from previous page)

</sld:Stroke>
</sld:LineSymbolizer>

</sld:Rule>
</sld:FeatureTypeStyle>

</sld:UserStyle>
</sld:UserLayer>

</sld:StyledLayerDescriptor>

Fig. 171: Simple dash-array

Note: The above SLD defines a <LineSymbolizer> with a <Stroke> using the CSS property stroke-
dasharray to represent the trails like a simle gray dash.

Note: Encodes a dash pattern as a series of numbers separated by spaces. Odd-indexed numbers (first, third,
etc) determine the length in pxiels to draw the line, and even-indexed numbers (second, fourth, etc) determine
the length in pixels to blank out the line. Default is an unbroken line. Starting from version 2.1 dash arrays can
be combined with graphic strokes to generate complex line styles with alternating symbols or a mix of lines and
symbols.

5. The Style above is the default one for the layer geosolutions:Trails. Lets have a look at a bit more complex
example. From the Welcome Page navigate to Styles and select “trails2” from the list

6. In the SLD Editor you will see the following XML:

672 Chapter 3. Table of contents

http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

Fig. 172: Trails2 Style

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld" xmlns:sld=

→˓"http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml=
→˓"http://www.opengis.net/gml" version="1.0.0">

<sld:UserLayer>
<sld:LayerFeatureConstraints>
<sld:FeatureTypeConstraint/>

</sld:LayerFeatureConstraints>
<sld:UserStyle>
<sld:Name>Trails</sld:Name>
<sld:Title/>
<sld:FeatureTypeStyle>

<sld:Rule>
<sld:MaxScaleDenominator>75000</sld:MaxScaleDenominator>
<sld:LineSymbolizer>

<sld:Stroke>
<sld:GraphicStroke>

<sld:Graphic>
<sld:Mark>

<sld:WellKnownName>circle</
→˓sld:WellKnownName>

<sld:Fill>
<sld:CssParameter name="fill">

→˓#AA0000</sld:CssParameter>
</sld:Fill>

</sld:Mark>
<sld:Size>

<ogc:Literal>6</ogc:Literal>
</sld:Size>

</sld:Graphic>
</sld:GraphicStroke>
<sld:CssParameter name="stroke-dasharray">6 18</

→˓sld:CssParameter>
</sld:Stroke>

</sld:LineSymbolizer>
<sld:LineSymbolizer>

<sld:Stroke>
<sld:CssParameter name="stroke">#AA0000</

→˓sld:CssParameter>
<sld:CssParameter name="stroke-dasharray">10 14</

→˓sld:CssParameter>
<sld:CssParameter name="stroke-dashoffset">14</

→˓sld:CssParameter>

(continues on next page)

3.2. Tutorials 673

GeoNode Documentation, Release 2.8

(continued from previous page)

</sld:Stroke>
</sld:LineSymbolizer>

</sld:Rule>
</sld:FeatureTypeStyle>

</sld:UserStyle>
</sld:UserLayer>

</sld:StyledLayerDescriptor>

Note: We may notice two interesting things in this style, two <LineSymbolizer> the first one defining a
circle Mark with a simple dasharray and the second one a simple stroke defining also a dashoffset. The latter
specifies the distance in pixels into the dasharray pattern at which to start drawing. Default is 0.

7. Open the geosolutions:Trails layers and add trails2 as an additional style, then go to the Layer Preview to see it
in action

Warning: You have to zoom in from the layer preview in order to see the lines due to the MaxScaleDenom-
inator

Roads and labelling roads

1. From the Welcome Page navigate to Styles → mainrd in order to edit the mainrd SLD.

Note: You have to be logged in as Administrator in order to activate this function.

2. In the SLD Editor find the sld:TextSymbolizer associated to the ogc:PropertyName LABEL_NAME

Note: The style defines a and an <Halo> in order to render the value of the property LABEL_NAME
for that layer. The interesting part is at the bottom where several <VendorOption> are specified. Those
options are GeoServer specific and allows us to have better and nicer result by tweaking the label renderer
behaviour.

674 Chapter 3. Table of contents

http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

3.2. Tutorials 675

GeoNode Documentation, Release 2.8

Fig. 173: Road style

Option Description Type
followLine The followLine option forces a label to follow the curve of the line.

<VendorOption name="followLine">true</VendorOption>

To use this option place the following in your <TextSymbolizer>. It is required to use
<LinePlacement> along with this option to ensure that all labels are correctly following
the lines:
<LabelPlacement>
<LinePlacement/>

</LabelPlacement>

boolean

repeat The repeat option determines how often GeoServer labels a line. Normally GeoServer
would label each line only once, regardless of their length. Specify a positive value to make
it draw the label every repeat pixels.

<VendorOption name="repeat">100</VendorOption>

number

group Sometimes you will have a set of related features that you only want a single label for.
The grouping option groups all features with the same label text, then finds a representative
geometry for the group.
Roads data is an obvious example - you only want a single label for
all of main street, not a label for every piece of main street.

When the grouping option is off (default), grouping is not
performed and each geometry is labelled (space permitting).

With the grouping option on, all the geometries with the same label are grouped together
and the label position is determined from ALL the geometries.

• Point Set first point inside the view rectangle is used.

• Line Set lines are (a) networked together (b) clipped to the view rectangle (c) middle
of the longest network path is used.

• Polygon Set polygons are (a) clipped to the view rectangle (b) the centroid of the
largest polygon is used.

<VendorOption name="group">yes</VendorOption>

Warning: Watch out - you could group together two sets of
features by accident. For example, you could create a single
group for Paris which contains features for Paris (France)
and Paris (Texas).

enum{yes/no}

maxDisplacementThe maxDisplacement option controls the displacement of the label along a line. Normally
GeoServer would label a line at its center point only, provided the location is not busy with
another label, and not label it at all otherwise. When set, the labeller will search for another
location within maxDisplacement pixels from the pre-computed label point.
When used in conjunction with repeat, the value for maxDisplacement should always be
lower than the value for repeat.

<VendorOption name="maxDisplacement">10</VendorOption>

number

676 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Another important thing to notice in this style is the road casing, that is, the fact each road segment is painted by two
overlapping strokes of different color and size.

Placing the strokes in the two separate feature type styles is crucial:

• with the symbolizers in two separate FeatureTypeStyle element all roads are painted with the large
stroke, and then again with the thin, lighter one.

• if instead the two symbolizers were placed in the same FeatureTypeStyle element the result would
be different, and not pleasing to see, since the renderer would take the first road, paint with the large
and thin strokes in sequence, then move to the next one and repeat until the end

Styling point data

Point data in SLD can be depicted with PointSymbolizer and labelled with TextSymbolizer. This sec-
tion describe an existing, realistic style, available in the data directory that depicts the point landmarks layer
(bptlandmarks) with icons and labels.

The dataset

The bptlandmarks layer (Boulder point landmarks) contains the location of significant point entities such as malls,
schools, airports and the like. The attribute structure is reported in the GeoServer page for such layer:

The style will use the MTFCC code to categorize the various points in the different types (e.g., schools have MTFCC =
K2543, and eventually use FULLNAME for the label. This results in the following map:

The complete style we’ll be referring to is named point_landmark, you can have a look at the full style in the
GeoServer style editor:

Point symbolizers

A point symbolizer depicts a symbol by means of a Mark or a External Graphic. The former is a built-in vector
symbol that can be stroked and filled at the styler will, but only a handful of such symbols are available, whilst the
latter can be a user provided image or SVG graphic.

The point landmark styles use the Open Street Map icons for most of the locations. The images have been added inside
the data directory, inside styles/im, since this allows to refer them by relative path:

Given the above symbols a point symbolizer looks as follows:

<sld:PointSymbolizer>
<sld:Graphic>
<sld:ExternalGraphic>
<sld:OnlineResource xlink:type="simple" xlink:href="./img/landmarks/

→˓school.png" />
<sld:Format>image/png</sld:Format>

</sld:ExternalGraphic>
</sld:Graphic>
<VendorOption name="labelObstacle">true</VendorOption>

</sld:PointSymbolizer>

The icon is depicted on the screen as-is, at its natural resolutions. The labelObstacle vendor parameter, specific
to GeoServer, makes sure the point is icon is treated as a label obstacle, that is, makes sure no label will ever be
depicted over the point.

3.2. Tutorials 677

http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.web.data.resource.ResourceConfigurationPage&name=bptlandmarks&wsName=geosolutions
http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:bptlandmarks&styles=line,&bbox=-105.688,39.914,-105.06,40.261&width=597&height=330&srs=EPSG:4269&format=application/openlayers
http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.wms.web.data.StyleEditPage&name=point_landmark
http://docs.geoserver.org/2.2.2/user/styling/sld-extensions/label-obstacles.html

GeoNode Documentation, Release 2.8

Fig. 174: Road casing with a single FeatureTypeStyle element

678 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 175: Point landmarks attribute structure

Fig. 176: Point landmarks in Boulder

3.2. Tutorials 679

GeoNode Documentation, Release 2.8

Fig. 177: Point landmarks style

680 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 178: Point landmarks style

3.2. Tutorials 681

GeoNode Documentation, Release 2.8

Text symbolizers for points

The text symbolizer associates a label with a point using an attribute value as the label source. The following symbol-
izer is used to label schools:

<sld:TextSymbolizer>
<sld:Label>

<ogc:PropertyName>FULLNAME</ogc:PropertyName>
</sld:Label>
<sld:Font>

<sld:CssParameter name="font-family">Arial</sld:CssParameter>
<sld:CssParameter name="font-size">12.0</sld:CssParameter>
<sld:CssParameter name="font-style">normal</sld:CssParameter>
<sld:CssParameter name="font-weight">normal</sld:CssParameter>

</sld:Font>
<sld:LabelPlacement>

<sld:PointPlacement>
<sld:AnchorPoint>
<sld:AnchorPointX>
<ogc:Literal>0.5</ogc:Literal>

</sld:AnchorPointX>
<sld:AnchorPointY>

<ogc:Literal>1.0</ogc:Literal>
</sld:AnchorPointY>

</sld:AnchorPoint>
<sld:Displacement>
<sld:DisplacementX>

<ogc:Literal>0.0</ogc:Literal>
</sld:DisplacementX>
<sld:DisplacementY>

<ogc:Literal>-10.0</ogc:Literal>
</sld:DisplacementY>

</sld:Displacement>
<sld:Rotation>
<ogc:Literal>0.0</ogc:Literal>

</sld:Rotation>
</sld:PointPlacement>

</sld:LabelPlacement>
<sld:Halo>

<sld:Radius>
<ogc:Literal>1.5</ogc:Literal>

</sld:Radius>
<sld:Fill>

<sld:CssParameter name="fill">#FFFFFF</sld:CssParameter>
</sld:Fill>

</sld:Halo>
<sld:Fill>

<sld:CssParameter name="fill">#000033</sld:CssParameter>
</sld:Fill>
<sld:Priority>200000</sld:Priority>
<sld:VendorOption name="autoWrap">100</sld:VendorOption>

</sld:TextSymbolizer>

Highlights about the above style:

• Uses FULLNAME as the label source

• Uses a Arial 12pt font

682 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

• Places the label below the point, and offsets it by 10 pixel to the south

• Applies a white halo to make it stand out of the background map

• Sets its priority to 200000 (high, important) to make sure the label is depicted in preference to others

• Uses the autoWrap option to make it wrap on the next line if it’s larger than 100 pixels (the full list of labelling
vendor options is available in the GeoServer user guide).

Using Rules to assign a different styling to each point

A Rule is a SLD construct allowing the style editor to control scale dependencies and filter data so that only certain
data is depicted using the symbolizers contained in the rule.

The rule for the school points looks as follows:

<sld:Rule>
<sld:Name>school</sld:Name>
<ogc:Filter>

<ogc:PropertyIsEqualTo>
<ogc:PropertyName>MTFCC</ogc:PropertyName>
<ogc:Literal>K2543</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Filter>
<sld:MaxScaleDenominator>100000</sld:MaxScaleDenominator>
<sld:PointSymbolizer>
<!-- same as above -->

</sld:PointSymbolizer>
<sld:TextSymbolizer>
<!-- same as above -->

</sld:TextSymbolizer>
</sld:Rule>

Highlights about the above rule:

• makes sure the symbolizers are applied only to the features whose MTFCC = K2543

• shows the symbols only when the scale denominator is below 100000 (e.g., shows them at 1:10000, but not at
1:2000000).

Using dynamic symbolizers to reduce the style size

The overall point_landmark style has 8 different rules using different symbols for each type and amounts to
almost 550 lines of XML. The same style could be written in a much more compact way if we could store the symbol
name in some attribute and expand it in the external graphic URL.

Standard SLD 1.0 does not allow for that, but GeoServer supports extensions to it known as dynamic symbolizers that
allow for generic CQL expressions to be embedded in the URL. The data directory already contains a secondary layer,
bptlandmarks_2876, which is using a different projection and has a IMAGE attribute containing the file names.

The style can then be reduced to a single rule using the following point symbolizer:

<sld:PointSymbolizer>
<sld:Graphic>
<sld:ExternalGraphic>

<sld:OnlineResource xlink:type="simple" xlink:href="./img/landmarks/${IMAGE}" />
<sld:Format>image/png</sld:Format>

(continues on next page)

3.2. Tutorials 683

http://docs.geoserver.org/latest/en/user/styling/sld/reference/labeling.html

GeoNode Documentation, Release 2.8

(continued from previous page)

</sld:ExternalGraphic>
</sld:Graphic>
<VendorOption name="labelObstacle">true</VendorOption>

</sld:PointSymbolizer>

Here is the overall style:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor
xmlns="http://www.opengis.net/sld"
xmlns:sld="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.org/1999/xlink" version="1.0.0">

<sld:UserLayer>
<sld:LayerFeatureConstraints>

<sld:FeatureTypeConstraint/>
</sld:LayerFeatureConstraints>
<sld:UserStyle>

<sld:Name>tl 2010 08013 pointlm</sld:Name>
<sld:Title/>
<sld:FeatureTypeStyle>

<sld:Rule>
<sld:Name>landmarks</sld:Name>
<ogc:Filter>

<ogc:Not>
<ogc:PropertyIsNull>
<ogc:PropertyName>IMAGE</ogc:PropertyName>

</ogc:PropertyIsNull>
</ogc:Not>

</ogc:Filter>
<sld:MaxScaleDenominator>100000</sld:MaxScaleDenominator>
<sld:PointSymbolizer>
<sld:Graphic>
<sld:ExternalGraphic>
<sld:OnlineResource xlink:type="simple" xlink:href="./img/landmarks/$

→˓{IMAGE}" />
<sld:Format>image/png</sld:Format>

</sld:ExternalGraphic>
</sld:Graphic>
<VendorOption name="labelObstacle">true</VendorOption>

</sld:PointSymbolizer>
<sld:TextSymbolizer>
<sld:Label>
<ogc:PropertyName>FULLNAME</ogc:PropertyName>

</sld:Label>
<sld:Font>
<sld:CssParameter name="font-family">Arial</sld:CssParameter>
<sld:CssParameter name="font-size">12.0</sld:CssParameter>
<sld:CssParameter name="font-style">normal</sld:CssParameter>
<sld:CssParameter name="font-weight">normal</sld:CssParameter>

</sld:Font>
<sld:LabelPlacement>
<sld:PointPlacement>
<sld:AnchorPoint>
<sld:AnchorPointX>

(continues on next page)

684 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

<ogc:Literal>0.5</ogc:Literal>
</sld:AnchorPointX>
<sld:AnchorPointY>
<ogc:Literal>1.0</ogc:Literal>

</sld:AnchorPointY>
</sld:AnchorPoint>
<sld:Displacement>
<sld:DisplacementX>
<ogc:Literal>0.0</ogc:Literal>

</sld:DisplacementX>
<sld:DisplacementY>
<ogc:Literal>-14.0</ogc:Literal>

</sld:DisplacementY>
</sld:Displacement>
<sld:Rotation>
<ogc:Literal>0.0</ogc:Literal>

</sld:Rotation>
</sld:PointPlacement>

</sld:LabelPlacement>
<sld:Halo>
<sld:Radius>
<ogc:Literal>1.5</ogc:Literal>

</sld:Radius>
<sld:Fill>
<sld:CssParameter name="fill">#FFFFFF</sld:CssParameter>

</sld:Fill>
</sld:Halo>
<sld:Fill>
<sld:CssParameter name="fill">#000033</sld:CssParameter>

</sld:Fill>
<sld:Priority>200000</sld:Priority>
<sld:VendorOption name="autoWrap">100</sld:VendorOption>

</sld:TextSymbolizer>
</sld:Rule>

</sld:FeatureTypeStyle>
</sld:UserStyle>

</sld:UserLayer>
</sld:StyledLayerDescriptor>

And here is a map using this alternate style:

Styling in real world units

By default SLD interprets all sizes expressed in the style sheet (e.g., line widths, symbol sizes) as being pixels on the
map.

It is however possible to make the style sheet use real world units, e.g., meters or feet, by specifying the desired unit
of measure as an attribute of the symbolizer. The supported unit of measure are:

• meter

• foot

• pixel

The following line style uses a line width of 40 meters:

3.2. Tutorials 685

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:bptlandmarks&styles=line,&bbox=-105.688,39.914,-105.06,40.261&width=597&height=330&srs=EPSG:4269&format=application/openlayers

GeoNode Documentation, Release 2.8

Fig. 179: Point landmarks using dynamic symbolizers

686 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

<LineSymbolizer uom="http://www.opengeospatial.org/se/units/metre">
<Stroke>
<CssParameter name="stroke">#000033</CssParameter>
<CssParameter name="stroke-width">40</CssParameter>

</Stroke>
</LineSymbolizer>

Setting up a uom based style in GeoServer

1. Create a new style named line40m using the following SLD:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd
→˓"
xmlns="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<NamedLayer>

<Name>line40m</Name>
<UserStyle>
<Title>40 meter wide line</Title>
<FeatureTypeStyle>

<Rule>
<LineSymbolizer uom="http://www.opengeospatial.org/se/

→˓units/metre">
<Stroke>
<CssParameter name="stroke">#000033</

→˓CssParameter>
<CssParameter name="stroke-width">40</

→˓CssParameter>
</Stroke>

</LineSymbolizer>
</Rule>

</FeatureTypeStyle>
</UserStyle>

</NamedLayer>
</StyledLayerDescriptor>

2. Associate the line40m to MainRd as a secondary style:

3. Preview the MainRd layer and switch to the line40m style:

4. Zoom in and out and observe how the width of the line on screen varies by changing the zoom level

Geometry transformations

This section show how to GeoServer provides a number of filter functions that can actually manipulate geometries by
transforming them into something different: this is what we call geometry transformations in SLD.

3.2. Tutorials 687

GeoNode Documentation, Release 2.8

Fig. 180: Adding the line40m style as a secondary style for Mainrd

Extracting vertices

1. Using skills learned in the adding styles section, create a new style named mainrd_transform using the following
SLD:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/

→˓XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.

→˓0.0/StyledLayerDescriptor.xsd">
<NamedLayer>

<Name>Roads and vertices</Name>
<UserStyle>
<FeatureTypeStyle>
<Rule>
<LineSymbolizer>
<Stroke />

</LineSymbolizer>
<PointSymbolizer>
<Geometry>
<ogc:Function name="vertices">
<ogc:PropertyName>the_geom</ogc:PropertyName>

</ogc:Function>
</Geometry>
<Graphic>
<Mark>
<WellKnownName>circle</WellKnownName>
<Fill>
<CssParameter name="fill">#FF0000</CssParameter>

</Fill>
</Mark>
<Size>6</Size>

</Graphic>
</PointSymbolizer>

</Rule>
</FeatureTypeStyle>

</UserStyle>
(continues on next page)

688 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 181: A uom based line, zoomed out

3.2. Tutorials 689

GeoNode Documentation, Release 2.8

Fig. 182: Zooming in on the same line

690 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

</NamedLayer>
</StyledLayerDescriptor>

Note: The vertices function returns a multi-point made with all the vertices of the original geometry

2. Using skills learned in the adding styles section, modify the styling of the Mainrd layer and add
mainrd_transform as an alternate style (hint, select the mainrd_transform style in the first list be-
low “available styles” and then use the right arrow to move it in the “selected styles”):

Fig. 183: Adding the mainrd_transform style as a secondary style for Mainrd

1. Use the Preview link to display the Mainrd layer, then open the options box and choose the alternate style from
the drop down:

Line buffer

1. Using skills learned in the geoserver.addstyle section, create a new style mainrd_buffer using the following SLD

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/
→˓2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.
→˓net/sld/1.0.0/StyledLayerDescriptor.xsd">

<NamedLayer>
<Name>Roads and vertices</Name>
<UserStyle>

(continues on next page)

3.2. Tutorials 691

GeoNode Documentation, Release 2.8

Fig. 184: Extracting and showing the vertices out of a geometry

692 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

<FeatureTypeStyle>
<Rule>

<PolygonSymbolizer>
<Geometry>

<ogc:Function name="buffer">
<ogc:PropertyName>the_geom</

→˓ogc:PropertyName>
<ogc:Literal>200</ogc:Literal>

</ogc:Function>
</Geometry>
<Fill>

<CssParameter name="fill">#7F7F7F</
→˓CssParameter>

<CssParameter name="fill-opacity">0.3</
→˓CssParameter>

</Fill>
</PolygonSymbolizer>
<LineSymbolizer>
<Stroke />

</LineSymbolizer>
</Rule>

</FeatureTypeStyle>
</UserStyle>

</NamedLayer>
</StyledLayerDescriptor>

Note: The buffer function builds a polygon of all the points that are withing the specified distance from the
original geometry.

2. As done previously, modify the styling of the Mainrd layer and add mainrd_buffer as an alternate style:

Fig. 185: Adding the mainrd_buffer style as a secondary style for Mainrd

3.2. Tutorials 693

GeoNode Documentation, Release 2.8

1. Use the Map Preview to preview the new style.

Charting

GeoServer can produce maps with charts through the chart extension. Bundled with GeoServer is an open source
version of the (deprecated) Google Chart API called Eastwood Charts.

You can display bar or pie charts (Most Google Charts except for Google-o-meter and spider charts are supported by
the Eastwood library but the same does not apply to the corresponding GeoServer extension) for each feature on your
map. You can control colors or labels. You can use percentages that are in your data attributes or compute percentages
from counts on the fly.

How Charting Works

The Charting Extension makes usage of a URL inside the <ExternalGraphic> element of SLD documents. The URL
used follows the Google Chart API syntax, but the chart is generated internally in GeoServer, hence no call to external
services made removing any privacy or security concern and providing maximum performance. All the information
about the chart that you want, such as chart data, size, colors, and labels, are part of the URL.

Inside the URL we can use variable substitution for using the attributes of the underlying features that are read from
the datasource allowing us to create stunning dynamic charts using our own data.

An example of a chart created using an <ExternalGraphic> element is shown here below:

<ExternalGraphic>
<OnlineResource

xlink:href="http://chart?cht=p&chd=t:${100 * MALE / PERSONS},${100 *
→˓FEMALE / PERSONS}&chf=bg,s,FFFFFF00" />
<Format>application/chart</Format>

</ExternalGraphic>

All URLs start with https://chart? followed by the parameters that specify chart data and appearance. Parameters are
name=value pairs, separated by an ampersand character (&), and parameters can be in any order, after the ?. All charts
require at minimum the following parameters: cht (chart type), chd (data), and chsv (chart size). However, there are
many more parameters for additional options, and you can specify as many additional parameters as the chart supports.

We are now going to see examples and explanation for the various types of charts supported. First of all we will start
with the standard features support by all the charts.

Standard Features

All Chart URLs have the following format:

https://chart?cht=<chart_type>&chd=<chart_data>&chs=<chart_size>&...more_
→˓parameters...

The standard parameters as part of the above URL have the following meaning:

• The cht parameter allows us to control the type of charts; as an example cht=p can be used for a 2D (flat) Pie.

• The chs parameter allows us to control the size of charts; as an example chs=500x200 specifies the chart size
(width x height), in pixels. As an alternative we can use the <Size> element of external graphics (we’ll show an
example in the following.

694 Chapter 3. Table of contents

http://localhost:8083/geoserver/mapPreview.do
https://developers.google.com/chart/image/
http://www.jfree.org/eastwood/
https://chart

GeoNode Documentation, Release 2.8

Fig. 186: Extracting start and end point of a line

3.2. Tutorials 695

GeoNode Documentation, Release 2.8

• The chd parameter allows us to control the chart data; as an example chd=t:60,40 can be used to provide tabular
data to the diagram rendering system. We can use variable substitution and other GeoServer mechanisms to
pass data sources value as the chart data. A typical example would be something like chd=t:${100 * MALE
/ PERSONS},${100 * FEMALE / PERSONS}& where MALE, PERSONS and FEMALE are attribute of
GeoServer data sources.

• The chl parameter allows us to control the label of charts; as an example chl=Male|Female can be used to label
a chart.

Pie Charts

Quoting Wikipedia,

“A pie chart (or a circle graph) is a circular chart divided into sectors, illustrating numerical proportion. In a pie chart,
the arc length of each sector (and consequently its central angle and area), is proportional to the quantity it represents.”

Let us know create a sample map using the Pie Charts element leveraging on the the data provided with the training.
Afterwards we will review the various options.

To print dynamic charts on a map using a Pie symbol over the United Stats map add a new style called statespies by
adding the SLD provided below as indicated in this picture.

Fig. 187: Creating a new Dynamic Style

In the SLD Editor enter the following XML:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/

→˓sld/1.0.0/StyledLayerDescriptor.xsd"
xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"

(continues on next page)

696 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/
→˓2001/XMLSchema-instance">
<NamedLayer>

<Name></Name>
<UserStyle>

<Name>Pie charts</Name>
<FeatureTypeStyle>
<Rule>
<PolygonSymbolizer>
<Fill>
<CssParameter name="fill">#AAAAAA</CssParameter>

</Fill>
<Stroke />

</PolygonSymbolizer>
</Rule>

</FeatureTypeStyle>
<FeatureTypeStyle>
<Rule>
<PointSymbolizer>
<Geometry>
<ogc:Function name="centroid">
<ogc:PropertyName>the_geom</ogc:PropertyName>

</ogc:Function>
</Geometry>
<Graphic>
<ExternalGraphic>
<OnlineResource
xlink:href="http://chart?cht=p&chd=t:${100 * MALE /

→˓PERSONS},${100 * FEMALE / PERSONS}&chf=bg,s,FFFFFF00" />
<Format>application/chart</Format>

</ExternalGraphic>
<Size>
<ogc:Add>
<ogc:Literal>20</ogc:Literal>
<ogc:Mul>
<ogc:Div>
<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:Literal>20000000.0</ogc:Literal>

</ogc:Div>
<ogc:Literal>60</ogc:Literal>

</ogc:Mul>
</ogc:Add>

</Size>
</Graphic>

</PointSymbolizer>
</Rule>

</FeatureTypeStyle>
</UserStyle>

</NamedLayer>
</StyledLayerDescriptor>

In order to have the states layer use this style with no additional indications, modify the default style of the states layer
using the user interface to point to the newly created statespies.

Now go to the Layer Preview to view the new style in action.

3.2. Tutorials 697

GeoNode Documentation, Release 2.8

Fig. 188: Changing the default style of the states layer

Fig. 189: Previewing the states layer with the statespies applied

698 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Pie Chart Options

Let us quickly analyse the components of the ExternalGraphic call, which follow the rules of a Google Charts API
call:

Pie Chart Types

The cht parameter allows us to control the type of pie. Supported options are as follows:

• cht=p for a 2D (flat) Pie

• cht=p3 for a 3D (flat) Pie

• cht=pc is not supported.

Pie Chart Data

chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS} the chart data is expressed in “text”
format, and in particular, the first value is the result of 100 * MALE / PERSONS, where MALE and PERSONS are
two attributes of feature being rendered

Pie Chart Background

chf=bg,s,FFFFFF00: we state that the chart background fill is solid, white and transparent. In articular, the color is
expressed as RRGGBBAA, where AA is the alpha component, which controls transparency. In particular 0 is fully
transparent, 255 is fully opaque

Pie Chart Size

The size of the chart is controlled using the usual <Size> element of external graphics, an in particular, it’s setup so
that it’s proportional to the PERSONS attribute via the expression: 20 + (PERSONS / 20,000,000) * 60.

Pie Chart Colors

We can specify the colors of all values, each value, or some values using the chco parameter. This override the usage
of the default Background Fills chf parameter, hence it is optional.

Syntax is as follows:

chco=<color_slice_1>,<color_slice_2>

for specifying individual colors for slices and

chco=<color_1>|<color_2>

for specifying a gradient to be applied to the slices.

where color is in RRGGBB hexadecimal format.

Pie Chart Labels

We can specify labels for individual pie chart slices using the chl parameter.

The syntax is a follows:

chl=<label_value>| ... |<label_value>

Pie Chart Rotation

Pie Chart Rotation can be achieved via the chp parameter. By default, the first series is drawn starting at 3:00,
continuing clockwise around the chart.

3.2. Tutorials 699

https://developers.google.com/chart/image/docs/chart_params#gcharts_rgb

GeoNode Documentation, Release 2.8

The syntax is as follows:

chp=<radians>

Additional information on creating pie charts can be found on the official pie charts documentation

A more comprehensive example can be found here below:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/

→˓sld/1.0.0/StyledLayerDescriptor.xsd"
xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/

→˓2001/XMLSchema-instance">
<NamedLayer>

<Name></Name>
<UserStyle>
<Name>Pie charts</Name>
<FeatureTypeStyle>
<Rule>
<PolygonSymbolizer>
<Fill>
<CssParameter name="fill">#ffffff</CssParameter>

</Fill>
<Stroke />

</PolygonSymbolizer>
</Rule>

</FeatureTypeStyle>
<FeatureTypeStyle>
<Rule>
<PointSymbolizer>
<Geometry>
<ogc:Function name="centroid">
<ogc:PropertyName>the_geom</ogc:PropertyName>

</ogc:Function>
</Geometry>
<Graphic>

<ExternalGraphic>
<OnlineResource
xlink:href="http://chart?cht=p&chf=bg,s,FFFFFF00&

→˓chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS}&
→˓chl=MALE|FEMALE&chs=200x100&chco=0000ff,ff0000&chtt=M+F" />

<Format>application/chart</Format>
</ExternalGraphic>

</Graphic>
</PointSymbolizer>

</Rule>
</FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>

The resulting image can be found here below:

700 Chapter 3. Table of contents

https://developers.google.com/chart/image/docs/gallery/pie_charts

GeoNode Documentation, Release 2.8

Bar Charts

Quoting Wikipedia,

“A bar chart or bar graph is a chart with rectangular bars with lengths proportional to the values that they represent.
The bars can be plotted vertically or horizontally. A vertical bar chart is sometimes called a column bar chart.”

Let us know create a sample map using the Bar Charts element leveraging on the the data provided with the training.
Afterwards we will review the various options.

To print dynamic charts on a map using a Bar symbol over the United Stats map add a new style called statesbars by
adding the SLD provided below as indicated in this picture.

Fig. 190: Creating a new Dynamic Style with Bar Charts

3.2. Tutorials 701

GeoNode Documentation, Release 2.8

In the SLD Editor enter the following XML:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/

→˓sld/1.0.0/StyledLayerDescriptor.xsd"
xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/

→˓2001/XMLSchema-instance">
<NamedLayer>

<Name></Name>
<UserStyle>
<Name>Pie charts</Name>
<FeatureTypeStyle>
<Rule>
<PolygonSymbolizer>
<Fill>
<CssParameter name="fill">#ffffff</CssParameter>

</Fill>
<Stroke />

</PolygonSymbolizer>
</Rule>

</FeatureTypeStyle>
<FeatureTypeStyle>
<Rule>
<PointSymbolizer>
<Graphic>
<Geometry>
<ogc:Function name="centroid">
<ogc:PropertyName>the_geom</ogc:PropertyName>

</ogc:Function>
</Geometry>
<ExternalGraphic>

<OnlineResource
xlink:href="http://chart?cht=bvg&chf=bg,s,FFFFFF00&

→˓chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS}" />
<Format>application/chart</Format>

</ExternalGraphic>
<Size>
<ogc:Add>
<ogc:Literal>20</ogc:Literal>
<ogc:Mul>
<ogc:Div>
<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:Literal>20000000.0</ogc:Literal>

</ogc:Div>
<ogc:Literal>60</ogc:Literal>

</ogc:Mul>
</ogc:Add>

</Size>
</Graphic>

</PointSymbolizer>
</Rule>

</FeatureTypeStyle>
</UserStyle>

</NamedLayer>
</StyledLayerDescriptor>

702 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Bar Chart Options

Let us quickly analyse the components of the ExternalGraphic call, which follow the rules of a Google Charts API
call:

Bar Chart Types

The cht parameter allows us to control the type of pie. Supported options are as follows:

• cht=bvg for simple 2D vertical Bars layed out as groups.

• cht=bhg for simple 2D horizontal Bars layed out as groups.

• cht=bvs for simple 2D vertical Bars layed out as stacks.

• cht=bvo is not supported.

Bar Chart Data

chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS} the chart data is expressed in “text”
format, and in particular, the first value is the result of 100 * MALE / PERSONS, where MALE and PERSONS are
two attributes of feature being rendered. This type of sequence is good for grouped bar charts. Values for successive
groups are separated by |. Values within the same group are separated by comma.

Bar Chart Colors

Note: Note that by default, all series are displayed in the same color; if you don’t specify different colors
for different series, it will be hard to distinguish that there are multiple series in your chart.

You can specify the colors of individual bars, individual series, or multiple series using the chco parameter. If you
don’t specify a different color for each series, all series will be the same color. Syntax is as follows:

chco=<series_1_color>, ..., <series_n_color>

or

chco=<series_1_bar_1>|<series_1_bar_2>|...|<series_1_bar_n>,<series_2>,...,
→˓<series_n>

where color is in RRGGBB hexadecimal format.

Bar Chart Background

chf=bg,s,FFFFFF00: we state that the chart background fill is solid, white and transparent. In particular, the color
is expressed as RRGGBBAA, where AA is the alpha component, which controls transparency. In particular 0 is fully
transparent, 255 is fully opaque.

Bar Chart Size

The size of the chart is controlled using the usual <Size> element of external graphics, an in particular, it’s setup so
that it’s proportional to the PERSONS attribute via the expression: 20 + (PERSONS / 20,000,000) * 60.

Bar Chart Labels

Bar charts support standard axis labels, but labels along the base of the bars are assigned to individual bars, rather than
spread out along the bar chart. (To spread out labels evenly, use the chxp parameter as described below.) If you specify
axis labels but don’t specify custom labels along the bar axis, the bar labels will be the index number of each bar or
group of bars. You can customize axis labels using the chxl parameter.

The syntax is a follows:

3.2. Tutorials 703

https://developers.google.com/chart/image/docs/chart_params#gcharts_rgb

GeoNode Documentation, Release 2.8

chl=<label_value>| ... |<label_value>

Additional information on creating pie charts can be found on the official bar chart documentation

A more comprehensive example can be found here below:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/

→˓sld/1.0.0/StyledLayerDescriptor.xsd"
xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/

→˓2001/XMLSchema-instance">
<NamedLayer>

<Name></Name>
<UserStyle>
<Name>Pie charts</Name>
<FeatureTypeStyle>
<Rule>
<PolygonSymbolizer>
<Fill>
<CssParameter name="fill">#dddddd</CssParameter>

</Fill>
<Stroke />

</PolygonSymbolizer>
</Rule>

</FeatureTypeStyle>
<FeatureTypeStyle>
<Rule>
<PointSymbolizer>
<Graphic>
<ExternalGraphic>
<OnlineResource

xlink:href="http://chart?chxt=x,y&chxl=0:|M|F&
→˓amp;cht=bvg&chco=0000ff,ff0000&chf=bg,s,FFFFFF00&chd=t:${100 *
→˓MALE / PERSONS}|${100 * FEMALE / PERSONS}&chs=200x200&chtt=M+F" />

<Format>application/chart</Format>
</ExternalGraphic>

</Graphic>
</PointSymbolizer>

</Rule>
</FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>

The resulting image can be found here below:

Styling Raster data

In the previous section we have created and optimized some vector styles. In this section we will deal with a styled
SRTM raster and we will see how to get a better visualization of that layer by adding hillshade.

704 Chapter 3. Table of contents

https://developers.google.com/chart/image/docs/gallery/bar_charts

GeoNode Documentation, Release 2.8

1. From the Welcome Page navigate to Layer Preview and select the OpenLayers link for the
geosolutions:srtm layer.

There is a DEM style associated to that SRTM dataset layer, resulting in such a colored rendering.

2. Return to the GeoServer Welcome Page, select the Styles and click the dem style to see which color map is
applied.

Note: You have to be logged in as Administrator in order to edit/check styles.

Note the entries with opacity = 0.0 which allow to make no data values as transparent.

The current DEM style allows to get a pleasant rendering of the SRTM dataset but we can get better results by
combining it with an hillshade layer which will be created through another GDAL utility (gdaldem).

Adding hillshade

1. Open a shell and run:

* Linux

gdaldem hillshade -z 5 -s 111120 ${TRAINING_ROOT}/geoserver_data/data/boulder/
→˓srtm_boulder.tiff ${TRAINING_ROOT}/geoserver_data/data/boulder/srtm_boulder_hs.
→˓tiff -co tiled=yes

* Windows

gdaldem hillshade -z 5 -s 111120 %TRAINING_ROOT%\geoserver_data\data\boulder\srtm_
→˓boulder.tiff %TRAINING_ROOT%\geoserver_data\data\boulder\srtm_boulder_hs.tiff -
→˓co tiled=yes

Note: The z parameter exaggerates the elevation, the s parameter provides the ratio between the elevation
units and the ground units (degrees in this case), -co tiled=yes makes gdaldem generate a TIFF with inner
tiling. We’ll investigate this last option better in the following pages.

3.2. Tutorials 705

http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

Fig. 191: SRTM rendering with DEM style

2. From the Welcome Page navigate to Styles and select Add a new style as previously seen in the Adding a style
section.

3. In the SLD Editor enter the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld" xmlns:sld="http://
→˓www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://
→˓www.opengis.net/gml" version="1.0.0">

<sld:UserLayer>
<sld:LayerFeatureConstraints>

<sld:FeatureTypeConstraint/>
</sld:LayerFeatureConstraints>
<sld:UserStyle>

<sld:Title/>
<sld:FeatureTypeStyle>

<sld:Name>name</sld:Name>
<sld:FeatureTypeName>Feature</sld:FeatureTypeName>
<sld:Rule>

<sld:MinScaleDenominator>75000</sld:MinScaleDenominator>
<sld:RasterSymbolizer>

<sld:Geometry>
<ogc:PropertyName>grid</ogc:PropertyName>

</sld:Geometry>
<sld:ColorMap>

<sld:ColorMapEntry color="#000000" opacity="0.0"
→˓quantity="0.0"/>

(continues on next page)

706 Chapter 3. Table of contents

http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

Fig. 192: Style editing

3.2. Tutorials 707

GeoNode Documentation, Release 2.8

(continued from previous page)

<sld:ColorMapEntry color="#999999" opacity="0.7"
→˓quantity="1.0"/>

<sld:ColorMapEntry color="#FFFFFF" opacity="0.7"
→˓quantity="256.0"/>

</sld:ColorMap>
</sld:RasterSymbolizer>

</sld:Rule>
</sld:FeatureTypeStyle>

</sld:UserStyle>
</sld:UserLayer>

</sld:StyledLayerDescriptor>

Note: Note the opacity values being less than 1, in order to made it partially transparent which will allows to
do overlaying on other layers

4. Set hillshade as name and then click the Submit button.

5. Select Add stores from the GeoServer Welcome Page to add the previously created hillshade raster.

6. Select GeoTIFF - Tagged Image File Format with Geographic information from the set of available Raster Data
Sources.

7. Specify hillshade as name in the Data Source Name field of the interface.

8. Click on browse link in order to set the GeoTIFF location in the URL field.

Note: make sure to specify the srtm_boulder_hs.tiff previously created with gdaldem, which should
be located at $TRAINING_ROOT/geoserver_data/data/boulder

9. Click Save.

10. Publish the layer by clicking on the publish link.

Fig. 193: Publishing Raster Layer

11. Set SRTM Hillshade as Title

12. Switch to Publishing tab

13. Make sure to set the default style to hillshade on the Publishing –> Default Style section.

14. Click Save to create the new layer.

15. Use the Layer Preview to preview the new layer with the hillshade style.

16. Edit the Layer Preview URL in your browser by locating the layers parameter

708 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 194: Editing Raster Publishing info

3.2. Tutorials 709

GeoNode Documentation, Release 2.8

Fig. 195: Previewing the new raster layer with the hillshade style applied

710 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

17. Insert the geosolutions:srtm, additional layer (note the final comma) before the geosolutions:hillshade one, and
in the styles parameter, add a comma before hillshade to make GeoServer use the default style for the srtm layer

18. Press Enter to send the updated request. The Layer Preview should change like this where you can see both the
SRTM and hillshade layers.

Fig. 196: Layer preview with SRTM and hillshade being overlaid

Styling with CSS

The CSS extension module allows to build map styles using a compact, expressive styling language already well
known to most web developers: Cascading Style Sheets.

The standard CSS language has been extended to allow for map filtering and managing all the details of a map
production. In this section we’ll experience creating a few simple styles with the CSS language.

Creating line styles

1. From the main menu bar select the CSS styles entry

3.2. Tutorials 711

http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.community.css.web.CssDemoPage

GeoNode Documentation, Release 2.8

2. Click on the “Choose a different layer” link and switch to the Mainrd layer

3. Click on the “Create a new style” link and input css_mainrd as the style name, then press the “Create” button

Fig. 197: Creating a new CSS style for the Mainrd layer

4. Set the style contents to the following, press submit and switch to the map preview

* {
stroke: orange;
stroke-width: 6;
stroke-linecap: round;

}

5. Now let’s create a cased line effect by adding a second set of colours and widths, and forcing two different z
indexes for them. Press submit, look at the map and at the generated SLD

* {
stroke: orange, yellow;
stroke-width: 6, 2;
stroke-linecap: round;
z-index: 1, 2;

}

6. Finally, let’s add a label that follows the road

* {
stroke: orange, yellow;
stroke-width: 6, 2;
stroke-linecap: round;
z-index: 1, 2;
label: [LABEL_NAME];
font-fill: black;
font-family: Arial;
font-size: 12;

(continues on next page)

712 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 713

GeoNode Documentation, Release 2.8

(continued from previous page)

font-weight: bold;
halo-color: white;
halo-radius: 2;
-gt-label-follow-line: true;
-gt-label-group: true;
-gt-label-repeat: 400;
-gt-label-max-displacement: 50;

}

Creating point styles

1. Similarly to the previous section, switch the map to “bptlandmarks” and create a new style called
“css_bptlandmarks”

2. Insert the following in the CSS to get a basic point style, and press “Submit”:

* {
mark: symbol('circle');
mark-size: 5;

}

3. Let’s change the color of the points by specifying a fill. If we specified a fill in the top level rule it would be
interpreted as a polygonal fill, to express that we want to fill inside the marks we have to create a new rule with
the :mark pseudo-selector:

* {
mark: symbol('circle');
mark-size: 5;

}

(continues on next page)

714 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

:mark {
fill: cyan;
stroke: darkblue;

}

4. Finally, let’s override the default styling for all shopping centers. Shopping centers are not easy to find, they
have a MTFCC category of C3081 and contain Shopping in the name

* {
mark: symbol('circle');
mark-size: 5;

}

:mark {
fill: cyan;
stroke: darkblue;

}

[MTFCC = 'C3081' AND FULLNAME LIKE '%Shopping%'] {
mark: url("./img/landmarks/shop_supermarket.p.16.png");
mark-size: ;

}

Creating polygon styles

1. For this exercise, change the current layer to “WorldCountries” and create a new style called
“css_worldcountries”

3.2. Tutorials 715

GeoNode Documentation, Release 2.8

716 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

2. We want to create a simple 3 class thematic map based on the country population, stored in the POP_EST
attribute

[POP_EST < 10000000] {
fill: lightgrey;

}

[POP_EST >= 10000000 AND POP_EST < 50000000] {
fill: olive;

}

[POP_EST > 50000000] {
fill: salmon

}

3. Let’s also add a very thin black border around all polygons, regardless of their population, using the * selector

[POP_EST < 10000000] {
fill: lightgrey;

}

[POP_EST >= 10000000 AND POP_EST < 50000000] {
fill: olive;

}

[POP_EST > 50000000] {
fill: salmon

}

* {
stroke: black;
stroke-width: 0.2;

}

3.2. Tutorials 717

GeoNode Documentation, Release 2.8

Styling raster data

1. For this exercise we are going to switch to the “srtm” layer and create a new css_raster style

2. In order to activate raster styling the raster-channels property needs to be specified, in this case with a
value of auto to let the engine choose automatically the bands to use:

* {
raster-channels: auto;

}

718 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3. The above map shows GeoServer automatically creating a grayscale map out of the elevation data, with auto-
matic adaptation to the current contents of the map (the black areas you see once applied the map are “no data”
areas, try to go into an area that does not have any)

4. Now let’s apply a color map to get a nicer and consistent looking map instead

* {
raster-channels: auto;
raster-color-map:

color-map-entry(black, 0, 0)
color-map-entry(green, 1500)

color-map-entry(yellow, 2000)
color-map-entry(maroon, 3000)
color-map-entry(white, 4000);

}

Creating a Base Map with a Layer Group

The best way to easily set-up a map with more than one layer for consumption is to create a Layer Group, that is what
we are going to do in this section.

1. Locate the Layer Group link and click it.

2. Click the Add new layer group link.

3. Name it test.

4. Click the Add layer link:

5. Select the “Mainrd” layer in the popup window.

6. Add also “BoulderCityLimits” and “bplandmarks”, the final list should look like this:.

3.2. Tutorials 719

GeoNode Documentation, Release 2.8

Fig. 198: Layer Group link

Fig. 199: Add new layer group link

720 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 200: Add new layer

3.2. Tutorials 721

GeoNode Documentation, Release 2.8

Fig. 201: Select a layer

Fig. 202: List of layers for the group

722 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Note: You can use the green arrows to adjust the ordering of the layers until it looks like the above figure.

7. Click the generate bounds button to have GeoServer compute the group bounds from the layers inside of it:

8. Scroll to the bottom of the page and then click Save.

9. If all went well, you should see something like this:

Fig. 203: After a successful save.

Note: The autogenerated bounds may be too large and you may experience a bad feeling when previewing the
map. You can optionally reduce the layer group bounds by inserting manually the bbox values. Good values are the
following: minx = 3.057.566,8646; maxx = 3.079.500,65246; miny = 1.241.929,35617; maxy = 1.257.467,5777

The layer group is now ready to be consumed:

1. Navigate to the GeoServer Welcome Page.

2. Go to the Layer Preview link at the bottom of the left-hand menu.

3. Find the test layer group and click on the OpenLayers link. You will see a slippy map with all the configured
layers of the Boulder district. You can control zoom by using the mouse wheel, pan by dragging, and zoom by
window holding SHIFT pressed while dragging.

Note: Check the browser’s address bar for an interesting sample WMS request for the layer.

4. As you might have noticed before, a larger, more realistic group has already been configured for you. It is named
boulder. Have a look at its definition and add to this the Mainrd layer. Then using the green arrows move the
layer at the following position (see the screenshot).

5. Then use the Map Preview to display it.

3.2. Tutorials 723

http://localhost:8083/geoserver/web/

GeoNode Documentation, Release 2.8

Fig. 204: Layer Preview

Fig. 205: OpenLayers view

724 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 206: A new layer inside the existing layer group.

6. Try clicking in the middle of the map. A couple of tables with more information about the vector features that
have been clicked should appear at the bottom.

7. Try zooming in more and more. New layers should start to appear. This is scale dependent styling.

Now let’s see how desktop clients handle the layer group, and how we can change the way the see it.

1. Go to the command line, enter the workshop directory, if you haven’t done that yet, run setenv.bat and then
udig.bat

2. Once both GeoServer and uDig are up, organize their Windows so that you can see GeoServer and uDig ones at
the same time

3. Now go to the GeoServer home page, where all the capabilities links are kept, take the WMS 1.1.1 one, and
drag&drop it into uDig “Catalog” tab to import the WMS as a uDig data source:

4. Look at the layer tree. The boulder group is visible as a simple layer, and all the layers it contains are actually
shown at the same level as the group.

5. Let’s change it so that the layer group internal structure is shown. Go back to the “boulder” layer group page,
and change its “mode” to “Named tree”, then press the “Save” button

6. We need to make uDig aware of the change. Right click the root of the capabilities tree and choose the “Reset”
command

7. Now most of the layers are contained inside the “boulder” group

Filtering Maps

This section shows the GeoServer WMS filtering capabilities.

3.2. Tutorials 725

GeoNode Documentation, Release 2.8

Fig. 207: Feature info

726 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 727

GeoNode Documentation, Release 2.8

728 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

1. Navigate to the GeoServer Welcome Page.

2. Go to the Layer Preview link at the bottom of the left-hand menu and show the geosolutions:WorldCountries
layer with OpenLayers ‘Common Format’.

Fig. 208: Showing the GeoServer layer preview

3. From the Filter combo box select ‘CQL’ and enter the following command in the text field:

POP_EST <= 5000000 AND POP_EST >100000

4. Click ‘Apply Filter’ button on the right.

The corresponding WMS request is:

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&
→˓request=GetMap&layers=geosolutions:WorldCountries&styles=&bbox=-180.0,-89.
→˓99889902136009,180.00000000000003,83.59960032829278&width=684&height=330&
→˓srs=EPSG:4326&format=image/png&CQL_FILTER=POP_EST%20%3C=%205000000%20AND%20POP_
→˓EST%20%3E100000

5. Now enter the following command in the text field:

DISJOINT(the_geom, POLYGON((-90 40, -90 45, -60 45, -60 40, -90 40))) AND
→˓strToLowerCase(NAME) LIKE '%on%'

6. Click ‘Apply Filter’ button on the right.

The corresponding WMS request is:

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&
→˓request=GetMap&layers=geosolutions:WorldCountries&styles=&bbox=-180.0,-89.
→˓99889902136009,180.00000000000003,83.59960032829278&width=684&height=330&
→˓srs=EPSG:4326&format=image/png&CQL_FILTER=DISJOINT%28the_geom%2C%20POLYGON%28
→˓%28-90%2040%2C%20-90%2045%2C%20-60%2045%2C%20-60%2040%2C%20-90%2040%29%29%29
→˓%20AND%20strToLowerCase%28NAME%29%20LIKE%20%27%25on%25%27

7. From the Filter combo box select ‘OGC’ and enter the following filter in the text field:

3.2. Tutorials 729

http://localhost:8083/geoserver/web/

GeoNode Documentation, Release 2.8

Fig. 209: Show the layer with OpenLayers

Fig. 210: Result of the CQL filter

730 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 211: Result of the CQL filter

<Filter><PropertyIsEqualTo><PropertyName>TYPE</PropertyName><Literal>Sovereign
→˓country</Literal></PropertyIsEqualTo></Filter>

8. Click ‘Apply Filter’ button on the right.

The corresponding WMS request is

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&
→˓request=GetMap&layers=geosolutions:WorldCountries&styles=&bbox=-180.0,-89.
→˓99889902136009,180.00000000000003,83.59960032829278&width=684&height=330&
→˓srs=EPSG:4326&format=image/png&CQL_FILTER=TYPE%20%3D%20%27Sovereign%20country%27

9. From the Filter combo box select ‘FeatureID’ and enter the following features ids in the text field separated by
comma:

WorldCountries.227,WorldCountries.184,WorldCountries.33

10. Click ‘Apply Filter’ button on the right.

The corresponding WMS request is:

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&
→˓request=GetMap&layers=geosolutions:WorldCountries&styles=&bbox=-180.0,-89.
→˓99889902136009,180.00000000000003,83.59960032829278&width=684&height=330&
→˓srs=EPSG:4326&format=image/png&FEATUREID=WorldCountries.227,WorldCountries.184,
→˓WorldCountries.33

3.2. Tutorials 731

GeoNode Documentation, Release 2.8

Fig. 212: Result of the OGC filter

Fig. 213: Result of the FeatureID filter

732 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Producing and Using palettes

GeoServer has the ability to output high quality 256 color images. This tutorial introduces you to the palette concepts,
the various image generation options, and offers a quality/resource comparison of them in different situations. In this
section the task is to use the palettes.

Note: Some image formats, such as GIF or PNG, can use a palette, which is normally a table of 256 colors use
get get better compression (trading it sometimes with a lower image quality). Basically, instead of representing each
pixel with its full color triplet, which takes 24bits (plus eventual 8 more for transparency), they use a 8 bit index that
represent the position inside the palette, and thus the color. This allows for images that are 3-4 times smaller than the
standard images, with the limitation that only 256 different colors can appear on the image itself. Depending of the
actual map, this may be a very stringent limitation, visibly degrading the image quality, or it may be that the output
cannot be told from a full color image. For many common vector maps one can easily find 256 representative colors
that are a good fit. In the latter case, the smaller footprint of paletted images is usually a gain in both performance and
costs, because more data can be served with the same internet connection, and the clients will obtain responses faster.

Options to enable paletted output

The easiest way to get a paletted image output is to ask for a 256 color output format, such as:

• image/png8: PNG output, with a 256 color palette

• image/gif: standard GIF output

These output formats, if no other parameters are provided, do compute the optimal palette on the fly. This is an
expensive process (CPU bound) but, depending on the speed of the network connecting the server and the client, the
extra CPU cost can be offset by a lower data transfer time (especially on slow/busy networks).

Optimal palette computation is anyway a repetitive work that can be done up front: a user can compute the optimal
palette once, and tell GeoServer to use it. There are three ways to do so:

• Use the internet safe palette, a standard palette built in into GeoServer, by appending palette=safe to the GetMap
request. Of course, to get good results, the styling will have to be made using the colors in that palette.

• Provide a palette by example. In this case, the user will generate an 256 color images using an external program
(such as Photoshop), and then will save it into the $GEOSERVER_DATA_DIR/palettes directory. The sample
file can be either in GIF or PNG format. If the file is named mypalette.gif or mypalette.png, the user will be able
to refer it appending palette=mypalette to the GetMap request. GeoServer will load the palette from the file and
use it.

• Provide a palette file. The process is just as before, but this time only the palette, in .PAL format, will be stored
into the $GEOSERVER_DATA_DIR/palettes directory. The PAL file in in Microsoft Palette Format, and can be
generated by programs such as Paint Shop Pro and IrfanView.

An Example with Vector Data

Enough theory, let’s have a look at how to deal with paletted images in practice. We’ll use the prato basemap to
gather some numbers and we’ll change various parameters in order to play with formats and palettes. Here goes the
sampler:

1) The standard PNG full color output:

http://localhost:8083/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&
→˓layers=geosolutions:BoulderCityLimits,geosolutions:blakes,
→˓geosolutions:bplandmarks,geosolutions:brivers,geosolutions:Mainrd&styles=&
→˓bbox=3056181.93510,1237476.92868,3080671.07513,1260141.38768&width=512&
→˓height=475&srs=EPSG:2876&format=image/png

(continues on next page)

3.2. Tutorials 733

http://www.intuitive.com/coolweb/colors.html

GeoNode Documentation, Release 2.8

(continued from previous page)

Fig. 214: The standard PNG output

Parameters:FORMAT=image/png | Size: 105.5 KB | Map generation time: 186 ms

2) JPEG output:

http://localhost:8083/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&
→˓layers=geosolutions:BoulderCityLimits,geosolutions:blakes,
→˓geosolutions:bplandmarks,geosolutions:brivers,geosolutions:Mainrd&styles=&
→˓bbox=3056181.93510,1237476.92868,3080671.07513,1260141.38768&width=512&
→˓height=475&srs=EPSG:2876&format=image/jpeg

Parameters:FORMAT=image/jpeg | Size: 43.2 KB | Map generation time: 100 ms

3) The PNG8 output:

734 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 215: JPEG output

3.2. Tutorials 735

GeoNode Documentation, Release 2.8

http://localhost:8083/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&
→˓layers=geosolutions:BoulderCityLimits,geosolutions:blakes,
→˓geosolutions:bplandmarks,geosolutions:brivers,geosolutions:Mainrd&styles=&
→˓bbox=3056181.93510,1237476.92868,3080671.07513,1260141.38768&width=512&
→˓height=475&srs=EPSG:2876&format=image/png8

Fig. 216: The PNG8 output

Parameters:FORMAT=image/png8 | Size: 48.0 KB | Map generation time: 190 ms

4) PNG + internet safe palette:

http://localhost:8083/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&
→˓layers=geosolutions:BoulderCityLimits,geosolutions:blakes,
→˓geosolutions:bplandmarks,geosolutions:brivers,geosolutions:Mainrd&styles=&
→˓bbox=3056181.93510,1237476.92868,3080671.07513,1260141.38768&width=512&
→˓height=475&srs=EPSG:2876&format=image/png&palette=safe

736 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 217: The PNG output + internet safe palette

3.2. Tutorials 737

GeoNode Documentation, Release 2.8

Parameters:FORMAT=image/png&palette=safe | Size: 38.8 KB | Map generation time: 161 ms

5) PNG + palette by example:

http://localhost:8083/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&
→˓layers=geosolutions:BoulderCityLimits,geosolutions:blakes,
→˓geosolutions:bplandmarks,geosolutions:brivers,geosolutions:Mainrd&styles=&
→˓bbox=3056181.93510,1237476.92868,3080671.07513,1260141.38768&width=512&
→˓height=475&srs=EPSG:2876&format=image/png&palette=boulder

Fig. 218: The PNG output palette by example

Parameters:FORMAT=image/png&palette=boulder | Size: 54.4 KB | Map generation time: 163 ms

Generating the custom palette

To generate a custom palette you can use IrfanView for example, on Windows. The steps are simple:

738 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

• Open the 24-bit PNG version of the image

• Use Image/Decrease Color Depth and set 256 colors

• Use Image/Palette/Export to save the palette

An example with raster data

To give you an example when paletted images may not fit the bill, let’s consider the geosolu-
tions:13tde815295_200803_0x6000m_cl coverage from the sample data, and repeat the same operation as before.

1) The standard PNG full color output:

http://localhost:8083/geoserver/geosolutions/wms?LAYERS=geosolutions
→˓%3A13tde815295_200803_0x6000m_cl&STYLES=&SERVICE=WMS&VERSION=1.1.1&
→˓REQUEST=GetMap&SRS=EPSG%3A26913&BBOX=482574.82910157,4429949.7070313,482949.
→˓82910157,4430324.7070313&WIDTH=512&HEIGHT=512&FORMAT=image%2Fpng

Parameters:FORMAT=image/png | Size: 528.9 KB | Map generation time:90ms

2) JPEG output:

http://localhost:8083/geoserver/geosolutions/wms?LAYERS=geosolutions
→˓%3A13tde815295_200803_0x6000m_cl&STYLES=&SERVICE=WMS&VERSION=1.1.1&
→˓REQUEST=GetMap&SRS=EPSG%3A26913&BBOX=482574.82910157,4429949.7070313,482949.
→˓82910157,4430324.7070313&WIDTH=512&HEIGHT=512&FORMAT=image%2Fjpeg

Parameters:FORMAT=image/jpeg | Size: 39.5 KB | Map generation time: 35ms

3) PNG8 output (the output using a “palette by example would be the same”):

http://localhost:8083/geoserver/geosolutions/wms?LAYERS=geosolutions
→˓%3A13tde815295_200803_0x6000m_cl&STYLES=&SERVICE=WMS&VERSION=1.1.1&
→˓REQUEST=GetMap&SRS=EPSG%3A26913&BBOX=482574.82910157,4429949.7070313,482949.
→˓82910157,4430324.7070313&WIDTH=512&HEIGHT=512&FORMAT=image%2Fpng8

Parameters:FORMAT=image/png8 | Size: 141.8 KB | Map generation time: 201ms

4) PNG output + safe palette:

http://localhost:8083/geoserver/geosolutions/wms?LAYERS=geosolutions
→˓%3A13tde815295_200803_0x6000m_cl&STYLES=&SERVICE=WMS&VERSION=1.1.1&
→˓REQUEST=GetMap&SRS=EPSG%3A26913&BBOX=482574.82910157,4429949.7070313,482949.
→˓82910157,4430324.7070313&WIDTH=512&HEIGHT=512&FORMAT=image%2Fpng&palette=safe

Parameters:FORMAT=image/png&palette=safe | Size: 96.8 KB | Map generation time: 235ms

Note: As the sampler shows, the JPEG output has the same quality as the full color image, is generated faster and
uses only a fraction of its size. At the opposite, the version using the internet safe palette is fast and smaller than the
full PNG, but the output is totally ruined. Everything considered, JPEG is the clear winner, sporting good quality, fast
image generation and smaller size that. PNGs are the suggested imagery raster format only in case the output needs
to be used as an overlay and thus requires transparent areas, or when the raster has large areas with uniform colors,
which may happen for example in land use rasters.

3.2. Tutorials 739

GeoNode Documentation, Release 2.8

Fig. 219: The standard PNG output

740 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 220: JPEG output

3.2. Tutorials 741

GeoNode Documentation, Release 2.8

Fig. 221: PNG8 output

742 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 222: PNG + sape palette output

3.2. Tutorials 743

GeoNode Documentation, Release 2.8

Decorating a Map

WMS Decorations provide a framework for visually annotating images from WMS with absolute, rather than spatial,
positioning. Examples of this decoration include scale lines, legends, and image.

1. Go to $GEOSERVER_DATA_DIR and create a new directory named layouts and create a new file named
boulder_ly.xml inside it.

2. Inside the boulder_ly.xml file enter the following XML (replace ${GEOSERVER_DATA_DIR}with your actual
path, e.g., file://C:/training/geoserver_data):

<layout>
<decoration type="image" affinity="top,left" offset="45,8"

size="174,60">
<option name="url"

value="${GEOSERVER_DATA_DIR}/geosolutions-logo-tx.
→˓png" />

</decoration>

<decoration type="text" affinity="bottom,right" offset="3,3">
<option name="message" value="Boulder City" />
<option name="font-size" value="14" />
<option name="font-color" value="#FFFFFF" />
<option name="halo-radius" value="1" />
<option name="halo-color" value="#000000" />

</decoration>

<decoration type="scaleline" affinity="bottom,left" offset="3,3" /
→˓>

<decoration type="legend" affinity="top,right"
offset="6,6" size="auto" />

</layout>

3. Save and close the file.

4. Go to the Layer Preview to preview the new map decoration on geosolutions:Mainrd layer. Once the layout
boulder_ly.xml is defined, request it by adding format_options=layout:boulder_ly to the request parameters.

The request:

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&
→˓request=GetMap&layers=geosolutions:Mainrd&styles=&bbox=3048474.661,1226045.092,
→˓3095249.0,1279080.5&width=451&height=512&srs=EPSG:2876&format=application/
→˓openlayers&format_options=layout:boulder_ly

Note: Zoom-in until the layer and legend appears since for this layer we have scale_denominator based rules. Also
you can apply this format_layout to any layer, but be careful with the overalys since you will have all the legends
printed out on the right-top side of the map.

Accessing Map information

This workshop section describes how to use the GeoServer template system to create custom HTML GetFeatureInfo
responses. GetFeatureInfo is a WMS standard call that allows one to retrieve information about features and coverages
displayed in a map.

744 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 223: Map decoration

3.2. Tutorials 745

GeoNode Documentation, Release 2.8

The map can be composed of various layers, and GetFeatureInfo can be instructed to return multiple feature descrip-
tions, which may be of different types. GetFeatureInfo can generate output in various formats: GML2, plain text and
HTML.

Templating is concerned with the HTML one.

1. Go to the Layer preview to show geosolutions:bplandmarks layer.

2. Click for example on the Rocky Mountain Natl Park region in the OpenLayers map to show the FeatureInfo.

Fig. 224: Default GetFeatureInfo request

3. In order to configure a custom template of the GetFeatureInfo results create three .ftl files in
$GEOSERVER_DATA_DIR/workspaces/geosolutions directory named:

- header.ftl
- content.ftl
- footer.ftl

Note: The Template is managed using Freemarker. This is a simple yet powerful template engine that
GeoServer uses whenever developers allowed user customization of textual outputs. In particular, at the time of
writing it’s used to allow customization of GetFeatureInfo, GeoRSS and KML outputs.

Note: Splitting the template in three files allows the administrator to keep a consistent styling for the GetFea-
tureInfo result, but use different templates for different workspaces or different layers: this is done by providing
a master header.ftl and footer.ftl file, but specify a different content.ftl for each layer.

4. In header.ftl file enter the following HTML:

<#--
Header section of the GetFeatureInfo HTML output. Should have the <head> section,
→˓and
a starter of the <body>. It is advised that eventual CSS uses a special class for
→˓featureInfo, (continues on next page)

746 Chapter 3. Table of contents

https://sourceforge.net/projects/freemarker/

GeoNode Documentation, Release 2.8

(continued from previous page)

since the generated HTML may blend with another page changing its aspect when
→˓using generic classes
like td, tr, and so on.
-->
<html>

<head>
<title>Geoserver GetFeatureInfo output</title>

</head>
<style type="text/css">

table.featureInfo, table.featureInfo td, table.featureInfo th {
border:1px solid #ddd;
border-collapse:collapse;
margin:0;
padding:0;
font-size: 90%;
padding:.2em .1em;

}

table.featureInfo th{
padding:.2em .2em;
text-transform:uppercase;
font-weight:bold;
background:#eee;

}

table.featureInfo td{
background:#fff;

}

table.featureInfo tr.odd td{
background:#eee;

}

table.featureInfo caption{
text-align:left;
font-size:100%;
font-weight:bold;
text-transform:uppercase;
padding:.2em .2em;

}
</style>
<body>

5. In content.ftl file enter the following HTML:

<#list features as feature>

Type: ${type.name} (id: ${feature.fid}):

<#list feature.attributes as attribute>

<#if !attribute.isGeometry>
${attribute.name}: ${attribute.value}

</#if>
</#list>

</#list>
(continues on next page)

3.2. Tutorials 747

GeoNode Documentation, Release 2.8

(continued from previous page)

6. In footer.ftl file enter the following HTML:

<#--
Footer section of the GetFeatureInfo HTML output. Should close the body and the
→˓html tag.
-->

</body>
</html>

7. Go to the Map Preview to show geosolutions:bplandmarks layer.

8. Click on the Rocky Mountain Natl Park region in the OpenLayers map to show the new FeatureInfo representa-
tion.

Fig. 225: Custom GetFeatureInfo template

748 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Cross layer filtering with GeoServer

Normal GeoServer operation allows a filter to be applied on each layer in isolation, based on its attribute and external
information (geometry, values) provided by the user. Cross layer filtering is instead the ability to select features from
one layer that bear some relationship with features coming from another layer. Common questions that cross layer
filters can help answering are:

• find all the ice cream stores located in a public park (point vs polygon)

• find all bus stops within 100m from the National Bank subsidiaries (point vs point, with distance reference)

• find all coastal roads (line VS polygon, assuming we have a set of polygons representing the water areas)

In order to solve these questions with a vanilla GeoServer a client would have to first use WFS to gather all the
geometries satisfying the base conditions (e.g., find the National Bank Subsidiaries), load and unite them, and then
issue a second request to the server in order to get the data from the other layer (e.g., the bus stops within 100m from
the previously loaded points).

Fig. 226: Round trips without cross layer filtering

3.2. Tutorials 749

GeoNode Documentation, Release 2.8

The querylayer module

The querylayer extension, already installed in the workshop GeoServer instance, provides three new filter functions
that can be used to avoid the client/server extra round trips, and have the server handle the secondary geometries
collection instead.

Name Arguments Description
querySingle layer: String,

attribute:String,
filter:String

Queries the specified layer``applying the
specified (E)CQL ``filter and returns the value
of attribute from the first feature in the result set. The
layer name should be qualified (e.g. topp:states), the
filter can be INCLUDE if no filtering is desired

queryCollection layer: String,
attribute:String,
filter:String

Queries the specified layer``applying the
specified (E)CQL ``filter and returns the list
of the values from attribute out of every single feature
in the result set. The layer name should be qualified (e.g.
topp:states), the filter can be INCLUDE if no filtering is
desired. Will throw an exception if too many results are being
collected (see the memory limits section for details)

collectGeometries geometries: a list of
Geometry objects

Turns the list of geometries into a single Geometry object,
suitable for being used as the reference geometry in spatial
filters. Will throw an exception if too many coordinates are
being collected (the results of queryCollection cannot be used
as is)

These filter functions can be used directly in CQL filters, OGC filters and SLD, meaning they are available both from
WMS and WFS.

Finding all polygonal landmarks crossing a trail

The following map , obtained using the WMS reflector to keep the URL short, shows all polygonal landmarks and
trails in Boulder (trails are visible when zooming-in due to scale dependencies):

http://localhost:8083/geoserver/geosolutions/wms/reflect?
→˓layers=geosolutions:bplandmarks,Trails&format=application/openlayers&width=512&
→˓height=512&BBOX=-105.31,39.97,-105.26,40.2

Now, let’s assume we want to find all polygonal landmarks crossing any trail using the above filter functions. The first
step would be to locate all the trails and extract their geometry attribute (the_geom):

queryCollection('Trails', 'the_geom', 'INCLUDE')

The above builds a list of geometries that we want to turn into a single MULTILINESTRING, in order to use it as a
reference for a INTERSECTS filter. So we’ll call collectGeometries:

collectGeometries(queryCollection('Trails', 'the_geom', 'INCLUDE'))

Now that we have all the trails in a single geometry object we can use it to build a intersection filter with the polygonal
landmarks:

INTERSECTS(the_geom, collectGeometries(queryCollection('Trails', 'the_geom', 'INCLUDE
→˓')))

750 Chapter 3. Table of contents

http://localhost:8083/geoserver/geosolutions/wms/reflect?layers=geosolutions:bplandmarks,Trails&format=application/openlayers&width=512&height=512&BBOX=-105.31,39.97,-105.26,40.2

GeoNode Documentation, Release 2.8

Fig. 227: Polygonal landmarks and trails in Boulder

3.2. Tutorials 751

GeoNode Documentation, Release 2.8

Since the map contains two layers and we only want to filter on the first, the final CQL filter used in the GetMap
request will be:

INTERSECTS(the_geom, collectGeometries(queryCollection('Trails', 'the_geom', 'INCLUDE
→˓')));INCLUDE

The result is that only two polygonal landmarks, the Boulder Mountain Park, and the smaller Buckingham Park, cross
any trail:

Finding all buildings located inside a park

In this case we’ll start with this map:

http://localhost:8083/geoserver/geosolutions/wms/reflect?
→˓layers=geosolutions:bplandmarks,bbuildings&format=application/openlayers&width=512&
→˓height=512&&BBOX=-105.29,40.01,-105.28,40.02

The filter construction is similar to the previous case, but this time we need to collect geometries only from parks,
which have a MTFCC attribute equals to K2180:

INCLUDE;INTERSECTS(the_geom, collectGeometries(queryCollection('bplandmarks', 'the_
→˓geom', 'MTFCC = ''K2180''')))

Finding all buildings close enough to the Boulder County Courthouse

In this case we want to find all the buildings close to the Boulder County Courthouse. The reference map this time is:

http://localhost:8083/geoserver/geosolutions/wms/reflect?
→˓layers=geosolutions:bptlandmarks,bbuildings&format=application/openlayers&width=512&
→˓height=512&&BBOX=-105.28061758059,40.016146865234,-105.27475307863,40.021151240234

This will extract a single geometry that we’ll use as a reference, so this time we are going to use the querySingle
function instead, and use the DWITHIN function to locate all buildings within 400 feet from the courthouse:

INCLUDE;DWITHIN(the_geom, querySingle('bptlandmarks', 'the_geom', 'FULLNAME = '
→˓'Boulder County Courthouse'''), 400, feet)

the resulting map is going to be:

Advanced Raster Data Management

Introduction To Processing With GDAL Utilities

In the Adding a GeoTiff section, a GeoTIFF file has been added to GeoServer as is. However, it’s common practice
to do a preliminary analysis on the available data and, if needed, optimize it since configuring big datasets without
proper pre-processing, may result in low performance when accessing them. In this section, instructions about how to
do data optimization will be provided by introducing some FWTools Utilities.

Note: On a Windows machine you can set-up a shell with all GDAL Utilities opening a terminal and running the
file setenv.bat under the %TRAINING_ROOT% folder. This operation must repeated whenever a new terminal
window is open. Alternatively run directly the file gdal.bat under the %TRAINING_ROOT% folder.

752 Chapter 3. Table of contents

http://localhost:8083/geoserver/geosolutions/wms/reflect?layers=geosolutions:bplandmarks,bbuildings&format=application/openlayers&width=512&height=512&&BBOX=-105.29,40.01,-105.28,40.02
http://localhost:8083/geoserver/geosolutions/wms/reflect?layers=geosolutions:bptlandmarks,bbuildings&format=application/openlayers&width=512&height=512&&BBOX=-105.28061758059,40.016146865234,-105.27475307863,40.021151240234

GeoNode Documentation, Release 2.8

Fig. 228: Polygonal landmarks intersecting trails in Boulder

3.2. Tutorials 753

GeoNode Documentation, Release 2.8

Fig. 229: Buildings and parks in Boulder

754 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 230: Buildings inside parks in Boulder

3.2. Tutorials 755

GeoNode Documentation, Release 2.8

Fig. 231: Boulder County Courthouse surrounded by buildings

756 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 232: Buildings close to the Boulder County Courthouse

3.2. Tutorials 757

GeoNode Documentation, Release 2.8

gdalinfo

This utility allows to get several info from the GDAL library, for instance, specific Driver capabilities and input
Datasets/Files properties.

gdalinfo - Getting Drivers Capabilities

Being GeoTIFF a widely adopted geospatial format, it’s useful to get information about the GDAL GeoTIFF’s Driver
capabilities using the command:

gdalinfo --format GTIFF

This is only a trimmed down version of a typical output:

Format Details:
Short Name: GTiff
Long Name: GeoTIFF
Extension: tif
Mime Type: image/tiff
Help Topic: frmt_gtiff.html
Supports: Create() - Create writeable dataset.
Supports: CreateCopy() - Create dataset by copying another.
Supports: Virtual IO - eg. /vsimem/
Creation Datatypes: Byte UInt16 Int16 UInt32 Int32 Float32 Float64 CInt16 CInt32

→˓CFloat32 CFloat64
<CreationOptionList>
<Option name="COMPRESS" type="string-select">

<Value>NONE</Value>
<Value>LZW</Value>
<Value>PACKBITS</Value>
<Value>JPEG</Value>
<Value>CCITTRLE</Value>
<Value>CCITTFAX3</Value>
<Value>CCITTFAX4</Value>
<Value>DEFLATE</Value>

</Option>
<Option name="PREDICTOR" type="int" description="Predictor Type" />
<Option name="JPEG_QUALITY" type="int" description="JPEG quality 1-100" default="75

→˓"/>
<Option name="ZLEVEL" type="int" description="DEFLATE compression level 1-9"

→˓default="6" />
<Option name="LZMA_PRESET" type="int" description="LZMA compression level 0(fast)-

→˓9(slow)" default="6" />
<Option name="NBITS" type="int" description="BITS for sub-byte files (1-7), sub-

→˓uint16 (9-15), sub-uint32 (17-31)" />
<Option name="INTERLEAVE" type="string-select" default="PIXEL">

<Value>BAND</Value>
<Value>PIXEL</Value>

</Option>
<Option name="TILED" type="boolean" description="Switch to tiled format"/>
<Option name="TFW" type="boolean" description="Write out world file"/>
<Option name="RPB" type="boolean" description="Write out .RPB (RPC) file" />
<Option name="BLOCKXSIZE" type="int" description="Tile Width"/>
<Option name="BLOCKYSIZE" type="int" description="Tile/Strip Height"/>
<Option name="PHOTOMETRIC" type="string-select">

<Value>MINISBLACK</Value>

(continues on next page)

758 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

<Value>MINISWHITE</Value>
<Value>PALETTE</Value>
<Value>RGB</Value>
<Value>CMYK</Value>
<Value>YCBCR</Value>
<Value>CIELAB</Value>
<Value>ICCLAB</Value>
<Value>ITULAB</Value>

</Option>
<Option name="SPARSE_OK" type="boolean" description="Can newly created files have

→˓missing blocks?" default="FALSE" />
<Option name="ALPHA" type="boolean" description="Mark first extrasample as being

→˓alpha" />
<Option name="PROFILE" type="string-select" default="GDALGeoTIFF">

<Value>GDALGeoTIFF</Value>
<Value>GeoTIFF</Value>
<Value>BASELINE</Value>

</Option>
<Option name="PIXELTYPE" type="string-select">

<Value>DEFAULT</Value>
<Value>SIGNEDBYTE</Value>

</Option>
<Option name="BIGTIFF" type="string-select" description="Force creation of BigTIFF

→˓file">
<Value>YES</Value>
<Value>NO</Value>
<Value>IF_NEEDED</Value>
<Value>IF_SAFER</Value>

</Option>
<Option name="ENDIANNESS" type="string-select" default="NATIVE" description="Force

→˓endianness of created file. For DEBUG purpose mostly">
<Value>NATIVE</Value>
<Value>INVERTED</Value>
<Value>LITTLE</Value>
<Value>BIG</Value>

</Option>
<Option name="COPY_SRC_OVERVIEWS" type="boolean" default="NO" description="Force

→˓copy of overviews of source dataset (CreateCopy())" />
</CreationOptionList>

From the above list of create options it’s possible to determine the main GeoTIFF Driver’s writing capabilities:

• COMPRESS: customize the compression to be used when writing output data

• JPEG_QUALITY: specify a quality factor to be used by the JPEG compression

• TILED: When set to YES it allows to tile output data

• BLOCKXSIZE, BLOCKYZISE: Specify the Tile dimension width and Tile dimension height

• PHOTOMETRIC: Specify the photometric interpretation of the data

• PROFILE: Specify the GeoTIFF profile to be used (some profiles only support a minimal set of TIFF Tags
while some others provide a wider range of Tags)

• BIGTIFF: Specify when to write data as BigTIFF (A TIFF format which allows to break the 4GB Offset
boundary)

3.2. Tutorials 759

GeoNode Documentation, Release 2.8

gdalinfo - Getting Dataset/File Properties

The following instructions allow you to get information about the sample dataset previously configured in GeoServer.

1. Run:

* Linux::

cd ${TRAINING_ROOT}/data/user_data/aerial

gdalinfo 13tde815295_200803_0x6000m_cl.tif

* Windows::

setenv.bat

cd %TRAINING_ROOT%\data\user_data\aerial\

gdalinfo 13tde815295_200803_0x6000m_cl.tif

Fig. 233: Part of the gdalinfo output on a sample dataset

2. Check the Block info as well as the Overviews info if present.

• Block: It represents the internal tiling. Notice that the sample dataset has tiles made of 16 rows having width
equals to the full image width.

• Overviews: It provides information about the underlying overviews. Notice that the sample dataset doesn’t
have overviews since the Overviews property is totally missing from the gdalinfo output.

gdal_translate

This utility allows to convert a dataset to a different format by allowing a wide set of parameters to customize the
conversion.

Running the command:

gdal_translate

allows to get the list of supported parameters as well as the supported output formats:

Usage: gdal_translate [--help-general]
[-ot {Byte/Int16/UInt16/UInt32/Int32/Float32/Float64/

CInt16/CInt32/CFloat32/CFloat64}] [-strict]
[-of format] [-b band] [-mask band] [-expand {gray|rgb|rgba}]
[-outsize xsize[%] ysize[%]]

(continues on next page)

760 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

[- unscale] [-scale [src_min src_max [dst_min dst_max]]]
[-srcwin xoff yoff xsize ysize] [-projwin ulx uly lrx lry]
[-a_srs srs_def] [-a_ullr ulx uly lrx lry] [-a_nodata value]
[-gcp pixel line easting northing [elevation]]*
[-mo "META-TAG=VALUE"]* [-q] [-sds]
[-co "NAME=VALUE"]* [-stats]
src_dataset dst_dataset

Where the meaning of the main parameters is summarized below:

• -ot: allows to specify the output datatype (Make sure that the specified datatype is contained in the Cre-
ation Datatypes list of the Writing driver)

• -of : specify the desired output format (GTIFF is the default value)

• -b: allows to specify an input band to be written in the output file. (Use multiple -b option to specify more
bands)

• -mask: allows to specify an input band to be write an output dataset mask band.

• -expand: allows to expose a dataset with 1 band with a color table as a dataset with 3 (rgb) or 4 (rgba)
bands. The (gray) value allows to expand a dataset with a color table containing only gray levels to a gray
indexed dataset.

• -outsize: allows to set the size of the output file in terms of pixels and lines unless the % sign is attached
in which case it’s as a fraction of the input image size.

• -unscale: allows to apply the scale/offset metadata for the bands to convert from scaled values to unscaled
ones.

• -scale: allows to rescale the input pixels values from the range src_min to src_max to the range dst_min
to dst_max. (If omitted the output range is 0 to 255. If omitted the input range is automatically computed
from the source data).

• -srcwin: allows to select a subwindow from the source image in terms of xoffset, yoffset, width and height

• -projwin: allows to select a subwindow from the source image by specifying the corners given in georef-
erenced coordinates.

• -a_srs: allows to override the projection for the output file. The srs_def may be any of the usual
GDAL/OGR forms, complete WKT, PROJ.4, EPSG:n or a file containing the WKT.

• -a_ullr: allows to assign/override the georeferenced bounds of the output file.

• -a_nodata: allows to assign a specified nodata value to output bands.

• -co: allows to set a creation option in the form “NAME=VALUE” to the output format driver. (Multiple
-co options may be listed.)

• -stats: allows to get statistics (min, max, mean, stdDev) for each band

• src_dataset: is the source dataset name. It can be either file name, URL of data source or subdataset name
for multi*-dataset files.

• dst_dataset: is the destination file name.

gdal_translate - Tiling the sample dataset

The following steps provide instructions to tile the sample dataset previously configured in GeoServer, by using the
GeoTIFF driver.

3.2. Tutorials 761

GeoNode Documentation, Release 2.8

1. Create a directory to store the converted data:

• Linux:

cd ${TRAINING_ROOT}/data/user_data

mkdir retiled

• Windows:

cd %TRAINING_ROOT%\data\user_data

mkdir retiled

2. Convert the input sample data to an output file having tiling set to 512x512. Run:

• Linux:

gdal_translate -co "TILED=YES" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" aerial/
→˓13tde815295_200803_0x6000m_cl.tif retiled/13tde815295_200803_0x6000m_cl.tif

• Windows:

gdal_translate -co "TILED=YES" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512"
→˓aerial\13tde815295_200803_0x6000m_cl.tif retiled\13tde815295_200803_0x6000m_cl.
→˓tif

3. Optionally, check that the output dataset have been successfully tiled, by running the command:

• Linux:

gdalinfo retiled/13tde815295_200803_0x6000m_cl.tif

• Windows:

gdalinfo retiled\13tde815295_200803_0x6000m_cl.tif

Fig. 234: Part of the gdalinfo output on the tiled dataset. Notice the Block value now is 512x512

gdaladdo

This utility allows to add overviews to a dataset. The following steps provide instructions to add overviews to the tiled
sample dataset.

Running the command:

762 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

gdaladdo

allows to get the list of supported parameters:

Usage: gdaladdo [-r {nearest,average,gauss,average_mp,average_magphase,mode}]
[-ro] [--help-general] filename levels

Where the meaning of the main parameters is summarized below:

• -r: allows to specify the resampling algorithm (Nearest is the default value)

• -ro: allows to open the dataset in read-only mode, in order to generate external overview (for GeoTIFF
especially)

• filename: represents the file to build overviews for.

• levels: allows to specify a list of overview levels to build.

gdaladdo - Adding overviews to the sample dataset

1. Run:

• Linux:

cd ${TRAINING_ROOT}/data/user_data/retiled

gdaladdo -r average 13tde815295_200803_0x6000m_cl.tif 2 4 8 16 32

• Windows:

cd %TRAINING_ROOT%\data\user_data\retiled

gdaladdo -r average 13tde815295_200803_0x6000m_cl.tif 2 4 8 16 32

to add 5 levels of overviews having 2,4,8,16,32 subsampling factors applied to the original
image resolution respectively.

1. Optionally, check that the overviews have been added to the dataset, by running the command:

gdalinfo 13tde815295_200803_0x6000m_cl.tif

Fig. 235: Part of the gdalinfo output on the tiled dataset with overviews. Notice the Overviews properties

3.2. Tutorials 763

GeoNode Documentation, Release 2.8

Process in bulk

Instead of manually repeating these 2 steps (retile + add overviews) for each file, we can invoke a few commands to
get it automated.

1. Run:

• Linux:

cd ${TRAINING_ROOT}/data/user_data

mkdir optimized

cd aerial

for i in `find *.tif`; do gdal_translate -CO "TILED=YES" -CO "BLOCKXSIZE=512" -CO
→˓"BLOCKYSIZE=512" $i ../optimized/$i; gdaladdo -r average ../optimized/$i 2 4 8
→˓16 32; done

• Windows:

cd %TRAINING_ROOT%\data\user_data\

mkdir optimized

cd aerial

notepad optimize.bat

will open a text editor. Copy the following content:

for %%F in (*.tif) do (
echo Processing file %%F

REM translate
echo Performing gdal_translate on file %%F to file %%~nF.tiff
gdal_translate -co "TILED=YES" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -

→˓co "COMPRESS=DEFLATE" %%F ..\optimized\%%~nF.tiff

REM add overviews
echo Adding overviews on file %%~nF.tiff
gdaladdo -r average --config COMPRESS_OVERVIEW DEFLATE ..\optimized\%%~nF.

→˓tiff 2 4 8 16 32

)

Then save the file and run the created .bat file:

optimize.bat

1. You should see a list of run like this:

...
Input file size is 2500, 2500
0...10...20...30...40...50...60...70...80...90...100 - done.
0...10...20...30...40...50...60...70...80...90...100 - done.
Input file size is 2500, 2500
0...10...20...30...40...50...60...70...80...90...100 - done.

(continues on next page)

764 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

0...10...20...30...40...50...60...70...80...90...100 - done.
Input file size is 2500, 2500
0...10...20...30...40...50...60...70...80...90...100 - done.
0...10...20...30...40...50...60...70...80...90...100 - done.
...

Warning: This process can take some seconds.

At this point optimized datasets have been prepared and they are ready to be served by GeoServer as an ImageMosaic.

gdalwarp

This utility allows to warp and reproject a dataset. The following steps provide instructions to reproject the aerial
dataset (which has “EPSG:26913” coordinate reference system) to WGS84 (“EPSG:4326”).

Running the command:

gdalwarp

allows to get the list of supported parameters:

Usage: gdalwarp [--help-general] [--formats]
[-s_srs srs_def] [-t_srs srs_def] [-to "NAME=VALUE"]
[-order n | -tps | -rpc | -geoloc] [-et err_threshold]
[-refine_gcps tolerance [minimum_gcps]]
[-te xmin ymin xmax ymax] [-tr xres yres] [-tap] [-ts width height]
[-wo "NAME=VALUE"] [-ot Byte/Int16/...] [-wt Byte/Int16]
[-srcnodata "value [value...]"] [-dstnodata "value [value...]"] -dstalpha
[-r resampling_method] [-wm memory_in_mb] [-multi] [-q]
[-cutline datasource] [-cl layer] [-cwhere expression]
[-csql statement] [-cblend dist_in_pixels] [-crop_to_cutline]
[-of format] [-co "NAME=VALUE"]* [-overwrite]
srcfile* dstfile

Where the meaning of the main parameters is summarized below:

• -s_srs: allows to specify the source coordinate reference system

• -t_srs: allows to specify the target coordinate reference system

• -te: allows to set georeferenced extents (expressed in target CRS) of the output

• -tr: allows to specify the output resolution (expressed in target georeferenced units)

• -ts: allows to specify the output size in pixel and lines.

• -r: allows to specify the resampling method (one of near, bilinear, cubic, cubicspline and lanczos)

• -srcnodata: allows to specify band values to be excluded from interpolation.

• -dstnodata: allows to specify nodata values on output file.

• -wm: allows to specify the amount of memory (expressed in megabytes) used by the warping API for
caching.

3.2. Tutorials 765

GeoNode Documentation, Release 2.8

gdalwarp - Reprojecting sample dataset to WGS84

1. Run:

• Linux:

cd ${TRAINING_ROOT}/data/user_data/retiled

gdalwarp -t_srs "EPSG:4326" -co "TILED=YES" 13tde815295_200803_0x6000m_
→˓cl.tif 13tde815295_200803_0x6000m_cl_warped.tif

• Windows:

cd %TRAINING_ROOT%/data/user_data/retiled

gdalwarp -t_srs "EPSG:4326" -co "TILED=YES" 13tde815295_200803_0x6000m_
→˓cl.tif 13tde815295_200803_0x6000m_cl_warped.tif

to reproject the specified aerial dataset to WGS84 coordinate reference system.

1. Optionally, check that reprojection has been successfull, by running the command:

gdalinfo 13tde815295_200803_0x6000m_cl_warped.tif

Fig. 236: Part of the gdalinfo output on the warped dataset. Notice the updated Coordinate System property

In the next section, instructions to configure an ImageMosaic will be provided.

Advanced Mosaics and Pyramids Configuration

In this section will learn how to manage Image Mosaics and Image Pyramids in GeoServer.

Configuring an Image Mosaic

As introduced in a previous section an Image Mosaic is composed of a set of datasets which are exposed as a single
coverage. The ImageMosaic format allows to automatically build and setup a mosaic from a set of georeferenced
datasets. This section provides better instructions to configure an Image Mosaic

766 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Note: Before you start, ensure that the Maps - Raster section has been completed.

We will configure an ImageMosaic using the optimized dataset. As explained in the Maps - Raster section, follow the
steps 1 to 4, then at the step 5 fill the fields as explained below.

1. Specify a proper name (as an instance, boulder_bg_optimized) in the Data Source Name field of the
interface.

2. Specify file:<TRAINING_ROOT>/data/user_data/optimized as URL of the sample data in the
Connections Parameter’s - URL field.

3. Click Save.

3.2. Tutorials 767

GeoNode Documentation, Release 2.8

4. Publish the layer by clicking on the publish link.

5. Set boulder_bg_optimized as name and title of the layer.

6. Check the Coordinate Reference Systems and the Bounding Boxes fields are properly set.

7. Customize the ImageMosaic properties if needed. For the sample mosaic, set the OutputTransparentColor to the
value 000000 (Which is the Black color). Click on Save when done.

• AllowMultithreading: If true, enable tiles multithreading loading. This allows to perform parallelized loading
of the granules that compose the mosaic.

• BackgroundValues: Set the value of the mosaic background. Depending on the nature of the mosaic it is wise
to set a value for the no data area (usually -9999). This value is repeated on all the mosaic bands.

• Filter: Filter granules based on attributes from the input coverage.

768 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 769

GeoNode Documentation, Release 2.8

• InputTransparentColor: Set the transparent color for the granules prior to mosaicking them in order to control
the superimposition process between them. When GeoServer composes the granules to satisfy the user request,
some of them can overlap some others, therefore, setting this parameter with the opportune color avoids the
overlap of no data areas between granules.

• MaxAllowedTiles: Set the maximum number of the tiles that can be load simultaneously for a request. In case
of a large mosaic this parameter should be opportunely set to not saturating the server with too many granules
loaded at the same time.

• MergeBehavior: Merging behaviour for the various granules of the mosaic that GeoServer will produce. This
parameter controls whether we want to merge in a single mosaic or stack all the bands into the final mosaic.

• OutputTransparentColor: Set the transparent color for the created mosaic.

• SORTING: Allow to specify the time order of the obtained granules set. Valid values are DESC (descending)
or ASC (ascending). Note that it works just using DBMS as indexes.

• SUGGESTED_TILE_SIZE: Controls the tile size of the input granules as well as the tile size of the output
mosaic. It consists of two positive integers separated by a comma, like 512,512.

• USE_JAI_IMAGEREAD: If true, GeoServer will make use of JAI ImageRead operation and its deferred load-
ing mechanism to load granules; if false, GeoServer will perform direct ImageIO read calls which will result in
immediate loading.

At this point the ImageMosaic is being published with GeoServer. Next step is checking how the performances in
accessing the datasets have been improved.

1. Click the Layer Preview link in the left GeoServer menu.

2. Look for a geosolutions:boulder_bg layer (the dataset without optimization) and click the OpenLayers link
beside of it.

3. Play with the map preview by zooming and panning. When zooming, the response time isn’t immediate due to
the access to the underlying big datasets which haven’t been optimized.

4. Return to the Layer Preview page.

5. Look for a geosolutions:boulder_bg_optimized layer (the optimized dataset with tiling and overviews set) and
click the OpenLayers link beside of it.

6. Play with the map preview by zooming and panning:

• Check how the performances have been improved leveraging on both overviews and tiling.

• Note the better image quality of the lowest resolution views, having used an average interpolation algo-
rithm when creating the overviews.

Configuring an Image Pyramid

GeoServer can efficiently deal with large TIFF with overviews, as long as the TIFF is below the 2GB size limit. Once
the image size goes beyond such limit it’s time to start considering an image pyramid instead. An image pyramid
builds multiple mosaics of images, each one at a different zoom level, making it so that each tile is stored in a separate

770 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

file. This comes with a composition overhead to bring back the tiles into a single image, but can speed up image
handling as each overview is tiled, and thus a sub-set of it can be accessed efficiently (as opposed to a single GeoTIFF,
where the base level can be tiled, but the overviews never are).

Note: In order to build the pyramid we’ll use the gdal_retile.py utility, part of the GDAL command line utilities and
available for various operating systems.

1. Navigate to the workshop directory and create the bmpyramid directory into the <TRAIN-
ING_ROOT>\data\user_data directory

2. From the command line run

• Linux:

cd $TRAINING_ROOT/data/user_data
mkdir bmpyramid
gdal_retile.py -v -r bilinear -levels 4 -ps 2048 2048 -co "TILED=YES" -
→˓co "COMPRESS=JPEG" -targetDir bmpyramid bmreduced.tiff

• Windows:

cd %TRAINING_ROOT%
cd %TRAINING_ROOT%\data\user_data\
mkdir bmpyramid
gdal_retile -v -r bilinear -levels 4 -ps 2048 2048 -co "TILED=YES" -co
→˓"COMPRESS=JPEG" -targetDir bmpyramid bmreduced.tiff

The gdal_retile.py user guide provides a detailed explanation for all the possible parameters,
here is a description of the ones used in the command line above:

• -v: verbose output, allows the user to see each file creation scroll by, thus knowing
progress is being made (a big pyramid construction can take hours)

• -r bilinear: use bilinear interpolation when building the lower resolution levels. This is
key to get good image quality without asking GeoServer to perform expensive interpo-
lations in memory

• -levels 4: the number of levels in the pyramid

• -ps 2048 2048: each tile in the pyramid will be a 2048x2048 GeoTIFF

• -co “TILED=YES”: each GeoTIFF tile in the pyramid will be inner tiled

• -co “COMPRESS=JPEG”: each GeoTIFF tile in the pyramid will be JPEG compressed
(trades small size for higher performance, try out it without this parameter too)

• -targetDir bmpyramid: build the pyramid in the bmpyramid directory. The target direc-
tory must exist and be empty

• bmreduced.tiff : the source file

This will produce a number of TIFF files in bmpyramid along with the sub-directories 1, 2,
3, and 4.

3. Go to the Stores section an add a new Raster Data Source clicking on ImagePyramid:

Warning: This assumes the GeoServer image pyramid plug-in is already installed. The pyramid is normally
an extension.

3.2. Tutorials 771

http://www.gdal.org/gdal_retile.html
http://www.gdal.org/gdal_retile.html

GeoNode Documentation, Release 2.8

Fig. 237: Adding a ImagePyramid Data Source

If the ImagePyramid store is not avaiable, before doing the exercise install the geoserver pyramid plugin
from %TRAINING_ROOT%/data/plugins/ . Just decompress the zip file into %TRAINING_ROOT%/
webapps/geoserver/WEB-INF/lib/ and restart GeoServer.

4. Specify a proper name (bm_pyramid) in the Data Source Name field of the interface and specify a proper
URL with the pyramid data directory

• Windows:

file:%TRAINING_ROOT%/data/user_data/bmpyramid

• Linux:

file:/home/geosolutions/Desktop/geoserver_training/data/user_data/
→˓bmpyramid

5. Click the Save button.

Note: When clicking save the store will look into the directory, recognize a gdal_retile generated structure
and perform some background operations:

- move all tiff files in the root to a newly create directory 0
- create an image mosaic in all sub-directories (shapefile index plus property
→˓file)
- create the root property file describing the whole pyramid structure

6. Publish the new pyramid created:

772 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 238: Configuring a image pyramid store

3.2. Tutorials 773

GeoNode Documentation, Release 2.8

Fig. 239: Choosing the coverage for publishing

7. Setup the layer parameter USE_JAI_IMAGEREAD to false to get better scalability: as told before the image
loading using ImageRead is done using the JAI deferred mode so the data will be really loaded when are needed.
This may cause many idle open ImageReaders, in case of having to deal with big pyramids (lots of granules over
many levels) and it could cause performances issues.

8. Click Submit button and go to the GeoServer Map Preview to see the pyramid:

Using the ImageMosaic plugin with footprint management

Introduction

This section describes how to associate a vector footprint to a raster dataset in GeoServer using the ImageMosaic
plugin.

A vector footprint is a shape used as a mask for the mosaic. Masking can be useful for hiding pixels which are
meaningless, or for enhancing only few regions of the image in respect to others.

This chapter contains two sub-sections:

• The first sub-section, Configuration, describes the possible configurations needed to set up an ImageMosaic
with footprint.

• The second sub-section, Examples, provides examples of configuration of an ImageMosaic with footprint.

Configuration

A vector footprint can be linked to an ImageMosaic in three different ways:

1. By using for each mosaic granule a Sidecar File, a Shapefile with the same filename of the granule which
contains the footprint for it;

2. By using a single Shapefile called footprints.shp which contains all the footprints for each granule; each feature
contained in the shapefile represent a footprint for an ImageMosaic granule. Each footprint is associated to a
granule with the location attribute;

3. By using a file called footprints.properties, this option add more flexibility to the option number 2.

The last option allows to write the following configuration inside the footprints.properties file:

774 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 240: Tuning the pyramid parameters

3.2. Tutorials 775

GeoNode Documentation, Release 2.8

Fig. 241: Previewing the pyramid

776 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

footprint_source=*location of the Shapefile*
footprint_filter=*filter on the Shapefile searching for the attribute associated to
→˓each granule*

So the user is free to decide the Shapefile name to use (not only footprints.shp) and the attribute to use for the footprint
granule association adding also a custom filter for the content of that attribute.

The footprint.properties can be used also to hold other kind of configurations, see the Inset Support paragraph below.

For example if a Shapefile called fakeShapeFile stores the various footprints in a table like this, where each Name
attribute is referred to a granule file:

And the associated granules are:

• ortho_1-1_1n_s_la087_2010_1.tif

• ortho_2-2_1n_s_la075_2010_1.tif

• ortho_1-1_1n_s_la103_2010_1.tif

• and so on . . .

The associated footprints.properties file must be like this:

footprint_source=fakeShapeFile.shp
footprint_filter=Name=strSubstring(granule.location, 0, strLength(granule.location) -
→˓4)

The substring operation is done for comparing the footprint attribute names and the granule names without the .tif
extension. Standard GeoServer Filter Functions can be use in this expression. A complete reference for them can be
found here.

Footprint Behaviours

There are three possible behaviours for Footprint:

• None: simply doesn’t use the Footprint and behaves like a standard ImageMosaic layer;

• Transparent: adds an alpha band of 0s on the image portions outside of the Footprint making them transparent,
typically used for RGB data;

• Cut: set the background value on the image portions outside of the Footprint, typically used for grayscale data.

The behaviour must be set directly on the Layer configuration page.

3.2. Tutorials 777

http://docs.geoserver.org/2.6.x/en/user/filter/function_reference.html#string-functions

GeoNode Documentation, Release 2.8

Inset Support

Another feature of the Footprint is the possibility to calculate an Inset on the vector footprint prior to applying it to
the image. With the Inset a shrinking of the footprint is applied, typically for removing compression artefacts or any
nasty effect at the borders. The inset can be activated by adding the following code inside footprints.properties:

footprint_inset=*value in the shapefile u.o.m.*
footprint_inset_type=*full/border*

* **Full** inset type calculates the inset for each footprint side

* **Border** does the same operation but those straight lines that overlap the image
→˓bounds are avoided; this last parameter is useful for images already cut in a
→˓regular grid.

Each modification of the footprints.properties file requires to Reload GeoServer. This operation can be achieved by
going to Server Status and clicking on the Reload button on the bottom-right side of the page.

Examples

The two datasets used in the following can be found into

• Linux: $TRAINING_ROOT/data/user_data/footprint_data

• Windows %TRAINING_ROOT%\data\user_data\footprint_data

The content of the footprint_data is:

• The first dataset, mosaic_single_tiff, contains a Shapefile called srtm_boulder.shp which represents a mask to
use on the Boulder (Colorado) layer inside the $TRAINING_ROOT/data/user_data/boulder folder
and can be used for testing footprint configuration with a Sidecar File.

• The second dataset, mosaic_sample, is a mosaic which represents Italy and is used for testing the other two
configurations.

Here are presented a few steps for configuring a new ImageMosaic layer with footprint.

1. Vector Footprint configured with a sidecar file

Here the steps to load an ImageMosaic with a sidecar file as a vector footprint.

Step 1: Create a new ImageMosaic Layer

As seen in a previous chapter an ImageMosaic data store can be created by going to Stores → Add New Store →
ImageMosaic.

Load the mosaic_single_tiff folder, from the TRAINING_ROOT folder navigate to
\data\user_data\footprint_data\mosaic_single_tiff

Publish a Layer from that store going to Layers → Add New Resource, choosing the name of the data store created
above and then clicking on the publish button.

778 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 779

GeoNode Documentation, Release 2.8

Step 2: Configuring a new Layer for the Mosaic

Warning: fill the field Declared CRS with the value EPSG:4326 if the CRS is not automatically set.

The layer will be rendered depending on the value of the FootprintBehavior field:

The user can set one of the three values for the Footprint behaviour as described above (None, Transparent, Cut).

After that, the user must confirm the modification by clicking on the Save button on the bottom side of the page.

Step 3: Example Results

Here are presented the results for each dataset.

This is an example of mosaic (mosaic_single_tiff) without applying Footprint:

And this is the result of setting FootprintBehavior to Cut:

Then navigate the filesystem in the mosaic directory, open (or create it if not exist) the file footprints.properties and
write:

footprint_inset=0.01
footprint_inset_type=full

to add an inset.

Note: Remember that each modification on footprints.properties requires a GeoServer catalog and a GeoServer
resource cache reloading in order to apply the changes.

If an Inset is added, the final mosaic is:

2. Vector Footprint configured with footprints.shp

Repeat the steps described above but loading the mosaic_sample folder from
%TRAINING_ROOT%\data\user_data\footprint_data\mosaic_sample

This is another example of mosaic (mosaic_sample) without Footprint:

And now after setting FootprintBehavior to Transparent (no Inset is used) on the Layer:

780 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 781

GeoNode Documentation, Release 2.8

782 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 783

GeoNode Documentation, Release 2.8

784 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 785

GeoNode Documentation, Release 2.8

786 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3. Vector Footprint configured with footprints.properties

For testing this functionality the user must

• Clone the directory %TRAINING_ROOT%\data\user_data\footprint_data\mosaic_sample
and call it mosaic_sample2

• Rename all the footprints.xxx files that compose the shapefile to mask.xxx (don’t rename foot-
prints.properties too!) and load another ImageMosaic datastore.

• open (create if not exist) the footprints.properties file and write:

footprint_source=mask.shp
footprint_inset=0.00001
footprint_inset_type=border

In order to specify an inset and use a footprint shapefile with a custom name.

• Then publish the ImageMosaic located in the cloned directory called mosaic_sample2

The result of setting FootprintBehavior to Transparent, Inset type to border and Inset value to 0.00001 is:

3.2. Tutorials 787

GeoNode Documentation, Release 2.8

Advanced Processing With GDAL Utilities

In this section we are including some advanced examples of processing of Raster Data for GeoServer serving using
GDAL Utilities. Here below you can find a list of examples.

Example n° 1: Serving a large number of grayscale GeoTIFFs with palettes

In this example, there is a group of grayscale GeoTIFF images. The purpose of this section is to describe how to merge
these images using GDAL. These data are taken from the Regione Marche Cartographic Portal.

Note: Data have the same pixel resolution and same Coordinate Reference System EPSG:26592.

1. Navigate to the workshop directory $TRAINING_ROOT/data/user_data/gdal_processing_data
(on Windows %TRAINING_ROOT%\data\user_data\gdal_processing_data) and find the
grayscale_data directory.

2. Navigate inside the grayscale_data directory with the SDK shell.

Note: The following operations must be executed from the shell inside the selected directory. In Windows, run
setenv.bat if not already launched.

1. Calling the gdalinfo command on an image for retrieving the associated information:

gdalinfo 32501_.tif

And the result is:

Driver: GTiff/GeoTIFF
Files: 32501_.tif

32501_.tfw
Size is 5494, 4526
Coordinate System is `'
Origin = (2356751.582169299000000,4762684.428062002200000)
Pixel Size = (1.269090000000000,-1.269090000000000)
Metadata:
TIFFTAG_RESOLUTIONUNIT=2 (pixels/inch)
TIFFTAG_XRESOLUTION=1200
TIFFTAG_YRESOLUTION=1200

Image Structure Metadata:
COMPRESSION=LZW
INTERLEAVE=BAND

Corner Coordinates:
Upper Left (2356751.582, 4762684.428)
Lower Left (2356751.582, 4756940.527)
Upper Right (2363723.963, 4762684.428)
Lower Right (2363723.963, 4756940.527)
Center (2360237.772, 4759812.477)
Band 1 Block=5494x1 Type=Byte, ColorInterp=Palette
Color Table (RGB with 256 entries)

0: 0,0,0,255
1: 1,1,1,255
2: 2,2,2,255

(continues on next page)

788 Chapter 3. Table of contents

http://www.ambiente.marche.it/Territorio/Cartografiaeinformazioniterritoriali/Archiviocartograficoeinformazioniterritoriali/Cartografie/ORTOFOTOCARTEREGIONALI110000.aspx

GeoNode Documentation, Release 2.8

(continued from previous page)

~

254: 254,254,254,255
255: 255,255,255,255

From gdalinfo it is possible to note:

• No CRS definition. An image without CRS cannot be displayed on GeoServer.

• Tiles Striped (5494x1).

• LZW Compression.

• ColorInterpretation as a Palette.

2. Using gdal_translate it is possible to change the ColorInterpretation from Palette to Gray.:

gdal_translate -expand gray -a_srs EPSG:26592 -of vrt $f ${f:0:6}.vrt

The final image format is not GeoTIFF but VRT. This format simply creates an XML file containing information
about the operation to perform on the image; the output image is created only when the image must be shown to
the screen. The CRS is set with the -a_srs parameter. The color interpretation can be set to gray because each
palette value is equal to a grayscale value (this last step is optional).

Note: The expand gray option does not create a multi banded image but only one band is present.

Note: In future a possible operation could be the processing of the input image with the color interpretation set
to gray and the calculation of the optimal palette on the final image.

For executing the same operation on all the input images a script called script.sh (Linux) or script.bat (Win-
dows) must be created and executed:

Note: In order to edit the scripts use the basic notepad editor on Windows or gedit on Linux. Remem-
ber that on Linux, after the script creation, it must be marked as executable with the command chmod +x
<nome_script>.sh

Linux:

#!/bin/bash
FILES="*.tif"
echo start
for f in $FILES
do
echo $f
gdal_translate -expand gray -a_srs EPSG:26592 -of vrt $f ${f:0:6}.vrt

done
echo stop

Windows:

for /R %%f in (*.tif) do (
gdal_translate -expand gray -a_srs EPSG:26592 -of vrt %%~f %%~f.vrt
)

3.2. Tutorials 789

GeoNode Documentation, Release 2.8

3. Creating a list of the VRT files:

ls *.vrt > list.txt (Linux)

or

dir /b *.vrt > list.txt (Windows)

4. Merging of all the input files with the gdalbuildvrt command:

gdalbuildvrt -srcnodata 255 -vrtnodata 255 -resolution highest -input_file_list
→˓list.txt merged_vrt.vrt

Parameters used:

• -srcnodata 255 -vrtnodata 255 : setting of the input and output image No Data.

• -resolution highest : selection of the highest image resolution.

• -input_file_list list.txt : definition of the input file list.

The result of calling gdalinfo on the output image is:

Driver: VRT/Virtual Raster
Files: merged_vrt.vrt

32501_.vrt

~

32507_.vrt
Size is 16342, 9157
Coordinate System is:
PROJCS["Monte Mario (Rome) / Italy zone 2 (deprecated)",

GEOGCS["Monte Mario (Rome)",
DATUM["Monte_Mario_Rome",

SPHEROID["International 1924",6378388,297,
AUTHORITY["EPSG","7022"]],

TOWGS84[-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68],
AUTHORITY["EPSG","6806"]],

PRIMEM["Rome",12.45233333333333,
AUTHORITY["EPSG","8906"]],

UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4806"]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",2.54766666666666],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",2520000],
PARAMETER["false_northing",0],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
AXIS["X",EAST],
AXIS["Y",NORTH],
AUTHORITY["EPSG","26592"]]

Origin = (2356629.695870598300000,4762684.428062002200000)
Pixel Size = (1.267290000000000,-1.267290000000000)
Corner Coordinates:
Upper Left (2356629.696, 4762684.428) (0d32'36.59"E, 42d59'54.65"N)

(continues on next page)

790 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

Lower Left (2356629.696, 4751079.854) (0d32'48.78"E, 42d53'38.68"N)
Upper Right (2377339.749, 4762684.428) (0d47'50.77"E, 43d 0' 9.65"N)
Lower Right (2377339.749, 4751079.854) (0d48' 1.42"E, 42d53'53.63"N)
Center (2366984.722, 4756882.141) (0d40'19.38"E, 42d56'54.40"N)
Band 1 Block=128x128 Type=Byte, ColorInterp=Gray
NoData Value=255

5. Transforming from VRT to GeoTIFF with gdal_translate:

gdal_translate -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -co "TILED=YES" -co
→˓"BIGTIFF=YES" -co "COMPRESS=DEFLATE" merged_vrt.vrt merged_tif.tif

Warning: This operation might take many minutes.

Parameters used:

• -co “BLOCKXSIZE=512” -co “BLOCKYSIZE=512” -co “TILED=YES” : setting tile dimensions.

• -co “BIGTIFF=YES” -co “COMPRESS=DEFLATE” : (Optional) loss-less compression of the image
for reducing the disk space occupation, similar to LZW.

Note: -co “BIGTIFF=YES” is used because GDAL is not automatically able to convert the
GeoTiff image into a BigTiff if compression is set.

From gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_tif.tif
Size is 16342, 9157
Coordinate System is:
PROJCS["Monte Mario (Rome) / Italy zone 2",

GEOGCS["Monte Mario (Rome)",
DATUM["Monte_Mario_Rome",

SPHEROID["International 1924",6378388,297.0000000000014,
AUTHORITY["EPSG","7022"]],

TOWGS84[-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68],
AUTHORITY["EPSG","6806"]],

PRIMEM["Rome",12.45233333333333],
UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4806"]],

PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",15],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",2520000],
PARAMETER["false_northing",0],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
AUTHORITY["EPSG","26592"]]

Origin = (2356629.695870598300000,4762684.428062002200000)
Pixel Size = (1.267290000000000,-1.267290000000000)
Metadata:
AREA_OR_POINT=Area

(continues on next page)

3.2. Tutorials 791

GeoNode Documentation, Release 2.8

(continued from previous page)

Image Structure Metadata:
COMPRESSION=DEFLATE
INTERLEAVE=BAND

Corner Coordinates:
Upper Left (2356629.696, 4762684.428) (12d59'44.99"E, 42d59'54.65"N)
Lower Left (2356629.696, 4751079.854) (12d59'57.18"E, 42d53'38.68"N)
Upper Right (2377339.749, 4762684.428) (13d14'59.17"E, 43d 0' 9.65"N)
Lower Right (2377339.749, 4751079.854) (13d15' 9.82"E, 42d53'53.63"N)
Center (2366984.722, 4756882.141) (13d 7'27.78"E, 42d56'54.40"N)
Band 1 Block=512x512 Type=Byte, ColorInterp=Gray
NoData Value=255

This image can be displayed on GeoServer but a further optimization step could bring to better performances.
There could be two ways for optimizing the GeoServer performances:

• building image overviews.

• building a pyramid of the image.

6. (Optional) Optimization.

• Building overview with gdaladdo:

gdaladdo -r cubicspline --config COMPRESS_OVERVIEW DEFLATE --config GDAL_
→˓TIFF_OVR_BLOCKSIZE 512 merged_tif.tif 2 4 8 16 32

Overviews are reduced views of the input image used by GeoServer for displaying the image at a lower
resolutions.

Parameters used:

– -r cubicspline : setting the interpolation mode to cubicspline (by default is nearest-neighbour).

– –config COMPRESS_OVERVIEW DEFLATE : setting DEFLATE compression on the
overviews, for reducing disk space occupation.

– –config GDAL_TIFF_OVR_BLOCKSIZE 512 : setting tile dimensions on overviews.

– 2 ~ 32 : setting overview level.

And with gdalinfo:

Band 1 Block=512x512 Type=Byte, ColorInterp=Gray
NoData Value=255
Overviews: 8171x4579, 4086x2290, 2043x1145, 1022x573, 511x287

Then the result can be displayed in GeoServer by configuring the image as a GeoTIFF (see Adding a
GeoTiff section).

• Building a pyramid through several gdalwarp invocations, each time by reducing the image resolution:

gdalwarp -r cubicspline -dstnodata 255 -srcnodata 255 -multi -tr 2,53458 -2,
→˓53458 -co BLOCKXSIZE=512 -co BLOCKYSIZE=512 -co TILED=YES -co
→˓COMPRESS=DEFLATE merged_tif.tif merged_tif_2.tif

Parameters used:

– -r cubicspline : definition interpolation method.

– -dstnodata 255 -srcnodata 255 : definition of the image input and output NO DATA.

– -multi : forcing to use multithreading.

792 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

– -tr 2,53458 -2,53458 : definition of the image resolutions.

Output image from gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_tif_2.tif
Size is 8171, 4578
Coordinate System is:

~

Band 1 Block=512x512 Type=Byte, ColorInterp=Gray
NoData Value=255

After another gdalwarp on the output image:

gdalwarp -r cubicspline -dstnodata 255 -srcnodata 255 -multi -tr 5,06916 -5,
→˓06916 -co BLOCKXSIZE=512 -co BLOCKYSIZE=512 -co TILED=YES -co
→˓COMPRESS=DEFLATE merged_tif_2.tif merged_tif_4.tif

And gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_tif_4.tif
Size is 4085, 2289
Coordinate System is:

~

Band 1 Block=512x512 Type=Byte, ColorInterp=Gray
NoData Value=255

The operations must be executed on the first image, then the same operation must be repeated on the output
image and so on. This cycle allows to create a pyramid of images, each one with a lower resolution.

Then the result can be displayed in GeoServer by configuring the images as a pyramid (see Advanced
Mosaic and Pyramid configuration section).

7. Displaying the result on GeoServer:

Example n° 2: Serving a large number of DTM ASCII Grid Files

In this example there is a group of DTM images in ASCII Grid format. The purpose of this section is to describe how
the GDAL commands may be used for merging the input files provided. These data are taken from Regione Calabria
Open Data Portal at the ASCII - GRID section.

Note: Data have the same pixel resolution and same Coordinate Reference System EPSG:3003.

Warning: This example requires GDAL with Python bindings.

1. Navigate to the workshop directory $TRAINING_ROOT/data/user_data/gdal_processing_data
(on Windows %TRAINING_ROOT%\data\user_data\gdal_processing_data) and find the
DTM_data directory.

2. Navigate into the DTM_data directory with the SDK Shell.

3.2. Tutorials 793

http://pr5sit.regione.calabria.it/web/pr5sit/sezione-opendata1;jsessionid=D37F21C541E793075AF90E3B0A3AAFBD
http://pr5sit.regione.calabria.it/web/pr5sit/sezione-opendata1;jsessionid=D37F21C541E793075AF90E3B0A3AAFBD

GeoNode Documentation, Release 2.8

Fig. 242: Result with gdaladdo

Fig. 243: Result with ImagePyramid

794 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Note: The following operations must be executed from the shell inside the selected directory. In Windows, run
setenv.bat if not already launched.

1. Calling the gdalinfo command on an image for retrieving the associated information:

gdalinfo 521150.asc

And the result is:

Driver: AAIGrid/Arc/Info ASCII Grid
Files: 521150.asc
Size is 193, 154
Coordinate System is `'
Origin = (2590740.000000000000000,4433860.000000000000000)
Pixel Size = (40.000000000000000,-40.000000000000000)
Metadata:
AREA_OR_POINT=Point

Corner Coordinates:
Upper Left (2590740.000, 4433860.000)
Lower Left (2590740.000, 4427700.000)
Upper Right (2598460.000, 4433860.000)
Lower Right (2598460.000, 4427700.000)
Center (2594600.000, 4430780.000)
Band 1 Block=193x1 Type=Float32, ColorInterp=Undefined
NoData Value=-9999

From gdalinfo it is possible to note:

• No CRS definition. An image without CRS cannot be displayed on GeoServer.

• Tiles Striped (193x1).

• No Compression.

2. Listing of all the images into a single text list with the following command:

ls *.asc > list.txt (Linux)

or

dir /b *.asc > list.txt (Windows)

3. Merging of all the input files with the gdal_merge.py command:

gdal_merge.py -o merged.tif -co "TILED=YES" -co "BLOCKXSIZE=512" -co
→˓"BLOCKYSIZE=512" -co "COMPRESS=DEFLATE" -co "ZLEVEL=9" -co "BIGTIFF=YES" -init -
→˓9999 -a_nodata -9999 -n -9999 -ot Float32 --optfile list.txt

Note: This command must be executed with python for avoiding import errors.

Parameters used:

• -o merged.tif : definition of the output file name.

• -co “TILED=YES” -co “BLOCKXSIZE=512” -co “BLOCKYSIZE=512” : definition of tile dimen-
sions.

3.2. Tutorials 795

GeoNode Documentation, Release 2.8

• -co “COMPRESS=DEFLATE” -co “ZLEVEL=9” -co “BIGTIFF=YES” : definition of the compres-
sion mode.

Note: -co “BIGTIFF=YES” is used because GDAL is not automatically able to convert the
GeoTiff image into a BigTiff if compression is set.

• -init -9999 : initialization of the image pixels to NO DATA.

• -a_nodata -9999 : definition of the output value for NO DATA.

• -n -9999 : definition of the input pixel value to ignore during merging.

• -ot Float32 : definition of the image output type.

• –optfile list.txt : definition of the input file list.

The gdalinfo output on the merged image is:

Driver: GTiff/GeoTIFF
Files: merged.tif
Size is 3613, 6284
Coordinate System is `'
Origin = (2570700.000000000000000,4445900.000000000000000)
Pixel Size = (40.000000000000000,-40.000000000000000)
Image Structure Metadata:
COMPRESSION=DEFLATE
INTERLEAVE=BAND

Corner Coordinates:
Upper Left (2570700.000, 4445900.000)
Lower Left (2570700.000, 4194540.000)
Upper Right (2715220.000, 4445900.000)
Lower Right (2715220.000, 4194540.000)
Center (2642960.000, 4320220.000)
Band 1 Block=512x512 Type=Float32, ColorInterp=Gray
NoData Value=-9999

The merged image has a good tiling(512x512) and compression, but the CRS is still undefined.

4. Setting of the image CRS with gdal_translate:

gdal_translate -a_srs "EPSG:3003" -co "TILED=YES" -co "BLOCKXSIZE=512" -co
→˓"BLOCKYSIZE=512" -co "COMPRESS=DEFLATE" -co "ZLEVEL=9" -co "BIGTIFF=YES" merged.
→˓tif merged_CRS.tif

The various input parameters are maintained because by default GDAL do not compress the input image and set
a bad tiling.

From gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_CRS.tif
Size is 3613, 6284
Coordinate System is:
PROJCS["Monte Mario / Italy zone 1",

GEOGCS["Monte Mario",
DATUM["Monte_Mario",

SPHEROID["International 1924",6378388,297.0000000000014,
AUTHORITY["EPSG","7022"]],

TOWGS84[-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68],

(continues on next page)

796 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

AUTHORITY["EPSG","6265"]],
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4265"]],

PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",9],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",1500000],
PARAMETER["false_northing",0],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
AUTHORITY["EPSG","3003"]]

Origin = (2570700.000000000000000,4445900.000000000000000)
Pixel Size = (40.000000000000000,-40.000000000000000)
Metadata:
AREA_OR_POINT=Area

Image Structure Metadata:
COMPRESSION=DEFLATE
INTERLEAVE=BAND

Corner Coordinates:
Upper Left (2570700.000, 4445900.000) (21d25'57.43"E, 39d29'28.80"N)
Lower Left (2570700.000, 4194540.000) (21d 3'12.94"E, 37d16'39.68"N)
Upper Right (2715220.000, 4445900.000) (23d 3'58.08"E, 39d18' 6.80"N)
Lower Right (2715220.000, 4194540.000) (22d38'27.42"E, 37d 6' 9.29"N)
Center (2642960.000, 4320220.000) (22d 2'40.73"E, 38d17'47.75"N)
Band 1 Block=512x512 Type=Float32, ColorInterp=Gray
NoData Value=-9999

This image can be displayed on GeoServer but a further optimization step could bring to better performances.

5. (Optional) Creation of the overviews associated to the merged image for having better throughput:

gdaladdo -r nearest --config COMPRESS_OVERVIEW DEFLATE --config GDAL_TIFF_OVR_
→˓BLOCKSIZE 512 merged_CRS.tif 2 4 8 16

Overviews are reduced views of the input image used by GeoServer for displaying the image at a lower resolu-
tions.

Parameters used:

• -r nearest : definition of the interpolation method.

• –config COMPRESS_OVERVIEW DEFLATE : definition of the compression on overviews.

• –config GDAL_TIFF_OVR_BLOCKSIZE 512 : definition of the tile dimensions on overviews.

And with gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_CRS.tif
Size is 3613, 6284
Coordinate System is:
PROJCS["Monte Mario / Italy zone 1",

GEOGCS["Monte Mario",
DATUM["Monte_Mario",

SPHEROID["International 1924",6378388,297.0000000000014,
AUTHORITY["EPSG","7022"]],

TOWGS84[-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68],
(continues on next page)

3.2. Tutorials 797

GeoNode Documentation, Release 2.8

(continued from previous page)

AUTHORITY["EPSG","6265"]],
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4265"]],

PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",9],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",1500000],
PARAMETER["false_northing",0],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
AUTHORITY["EPSG","3003"]]

Origin = (2570700.000000000000000,4445900.000000000000000)
Pixel Size = (40.000000000000000,-40.000000000000000)
Metadata:
AREA_OR_POINT=Area

Image Structure Metadata:
COMPRESSION=DEFLATE
INTERLEAVE=BAND

Corner Coordinates:
Upper Left (2570700.000, 4445900.000) (21d25'57.43"E, 39d29'28.80"N)
Lower Left (2570700.000, 4194540.000) (21d 3'12.94"E, 37d16'39.68"N)
Upper Right (2715220.000, 4445900.000) (23d 3'58.08"E, 39d18' 6.80"N)
Lower Right (2715220.000, 4194540.000) (22d38'27.42"E, 37d 6' 9.29"N)
Center (2642960.000, 4320220.000) (22d 2'40.73"E, 38d17'47.75"N)
Band 1 Block=512x512 Type=Float32, ColorInterp=Gray
NoData Value=-9999
Overviews: 1807x3142, 904x1571, 452x786, 226x393

Then the result can be displayed in GeoServer by configuring the image as a GeoTIFF (see Adding a GeoTiff
section).

6. Displaying the result on GeoServer:

Example n° 3: Serving a large number of Cartographic Black/White GeoTiff with Palette

In this example there is a group of Cartographic Black/White images from “CARTA TECNICA DELLA REGIONE
TOSCANA”. The purpose of this example is to describe how the GDAL commands may be used for merging the input
files provided.

Note: Data have the same pixel resolution and same Coordinate Reference System EPSG:25832. Also each pixel is
stored into single bit.

1. Navigate to the workshop directory $TRAINING_ROOT/data/user_data/gdal_processing_data
(on Windows %TRAINING_ROOT%\data\user_data\gdal_processing_data) and find the
CTR_data directory.

2. Navigate into the CTR_data directory with the SDK Shell.

Note: The following operations must be executed from the shell inside the selected directory. In Windows, run
setenv.bat if not already launched.

798 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 799

GeoNode Documentation, Release 2.8

1. Calling the gdalinfo command on an image for retrieving the associated information:

gdalinfo 20E27_1994.TIF

And the result is:

Driver: GTiff/GeoTIFF
Files: 20E27_1994.TIF

20E27_1994.TFW
Size is 16050, 14050
Coordinate System is `'
GeoTransform =
600769.026848671, 0.1, 7.3789937e-007
4863785.940434861, -8.172141e-008, -0.1

Metadata:
TIFFTAG_RESOLUTIONUNIT=2 (pixels/inch)
TIFFTAG_SOFTWARE=IrfanView
TIFFTAG_XRESOLUTION=72
TIFFTAG_YRESOLUTION=72

Image Structure Metadata:
COMPRESSION=PACKBITS
INTERLEAVE=BAND
MINISWHITE=YES

Corner Coordinates:
Upper Left (600769.027, 4863785.940)
Lower Left (600769.037, 4862380.940)
Upper Right (602374.027, 4863785.939)
Lower Right (602374.037, 4862380.939)
Center (601571.532, 4863083.440)
Band 1 Block=16050x4 Type=Byte, ColorInterp=Palette
Image Structure Metadata:

NBITS=1
Color Table (RGB with 2 entries)

0: 255,255,255,255
1: 0,0,0,255

From gdalinfo it is possible to note:

• No CRS definition. An image without CRS cannot be displayed on GeoServer.

• Color Interpretation as palette.

• A GeoTransformation matrix is associated.

• Tiles Striped (16050x4).

• Packbits Compression.

2. Executing the following commands on the tiff images:

gdalwarp -t_srs EPSG:25832 -of vrt $f ${f:0:10}_temp.vrt

gdal_translate -expand gray -of vrt ${f:0:10}_temp.vrt ${f:0:10}.vrt

The first operation sets the CRS to each image and creates a VRT file, for reducing space occupation. Also the
use of gdalwarp internally performs the GeoTransformation associated to the image.

The second operation is used for changing the color interpretation from palette to gray. This operation is done
because in the final steps other grey levels will be added with the interpolation. The expansion to the gray color
interpretation leads to an expansion of the pixel dimension from 1 to 8 bits.

800 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Note: The expand gray option does not create a multi banded image but only a single banded one.

Note: If the user wants to keep the palette, then can go directly to the Optional elaboration without expanding
the Palette paragraph.

These operations must be executed inside a script:

Linux:

#!/bin/bash
FILES="*.TIF"
echo start
for f in $FILES
do

echo $f
gdalwarp -t_srs EPSG:25832 -of vrt $f ${f:0:10}_temp.vrt
gdal_translate -expand gray -of vrt ${f:0:10}_temp.vrt ${f:0:10}.vrt

done
echo stop

Windows:

for /R %%f in (*.tif) do (
gdalwarp -t_srs EPSG:25832 -of vrt %%~f %%~f_temp.vrt
gdal_translate -expand gray -of vrt %%~f_temp.vrt %%~f.vrt

)

3. Listing of all the VRT files into a single text list with the following command:

ls *.vrt > list.txt (Linux)

or

dir /b *.vrt > list.txt (Windows)

Warning: Delete the _temp.vrt files from the list because they overlap with the final vrt files created.

4. Merging of all the input files with the gdalbuildvrt command:

gdalbuildvrt -srcnodata 255 -vrtnodata 255 -input_file_list list.txt merged_vrt.
→˓vrt

Parameters used:

• -srcnodata 255 -vrtnodata 255 : definition of the No Data associated with the file.

• -input_file_list list.txt : definition of input files to elaborate.

The gdalinfo output on the merged image is:

Driver: VRT/Virtual Raster
Files: merged_vrt_nodata.vrt

20E27_1994.vrt

(continues on next page)

3.2. Tutorials 801

GeoNode Documentation, Release 2.8

(continued from previous page)

~

20E60_1995.vrt
Size is 50052, 62047
Coordinate System is:
PROJCS["ETRS89 / UTM zone 32N",

GEOGCS["ETRS89",
DATUM["European_Terrestrial_Reference_System_1989",

SPHEROID["GRS 1980",6378137,298.257222101,
AUTHORITY["EPSG","7019"]],

TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6258"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4258"]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",9],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
AXIS["Easting",EAST],
AXIS["Northing",NORTH],
AUTHORITY["EPSG","25832"]]

Origin = (600768.734234663190000,4863785.940434861000000)
Pixel Size = (0.100000372821407,-0.100000372821407)
Corner Coordinates:
Upper Left (600768.734, 4863785.940) (10d15'18.69"E, 43d55'13.06"N)
Lower Left (600768.734, 4857581.217) (10d15'14.46"E, 43d51'51.99"N)
Upper Right (605773.953, 4863785.940) (10d19' 3.07"E, 43d55'10.54"N)
Lower Right (605773.953, 4857581.217) (10d18'58.64"E, 43d51'49.47"N)
Center (603271.344, 4860683.579) (10d17' 8.72"E, 43d53'31.28"N)
Band 1 Block=128x128 Type=Byte, ColorInterp=Gray
NoData Value=255

5. Transforming from VRT to GeoTIFF with gdal_translate:

gdal_translate -a_nodata none -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -co
→˓"TILED=YES" -co "BIGTIFF=YES" -co "COMPRESS=DEFLATE" merged_vrt.vrt merged_tif.
→˓tif

The various input parameters are:

• -a_nodata none : avoid setting 255 as No Data for a better image optimization.

• -co “BLOCKXSIZE=512” -co “BLOCKYSIZE=512” -co “TILED=YES” : definition of the tile di-
mensions.

• -co “BIGTIFF=YES” -co “COMPRESS=DEFLATE” : definition of the compression method.

Note: BIGTIFF=YES must be set for big images because when compression is used, by

802 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

default gdal_translate is not able to check if the final image is a BigTiff or not.

From gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_tif.tif
Size is 50052, 62047
Coordinate System is:
PROJCS["ETRS89 / UTM zone 32N",

GEOGCS["ETRS89",
DATUM["European_Terrestrial_Reference_System_1989",

SPHEROID["GRS 1980",6378137,298.2572221010002,
AUTHORITY["EPSG","7019"]],

TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6258"]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4258"]],

PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",9],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
AUTHORITY["EPSG","25832"]]

Origin = (600768.734234663190000,4863785.940434861000000)
Pixel Size = (0.100000372821407,-0.100000372821407)
Metadata:
AREA_OR_POINT=Area

Image Structure Metadata:
COMPRESSION=DEFLATE
INTERLEAVE=BAND

Corner Coordinates:
Upper Left (600768.734, 4863785.940) (10d15'18.69"E, 43d55'13.06"N)
Lower Left (600768.734, 4857581.217) (10d15'14.46"E, 43d51'51.99"N)
Upper Right (605773.953, 4863785.940) (10d19' 3.07"E, 43d55'10.54"N)
Lower Right (605773.953, 4857581.217) (10d18'58.64"E, 43d51'49.47"N)
Center (603271.344, 4860683.579) (10d17' 8.72"E, 43d53'31.28"N)
Band 1 Block=512x512 Type=Byte, ColorInterp=Gray

This image can be displayed on GeoServer but a further optimization step could bring to better performances.
There could be two ways for optimizing the GeoServer performances:

• building image overviews.

• building a pyramid of the image.

6. (Optional) Optimization methods. Here are described two possible optimizations each of them using a different
interpolation type:

• Creation of the overviews associated to the merged image for having better throughput:

gdaladdo -r average --config COMPRESS_OVERVIEW DEFLATE --config GDAL_TIFF_
→˓OVR_BLOCKSIZE 512 merged_tif.tif 2 4 8 16 32 64 128

Overviews are reduced views of the input image used by GeoServer for displaying the image at a lower
resolutions.

3.2. Tutorials 803

GeoNode Documentation, Release 2.8

Parameters used:

– -r average : definition of the interpolation method.

– –config COMPRESS_OVERVIEW DEFLATE : definition of the compression on overviews.

– –config GDAL_TIFF_OVR_BLOCKSIZE 512 : definition of the tile dimensions on overviews.

– 2 ~ 128 : definition of the overviews level

And with gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_tif.tif
Size is 50052, 62047

~

Band 1 Block=512x512 Type=Byte, ColorInterp=Gray
Overviews: 25026x31024, 12513x15512, 6257x7756, 3129x3878, 1565x1939,

→˓783x970, 392x485

Then the result can be displayed in GeoServer by configuring the image as a GeoTIFF (see Adding a
GeoTiff section).

• (Optional) Creation of a pyramid associated to the merged image and displaying the image on GeoServer
with the ImagePyramid plugin (see Advanced Mosaic and Pyramid configuration section).

For building a pyramid the gdalwarp command must be called several times. The operation to execute
on the first image is:

gdalwarp -r cubic -multi -tr 0,200000745642814 -0,200000745642814 -co
→˓BLOCKXSIZE=512 -co BLOCKYSIZE=512 -co TILED=YES -co COMPRESS=DEFLATE
→˓merged_tif.tif merged_tif_2.tif

The parameters are:

– -r cubic : definition of the interpolation method (average interpolation can be used only with GDAL
1.10).

– -multi : forcing to use multithreading.

– -tr 0,200000745642814 -0,200000745642814 : definition of the image resolution.

From gdalinfo on the result image:

Driver: GTiff/GeoTIFF
Files: merged_tif_2.tif
Size is 25026, 31024

~

Band 1 Block=512x512 Type=Byte, ColorInterp=Gray

Then the same operation, with another value for the resolution must be executed on the result image:

gdalwarp -r cubic -multi -tr 0,400001491285628 -0,400001491285628 -co
→˓BLOCKXSIZE=512 -co BLOCKYSIZE=512 -co TILED=YES -co COMPRESS=DEFLATE
→˓merged_tif_2.tif merged_tif_4.tif

These operation must be repeated until the final image has a resolution 128 times lower than that of the
initial image.

804 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Note: Each call of gdalwarp reduces by half the image resolution.

After creating the various rasters, they must be saved inside a new directory. This directory must be
internally divided into sub-directories numbered from 1 to 7, each of them containing a raster of smaller
dimension(going from 1 to 7) and leaving the original raster in the super-directory.

Then the user can configure the following structure with the ImagePyramid plugin.

7. Displaying the result on GeoServer:

Result as a pyramid (Zoom on the image for seeing the result).

Result with overviews (Zoom on the image for seeing the result).

Optional elaboration without expanding the Palette

If the user wants to keep the palette the steps to achieve are quite similar.

1. Executing the following commands on the tiff images:

gdalwarp -t_srs EPSG:25832 -of vrt $f ${f:0:10}_temp.vrt

gdal_translate -of vrt ${f:0:10}_temp.vrt ${f:0:10}.vrt

These operations must be executed inside a script:

Linux:

#!/bin/bash
FILES="*.TIF"
echo start
for f in $FILES
do

echo $f
gdalwarp -t_srs EPSG:25832 -of vrt $f ${f:0:10}_temp.vrt
gdal_translate -of vrt ${f:0:10}_temp.vrt ${f:0:10}.vrt

done
echo stop

Windows:

for /R %%f in (*.tif) do (
gdalwarp -t_srs EPSG:25832 -of vrt %%~f %%~f_temp.vrt
gdal_translate -of vrt %%~f_temp.vrt %%~f.vrt

)

2. Listing of all the VRT files into a single text list with the following command:

ls *.vrt > list.txt (Linux)

or

dir /b *.vrt > list.txt (Windows)

Warning: Delete the _temp.vrt files from the list because they overlap with the final vrt files created.

3.2. Tutorials 805

GeoNode Documentation, Release 2.8

806 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 807

GeoNode Documentation, Release 2.8

3. Merging of all the input files with the gdalbuildvrt command:

gdalbuildvrt -srcnodata 0 -vrtnodata 0 -input_file_list list.txt merged_vrt.vrt

Parameters used:

• -srcnodata 0 -vrtnodata 0 : definition of the No Data associated with the file.

• -input_file_list list.txt : definition of input files to elaborate.

The gdalinfo output on the merged image is:

Driver: VRT/Virtual Raster
Files: merged_vrt_0.vrt
20E27_1994.TIF.vrt

~

20E60_1995.TIF.vrt
Size is 50052, 62047
Coordinate System is:
PROJCS["ETRS89 / UTM zone 32N",

GEOGCS["ETRS89",
DATUM["European_Terrestrial_Reference_System_1989",

SPHEROID["GRS 1980",6378137,298.257222101,
AUTHORITY["EPSG","7019"]],

TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6258"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4258"]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",9],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
AXIS["Easting",EAST],
AXIS["Northing",NORTH],
AUTHORITY["EPSG","25832"]]

Origin = (600768.734234663190000,4863785.940434861000000)
Pixel Size = (0.100000372821407,-0.100000372821407)
Corner Coordinates:
Upper Left (600768.734, 4863785.940) (10d15'18.69"E, 43d55'13.06"N)
Lower Left (600768.734, 4857581.217) (10d15'14.46"E, 43d51'51.99"N)
Upper Right (605773.953, 4863785.940) (10d19' 3.07"E, 43d55'10.54"N)
Lower Right (605773.953, 4857581.217) (10d18'58.64"E, 43d51'49.47"N)
Center (603271.344, 4860683.579) (10d17' 8.72"E, 43d53'31.28"N)
Band 1 Block=128x128 Type=Byte, ColorInterp=Palette
NoData Value=0
Color Table (RGB with 2 entries)

0: 255,255,255,255
1: 0,0,0,255

4. Transforming from VRT to GeoTIFF with gdal_translate:

808 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

gdal_translate -co "NBITS=1" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -co
→˓"TILED=YES" -co "BIGTIFF=YES" -co "COMPRESS=DEFLATE" merged_vrt.vrt merged_tif.
→˓tif

The various input parameters are:

• -co “NBITS=1” : sets the bits per pixel to 1, because the Palette contains only 0 or 1.

• -co “BLOCKXSIZE=512” -co “BLOCKYSIZE=512” -co “TILED=YES” : definition of the tile di-
mensions.

• -co “BIGTIFF=YES” -co “COMPRESS=DEFLATE” : definition of the compression method.

Note: BIGTIFF=YES must be set for big images because when compression is used, by
default gdal_translate is not able to check if the final image is a BigTiff or not.

From gdalinfo:

Size is 50052, 62047
Coordinate System is:
PROJCS["ETRS89 / UTM zone 32N",

GEOGCS["ETRS89",
DATUM["European_Terrestrial_Reference_System_1989",

SPHEROID["GRS 1980",6378137,298.2572221010002,
AUTHORITY["EPSG","7019"]],

TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6258"]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4258"]],

PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",9],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
AUTHORITY["EPSG","25832"]]

Origin = (600768.734234663190000,4863785.940434861000000)
Pixel Size = (0.100000372821407,-0.100000372821407)
Metadata:
AREA_OR_POINT=Area

Image Structure Metadata:
COMPRESSION=DEFLATE
INTERLEAVE=BAND

Corner Coordinates:
Upper Left (600768.734, 4863785.940) (10d15'18.69"E, 43d55'13.06"N)
Lower Left (600768.734, 4857581.217) (10d15'14.46"E, 43d51'51.99"N)
Upper Right (605773.953, 4863785.940) (10d19' 3.07"E, 43d55'10.54"N)
Lower Right (605773.953, 4857581.217) (10d18'58.64"E, 43d51'49.47"N)
Center (603271.344, 4860683.579) (10d17' 8.72"E, 43d53'31.28"N)
Band 1 Block=512x512 Type=Byte, ColorInterp=Palette
NoData Value=0
Image Structure Metadata:

NBITS=1
Color Table (RGB with 2 entries)

(continues on next page)

3.2. Tutorials 809

GeoNode Documentation, Release 2.8

(continued from previous page)

0: 255,255,255,255
1: 0,0,0,255

5. (Optional) Optimization methods described here are similar to that described above:

• The overview creation method is equal to that described above.

• For creating the pyramid the commands to use are the same as described above with the addition of the
-co “NBITS=1” command.

6. Displaying the result on GeoServer:

Result as a pyramid (Zoom on the image for seeing the result).

Result with overviews (Zoom on the image for seeing the result).

Advanced Vectorial Data Management

This module presents working with vector data, how to obtain vector data information, filter, extract and update.

In this module you will learn how to:

Retrieving vector data and metadata

In this section we will learn how to deal with vector data using WFS. First we will learn how to deal with metadata
and then how to retrieve the features. We will be using the layer named Counties in the workshop namespace.

Note: The Open Geospatial Consortium Web Feature Service Interface Standard (WFS) provides an
interface allowing requests for geographical features across the web using platform-independent calls.
One can think of geographical features as the “source code” behind a map, whereas the WMS interface or
online mapping portals like Google Maps return only an image, which end-users cannot edit or spatially
analyze.

1. Navigate to the GeoServer Welcome Page.

2. On the Welcome page locate the Layer Preview link (no need to login).

3. Navigate to the WFS GML output of the Counties layer.

Depending on the browser, the output may be unformatted or recognized as XML. Here is what Firefox
3 shows: http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=
geosolutions:Counties&maxFeatures=50&outputFormat=GML2

Note: We recommend the Mozilla Firefox web browser for navigating WFS response documents.

4. Now that we know the quick and easy way to get WFS data, let’s go back and do it the way a standard WFS client
works. First, the only thing expected to be known is the WFS server URL: http://localhost:8083/geoserver/ows?
service=WFS&version=1.0.0

Using that URL, we can issue a GetCapabilities request in order to know which layer it contains and
what operations are supported: http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=
GetCapabilities

If we scroll below, we will find the Counties feature type described:

810 Chapter 3. Table of contents

http://localhost:8083/geoserver/web/
http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=geosolutions:Counties&maxFeatures=50&outputFormat=GML2
http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=geosolutions:Counties&maxFeatures=50&outputFormat=GML2
http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0
http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0
http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=GetCapabilities
http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=GetCapabilities

GeoNode Documentation, Release 2.8

3.2. Tutorials 811

GeoNode Documentation, Release 2.8

812 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 244: Layer Preview

Fig. 245: WFS GML output

3.2. Tutorials 813

GeoNode Documentation, Release 2.8

Fig. 246: Default WFS layer preview.

814 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 247: GetCapabilities response

3.2. Tutorials 815

GeoNode Documentation, Release 2.8

Fig. 248: GetCapabilities response (Counties feature type)

5. Now let’s request more information for the Counties layer using a DescribeFeatureType request:
http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=DescribeFeatureType&
typename=geosolutions:Counties

Which gives us information about the fields names and types as well as the geometry type, in this case
MultiPolygon.

6. After that, we can issue a basic GetFeature request, that looks like this:

http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=GetFeature&
→˓typeName=geosolutions:Counties&featureId=Counties.1

Note: Notice it’s almost the same as the one that Geoserver generated, but it’s requestin a single feature
specifying its identifier via featureId=Counties.1

In the next section we will see how to filter the WFS output based on various attributes.

Filtering and Extracting vector data

WFS also defines mechanisms to only retrieve a subset of the data that matches some specified constraints.

1. Create a new request.xml file in the training root and past the following request into it:

<wfs:GetFeature xmlns:wfs='http://www.opengis.net/wfs'
xmlns:ogc='http://www.opengis.net/ogc' service='WFS' version='1.0.0'>
<Query typeName='geosolutions:WorldCountries'>

<ogc:Filter>
<ogc:FeatureId fid='WorldCountries.137' />

</ogc:Filter>

(continues on next page)

816 Chapter 3. Table of contents

http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=DescribeFeatureType&typename=geosolutions:Counties
http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=DescribeFeatureType&typename=geosolutions:Counties

GeoNode Documentation, Release 2.8

Fig. 249: DescribeFeatureType response for Counties feature type

3.2. Tutorials 817

GeoNode Documentation, Release 2.8

(continued from previous page)

</Query>
</wfs:GetFeature>

2. Go on the command line, move to the training folder root, and execute the request using CURL:

curl -XPOST -d @request.xml -H "Content-type: application/xml" "http://
→˓localhost:8083/geoserver/ows"

3. Now, let’s write an equivalent request - using the name of the state instead of the id- issuing a GET and encoding
the filter in a language called CQL. Copy the following URL in your browser’s navigation bar:

http://localhost:8083/geoserver/wfs?request=GetFeature&service=WFS&version=1.0.0&
→˓typeName=geosolutions:WorldCountries&outputFormat=GML2&CQL_FILTER=NAME=%27Monaco
→˓%27

Fig. 250: The CQL filter in the Firefox URL bar

That’s how a feature set is filtered with either the OGC encoding or the CQL notation.

In the next section we will see how to edit the features via a protocol called WFS Transactional (WFS-T).

Modifying Feature Types

GeoServer provides a fully Transactional Web Feature Service (WFS-T) which enables users to insert/delete/modify
the available FeatureTypes. This section shows a few of the GeoServer WFS-T capabilities and interactions with GIS
clients.

Modifying Feature Types using GeoNode

1. Open your instance of GeoNode and log in as a superuser or a user having write rights on at least some Layers

2. Select a Layer on which when you have right to edit data

Warning: You can edit only Layers which have been stored on a JDBC DataStore, like a DataBase. On
GeoNode this is only possible if the DB datastore has been enabled from the settings.

3. Click on Edit Layer and then, from the pop-up window, click on Edit data

Warning: The Edit data button will be available only for writable Layers (see above).

4. When the Map shows up along with your Layer, zoom in to a region you want to update or create.

5. Identify the Edit button on the map top toolbar, click on the small arrow on the left in order to show up the
context menu.

6. Lets first Modify a FeatureType. Click on Modify.

7. Select a geometry and click over it. From the small info dialog window, select Edit

818 Chapter 3. Table of contents

https://en.wikipedia.org/wiki/CQL
http://geonode.org

GeoNode Documentation, Release 2.8

Fig. 251: The results of the CQL filter

3.2. Tutorials 819

GeoNode Documentation, Release 2.8

Fig. 252: GeoNode Layers

820 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 253: GeoNode Layer Select

3.2. Tutorials 821

GeoNode Documentation, Release 2.8

Fig. 254: GeoNode Edit Layer

Fig. 255: GeoNode Navigate Layer

822 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 256: GeoNode Edit Button

Fig. 257: GeoNode Modify FeatureType

3.2. Tutorials 823

GeoNode Documentation, Release 2.8

Fig. 258: GeoNode Editing a FeatureType

824 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

8. Modify the geometry and/or the values of the field as you wish, and then click on Save.

Hint: If you want you can also completely delete the FeatureType by clicking on the Delete button from the
same info dialog window.

Fig. 259: GeoNode Updating a FeatureType

9. Verify that the changes have been stored on GeoServer.

Replace the URL

http://your_host/maps/new?layer=geonode:streams_1

with

http://your_host/geoserver/wms/reflect?layers=geonode:streams_1

3.2. Tutorials 825

GeoNode Documentation, Release 2.8

Warning: Pay attention to the parameter: layer becomes layers, plural. If you want
you can also add an output format parameter, like format=openlayers. In that case the
complete URL becomes:

http://your_host/geoserver/wms/reflect?layers=geonode:streams_1&format=openlayers

Fig. 260: GeoServer Displaying the Updated Layer

Click over the FeautreType in order to display the updates values too.

10. Repeat the FeatureType editing but this time click on Create (or simply click over the Edit button and not on
its right small arrow).

Modifying Feature Types using a Desktop GIS client

1. Open uDig GIS desktop client by going on the command line, changing directory in the training root if necessary,
and running the udig command.

826 Chapter 3. Table of contents

http://your_host/geoserver/wms/reflect?layers=geonode:streams_1&format=openlayers
http://udig.refractions.net

GeoNode Documentation, Release 2.8

Fig. 261: GeoNode Creating a FeatureType

3.2. Tutorials 827

GeoNode Documentation, Release 2.8

Fig. 262: GeoServer Displaying the New Feature

828 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

2. Add GeoServer WFS to the catalog.

Use the import button in the catalog tab, and select “data” in the first page of the wizard

Insert into the URL text box the following address:

http://localhost:8083/geoserver/wfs?request=GetCapabilities&service=WFS

Select the Mainrd from the list

3. Load the Mainrd Feature Type using drag-n-drop.

4. Perform a zoom operation on the upper-right part of the layer.

5. By using the Select and Edit Geometry tool try to move/add/remove some vertex to the small line at the center
of the screen.

6. Once finished use the Commit tool to persist the changes on GeoServer.

3.2. Tutorials 829

GeoNode Documentation, Release 2.8

Fig. 263: Selection of Web Feature Service data

Fig. 264: The WFS URL

830 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 265: WFS Datasets shown into the uDig catalog

3.2. Tutorials 831

GeoNode Documentation, Release 2.8

Fig. 266: Importing Mainrd into the map

832 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 267: Zooming in . . .

3.2. Tutorials 833

GeoNode Documentation, Release 2.8

Fig. 268: Zooming in . . .

834 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 269: Playing with the Geometry

3.2. Tutorials 835

GeoNode Documentation, Release 2.8

Fig. 270: Committing changes throught the WFS-T protocol

836 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

7. Use GeoServer Layer Preview to view the changes on the Mainrd layer.

Warning: In order to view the streets lines you have to specify the line style on the GetMap request.

Fig. 271: Showing the changes to the Mainrd Feature Type

8. On uDig look the Feature attribute values using the Info tool.

9. Now open/create the request.xml file in the training root directory and set in the following request, which
will be used to issue an Update Feature type request to the WFS-T updating all roads labelled as Monarch Rd
to Monarch Road

<wfs:Transaction xmlns:topp="http://www.openplans.org/topp" xmlns:ogc="http://www.
→˓opengis.net/ogc" xmlns:wfs="http://www.opengis.net/wfs" service="WFS" version=
→˓"1.0.0">
<wfs:Update typeName="geosolutions:Mainrd">

<wfs:Property>
(continues on next page)

3.2. Tutorials 837

GeoNode Documentation, Release 2.8

Fig. 272: Retrieving Feature Type info from uDig interface

838 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

<wfs:Name>LABEL_NAME</wfs:Name>
<wfs:Value>Monarch Road</wfs:Value>

</wfs:Property>
<ogc:Filter>
<ogc:PropertyIsEqualTo>

<ogc:PropertyName>LABEL_NAME</ogc:PropertyName>
<ogc:Literal>Monarch Rd</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Filter>

</wfs:Update>
</wfs:Transaction>

10. Issue the WFS-T request towards GeoServer using curl on the command line:

curl -XPOST -d @request.xml -H "Content-type: application/xml" "http://
→˓localhost:8083/geoserver/ows"

11. The response should be a TransactionResponse XML document containing a wfs:SUCCESS element

12. Ask the info again using the uDig Info tool . . .

Note: In order to issue a GetFeatureInfo request from the OpenLayers MapPreview tool, just left-click over the
line.

Fig. 273: Obtaining the updated Feature Type info from uDig interface

13. Finally, obtain the Feature type info using the GetFeatureInfo operation issued directly by the Map Preview .

3.2. Tutorials 839

http://localhost:8083/geoserver/mapPreview.do

GeoNode Documentation, Release 2.8

Fig. 274: Obtaining the updated Feature Type info from OpenLayers MapPreview GetFeatureInfo

840 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Loading OSM Data into GeoNode Learn how to load OSM Data into GeoNode

Adding Data to GeoServer Learn how to add data to GeoServer.

Pretty maps with GeoServer Learn how to create pretty styles for the Maps in GeoServer.

Advanced Raster Data Management Learn advanced techniques for the delivery of Raster Data with GeoServer.

Advanced Vectorial Data Management Learn advanced techniques for the delivery of Vectorial Data with GeoServer.

spatial_processing Learn how to do Spatial Processing using external tools.

3.2.1.6.2 GeoNode Advanced Configuration

Here you will find information about every component of Geonode, such as GeoServer, geonode settings, security, etc.

Settings

GeoNode Django Apps

Make a GeoNode release

Settings

Here’s a list of settings available in GeoNode and their default values. This includes settings for some external
applications that GeoNode depends on.

Documents settings

Here’s a list of settings available for the Documents app in GeoNode.

ALLOWED_DOCUMENT_TYPES

Default: ['doc', 'docx', 'xls', 'xlsx', 'pdf', 'zip', 'jpg', 'jpeg', 'tif',
'tiff', 'png', 'gif', 'txt']

A list of acceptable file extensions that can be uploaded to the Documents app.

MAX_DOCUMENT_SIZE

Default: 2

Metadata settings

CATALOGUE

A dict with the following keys:

• ENGINE: The CSW backend (default is geonode.catalogue.backends.pycsw_local)

• URL: The FULLY QUALIFIED base URL to the CSW instance for this GeoNode

• USERNAME: login credentials (if required)

3.2. Tutorials 841

GeoNode Documentation, Release 2.8

• PASSWORD: login credentials (if required)

pycsw is the default CSW enabled in GeoNode. pycsw configuration directives are managed in the PYCSW entry.

PYCSW

A dict with pycsw’s configuration. Of note are the sections metadata:main to set
CSW server metadata and metadata:inspire to set INSPIRE options. Setting
metadata:inspire['enabled'] to true will enable INSPIRE support. Server level configura-
tions can be overridden in the server section. See http://docs.pycsw.org/en/latest/configuration.html
for full pycsw configuration details.

MODIFY_TOPICCATEGORY

Default: False

Metadata Topic Categories list should not be modified, as it is strictly defined by ISO (See:
http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml and check the <CodeListDictionary
gml:id=”MD_MD_TopicCategoryCode”> element).

Some customisation it is still possible changing the is_choice and the GeoNode description fields.

In case it is absolutely necessary to add/delete/update categories, it is possible to set the MODIFY_TOPICCATEGORY
setting to True.

Maps settings

DEFAULT_MAP_BASE_LAYER

The name of the background layer to include in newly created maps.

DEFAULT_MAP_CENTER

Default: (0, 0)

A 2-tuple with the latitude/longitude coordinates of the center-point to use in newly created maps.

DEFAULT_MAP_ZOOM

Default: 0

The zoom-level to use in newly created maps. This works like the OpenLayers zoom level setting; 0 is at the world
extent and each additional level cuts the viewport in half in each direction.

MAP_BASELAYERS

Default:

842 Chapter 3. Table of contents

http://docs.pycsw.org/en/latest/configuration.html
http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml

GeoNode Documentation, Release 2.8

MAP_BASELAYERS = [{
"source": {

"ptype": "gxp_wmscsource",
"url": OGC_SERVER['default']['PUBLIC_LOCATION'] + "wms",
"restUrl": "/gs/rest"

}
},{
"source": {"ptype": "gxp_olsource"},
"type":"OpenLayers.Layer",
"args":["No background"],
"visibility": False,
"fixed": True,
"group":"background"

}, {
"source": {"ptype": "gxp_osmsource"},
"type":"OpenLayers.Layer.OSM",
"name":"mapnik",
"visibility": False,
"fixed": True,
"group":"background"

}, {
"source": {"ptype": "gxp_mapquestsource"},
"name":"osm",
"group":"background",
"visibility": True

}, {
"source": {"ptype": "gxp_mapquestsource"},
"name":"naip",
"group":"background",
"visibility": False

}, {
"source": {"ptype": "gxp_bingsource"},
"name": "AerialWithLabels",
"fixed": True,
"visibility": False,
"group":"background"

},{
"source": {"ptype": "gxp_mapboxsource"},

}, {
"source": {"ptype": "gxp_olsource"},
"type":"OpenLayers.Layer.WMS",
"group":"background",
"visibility": False,
"fixed": True,
"args":[

"bluemarble",
"http://maps.opengeo.org/geowebcache/service/wms",
{

"layers":["bluemarble"],
"format":"image/png",
"tiled": True,
"tilesOrigin": [-20037508.34, -20037508.34]

},
{"buffer": 0}

]

}]

3.2. Tutorials 843

GeoNode Documentation, Release 2.8

A list of dictionaries that specify the default map layers.

GEONODE_CLIENT_LAYER_PREVIEW_LIBRARY

Default: "geoext"

The library to use for display preview images of layers. The library choices are:

• "leaflet"

• "geoext"

OGC_SERVER

Default: {} (Empty dictionary)

A dictionary of OGC servers and their options. The main server should be listed in the ‘default’ key. If there is no
‘default’ key or if the OGC_SERVER setting does not exist Geonode will raise an Improperly Configured exception.
Below is an example of the OGC_SERVER setting:

OGC_SERVER = {
'default' : {

'LOCATION' : 'http://localhost:8080/geoserver/',
'USER' : 'admin',
'PASSWORD' : 'geoserver',

}
}

BACKEND

Default: "geonode.geoserver"

The OGC server backend to use. The backend choices are:

• 'geonode.geoserver'

BACKEND_WRITE_ENABLED

Default: True

Specifies whether the OGC server can be written to. If False, actions that modify data on the OGC server will not
execute.

DATASTORE

Default: '' (Empty string)

An optional string that represents the name of a vector datastore that Geonode uploads are imported into. In order to
support vector datastore imports there also needs to be an entry for the datastore in the DATABASES dictionary with
the same name. Example:

844 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

OGC_SERVER = {
'default' : {

'LOCATION' : 'http://localhost:8080/geoserver/',
'USER' : 'admin',
'PASSWORD' : 'geoserver',
'DATASTORE': 'geonode_imports'

}
}

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.sqlite3',
'NAME': 'development.db',

},
'geonode_imports' : {

'ENGINE': 'django.contrib.gis.db.backends.postgis',
'NAME': 'geonode_imports',
'USER' : 'geonode_user',
'PASSWORD' : 'a_password',
'HOST' : 'localhost',
'PORT' : '5432',

}
}

GEOGIG_ENABLED

Default: False

A boolean that represents whether the OGC server supports GeoGig datastores.

GEONODE_SECURITY_ENABLED

Default: True

A boolean that represents whether GeoNode’s security application is enabled.

LOCATION

Default: "http://localhost:8080/geoserver/"

A base URL from which GeoNode can construct OGC service URLs. If using GeoServer you can determine this
by visiting the GeoServer administration home page without the /web/ at the end. For example, if your GeoServer
administration app is at http://example.com/geoserver/web/, your server’s location is http://example.com/geoserver.

MAPFISH_PRINT_ENABLED

Default: True

A boolean that represents whether the MapFish printing extension is enabled on the server.

3.2. Tutorials 845

http://example.com/geoserver/web/
http://example.com/geoserver

GeoNode Documentation, Release 2.8

PASSWORD

Default: 'geoserver'

The administrative password for the OGC server as a string.

PRINT_NG_ENABLED

Default: True

A boolean that represents whether printing of maps and layers is enabled.

PUBLIC_LOCATION

Default: "http://localhost:8080/geoserver/"

The URL used to in most public requests from Geonode. This settings allows a user to write to one OGC server (the
LOCATION setting) and read from a separate server or the PUBLIC_LOCATION.

USER

Default: 'admin'

The administrative username for the OGC server as a string.

WMST_ENABLED

Default: False

Not implemented.

WPS_ENABLED

Default: False

Not implemented.

TIMEOUT

Default: 10

The maximum time, in seconds, to wait for the server to respond.

SITEURL

Default: 'http://localhost:8000/'

A base URL for use in creating absolute links to Django views and generating links in metadata.

846 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Proxy settings

PROXY_ALLOWED_HOSTS

Default: () (Empty tuple)

A tuple of strings representing the host/domain names that GeoNode can proxy requests to. This is a security measure
to prevent an attacker from using the GeoNode proxy to render malicious code or access internal sites.

Values in this tuple can be fully qualified names (e.g. ‘www.geonode.org’), in which case they will be matched against
the request’s Host header exactly (case-insensitive, not including port). A value beginning with a period can be used
as a subdomain wildcard: .geonode.org will match geonode.org, www.geonode.org, and any other subdomain of
geonode.org. A value of ‘*’ will match anything and is not recommended for production deployments.

PROXY_URL

Default /proxy/?url=

The URL to a proxy that will be used when making client-side requests in GeoNode. By default, the internal GeoNode
proxy is used but administrators may favor using their own, less restrictive proxies.

Search settings

DEFAULT_SEARCH_SIZE

Default: 10

An integer that specifies the default search size when using geonode.search for querying data.

Security settings

AUTH_EXEMPT_URLS

Default: () (Empty tuple)

A tuple of URL patterns that the user can visit without being authenticated. This setting has no effect if
LOCKDOWN_GEONODE is not True. For example, AUTH_EXEMPT_URLS = ('/maps',) will allow unauthen-
ticated users to browse maps.

LOCKDOWN_GEONODE

Default: False

By default, the GeoNode application allows visitors to view most pages without being authenticated. If this is set to
True users must be authenticated before accessing URL routes not included in AUTH_EXEMPT_URLS.

RESOURCE_PUBLISHING

Default: True

3.2. Tutorials 847

GeoNode Documentation, Release 2.8

By default, the GeoNode application allows GeoNode staff members to publish/unpublish resources. By default
resources are published when created. When this settings is set to True the staff members will be able to unpublish a
resource (and eventually publish it back).

Social settings

SOCIAL_BUTTONS

Default: True

A boolean which specifies whether the social media icons and JavaScript should be rendered in GeoNode.

SOCIAL_ORIGINS

Default:

SOCIAL_ORIGINS = [{
"label":"Email",
"url":"mailto:?subject={name}&body={url}",
"css_class":"email"

}, {
"label":"Facebook",
"url":"http://www.facebook.com/sharer.php?u={url}",
"css_class":"fb"

}, {
"label":"Twitter",
"url":"https://twitter.com/share?url={url}",
"css_class":"tw"

}, {
"label":"Google +",
"url":"https://plus.google.com/share?url={url}",
"css_class":"gp"

}]

A list of dictionaries that is used to generate the social links displayed in the Share tab. For each origin, the name and
URL format parameters are replaced by the actual values of the ResourceBase object (layer, map, document).

SHOW_PROFILE_EMAIL

Default: False

A boolean which specifies wether to display the email in user’s profile.

CKAN_ORIGINS

Default:

CKAN_ORIGINS = [{
"label":"Humanitarian Data Exchange (HDX)",
"url":"https://data.hdx.rwlabs.org/dataset/new?title={name}¬es={abstract}",
"css_class":"hdx"

}]

848 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

A list of dictionaries that is used to generate the links to CKAN instances displayed in the Share tab. For
each origin, the name and abstract format parameters are replaced by the actual values of the ResourceBase ob-
ject (layer, map, document). This is not enabled by default. To enabled, uncomment the following line: SO-
CIAL_ORIGINS.extend(CKAN_ORIGINS).

TWITTER_CARD

Default:: True

A boolean that specifies whether Twitter cards are enabled.

TWITTER_SITE

Default:: '@GeoNode'

A string that specifies the site to for the twitter:site meta tag for Twitter Cards.

TWITTER_HASHTAGS

Default:: ['geonode']

A list that specifies the hashtags to use when sharing a resource when clicking on a social link.

OPENGRAPH_ENABLED

Default:: True

A boolean that specifies whether Open Graph is enabled. Open Graph is used by Facebook and Slack.

Upload settings

GEOGIG_DATASTORE_NAME

Default: None

A string with the default GeoGig datastore name. This value is only used if no GeoGig datastore name is provided
when data is uploaded but it must be populated if your deployment supports GeoGig.

UPLOADER

Default:

{
'BACKEND' : 'geonode.rest',
'OPTIONS' : {

'TIME_ENABLED': False,
'GEOGIG_ENABLED': False,

}
}

A dictionary of Uploader settings and their values.

3.2. Tutorials 849

GeoNode Documentation, Release 2.8

BACKEND

Default: 'geonode.rest'

The uploader backend to use. The backend choices are:

• 'geonode.importer'

• 'geonode.rest'

The importer backend requires the GeoServer importer extension to be enabled and is required for uploading data into
GeoGig datastores.

OPTIONS

Default:

'OPTIONS' : {
'TIME_ENABLED': False,
'GEOGIG_ENABLED': False,

}

TIME_ENABED

Default: False

A boolean that specifies whether the upload should allow the user to enable time support when uploading data.

GEOGIG_ENABED

Default: False

A boolean that specifies whether the uploader should allow the user to upload data into a GeoGig datastore.

User Account settings

REGISTRATION_OPEN

Default: False

A boolean that specifies whether users can self-register for an account on your site.

THEME_ACCOUNT_CONTACT_EMAIL

Default: 'admin@example.com'

This email address is added to the bottom of the password reset page in case users have trouble unlocking their account.

850 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Download settings

DOWNLOAD_FORMATS_METADATA

Specifies which metadata formats are available for users to download.

Default:

DOWNLOAD_FORMATS_METADATA = [
'Atom', 'DIF', 'Dublin Core', 'ebRIM', 'FGDC', 'ISO',

]

DOWNLOAD_FORMATS_VECTOR

Specifies which formats for vector data are available for users to download.

Default:

DOWNLOAD_FORMATS_VECTOR = [
'JPEG', 'PDF', 'PNG', 'Zipped Shapefile', 'GML 2.0', 'GML 3.1.1', 'CSV',
'Excel', 'GeoJSON', 'KML', 'View in Google Earth', 'Tiles',

]

DOWNLOAD_FORMATS_RASTER

Specifies which formats for raster data are available for users to download.

Default:

DOWNLOAD_FORMATS_RASTER = [
'JPEG', 'PDF', 'PNG' 'Tiles',

]

Contrib settings

EXIF_ENABED

Default: False

A boolean that specifies whether the Exif contrib app is enabled. If enabled, metadata is generated from Exif tags
when documents are uploaded.

NLP_ENABED

Default: False

A boolean that specifies whether the NLP (Natural Language Processing) contrib app is enabled. If enabled, NLP
(specifically MITIE) is used to infer additional metadata from uploaded documents to help fill metadata gaps.

3.2. Tutorials 851

GeoNode Documentation, Release 2.8

NLP_LOCATION_THRESHOLD

Default: 1.0

A float that specifies the threshold for location matches.

NLP_LIBRARY_PATH

Default:: '/opt/MITIE/mitielib'

A string that specifies the location of the MITIE library

NLP_MODEL_PATH

Default:: '/opt/MITIE/MITIE-models/english/ner_model.dat'

A string that specifies the location of the NER (Named Entity Resolver). MITIE comes with English and Spanish NER
models. Other models can be trained.

SLACK_ENABED

Default: False

A boolean that specifies whether the Slack contrib app is enabled. If enabled, GeoNode will send messages to the slack
channels specified in SLACK_WEBHOOK_URLS when a document is uploaded, metadata is updated, etc. Coverage
of events is still incomplete.

SLACK_WEBHOOK_URLS

A list that specifies the URLs to post Slack messages to. Each URL is for a different channel. The default URL should
be replaced when slack integration is enabled.

Default:

SLACK_WEBHOOK_URLS = [
"https://hooks.slack.com/services/T000/B000/XX"

]

MONITORING_ENABLED

Default: False

Enable internal monitoring application (geonode.contrib.monitoring). If set to True, add following code to your local
settings:

MONITORING_ENABLED = True
add following lines to your local settings to enable monitoring
if MONITORING_ENABLED:

INSTALLED_APPS + ('geonode.contrib.monitoring',)
MIDDLEWARE_CLASSES + ('geonode.contrib.monitoring.middleware.MonitoringMiddleware

→˓',)

See GeoNode Monitoring for details.

852 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

GeoNode Django Apps

The user interface of a GeoNode site is built on top of the Django web framework. GeoNode includes a few “apps”
(reusable Django modules) to support development of those user interfaces. While these apps have reasonable default
configurations, for customized GeoNode sites you will probably want to adjust these apps for your specific needs.

geonode.base - GeoNode core functionality

Stores core functionality used throughout the GeoNode application.

Template Tags

num_ratings <object>

Returns the number of ratings an object has. Example usage:

{% load base_tags %}
{% num_ratings map as num_votes %}

<p>Map votes: {{num_votes}}.</p>

categories

Returns topic categories and the count of objects in each category.

geonode.documents - Document creation and management

Manages uploaded files that can be related to maps. Documents can be any type of file that is included in
the ALLOWED_DOCUMENTS_TYPES setting.

settings.py Entries

ALLOWED_DOCUMENT_TYPES Default: ['doc', 'docx', 'xls', 'xslx', 'pdf', 'zip',
'jpg', 'jpeg', 'tif', 'tiff', 'png', 'gif', 'txt']

A list of acceptable file extensions that can be uploaded to the Documents app.

MAX_DOCUMENT_SIZE Default: 2

The maximum size (in megabytes) that an upload will be before it gets rejected.

geonode.layers - Layer creation and geospatial data management

This Django app provides support for managing and manipulating single geospatial datasets known as layers.

Models

• Attribute - Feature attributes for a layer managed by the GeoNode.

• Layer - A data layer managed by the GeoNode

• Style - A data layer’s style managed by the GeoNode

3.2. Tutorials 853

GeoNode Documentation, Release 2.8

Views

• Creating, viewing, browsing, editing, and deleting layers and their metadata

Template Tags

featured_layers Returns the 7 newest layers.

layer_thumbnail <layer> Returns the layer’s thumbnail.

manage.py Commands

importlayers python manage.py importlayers

Brings a data file or a directory full of data files into a GeoNode site. Layers are added to the Django database,
the GeoServer configuration, and the GeoNetwork metadata index.

updatelayers python manage.py updatelayers

Scan GeoServer for data that has not been added to GeoNode.

geonode.maps - Map creation and geospatial data management

This Django app provides some support for managing and manipulating geospatial datasets. In particular, it provides
tools for editing, viewing, and searching metadata for data layers, and for editing, viewing, and searching maps that
aggregate data layers to display data about a particular topic.

Models

• Map - A collection of data layers composed in a particular order to form a map

• MapLayer - A model that maintains some map-specific information related to a layer, such as the z-indexing
order.

Views

The maps app provides views for:

• Creating, viewing, browsing, editing, and deleting Maps

These operations require the use of GeoServer to manage map rendering, as well as GeoExt to provide interactive
editing and previewing of maps and data layers.

There are also some URL mappings in the geonode.maps.urls module for easy inclusion in GeoNode sites.

settings.py Entries

OGC_SERVER Default: {} (Empty dictionary)

A dictionary of OGC servers and their options. The main server should be listed in the ‘default’ key. If there
is no ‘default’ key or if the OGC_SERVER setting does not exist GeoNode will raise an Improperly Configured
exception. Below is an example of the OGC_SERVER setting:

854 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

OGC_SERVER = {
'default' : {

'LOCATION' : 'http://localhost:8080/geoserver/',
'USER' : 'admin',
'PASSWORD' : 'geoserver',

}
}

BACKEND Default: "geonode.geoserver"

The OGC server backend to use. The backend choices are:

• 'geonode.geoserver'

BACKEND_WRITE_ENABLED Default: True

Specifies whether the OGC server can be written to. If False, actions that modify data on the OGC server
will not execute.

LOCATION Default: "http://localhost:8080/geoserver/"

A base URL from which GeoNode can construct OGC service URLs. If using GeoServer you can deter-
mine this by visiting the GeoServer administration home page without the /web/ at the end. For example,
if your GeoServer administration app is at http://example.com/geoserver/web/, your server’s location is
http://example.com/geoserver.

PUBLIC_LOCATION Default: "http://localhost:8080/geoserver/"

The URL used to in most public requests from GeoNode. This settings allows a user to write to one OGC
server (the LOCATION setting) and read from a separate server or the PUBLIC_LOCATION.

USER Default: 'admin'

The administrative username for the OGC server as a string.

PASSWORD Default: 'geoserver'

The administrative password for the OGC server as a string.

MAPFISH_PRINT_ENABLED Default: True

A boolean that represents whether the MapFish printing extension is enabled on the server.

PRINT_NG_ENABLED Default: True

A boolean that represents whether printing of maps and layers is enabled.

GEONODE_SECURITY_ENABLED Default: True

A boolean that represents whether GeoNode’s security application is enabled.

GEOGIT_ENABLED Default: False

A boolean that represents whether the OGC server supports GeoGig datastores.

WMST_ENABLED Default: False

Not implemented.

WPS_ENABLED Default: False

Not implemented.

DATASTORE Default: '' (Empty string)

3.2. Tutorials 855

http://example.com/geoserver/web/
http://example.com/geoserver

GeoNode Documentation, Release 2.8

An optional string that represents the name of a vector datastore that GeoNode uploads are imported
into. In order to support vector datastore imports there also needs to be an entry for the datastore in the
DATABASES dictionary with the same name. Example:

OGC_SERVER = {
'default' : {

'LOCATION' : 'http://localhost:8080/geoserver/',
'USER' : 'admin',
'PASSWORD' : 'geoserver',
'DATASTORE': 'geonode_imports'

}
}

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.sqlite3',
'NAME': 'development.db',

},
'geonode_imports' : {

'ENGINE': 'django.contrib.gis.db.backends.postgis',
'NAME': 'geonode_imports',
'USER' : 'geonode_user',
'PASSWORD' : 'a_password',
'HOST' : 'localhost',
'PORT' : '5432',

}
}

GEOSERVER_CREDENTIALS Removed in GeoNode 2.0, this value is now specified in the OGC_SERVER set-
tings.

GEOSERVER_BASE_URL Removed in GeoNode 2.0, this value is now specified in the OGC_SERVER settings.

CATALOGUE A dict with the following keys:

• ENGINE: The CSW backend (default is geonode.catalogue.backends.pycsw_local)

• URL: The FULLY QUALIFIED base URL to the CSW instance for this GeoNode

• USERNAME: login credentials (if required)

• PASSWORD: login credentials (if required)

pycsw is the default CSW enabled in GeoNode. pycsw configuration directives are managed in the PYCSW
entry.

PYCSW A dict with pycsw’s configuration. Of note are the sections metadata:main to set CSW server metadata
and metadata:inspire to set INSPIRE options. Setting metadata:inspire['enabled'] to true
will enable INSPIRE support. Server level configurations can be overridden in the server section. See
http://pycsw.org/docs/configuration.html for full pycsw configuration details.

SITEURL Default: 'http://localhost:8000/'

A base URL for use in creating absolute links to Django views.

DEFAULT_MAP_BASE_LAYER The name of the background layer to include in newly created maps.

DEFAULT_MAP_CENTER Default: (0, 0)

A 2-tuple with the latitude/longitude coordinates of the center-point to use in newly created maps.

DEFAULT_MAP_ZOOM Default: 0

856 Chapter 3. Table of contents

http://pycsw.org/docs/configuration.html

GeoNode Documentation, Release 2.8

The zoom-level to use in newly created maps. This works like the OpenLayers zoom level setting; 0 is at the
world extent and each additional level cuts the viewport in half in each direction.

ASYNC_SIGNALS_BROKER_URL Default: `memory://

Sets broker url for async signals handling. Asynchronous signals are part of scalable architecture of GeoNode.

Internally, this will be parsed and used by kombu library. Default is memory transport, meaning all signals send
with this method will be handled in-process, synchronously. When using memory:// you do not need to set up
external AMQP broker.

See Asynchronous signals handling for details.

geonode.proxy - Assist JavaScript applications in accessing remote servers

This Django app provides some HTTP proxies for accessing data from remote servers, to overcome restrictions im-
posed by the same-origin policy used by browsers. This helps the GeoExt applications in a GeoNode site to access
various XML documents from OGC-compliant data services.

Views

geonode.proxy.views.proxy This view forwards requests without authentication to a URL provided in the request,
similar to the proxy.cgi script provided by the OpenLayers project.

geonode.proxy.views.geoserver This view proxies requests to GeoServer. Instead of a URL-encoded URL parameter,
the path component of the request is expected to be a path component for GeoServer. Requests to this URL
require valid authentication against the Django site, and will use the default OGC_SERVER USER, PASSWORD
and LOCATION settings as defined in the maps application.

geonode.search - Provides the GeoNode search functionality.

This Django app provides a fast search functionality to GeoNode.

Views

• search_api- Builds and executes a search query based on url parameters and returns matching results in requested
format.

geonode.security - GeoNode granular Auth Backend

This app provides an authentication backend for use in assigning permissions to individual objects (maps and layers).

settings.py Entries

LOCKDOWN_GEONODE Default: False

By default, the GeoNode application allows visitors to view most pages without being authenticated. Set
LOCKDOWN_GEONODE = True to require a user to be authenticated before viewing the application.

3.2. Tutorials 857

GeoNode Documentation, Release 2.8

AUTH_EXEMPT_URLS Default: () (Empty tuple)

A tuple of URL patterns that the user can visit without being authenticated. This setting has no effect if
LOCKDOWN_GEONODE is not True. For example, AUTH_EXEMPT_URLS = ('/maps',) will allow unau-
thenticated users to browse maps.

Template Tags

geonode_media <media_name> Accesses entries in MEDIA_LOCATIONS without requiring the view to explicitly
add it to the template context. Example usage:

{% include geonode_media %}
{% geonode_media "ext_base" %}

has_obj_perm <user> <obj> <permission> Checks whether the user has the specified permission on an object.

{% has_obj_perm user obj "app.view_thing" as can_view_thing %}

Django’s error templates

GeoNode customizes some of Django’s default error templates.

500.html

If no custom handler for 500 errors is set up in urls.py, Django will call django.views.defaults.server_error which
expects a 500.html file in the root of the templates directory. In GeoNode, we have put a template that does not inherit
from anything as 500.html and because most of Django’s machinery is down when an INTERNAL ERROR (500 code)
is encountered the use of template tags should be avoided.

3rd party apps

pinax.notifications

This application enables users to receive notifications from specific events within GeoNode. For user-specific config-
uration, see Setting notification preferences. For settings, see User notifications settings.

Make a GeoNode release

Making a GeoNode release requires a quite complex preparation of the environment while once everything is set up
is a really easy and quick task. As said the complex part is the preparation of the environment since it involves, the
generation of a password key to be uploaded to the Ubuntu servers and imported in launchpad.

If you have already prepared the environment then jump to the last paragraph.

Before start, make sure to have a pypi and a launchpad account.

Before doing the release, a GeoNode team member who can already make release has to add you as a launchpad
GeoNode team member.

858 Chapter 3. Table of contents

https://pypi.python.org/pypi
https://launchpad.net/

GeoNode Documentation, Release 2.8

Creating and importing a gpg key

A GPG key is needed to push and publish the package. There is a complete guide on how to create and import a GPG
key

Preparing the environment

Make sure to have a Ubuntu 12.04 machine. Install the following packages in addition to the python virtualenv tools:

$ sudo apt-get install git-core git-buildpackage debhelper devscripts

Get the GeoNode code (from master) in a virtualenv:

$ mkvirtualenv geonode
$ git clone https://github.com/GeoNode/geonode.git
$ cd geonode

Edit the .bashrc file and add the following lines (the key ID can be found in “your personal keys” tab:

export GPG_KEY_GEONODE="your_gpg_key_id"
export DEBEMAIL=yourmail@mail.com
export EDITOR=vim
export DEBFULLNAME="Your Full Name"

then close and:

$ source .bashrc

Type “env” to make sure all the variables are correctly exported

Set the correct git email:

$ git config --global user.email "yourmail@mail.com"

Register on Pypi with your Pypi credentials:

$ python setup.py register

Make the release

The followings are the only commands needed if the environment and the various registrations have already been done.

Make sure to have pulled the master to the desired commit. Edit the file geonode/__init__.py at line 21 and set the
correct version.

Install GeoNode in the virtualenv (make sure to have the virtualenv activated and be in the geonode folder):

$ pip install -e geonode

Publish the package:

$ cd geonode
$ paver publish

The last command will:

3.2. Tutorials 859

https://help.launchpad.net/YourAccount/ImportingYourPGPKey

GeoNode Documentation, Release 2.8

• Tag the release and push it to GitHub

• Create the debian package and push it at ppa:geonode/testing in launchpad

• Create the .tar.gz sources and push them to Pypi

• Update the changelog and commit it to master

3.2.1.6.3 GeoNode on Production

Configuring GeoNode for Production

Advanced GeoServer Configuration

Running GeoNode under SSL

GeoSites: GeoNode Multi-Tenancy

Configuring GeoNode for Production

This page documents recommendations for configuring GeoNode in production environments. The steps mentioned
in the first section are required to run GeoNode, the ones in the second section are either optional or ways to get more
performance.

Note: This document makes numerous references to the <host> variable, please replace it with the IP Address of
your GeoNode or the DNS entry.

For example: instead of http://<host>/geoserver, write down: http://mygeonode.com/geoserver
or http://127.0.0.1/geoserver

Set the correct GeoServer Proxy URL value

Navigate to http://localhost/geoserver, log in and click on the Global link in the Settings section.

Note: The Geoserver default username is admin with geoserver as the password. Change this ASAP and update
local_settings.py.

860 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.2. Tutorials 861

GeoNode Documentation, Release 2.8

Find the Proxy Base URL text field, put the complete address there:

http://<host>/geoserver/

Configure the Printing Module

This lives in the GeoServer Data directory /usr/share/geoserver/data/printing/config.yaml, add
your server’s IP address or domain name to the list of exceptions. Please refer to http://docs.geoserver.org/2.4.x/en/
user/datadirectory/index.html for additional information on managing the GeoServer data directory:

hosts:
- !dnsMatch
host: YOUR_IP_ADDRESS
port: 80

Recommended Steps (optional)

862 Chapter 3. Table of contents

http://docs.geoserver.org/2.4.x/en/user/datadirectory/index.html
http://docs.geoserver.org/2.4.x/en/user/datadirectory/index.html

GeoNode Documentation, Release 2.8

Adding layers from Google, Bing and other providers

Bing

Get an API key from Microsoft at http://www.bingmapsportal.com/ and place it in local_settings.py.:

BING_API_KEY="zxcxzcXAWdsdfkjsdfWWsdfjpowxcxz"

Copy the MAP_BASELAYERS dictionary from settings.py into local_settings.py and add the following
snippet:

},{
"source": {

"ptype":"gxp_bingsource",
"apiKey": BING_API_KEY

},
"group":"background",
"name":"Aerial",
"visibility": False,
"fixed": True,

Note: The approach described above only works with versions of django-geoexplorer up to 4.0.34. If you have a
newer version installed, you can revert to this older version using pip (pip install django-geoexplor==4.
0.34).

Google

Get an API key from Google at https://developers.google.com/maps/faq?csw=1#using-google-maps-apis and place it
in local_settings.py, for example:

GOOGLE_API_KEY="zxcxzcXAWdqwdQWWQEDzxcxz"

Copy the MAP_BASELAYERS dictionary from settings.py into local_settings.py (or edit the previously
copied snippet) and add the following snippet:

},{
"source": {

"ptype":"gxp_googlesource",
"otherParams": "sensor=false&key={0}".format(GOOGLE_API_KEY)

},
"group":"background",
"name":"SATELLITE",
"visibility": False,
"fixed": True,

Sitemaps Configuration

GeoNode can automatically generate a sitemap suitable for submission to search engines which can help them to index
your GeoNode site more efficiently and effectively.

In order to generate the sitemap properly, the sites domain name must be set within the sites framework. This requires
that an superuser login to the admin interface and navigate to the sites module and change example.com to the actual

3.2. Tutorials 863

http://www.bingmapsportal.com/
https://developers.google.com/maps/faq?csw=1#using-google-maps-apis

GeoNode Documentation, Release 2.8

domain name (and port if applicable). The admin interface can be accessed at http://<host>/admin/sites/site/. Click on
the example.com link, and change both the Domain name and Display name entries to match your system.

It is possible to ‘inform’ google of changes to your sitemap. This is accomplished using the ping_google management
command. More information can be found here https://docs.djangoproject.com/en/dev/ref/contrib/sitemaps/#django.
contrib.sitemaps.ping_google It is recommended to put this call into a cron (scheduled) job to update google periodi-
cally.

Configuring User Registration

You can optionally configure GeoNode to allow new users to register through the web. New registrants will be sent an
email inviting them to activate their account.

To allow new user registration:

1. Set up the email backend for Django (see Django documentation) and add the appropriate settings to ./src/
GeoNodePy/geonode/local_settings.py. For example:

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST = 'smtp.gmail.com'
EMAIL_HOST_USER = 'foo@gmail.com'
EMAIL_HOST_PASSWORD = 'bar'
EMAIL_PORT = 587
EMAIL_USE_TLS = True

2. In the same settings file set:

REGISTRATION_OPEN=True

3. With the Django application running, set the domain name of the service properly through the admin interface
as specified above in the Sitemaps section. (This domain name is used in the account activation emails.).

5. Restart Apache:

$ sudo service apache2 restart

6. (Optional) Disable automatic approval of new users. Administrators would receive an email and need to man-
ually approve new accounts. For this option to work, an email backed has to be defined in order to email the
users with Staff status the notification to approve the new account:

ACCOUNT_APPROVAL_REQUIRED = True

To register as a new user, click the ‘’Register” link in the GeoNode index header.

Additional Configuration

Some other things that require tweaking:

• Web-accessible uploads directory for user profile photos

Robot Exclusion File

GeoNode has several views that require considerable resources to properly respond - for example, the download links
on layer detail pages require GeoServer to dynamically generate output in PDF, PNG, etc. format.

864 Chapter 3. Table of contents

http:/
https://docs.djangoproject.com/en/dev/ref/contrib/sitemaps/#django.contrib.sitemaps.ping_google
https://docs.djangoproject.com/en/dev/ref/contrib/sitemaps/#django.contrib.sitemaps.ping_google
https://docs.djangoproject.com/en/1.8/topics/email/#email-backends

GeoNode Documentation, Release 2.8

Crawlers for web search engines such as Google may cause problems by quickly following many such links in suc-
cession.

In order to request that “robots” do not make requests directly to GeoServer, you can ensure that requests to /
robots.txt return a text file with the following content:

User-agent: *
Disallow: /geoserver/

This will only affect automated web agents; web browsers in particular are unaffected.

Memory Management

At the time of the GeoNode 1.0 release, the GeoNode manual recommended at least 4GB RAM for servers running
GeoNode.

While 4GB physical RAM is sufficient, it is recommended that machines be configured with at least 6GB total virtual
memory.

For example, a machine with 4GB physical RAM and 2GB swap space should be able to run GeoNode, but if you
would like to run without a swapfile then you should configure the machine with at least 6GB RAM.

On Linux and Mac OS X hosts, you can check the available RAM with the following command:

$ free -m
total used free shared buffers cached

Mem: 6096 3863 2232 0 0 0
-/+ buffers/cache: 3863 2232
Swap: 0 0 0

The “total” column lists the available physical memory and swap space in megabytes; adding them together yields the
amount of virtual memory available to the system.

In this example, there is no Swap space so that field is 0 and the available RAM on the system is 6096MB (6 GB).

Security Integration Optimization

GeoServer delegates authentication and authorization to GeoNode. The default configuration uses an HTTP endpoint
in GeoNode to discover the current user and the layers that are accessible. For production, it is advisable to use a
database-level connection.

Installing the Stored Procedure

The SQL for the stored procedure is distributed with the GeoServer web application archive and can be found
at WEB-INF/classes/org/geonode/security/geonode_authorize_layer.sql in the webapps di-
rectory. It can be loaded using the psql command by following these steps (if not using tomcat6 or Ubuntu, locate the
webapps directory for your configuration):

$ cd /var/lib/tomcat6/webapps
$ sudo su - postgres
$ psql -d YOUR_DATABASE < geoserver/WEB-INF/classes/org/geonode/security/geonode_
→˓authorize_layer.sql

3.2. Tutorials 865

GeoNode Documentation, Release 2.8

Configuring GeoServer to Use the Database Security Client

If a context configuration XML file does not already exist, create one for GeoServer. If using Tomcat 6 on Ubuntu, this
file resides at /etc/tomcat6/Catalina/localhost/geoserver.xml. If creating a new file, the following
XML should be added (replace ALLCAPS with your specific values):

<Context path="/geoserver"
antiResourceLocking="false" >

<Parameter name="org.geonode.security.databaseSecurityClient.url"
value="jdbc:postgresql://localhost:5432/DATABASE?user=USER&password=PASSWORD"/

→˓>
</Context>

If the file exists already, just add the Parameter element from above.

Verification of Database Security Client

To verify the settings change, look in the GeoServer logs for a line that notes: “using geonode database security client”.
If any issues arise, check your connection configuration as specified in the context file above.

Configuring the Servlet Container

GeoServer is the most resource intensive component of GeoNode.

There are some general notes on setting up GeoServer for production environments in the GeoServer manual .

However, the following are some GeoServer recommendations with GeoNode’s specific needs in mind.

JVM Options

The JRE used with GeoNode should be that distributed by Oracle.

Others such as OpenJDK may work but Oracle’s JRE is recommended for higher performance rendering.

Startup options should include the following:

-Xmx1024M -Xms1024M -XX:MaxPermSize=256M \
-XX:CompileCommand=exclude,net/sf/saxon/event/ReceivingContentHandler.startEvent

These can be specified using the CATALINA_OPTS variable in Tomcat’s bin/catalina.sh file, or the
JETTY_OPTS in Jetty’s bin/jetty.sh file.

Constrain GeoServer Worker Threads

While the JVM provides memory management for most operations in Java applications, the memory used for rendering
(in GeoServer’s case, responding to WMS GetMap requests) is not managed this way, so it is allocated in addition to
the memory permitted by the JVM options above.

If GeoServer receives many concurrent requests, it may increase the memory usage significantly, so it is recommended
to constrain the number of concurrent requests at the servlet container (ie, Jetty or Tomcat).

For Tomcat, you can edit conf/server.xml. By default, this file contains an entry defining a ContextHandler:

866 Chapter 3. Table of contents

http://docs.geoserver.org/stable/en/user/production/index.html

GeoNode Documentation, Release 2.8

<Connector port="8080" protocol="HTTP/1.1"
connectionTimeout="20000"
redirectPort="8443"/>

Add a maxThreads attribute to limit the number of threads (concurrent requests) to 50 (the default in Tomcat is
200):

<Connector port="8080" protocol="HTTP/1.1"
connectionTimeout="20000"
redirectPort="8443" maxThreads="50"/>

Note: This configuration is possible in Jetty as well but not yet documented in this manual.

Native JAI and JAI ImageIO

Using the native-code implementation of JAI and JAI ImageIO speeds up GeoServer, thereby requiring less concur-
rency at the same level of throughput.

The GeoServer manual contains platform-specific instructions for configuring JAI and JAI ImageIO.

GeoServer Configuration

There are a few controls to be set in the GeoServer configuration itself as well.

On the JAI Settings page

On the WMS Service page

Printing with the Mapfish Print Service

The GeoNode map composer can “print” maps to PDF documents using the Mapfish print service. The recommended
way to run this service is by using the printing extension to GeoServer (if you are using the pre-built GeoNode
package, this extension is already installed for you). However, the print service includes restrictions on the servers that
can provide map tiles for printed maps. These restrictions have a fairly strict default, so you may want to loosen these
constraints.

Adding servers by hostname

The MapFish printing module is configured through a YAML configuration file, usually named print.yaml.
If you are using the GeoServer plugin to run the printing module, this configuration file can be found at
GEOSERVER_DATA_DIR/printing/config.yaml. The default configuration should contain an entry like so:

hosts:
- !dnsMatch
host: labs.metacarta.com
port: 80

- !dnsMatch
(continues on next page)

3.2. Tutorials 867

http://docs.geoserver.org/stable/en/user/production/java.html#install-native-jai-and-imageio-extensions
http://www.mapfish.org/doc/print
http://yaml.org/

GeoNode Documentation, Release 2.8

Fig. 275: There are two considerations for the JAI settings.
• Enable JPEG and PNG Native Acceleration to speed up the performance of WMS requests

• Disable Tile Recycling as this optimization is less relevant on recent JVM implementations and has some overhead itself.

868 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 276: There is only one consideration for the Web Map Service page
• Don’t set the “Resource Consumption Limits.” This sounds a bit counter intuitive, but these limits are implemented in an

inefficient way such that unless resource-intensive requests are common on your server it is more efficient to avoid the limits.
A better implementation of this feature is available for GeoServer 2.1 and will be incorporated in GeoNode 1.1.

3.2. Tutorials 869

GeoNode Documentation, Release 2.8

(continued from previous page)

host: terraservice.net
port: 80

You can add host/port entries to this list to allow other servers.

See also:

The Mapfish documentation on configuring the print module.

The GeoServer documentation on configuring the print module.

Advanced GeoServer Configuration

In this module we are going to cover some advanced configurations and :

Configuring GeoServer for robustness

In a production environment may be necessary to properly configure the WMS service in order to give a limit to
resources associated with a request. The Resource Limits options allow the administrator to limit the resources
consumed by each WMS GetMap request.

GeoServer provides a user interface for these options:

Fig. 277: Setting the Resource consumption limits

The following table shows each option name, a description, and the minimum GeoServer version at which the option
is available (old versions will just ignore it if set).

870 Chapter 3. Table of contents

http://www.mapfish.org/doc/print/configuration.html
http://docs.geoserver.org/maintain/en/user/extensions/printing/index.html

GeoNode Documentation, Release 2.8

Option Description Version
Max
ren-
dering
mem-
ory

Sets the maximum amount of memory, in kilobytes, a single GetMap request is allowed to
use. Each output format will make a best effort attempt to respect the maximum using the
highest consuming portion of the request processing as a reference. For example, the PNG
output format will take into consideration the memory used to prepare the image rendering
surface in memory, usually proportional to the image size multiplied by the number of bytes
per pixel

1.7.5

Max
ren-
dering
time

Sets the maximum amount of time, in seconds, GeoServer will use to process the request.
This time limits the “blind processing” portion of the request serving, that is, the part in
which GeoServer is computing the results before writing them out to the client. The portion
that is writing results back to the client is not under the control of this parameter, since this
time is also controlled by how fast the network between the server and the client is. So,
for example, in the case of PNG/JPEG image generation, this option will control the pure
rendering time, but not the time used to write the results back.

1.7.5

Max
ren-
dering
errors

Sets the maximum amount of rendering errors tolerated by a GetMap. Usually GetMap
skips over faulty features, reprojection errors and the like in an attempt to serve the results
anyways. This makes for a best effort rendering, but also makes it harder to spot issues, and
consumes CPU cycles as each error is handled and logged

1.7.5

Out of the box GeoServer uses 65MB, 60 seconds and 1000 errors respectively. All limits can be disabled by setting
their value to 0.

Once any of the set limits is exceeded, the GetMap operation will stop and a ServiceException will be returned
to the client.

It is suggested that the administrator sets all of the above limits taking into consideration peak conditions. For example,
while a GetMap request under normal circumstance may take less than a second, under high load it is acceptable for it
to take longer, but usually, it’s not sane that a request goes on for 30 minutes straight. The following table shows some
example values for the configuration options above, with explanations of how each is computed:

Option Value Rationale
maxRequestMemory 65000 65MB are sufficient to render a 4078x4078 image at 4 bytes per pixel (full

color and transparency), or a 8x8 meta-tile if you are using GeoWebCache or
TileCache. Mind the rendering process will use an extra in memory buffer for
each subsequent FeatureTypeStyle in your SLD, so this will also limit the size
of the image. For example, if the SLD contains two FeatureTypeStyle element
in order to draw cased lines for an highway the maximum image size will be
limited to 2884x2884 (the memory goes like the square of the image size, so
halving the memory does not halve the image size)

maxRenderingTime 60 A request that processes for one minute straight is probably drawing a lot of
features independent of the current load. It might be the result of a client making
a GetMap against a big layer using a custom style that does not have the proper
scale dependencies

maxRenderingErrors 1000 Encountering 1000 errors is probably the result of a request that is trying to
reproject a big data set into a projection that is not suited to area it covers,
resulting in many reprojection failures.

Advanced Production GeoServer configuration

Most of the GeoServer downloads are geared towards quickly showing off the capabilities, with an array of demos,
sample layers, and an embedded servlet container. If you are using GeoServer in a production environment, there are
a few things we’d like to recommend. In this section the task is to configure your system to use it in production.

3.2. Tutorials 871

GeoNode Documentation, Release 2.8

Note: Before you start, ensure that the Web Administrator Interface - Server section has been completed.

Configuring your container for production

Note: Most open source Java web containers, such as Tomcat, ship with development mode configurations that allow
for quick startup but don’t deliver the best performance.

Make sure that in the ‘setenv.sh’, or ‘setenv.bat’ on Windows machines, file exists the following configuration to set
up the Java virtual machine options in your container. Open the ‘setenv.sh/.bat’ file located in ‘<TRAINING_ROOT>’
directory and look at the options:

Fig. 278: Setting the JAVA_OPTS for Tomcat container

• -server: Not present among the training options, this option enables the server JVM, which JIT compiles byte-
code much earlier, and with stronger optimizations. Startup and first calls will be slower due to JIT compilation
taking more time, but subsequent ones will be faster (to give you some numbers, on the same machine a vanilla
VM returns GML at 7MB/s speed, a -server one runs at 10MB/s). This option is required only if the JMV does
not already get into server mode, which happens on a server operating system (Linux, Windows server) with at
least 2 cores and 2 GB of memory.

Note: This parameter is necessary only for Windows environments of class workstation

• -Xms512m -Xmx512M: give your server memory. By default JVM will use only 64MB of heap. If you’re
serving just vector data, you’ll be full streaming, so having much memory won’t help a lot, but if you’re serving

872 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

coverages JAI will use a cache to avoid hitting the disk often. In this case, give GeoServer at least 256MB
or memory, or more if you have plenty of RAM, and go configure the JAI title cache size in the GeoServer
configuration panel so that it uses 75% of the heap (0.75). If you have plenty of memory it is suggested to
set -Xms to the same value as -Xmx, this will make heap management more stable during heavy load serving.
Generally speaking, don’t allocate more than 2GB for the GeoServer heap.

• -XX:MaxPermSize=128m (or more): the permanent generation is the heap portion where the class bytecode is
stored. GeoServer uses lots of classes, and it may exhaust that space quickly leading to out of memory errors. If
you’re deploying GeoServer along with other applications in the same container or if you need to deploy multiple
GeoServer instances inside the same container (e.g., different instances for different customers or similar needs)
you better raise up the MaxPermSize to 128m or more.

Warning: In order to obtain best performance, install the native JAI version in your JDK. In particular, installing
the native JAI is important for all raster processing, which is used heavily in both WMS and WCS to rescale, cut
and reproject rasters. Installing the native JAI is also important for all raster reading and writing, which affects
both WMS and WCS. Finally, native JAI is very useful even if there is no raster data involved, as WMS output
encoding requires writing PNG/GIF/JPEG images, which are themselves rasters. For more information how to
installa JAI and ImageIO see the Installing the native JAI and ImageIO section

Setting up logging for production

Note: Logging may visibly affect the performance of your server. High logging levels are often necessary to track
down issues, but by default you should run with low ones (and you can switch the logging levels at runtime, so don’t
worry about having to stop the server to gather more information). You can change the logging level by going to the
GeoServer configuration panel, Server section.

1) Go to http://localhost:8083/geoserver and click on the ‘Global’ link in the ‘Settings’ section.

2) Select ‘PRODUCTION_LOGGING.properties’ in Logging Profile and click submit.

Choosing a service strategy

Note: A service strategy is the way we serve the output to the client. Basically, you have to choose between being
absolutely sure of reporting errors with the proper OGC codes and serving output quickly.

You can configure the service strategy modifying the web.xml file located in
‘<TOMCAT_HOME>/instances/instance1/webapps/geoserver/WEB-INF’ directory of your GeoServer install:

1) Set the ‘serviceStrategy’ param-name with ‘SPEED’.

All the possible strategies are:

• SPEED: serve outputs right away. The fastest strategy, make it unlikely to be able to report proper OGC errors
in WFS though (they are reported only if the error occurs before the GML encodingstarts).

• BUFFER: stores the whole result in memory, and then serves it after the output is complete. This ensures proper
OGC error reporting, but delays the response quite a bit and will exhaust memory if the response is big.

• FILE: same as buffer, but uses a file storage for buffering. Slower than BUFFER, ensures there won’t be memory
issues.

3.2. Tutorials 873

http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

Fig. 279: Set up logging for production

874 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

• PARTIAL-BUFFER2: a balance between the two, tries to buffer in memory a few kilobytes of response, then
behaves like SPEED.

Configuring all data and metadata to your instance

Note: It may be tempting to just skip some of the configuration steps, leave in the same keywords and abstract as
the sample. Please do not, as this will only confuse potential users. They will have a list of GeoServers called ‘My
GeoServer’.

• Completely fill out the WFS and WMS Contents sections.

• Put in your own URI (such as the name of your website) for the Namespace (Data -> Workspace) and remove
the defaults.

• Make sure your datastores all use your URI.

• Remove the sample layers (states, spearfish, New York roads and the like, the easiest way to is go and remove
the demo workspaces, everything contained in them will be removed as a result)

Change the administrator password

GeoServer ships by default with “admin” and “geoserver” as the default administrator user name and password. Before
putting the GeoServer on-line it is imperative to change at least the administrator password.

Making use of an external Data Directory to store your configurations

Note: The configuration data resides within the GEOSERVER_DATA_DIR. To increase the portability of their data
and to facilitate updates GeoServer, you should place this directory outside of GeoServer editing the web.xml file with
the path that you prefer

See the ‘GEOSERVER_DATA_DIR’ context parameter in ‘<TRAINING_ROOT>/tomcat-
6.0.36/instances/instance1/webapps/geoserver/WEB-INF’:

<context-param>
<param-name>GEOSERVER_DATA_DIR</param-name>
<param-value>$GEOSERVER_DATA_DIR</param-value>

</context-param>

Note: The external data dir can be also configured throught the environment variables on the ‘setenv.sh/.bat’ file.

Using a Spatial Database

We make shapefiles available as a datastore, as they are such a common format. But if you are running GeoServer in a
production environment and if you need to manage the spatial indexes, transactions or if you have specific requirements
involving the use of a database, setting up a spatial database and converting your shapefiles is highly recommended. If
you’re doing transactions against GeoServer this is essential. Even though we have a very nice transaction framework,
doubling up with the native transaction support of relational databases ensures your data integrity. Most all the major

3.2. Tutorials 875

GeoNode Documentation, Release 2.8

spatial DBs provide support to easily turn shapefiles into their native format. We recommend PostGIS, open source
extensions to the PostgreSQL DB, most of our testing has been performed against it. Oracle, DB2, SQL Server and
ArcSDE are also well supported. At the moment we don’t recommend MySQL, as it has trouble with rollbacks on
geometry tables, and lacks advanced spatial functionality, but it is an option.

Setting security

GeoServer by default includes WFS-T, which lets users modify your backend database. If you don’t want that to
happen, you can turn off transactions in the web admin tool, Service Panel -> WFS and set Service Level to Basic.
If you’d like some users to be able to modify it, but not all, you’ll have to set up data access level security. For extra
security when operating in read only mode, make sure that the connection to the datastore that is open to all is with
a user who has read only permissions. That will make it so it’s completely impossible to do a SQL injection (though
GeoServer is generally designed well enough that it’s not vulnerable).

Dealing with a locked down environment

GeoServer code, and the libraries it uses (Geotools, JAI) are not designed to be run in a security locked down envi-
ronment. They need free access to environment variables, temp directory, user preferences and the like. In operating
systems like Ubuntu the default Tomcat is locked down so that most of the above is not authorized. So far, the only
way to run GeoServer in that environment is to grant all permissions to it.

Caching

Server-side caching of WMS tiles is the best way to get performance. Essentially how the caching works is the server
will recognize a request and quickly return a pre-rendered result. This is how you can optimize for tile-based WMS
clients and it works the best for them. There are several ways to set up caching for GeoServer like GeoWebCache.

Advanced Coordinate Reference System Handling

This section describes how coordinate reference systems (CRS) are handled in GeoServer, as well as what can be done
to extend GeoServer’s CRS handling abilities.

Coordinate Reference System Configuration

When adding data, GeoServer tries to inspect data headers looking for an EPSG code: if the data has a CRS with an
explicit EPSG code and the full CRS definition behind the code matches the one in GeoServer, the CRS will be already
set for the data. If the data has a CRS but no EPSG code, you’ll have to manually guess the EPSG code. Browsing to
http://www.spatialreference.org might be a good option to find the exact EPSG code for your data.

If an EPSG code cannot be found, then either the data has no CRS or it is unknown to GeoServer. In this case, there
are a few options:

• Force the declared CRS, ignoring the native one. This is the best solution if the native CRS is known to be
wrong.

• Reproject from the native to the declared CRS. This is the best solution if the native CRS is correct, but cannot
be matched to an EPSG number. An alternative is to add a custom EPSG code that matches exactly the native
SRS.

If your data has no native CRS information, the only option is to specify/force an EPSG code.

876 Chapter 3. Table of contents

http://www.spatialreference.org

GeoNode Documentation, Release 2.8

Custom CRS Definitions

Add a custom CRS

This example shows how to add a custom projection in GeoServer.

1. The projection parameters need to be provided as a WKT (well known text) definition. The code sample below
is just an example:

PROJCS["NAD83 / Austin",
GEOGCS["NAD83",

DATUM["North_American_Datum_1983",
SPHEROID["GRS 1980", 6378137.0, 298.257222101],
TOWGS84[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],

PRIMEM["Greenwich", 0.0],
UNIT["degree", 0.017453292519943295],
AXIS["Lon", EAST],
AXIS["Lat", NORTH]],

PROJECTION["Lambert_Conformal_Conic_2SP"],
PARAMETER["central_meridian", -100.333333333333],
PARAMETER["latitude_of_origin", 29.6666666666667],
PARAMETER["standard_parallel_1", 31.883333333333297],
PARAMETER["false_easting", 2296583.333333],
PARAMETER["false_northing", 9842500.0],
PARAMETER["standard_parallel_2", 30.1166666666667],
UNIT["m", 1.0],
AXIS["x", EAST],
AXIS["y", NORTH],
AUTHORITY["EPSG","100002"]]

Note: This code sample has been formatted for readability. The information will need to be provided on a
single line instead, or with backslash characters at the end of every line (except the last one).

2. Go into the user_projections directory inside your data directory, and open the epsg.properties
file. If this file doesn’t exist, you can create it.

3. Insert the code WKT for the projection at the end of the file (on a single line or with backslash characters):

100002=PROJCS["NAD83 / Austin", \
GEOGCS["NAD83", \

DATUM["North_American_Datum_1983", \
SPHEROID["GRS 1980", 6378137.0, 298.257222101], \
TOWGS84[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], \

PRIMEM["Greenwich", 0.0], \
UNIT["degree", 0.017453292519943295], \
AXIS["Lon", EAST], \
AXIS["Lat", NORTH]], \

PROJECTION["Lambert_Conformal_Conic_2SP"], \
PARAMETER["central_meridian", -100.333333333333], \
PARAMETER["latitude_of_origin", 29.6666666666667], \
PARAMETER["standard_parallel_1", 31.883333333333297], \
PARAMETER["false_easting", 2296583.333333], \
PARAMETER["false_northing", 9842500.0], \
PARAMETER["standard_parallel_2", 30.1166666666667], \
UNIT["m", 1.0], \
AXIS["x", EAST], \

(continues on next page)

3.2. Tutorials 877

GeoNode Documentation, Release 2.8

(continued from previous page)

AXIS["y", NORTH], \
AUTHORITY["EPSG","100002"]]

Note: Note the number that precedes the WKT. This will determine the EPSG code. So in this example, the EPSG
code is 100002.

1. Save the file.

2. Restart GeoServer.

3. Verify that the CRS has been properly parsed by navigating to the srs_list page in the web_admin.

4. If the projection wasn’t listed, examine the logs for any errors.

Override an official EPSG code

In some situations it is necessary to override an official EPSG code with a custom definition. A common case is the
need to change the TOWGS84 parameters in order to get better reprojection accuracy in specific areas.

The GeoServer referencing subsystem checks the existence of another property file, epsg_overrides.
properties, whose format is the same as epsg.properties. Any definition contained in
epsg_overrides.properties will override the EPSG code, while definitions stored in epsg.properties
can only add to the database.

Special care must be taken when overriding the Datum parameters, in particular the TOWGS84 parameters. To make
sure the override parameters are actually used the code of the Datum must be removed, otherwise the referencing
subsystem will keep on reading the official database in search of the best Datum shift method (grid, 7 or 5 parameters
transformation, plain affine transform).

For example, if you need to override the official TOWGS84 parameters of EPSG:3003 to better match the peninsular
area of Italy:

PROJCS["Monte Mario / Italy zone 1",
GEOGCS["Monte Mario",

DATUM["Monte Mario",
SPHEROID["International 1924", 6378388.0, 297.0, AUTHORITY["EPSG","7022"]],
TOWGS84[-50.2, -50.4, 84.8, -0.69, -2.012, 0.459, -5.791915759418465],
AUTHORITY["EPSG","6265"]],

PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]],
UNIT["degree", 0.017453292519943295],
AXIS["Geodetic longitude", EAST],
AXIS["Geodetic latitude", NORTH],
AUTHORITY["EPSG","4265"]],

PROJECTION["Transverse Mercator", AUTHORITY["EPSG","9807"]],
PARAMETER["central_meridian", 9.0],
PARAMETER["latitude_of_origin", 0.0],
PARAMETER["scale_factor", 0.9996],
PARAMETER["false_easting", 1500000.0],
PARAMETER["false_northing", 0.0],
UNIT["m", 1.0],
AXIS["Easting", EAST],
AXIS["Northing", NORTH],
AUTHORITY["EPSG","3003"]]

You should write the following (in a single line, here it’s reported formatted over multiple lines for readability):

878 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3003 =
PROJCS["Monte Mario / Italy zone 1",

GEOGCS["Monte Mario",
DATUM["Monte Mario",
SPHEROID["International 1924", 6378388.0, 297.0, AUTHORITY["EPSG","7022"]],
TOWGS84[-104.1, -49.1, -9.9, 0.971, -2.917, 0.714, -11.68],
AUTHORITY["EPSG","6265"]],

PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]],
UNIT["degree", 0.017453292519943295],
AXIS["Geodetic longitude", EAST],
AXIS["Geodetic latitude", NORTH]],

PROJECTION["Transverse_Mercator"],
PARAMETER["central_meridian", 9.0],
PARAMETER["latitude_of_origin", 0.0],
PARAMETER["scale_factor", 0.9996],
PARAMETER["false_easting", 1500000.0],
PARAMETER["false_northing", 0.0],
UNIT["m", 1.0],
AXIS["Easting", EAST],
AXIS["Northing", NORTH],
AUTHORITY["EPSG","3003"]]

The definition has been changed in two places: the TOWGS84 parameters, and the Datum code,
AUTHORITY["EPSG","4265"], have been removed.

Advanced Database Connection Pooling Configuration

Database connections are valuable resources and as such shall be managed with care:

• they are heavy to create and maintain for the database server itself since they are usually child processes
of the DBMS server process

• being processes that means that creating a connection is not a zero-cost process therefore we should avoid
creating connections as we need to connect to a DB but we should tend to create them in advance in order
to minimize the impact of the time needed to create them on the time needed to serve a request.

• as a consequence of the fact that a connection require non negligible resources on the server DBMS DBAs
tend to

– limit the number of connections globally available (e.g. PostgreSQL by default has a limit set to
100)

– limit the lifetime of connections created in order to discourage clients from retaining connections
for a really long time

The purpose served by a connection pool is to maintain connections to an underlying database between requests. The
benefit is that connection set-up only need to occur once on the first request while subsequent requests use existing
connections and achieve a performance benefit as a result.

Ok, now let’s go into GeoServer specifics. In most GeoServer datastores you have the possibility to use the JNDI1

or the standard store which basically means you can have GeoServer manage the connection pool for you or you can
configure it externally (from within the Application Server of choice) and then have GeoServer lean onto it to get
connections. Baseline is, one way or the other you’ll always end-up using a connection pool in GeoServer.

1 https://en.wikipedia.org/wiki/Java_Naming_and_Directory_Interface

3.2. Tutorials 879

https://en.wikipedia.org/wiki/Java_Naming_and_Directory_Interface

GeoNode Documentation, Release 2.8

GeoServer Internal Connection Pool Parameters

Whenever a data store backed by a database is added to GeoServer an internal connection pool, for which relies
on Apache Commons DBCP2, is created by default. This connection pool is configurable, however let me say this
upfront, the number of pool configuration parameters that we expose is a subset of the possible ones, although the
most interesting are there. Namely there are a few that you might want to customize. Here below you can find some
more details on the available connection parameters.

2 http://commons.apache.org/proper/commons-dbcp/

880 Chapter 3. Table of contents

http://commons.apache.org/proper/commons-dbcp/

GeoNode Documentation, Release 2.8

max connections The maximum number of connections the pool can hold. When the maximum
number of connections is exceeded, additional requests that require a database
connection will be halted until a connection from the pool becomes available
and eventually times out if that’s not possible within the time specified in the
connection time-out. The maximum number of connections limits the number of
concurrent requests that can be made against the database.

min connections
The minimum number of connections the pool will hold. This number of connections is held even when there are no active requests. When this number of connections is exceeded due to serving incoming requests additional connections are opened until the pool reaches its maximum size (described above). The implications of this number are multiple:

-1- If it is very far from the max connections this might limit the ability
of the GeoServer to respond quickly to unexpected or random heavy load
situations due to the fact that it takes a non negligible time to create a new
connections. However this set up is very good when the DBMS is quite
loaded since it tends to use as less connections as possible at all times.
-2- If it is very close to the max connections value the GeoServer will be
very fast to respond to random load situation. However in this case the
GeoServer would put a big burden on DBMS shoulders as the the poll will
try to hold all needed connections at all times.

validate connec-
tions

Flag indicating whether connections from the pool should be validated before
they are used. A connection in the pool can become invalid for a number of
reasons including network breakdown, database server timeout, etc.. The benefit
of setting this flag is that an invalid connection will never be used which can
prevent client errors. The downside of setting the flag is that a small performance
penalty is paid in order to validate connections when the connection is borrowed
from the pool since the validation is done by sending smal query to the server.
However the cost of this query is usually small, as an instance on PostGis the
validation query is Select 1.

fetch size The number of records read from the database in each network exchange. If set
too low (<50) network latency will affect negatively performance, if set too high
it might consume a significant portion of GeoServer memory and push it towards
an Out Of Memory Error. Defaults to 1000, it might be beneficial to push it to a
higher number if the typical database query reads much more data than this, and
there is enough heap memory to hold the results

connection time-
out

Time, in seconds, the connection pool will wait before giving up its attempt to get
a new connection from the database. Defaults to 20 seconds. This timeout kicks in
during heavy load conditions when the number of requests needing a connection
to a certain DB outnumber greatly the number of available connections in the
pool, therefore some requests might get error messages due to the timeouts while
acquiring a connection. This condition is not per se problematic since usually a
request does not use a DB connection for its entire lifecycle hence we do not need
100 connections at hand to respond to 100 requests; however we should strive to
limit this condition since it would queue threads on the connection pool after they
might have allocated memory (e.g. for rendering). We will get back to this later
on.

max open
prepared state-
ments

Maximum number of prepared statements kept open and cached for each connec-
tion in the pool.

max wait number of seconds the connection pool will wait before timing out attempting to
get a new connection (default, 20 seconds)

validate connec-
tion

It forces GeoServer to check that the connections borrowed from the pool are
valid (i.e. not closed on the DMBS side) before using them.

Test while idle Periodically test if the connections are still valid also while idle in the pool. Some-
times performing a test query using an idle connection can make the datastore
unavailable for a while. Often the cause of this troublesome behaviour is related
to a network firewall placed between Geoserver and the Database that force the
closing of the underlying idle TCP connections.

Evictor run pe-
riodicity

Number of seconds between idle object evictor runs.

Max connection
idle time

Number of seconds a connection needs to stay idle before the evictor starts to
consider closing it.

Evictor tests per
run

Number of connections checked by the idle connection evictor for each of its
runs.

3.2. Tutorials 881

GeoNode Documentation, Release 2.8

Prepared statements consideration

Prepared statements are used by databases to avoid re-planning the data access every time, the plan is done only once
up-front, and as long as the statement is cached, the plan does not need to be re-computed.

In business applications fetching a small amount of data at a time this is beneficial for performance, however, in spatial
ones, where we typically fetch thousands of rows, the benefit is limited, and sometimes, turns into a performance
problem. This is the case with PostGIS, that is able to tune the access plan by inspecting the requested bounding box,
and deciding if a sequential scan is preferable (the BBOX really accesses most of the data) or using the spatial index
is best instead. So, as a rule of thumb, when working with PostGIS, it’s better not to enable prepared statements.

With other databases there are no choices, Oracle currently works only with prepared statements, SQL server only
without them (this is often related to implementation limitations than database specific issues).

There is an upside of using prepared statement though: no SQL injection attacks are possible when using them.
GeoServer code tries hard to avoid this kind of attack when working without prepared statements, but enabling them
makes the attack via filter parameters basically impossible.

Final Thoughts

To summarize, when creating standard datastores for serving vector data from DBMS in GeoServer you need to
remember that internally a connection pool will be created. This approach is the simplest to implement but might lead
to an inefficient distribution of the connections between different stores in the following cases:

• if we tend to separate tables into different schemas this will lead to the need for creating multiple stores to
serve them out since GeoServer works best if the “schema” parameter is specified, this leading to the creation
of (mostly unnecessary) connection pools

• if we want to create stores in different workspaces connecting to the same database this again will lead to
unnecessary duplication of connection pools in different store leading to inefficient usage of connections

Long story short the fact that the pool is internal with respect to the stores may lead to inefficient usage of connections
to the underlying DBMS since they will be split between multiple stores limiting the scalability of each of them: in
fact having 100 connections shared between N normal datastore will impose limits to the maximum number that each
can use, otherwise if we managed to keep the connections into a single pool shared, in turn, with the various datastore
we would achieve a much more efficient sharing between the store as, as an instance, a single store under high load
could scale to use all the connections available.

Configuration of a JNDI connection pool with Tomcat

Many datastores in GeoServer provide the option of exploiting the Java Naming and Directory Interface or JNDI. for
managing the connections pools. JNDI allows for components in a Java system to look up other objects and data by
a predefined name. A common use of JNDI is to set-up a connection pool in order to improve the database resource
management.

In order to set-up a connection pool, Tomcat needs to be provided with a JDBC driver for the database used and
the necessary pool configurations. Usually the JDBC driver can be found in the website of the DBMS provider or
can be available in the database installation directory. This is important to know since we are not usually allowed to
redistribute them.

The JDBC driver for creating connection pool to be shared via JNDI shall be placed in the $TOMCAT_HOME/lib
directory, where $TOMCAT_HOME is the directory on which Tomcat is installed.

882 Chapter 3. Table of contents

https://en.wikipedia.org/wiki/Java_Naming_and_Directory_Interface

GeoNode Documentation, Release 2.8

Note: Make sure to remove the JDBC driver from the Geoserver WEB-INF/lib folder when copied to the Tomcat
shared libs, to avoid issues in JNDI DataStores usage.

The configuration is very similar between different databases. Here below some typical examples will be described.

PostgreSQL JNDI Configuration

For configuring a PostgreSQL JNDI pool you have to remove the Postgres JDBC driver (it should be
named postgresql-X.X-XXX.jdbc3.jar) from the GeoServer WEB-INF/lib folder and put it into the
TOMCAT_HOME/lib folder.

Tomcat Set-up

The first step to perform for creating a JNDI datasource (connection pool) is to edit the context.xml file inside
$TOMCAT_HOME/conf directory. This file contains the different JNDI resources configured for Tomcat. In this
case, we are going to configure a JNDI datasource for a PostgreSQL database. If the file is not present you should
create it and add a content similar to the following:

<Context>
<Resource
name="jdbc/postgres" auth="Container" type="javax.sql.DataSource"
driverClassName="org.postgresql.Driver"
url="jdbc:postgresql://localhost:5432/testdb"
username="admin"
password="admin"
maxActive="20"
maxIdle="10"
maxWait="10000"
minEvictableIdleTimeMillis="300000"
timeBetweenEvictionRunsMillis="300000"
validationQuery="SELECT 1"/>

</Context>

Note: If the file is already present, do not add the <Context></Context> labels.

In the previous XML snippet, we configured a connection to a PostgreSQL database called testdb which have the host
name as localhost and port number equal to 5432.

Note: Note that the user shall set proper username and password for the database.

Some of the parameters that can be configured for the JNDI connection pool are as follows:

• maxActive : The number of maximum active connections to use.

• maxIdle : The number of maximum unused connections.

• maxWait : The maximum number of milliseconds that the pool will wait.

• poolPreparedStatements : Enable the prepared statement pooling (very important for good performance).

• maxOpenPreparedStatements : The maximum number of prepared statements in pool.

3.2. Tutorials 883

GeoNode Documentation, Release 2.8

• validationQuery : (default null) A validation query that double checks the connection is still alive before
actually using it.

• timeBetweenEvictionRunsMillis : (default -1) The number of milliseconds to sleep between runs of the idle
object evictor thread. When non-positive, no idle object evictor thread will be run.

• numTestsPerEvictionRun : (default 3) The number of objects to examine during each run of the idle object
evictor thread (if any).

• minEvictableIdleTimeMillis : : (default 1000 * 60 * 30) The minimum amount of time, in milliseconds, an
object may sit idle in the pool before it is eligible for eviction by the idle object evictor (if any).

• removeAbandoned : (default false) Flag to remove abandoned connections if they exceed the removeAban-
donedTimeout. If set to true a connection is considered abandoned and eligible for removal if it has been idle
longer than the removeAbandonedTimeout. Setting this to true can recover db connections from poorly written
applications which fail to close a connection.

• removeAbandonedTimeout : (default 300) Timeout in seconds before an abandoned connection can be re-
moved.

• logAbandoned : (default false) Flag to log stack traces for application code which abandoned a Statement or
Connection.

• testWhileIdle : (default false) Flag used to test connections when idle.

Warning: The previous settings should be modified only by experienced users. Using wrong low values for
removedAbandonedTimeout and minEvictableIdleTimeMillis may result in connection failures; if so try it is
important to set-up logAbandoned to true and check your catalina.out log file.

More informations about the parameters can be found at the DBCP documentation.

GeoServer Set-up

Launch GeoServer and navigate to the Stores → Add new Store section.

First, choose the PostGIS (JNDI) datastore and give it a name:

Fig. 280: PostGIS JNDI Store Configuration

And then you can configure the connection pool:

884 Chapter 3. Table of contents

http://commons.apache.org/proper/commons-dbcp/configuration.html

GeoNode Documentation, Release 2.8

Fig. 281: PostGIS JNDI Store Configuration

3.2. Tutorials 885

GeoNode Documentation, Release 2.8

When you are doing this, make sure the schema is properly configured, or the datastore will list all the tables it can
find in the schema it is given access to.

Microsoft SQLServer JNDI Configuration

Before configuring a SQLServer connection pool you must follow these Guidelines.

Warning: You must remove the sqljdbc.jar file from the WEB-INF/lib folder and put it inside the
$TOMCAT_HOME/lib folder.

Tomcat Set-up

In this case, we are going to configure a JNDI datasource for a SQLServer database. You shall create/edit the con-
text.xml file inside $TOMCAT_HOME/conf directory with the following lines:

<Context>
<Resource

name="jdbc/sqlserver"
auth="Container"
type="javax.sql.DataSource"
url="jdbc:sqlserver://localhost:1433;databaseName=test;user=admin;

→˓password=admin;"
driverClassName="com.microsoft.sqlserver.jdbc.SQLServerDriver"
username="admin"
password="admin"
maxActive="20"
maxIdle="10"
maxWait="10000"
minEvictableIdleTimeMillis="300000"
timeBetweenEvictionRunsMillis="300000"
validationQuery="SELECT 1"/>

</Context>

Note: Note that database name, username and password must be defined directly in the URL.

GeoServer Set-up

Launch GeoServer and navigate to the Stores → Add new Store section.

Then choose the Microsoft SQL Server (JNDI) datastore and give it a name:

After, you can configure the connection pool:

Oracle JNDI Configuration

Before configuring an Oracle connection pool you should download the Oracle plugin from the GeoServer Download
Page and then put the ojdbc14.jar file into the $TOMCAT_HOME/lib folder.

886 Chapter 3. Table of contents

http://docs.geoserver.org/stable/en/user/data/database/sqlserver.html
http://geoserver.org/download/
http://geoserver.org/download/

GeoNode Documentation, Release 2.8

Fig. 282: Microsoft SQLServer JNDI Store Configuration

Fig. 283: Microsoft SQLServer JNDI Store Configuration

3.2. Tutorials 887

GeoNode Documentation, Release 2.8

Warning: You must remove the ojdbc14.jar file from the WEB-INF/lib folder and put it inside the
$TOMCAT_HOME/lib folder.

Tomcat Set-up

First you must create/edit the context.xml file inside $TOMCAT_HOME/conf directory with the following lines:

<Context>
<Resource

name="jdbc/oralocal"
auth="Container" type="javax.sql.DataSource"
url="jdbc:oracle:thin:@localhost:1521:xe"
driverClassName="oracle.jdbc.driver.OracleDriver"
username="dbuser"
password="dbpasswd"
maxActive="20"
maxIdle="3"
maxWait="10000"
minEvictableIdleTimeMillis="300000"
timeBetweenEvictionRunsMillis="300000"
poolPreparedStatements="true"
maxOpenPreparedStatements="100"
validationQuery="SELECT SYSDATE FROM DUAL" />

</Context>

GeoServer Set-up

Launch GeoServer and navigate to the Stores → Add new Store section.

Then choose the Oracle NG (JNDI) datastore and give it a name:

Fig. 284: Oracle JNDI Store Configuration

After, you can configure the connection pool:

888 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 285: Oracle JNDI Store Configuration

3.2. Tutorials 889

GeoNode Documentation, Release 2.8

Note: In Oracle the schema is usually the user name, upper cased.

Configuring Connection Pools for production usage

Connection waiting time and relation with other parameters

In general it is important to set the connection waiting time in a way that the connection pool does not become a
place where to queue threads executing requests under big load. It is indeed possible that under big load threads
executing requests for a vector layer will outnumber the available connections in the pool hence such threads will
be blocked trying to acquire a new connection; if the number of connections is much smaller than the number of
incoming requests and the max wait time is quite big (e.g. 60 seconds) we will find ourselves in the condition to have
many threads waiting for a long time to acquire a connection after most of the resources they need will be allocated,
especially the memory back buffer if these are WMS requests.

The max wait time in general shall be set accordingly to the expected maximum execution time for a requests, end-
to-end. This include things like, accessing the file system, loading the data. As an instance if we take into account
WMS requests we are allowed to specify a maximum response time, therefore if set this to N seconds the max wait
time should be set to a value smaller than that since we don’t want to waste resources having threads blocked unnec-
essarily waiting for a connection. In this case it shall be preferable to fail fast to release resources that might be used
unnecessarily otherwise.

Maximizing sharing of Connection Pools

How the data is organized between database, schemas and table impact the degree of flexibility we have when trying to best share connections, regardless of the fact that we were using JNDI pools or not. Summarising:

• Splitting tables into many schemas makes it hard for GeoServer to access tables belonging to different
schemas unless we switch to JNDI, since the schema must be specified as part of the connection parame-
ters when using internal pools

• Using different users for different schemas prevent JNDI from working efficiently across schemas. It’s
best to use when possible a single dedicated account across schemas

• Generally speaking having a complex combination of users and schema can lead to inefficient split of
available connections in multiple pools

Long story short, whenever it’s possible strive to make use of a small number of users and if not using JNDI to a
small number of schema, although JNDI is a must for organization willing to create a complex set up where different
workspaces (i.e Virtual Services) serve the same content differently.

Query Validation

Regardless of how we configure the validation query it is extremely important that we always remember to validate
connections before using them in GeoServer; not doing this might lead to spurious errors due to stale connections
sitting the pool. This can be achieved with the internal connection pool (via the validate connections box) as well as
with the pools declared in JNDI (via the validation query mechanism); it is worth to remind that the latter will account
for finer grain configurability.

890 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Installing and Configuring the Monitoring plugin

The monitoring extension provides a request monitor for GeoServer. It captures information about each request a
GeoServer instance handles and produces reports based on the request data.

Installing the Monitoring Extension

Monitoring is an official extension, as such it can be found alongside any GeoServer release. The extension is split
into two modules, “core” and “hibernate”, where core provides the basic underpinnings of the module and allows to
monitor “live” requests, while the hibernate extension provides database storage of the requests.

1. Get the monitoring zip files, already downloaded for you, from the training material data\plugins folder
(search for zip files containing the monitoring word, there will be two)

2. Extract the contents of the archives into the <TRAINING_ROOT>/tomcat-6.0.36/instances/
instance1/webapps/geoserver/WEB-INF/lib directory of the GeoServer installation.

Verifying the Installation

There are two ways to verify that the monitoring extension has been properly installed.

• Start GeoServer and open the Web Administration interface. Log in using the administration account. If suc-
cessfully installed, there will be a Monitor section on the left column of the home page.

Fig. 286: Monitoring section in the web admin interface

• Start GeoServer and navigate to the current data directory. If successfully installed, a new directory named
monitoring will be created in the data directory.

Basic Configuration of the Monitor Extension

Many aspects of the monitor extension are configurable. All configuration files are stored in the data directory under
the monitoring directory:

<data_directory>
monitoring/

db.properties
filter.properties
hibernate.properties
monitor.properties

The function of these files will be discussed below.

3.2. Tutorials 891

http://localhost:8083/geoserver

GeoNode Documentation, Release 2.8

Monitor Mode

The monitoring extension supports different “monitoring modes” that control how request data is captured and stored.
Currently three modes are supported:

• history (Default) - Only historical request information is available. No live information is maintained.

• live - Only information about live requests is maintained.

• mixed - A combination of live and history. This mode is experimental.

The mode is set in the monitor.properties file.

Note: For the Virtual Machine GeoServer instance we are “live” mode.

History Mode

History mode persists information about all requests in an external database. It does not provide any real time infor-
mation. This mode is appropriate in cases where a user is most interested in analyzing request history over a given
time period.

Live Mode

Live mode only maintains short lived information about requests that are currently executing. It also maintains a small
buffer of recent requests. No external database is used with this mode and no information is persisted for the long
term.

This mode is most appropriate in cases where a user only cares about what a server is doing in real time and is not
interested about request history.

Mixed Mode

Mixed mode combines both live and history mode in that it maintains both real time information and persists all
request data to the monitoring database. This mode however is experimental and comes with more overhead than the
other two modes. This is because mixed mode must perform numerous database transactions over the life cycle of
a single request (in order to maintain live information), whereas history mode only has to perform a single database
transaction for a request.

This mode is most appropriate when both real time request information and request history are desired. This mode
is also most appropriate in a clustered server environment in which a user is interested in viewing real time request
information about multiple nodes in a cluster.

Monitor Database

By default monitored request data is stored in an embedded H2 database located in the monitoring directory. This
can be changed by editing the db.properties file:

default configuration is for h2
driver=org.h2.Driver
url=jdbc:h2:file:${GEOSERVER_DATA_DIR}/monitoring/monitoring

For example to store request data in an external PostgreSQL database:

892 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

driver=org.postgresql.Driver
url=jdbc:postgresql://localhost:5432/monitoring
username=bob
password=foobar

Warning: The above is just an example. Does not match the training users and environment.

Request Filters

By default not all requests are monitored. Those requests excluded include any web admin requests or any monitor
HTTP API requests. These exclusions are configured in the filter.properties file:

/rest/monitor/**
/web
/web/**

These default filters can be changed or extended to filter more types of requests. For example to filter out all WFS
requests:

/wfs

How to determine the filter path

The contents of filter.properties are a series of ant-style patterns that are applied to the path of the request.
Consider the following request:

http://localhost:8083/geoserver/wms?request=getcapabilities

The path of the above request is /wms. In the following request:

http://localhost:8083/geoserver/rest/workspaces/topp/datastores.xml

The path is /rest/workspaces/topp/datastores.xml.

In general, the path used in filters is comprised of the portion of the URL after /geoserver (including the preceding
/) and before the query string ?:

http://<host>:<port>/geoserver/<path>?<queryString>

Note: For more information about ant-style pattern matching, see the Apache Ant manual.

1. Go to the Map Map Preview and open the geosolutions:Counties layer clicking on the OpenLayer link.

2. Perform a few times zoom the map.

3. Use also the GML preview for said layer

4. Navigate to the Monitor/Reports section

5. Click on OWS Request Summary to show a detailed chart like the following:

3.2. Tutorials 893

http://ant.apache.org/manual/dirtasks.html
http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.web.demo.MapPreviewPage
http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.monitor.web.ReportPage

GeoNode Documentation, Release 2.8

894 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Logging all requests on the file system

The history mode logs all requests into a database. This can put a very significant strain on the database and can lead
to insertion issues as the request table begins to host millions of records.

As an alternative to the history mode it’s possible to enable the auditing logger, which will log the details of each
request in a file, which is periodically rolled. Secondary applications can then process these log files and built ad-hoc
summaries off line.

Configuration

The monitor.properties file can contain the following items to enable and configure file auditing:

1. Go to the ${GEOSERVER_DATA_DIR}/monitoring and open the monitor.properties then append the
following configuration:

audit.enabled=true
audit.path=${TRAINING_ROOT}
audit.roll_limit=20

2. Replace ${TRAINING_ROOT} with the full path to the workshop root folder, and remember to always use
forward slashes, /, in the path, regardless of the operating system. For example, on Windows the path might
look like c:/data/Training_2.5.X-32

3. Go to the Map Map Preview and open the geosolutions:states layer clicking on the OpenLayer link.

4. Perform a few times zoom the map.

5. Open the new created log file (named like geoserver_audit_yyyymmdd_nn.log) located at ${TRAIN-
ING_ROOT}.

Note:

• audit.enable: is used to turn on the logger (it is off by default).

• audit.path: is the directory where the log files will be created.

• audit.roll_limit: is the number of requests logged into a file before rolling happens.

Note: The files are also automatically rolled at the beginning of each day.

Outputs and contents

The log directory will contain a number of log files following the geoserver_audit_yyyymmdd_nn.log pat-
tern. The nn is increased at each roll of the file. The contents of the log directory will look like:

geoserver_audit_20110811_2.log
geoserver_audit_20110811_3.log
geoserver_audit_20110811_4.log
geoserver_audit_20110811_5.log
geoserver_audit_20110811_6.log
geoserver_audit_20110811_7.log
geoserver_audit_20110811_8.log

3.2. Tutorials 895

http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.web.demo.MapPreviewPage

GeoNode Documentation, Release 2.8

Customizing the log contents

The log contents are driven by three FreeMarker templates. We can customize them to have the log file be a CSV file
for example.

1. On the file system navigate to the GeoServer data directory located at $GEOSERVER_DATA_DIR.

2. In the monitoring directory create a new file named header.ftl (is used once when a new log file is
created to form the first few lines of the file).

3. Open header.ftl in the text editor of your choice and enter the following content:

start time,services,version,operation,url,response content type,total time,
→˓response length,error flag

4. Create another file named content.ftl.

5. Open content.ftl in the text editor of your choice and enter the following content:

${startTime?datetime?iso_utc_ms},${service!""},${owsVersion!""},${operation!""},"$
→˓{path!""}${queryString!""}",${responseContentType!""},${totalTime},$
→˓{responseLength?c},<#if error??>failed<#else>success</#if>

6. Create a last file named footer.ftl, and leave its contents empty

7. Run again a few requests, the log files should contain something like the following now:

start time,services,version,operation,url,response content type,total time,
→˓response lenght,error flag
2012-06-07T10:37:09.725Z,WMS,1.1.1,GetMap,"/geosolutions/
→˓wmsLAYERS=geosolutions:ccounties&STYLES=&FORMAT=image/png&SERVICE=WMS&VERSION=1.
→˓1.1&REQUEST=GetMap&SRS=EPSG:4269&BBOX=-106.17254516602,39.489453002927,-105.
→˓18378466798,40.054948608395&WIDTH=577&HEIGHT=330",image/png,59,30420,success
2012-06-07T10:37:10.075Z,WMS,1.1.1,GetMap,"/geosolutions/
→˓wmsLAYERS=geosolutions:ccounties&STYLES=&FORMAT=image/png&SERVICE=WMS&VERSION=1.
→˓1.1&REQUEST=GetMap&SRS=EPSG:4269&BBOX=-105.84010229493,39.543136352537,-105.
→˓34572204591,39.825884155271&WIDTH=577&HEIGHT=330",image/png,45,18692,success

How to measure performances with JMeter

In this submodule we are going to describe how to use the JMeter tool :

Configuring JMeter for a simple test

Apache JMeter is an open source Java desktop application, built to verify functional behavior, perform load tests, and
measure performance.

This section explains how to run performance tests using JMeter in order to evaluate the GeoServer performances when
serving WMS requests. The performance test aim to stress the server and evaluate the response time and throughput
with an increasing number of simulated users sending concurrent request to the server.

Note: Ideally, to avoid adding extra load to the server JMeter should run on a different machine.

896 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Warning: If you have performed the exercises in the security section, please go back to the layer and service
security pages and open access to everybody, on all data and all services, before performing the exercises in this
section

1. From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start
JMeter:

Fig. 287: jMeter interface

2. Add a new Thread Group with the mouse right click on Test Plan tree node:

3. Add a new Loop Controller with the mouse right click on Thread Group tree node:

4. In the Thread Group panel set the number of thread for the test to 4 (this represents the number of simulta-
neous requests that are made to GeoServer) and the ramp-up period to 60. Also, check Forever on the Loop
Count field.

5. Right click on the Loop Controller tree node and add a new HTTP Request element:

6. Add the following listeners by right clicking on Test Plan tree node: View results Tree, Summary
Report, Graph results

7. In the HTTP Request enter the following basic configuration:

Field Value
Server Name or IP localhost
Port Number 8083
Path geoserver/ows

3.2. Tutorials 897

GeoNode Documentation, Release 2.8

Fig. 288: Adding a new Thread Group

Fig. 289: Adding a new Loop Controller

898 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 290: Setting the Thread Group

Fig. 291: Adding a new HTTP Request

3.2. Tutorials 899

GeoNode Documentation, Release 2.8

Fig. 292: Adding a Listeners

900 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 293: HTTP Request host/port/path configuration

8. From the training data root directory, open the data/jmeter_data/jmeter_request_params.txt,
select and copy its contents in the clipboard, then click “Add from Clipboard” in the “HTTP request” panel to
setup a sample GetMap request:

Fig. 294: HTTP parameters configuration

At this point JMeter is configured to run a GeoServer performance test:

1. Select on Thread Group tree node and then click on Run tool and select Start to starting the JMeter test.

2. Select View Results Tree to directly see the request informations produced and the request result:

3. Select Suymmary report to view the statistical information about the requests:

4. Select Graph Results to analyze the technical trend of the requests:

3.2. Tutorials 901

GeoNode Documentation, Release 2.8

Fig. 295: starting jMeter test

Fig. 296: The View Results Tree panel

902 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 297: The Aggregate Graph panel

Fig. 298: The Spline Visualizer panel

3.2. Tutorials 903

GeoNode Documentation, Release 2.8

Configuring JMeter for a Multiscale test

This chapter explains how to create a custom randomized Multiscale test with a set of multiple concurrent threads.

In the first paragraph is described how to generate a CSV file for randomized requests at different scales. In the second
one is shown how to configure a new JMeter test with multiple simultaneous threads.

Create CSV file

1. Open the file gdal.bat under $TRAINING_ROOT folder inside the training home folder.

2. Run:

cd %TRAINING_ROOT%\geoserver_data\data\boulder

gdalinfo srtm_boulder.tiff

3. The output of the command will be something like this:

Driver: GTiff/GeoTIFF
Files: srtm_boulder.tiff
Size is 2520, 1800
Coordinate System is:
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4326"]]

Origin = (-105.700138888888890,40.300138888888888)
Pixel Size = (0.000277777777778,-0.000277777777778)
Metadata:
AREA_OR_POINT=Area

Image Structure Metadata:
INTERLEAVE=BAND

Corner Coordinates:
Upper Left (-105.7001389, 40.3001389) (105d42' 0.50"W, 40d18' 0.50"N)
Lower Left (-105.7001389, 39.8001389) (105d42' 0.50"W, 39d48' 0.50"N)
Upper Right (-105.0001389, 40.3001389) (105d 0' 0.50"W, 40d18' 0.50"N)
Lower Right (-105.0001389, 39.8001389) (105d 0' 0.50"W, 39d48' 0.50"N)
Center (-105.3501389, 40.0501389) (105d21' 0.50"W, 40d 3' 0.50"N)
Band 1 Block=256x256 Type=Int16, ColorInterp=Gray
Overviews: 1260x900, 630x450, 315x225, 158x113, 79x57, 40x29

4. The information needed for create a Multiscale CSV file are:

Tile Size 256 x 256
Pixel Size 0.000277777777778
Bounding Box ((-105.7001389, -105.0001389), (39.8001389,

40.3001389))

5. Run:

904 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

cd %TRAINING_ROOT%\data\jmeter_data

wms_request.py -count 100 -region -105.7 39.8 -105.0 40.3 -minres 0.
→˓00028 -maxres 0.00224 -minsize 256 256 -maxsize 1024 1024 > multiscale.
→˓csv

wms_request.py is a python script which generates randomized request at different bounding box
and resolutions. The parameters are described in the following table:

Parameter Description
count Indicates the number of requests to generate
region Indicates the maximum bounding box of each re-

quest
minres/maxres Indicates the minimum and maximum value for the

Pixel Size to request (Tipically it should be at least
the minimum resolution)

minsize/maxsize Indicates the minimum and maximum dimensions
of the requested image (Tipically it should be at
least as big as the tile size)

The CSV file is structured following the rule $width;$height;$bbox.

For example 290;444;-105.5904,39.910198,-105.48776,40.067338 indicates a
request of size 290x444 and Bounding box [-105.5904,39.910198,-105.48776,40.067338].

JMeter must be configured for parsing the CSV file correctly by using the CSV Data Set
Config element.

Configure JMeter

1. From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start
JMeter:

2. Add 3 new Thread Group called 1, 2, 4

3. For each Thread Group set the Number of Thread(users) field equal to the Thread Group name, the
ramp-up period and Loop Count fields to 1.

4. In the Test Plan section, check the Run Thread Groups consecutively checkbox

5. Add a new Loop Controller for each Thread Group object:

6. Each Loop Controller should be configured following this schema:

Thread Group
• 1

Loop Controller –> Loop Count
• 100

Thread Group
• 2

Loop Controller –> Loop Count
• 50

Thread Group
• 4

Loop Controller –> Loop Count
• 50

3.2. Tutorials 905

GeoNode Documentation, Release 2.8

Fig. 299: jMeter interface

Fig. 300: Setting the Thread Group

906 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

7. Right click on each Loop Controller tree node and add a new HTTP Request element with the same
name of the Thread Group:

Fig. 301: Setting the HTTP Request

8. In each HTTP Request add the following fields to the panel:

Name Value Encode? Include Equals?
bbox ${bbox} unchecked checked
height ${height} unchecked checked
width ${width} unchecked checked

Which should look like in the picture

Fig. 302: HTTP Request panel configuration

9. Uncheck the Follow Redirects and Use KeepAlive checkbox

10. Right click on each Loop Controller tree node and add a new CSV Data Set Config element:

11. Configure the CSV Data Set Config element by adding the path of the CSV file created before and setting
the variable definitions:

12. From the Test Plan tree node add an HTTP Request Default element and enter the following basic config-
uration:

Field Value
Server Name or IP localhost
Port Number 8083
Path geoserver/ows

3.2. Tutorials 907

GeoNode Documentation, Release 2.8

Fig. 303: Setting the CSV Data Set Config

Fig. 304: Configuring the CSV Data Set Config

908 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

It should look like this:

Fig. 305: HTTP Default Request host/port/path configuration

13. From the training data root directory, open the data/jmeter_data/jmeter_request_params_2.
txt, select and copy its contents in the clipboard, then click “Add from Clipboard” in the “HTTP request”
panel to setup a sample GetMap request:

14. Add the following listeners by right clicking on Test Plan tree node: “View results Tree”, “Summary Report”

15. Add the following assertions by right clicking on Test Plan tree node: “Response Assertion”

Note: Using Assertions is helpful because it avoids to continuously do a visual check on the results.

16. Configure the “Response Assertion” following this table:

Field Value
Apply to Main sample only
Response field to test Response Headers
Pattern Matching Rules Contains

In the Pattern to test panel add:

Content-Type: image/png

The final result should look like in the picture:

At this point JMeter is configured to run a GeoServer performance test:

1. Select the Test Plan tree node and select Run - Start from the top menu to start the JMeter test.

2. Select View Results Tree to directly see the request information produced and the requests results:

3. Select Summary report to view the statistical information about the requests:

Configuring JMeter for testing Raster optimization

The following section explains how the GeoServer performances improves with the optimization of raster files.

3.2. Tutorials 909

GeoNode Documentation, Release 2.8

Fig. 306: Adding Assertions

Fig. 307: Configuring Response Assertion

910 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 308: starting jMeter test

Optimization has already been discussed in the Introduction To Processing With GDAL sections, describing the most
common techniques used.

Note: This section requires the layers published in the Adding an Image Mosaic, Introduction To Processing With
GDAL and Advanced Mosaics Configuration sections.

Test the Unoptimized Mosaic

1. Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file, creating a
mosaic.jmx file

2. From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start
JMeter

3. On the top left go to File –> Open and search for the new jmx file copied

4. Disable the Thread Groups 8, 16, 32, 64 by right-clicking on them and selecting Disable.

5. In the CSV Data Set Config element of the remaining thread groups, modify the path of the CSV file by
setting the path for the file optimized.csv in the $TRAINING_ROOT/data/jmeter_data directory

6. In the HTTP Request Default element modify the following parameters:

Name Value
layers geosolutions:boulder_bg
srs EPSG:26913

At this point JMeter is configured to run a GeoServer performance test:

1. Run the test

3.2. Tutorials 911

GeoNode Documentation, Release 2.8

Fig. 309: The View Results Tree panel with a sample request

912 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 310: Another request with different resolution and bounding box

Fig. 311: Suymmary report panel

3.2. Tutorials 913

GeoNode Documentation, Release 2.8

Note: Remember to run and stop the test a few times for having stable results

2. You should see something like this:

Fig. 312: ‘View Results Tree‘ panel

3. When the test is completed, Save the results in a text file and remove them from the console by clicking on Run
–> Clear All on the menu

Test the Optimized Mosaic

1. In the HTTP Request Default section modify the following parameter:

Name Value
layers geosolutions:boulder_bg_optimized

2. Run the test again

3. Compare the results of this test with the ones saved before. You should see that throughput is increased with
the optimized Mosaic

914 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Configuring JMeter for testing Vector data

The following section compares vector data preparation using Shapefile and PostGIS. For this example a Shapefile
containing primary or secondary roads is used.

The purpose is to test the throughput between the shapefile and an optimized database containing the same data. The
result will demonstrate that database optimization can provide a better throughput than the one of the shapefile

Configuring the database

1. Open the terminal and go to the %TRAINING_ROOT%

2. Load the shapefile tl_2014_01_prisecroads located in %TRAINING_ROOT%\data\user_data
into PostGIS with the following commands:

setenv.bat

createdb -U postgres -T postgis20 shape2

shp2pgsql -k -I "data\user_data\tl_2014_01_prisecroads\tl_2014_01_
→˓prisecroads.shp" public.pgroads | psql -U postgres -d shape2

Note: More information can be found at Loading a Shapefile into PostGIS

3. On the %TRAINING_ROOT% run pgAdmin.bat

4. Go to the table pgroads inside database shape2 and execute the following SQL script for creating an index
on the MTFCC column:

CREATE INDEX mtfcc_idx ON pgroads ("MTFCC");

The following index optimizes the access to the database when filtering on the MTFCC column.

Configuring GeoServer

1. On your Web browser, navigate to the GeoServer Welcome Page.

2. Following the instructions on Adding a Postgis layer, configure the database shape2 in GeoServer and call it
pgroads

Note: Note that the database Coordinate Reference System is EPSG:4269

3. Configure the shapefile tl_2014_01_prisecroads used before in GeoServer following the instructions in
Adding a Shapefile and call it allroads

Note: Note that the shapefile Coordinate Reference System is EPSG:4269

4. Go to Styles and click on Add new Style

5. On the bottom of the page, click on Choose File and select the SLD file called shproads in the
$TRAINING_ROOT/data/jmeter_data directory

3.2. Tutorials 915

http://localhost:8083/geoserver/

GeoNode Documentation, Release 2.8

Fig. 313: Create a new index

916 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

6. Click on Upload and then on Submit. This new style supports scale dependency which is used as filter on the
roads to display.

Configuring JMeter

1. Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file creating a
vector.jmx file.

2. From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start
JMeter

3. On the top left go to File –> Open and search for the new jmx file copied

4. In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file
shp2pg.csv in the $TRAINING_ROOT/data/jmeter_data directory

5. In the HTTP Request Default element modify the following parameters:

Name Value
layers geosolutions:allroads
srs EPSG:4269
styles shproads

Test the Shapefile

1. Run the test. You should see something like this:

Note: Remember to run and stop the test a few times for having stable results

2. When the test is completed, Save the results in a text file.

3. Remove the result from JMeter by clicking on Run –> Clear All on the menu

Test the Database

1. In the HTTP Request Default element modify the following parameter:

Name Value
layers geosolutions:pgroads

2. Run the test again. It should be noted that database throughput is greater than that of the Shapefile, because the
new index created provides a faster access on the database, improving GeoServer performances

Configuring JMeter for testing Style optimization

The following section explains how GeoServer performances are improved when using optimized styles. Styling is an
important feature for GeoServer, but requires some attention in order to avoid slowing down the performances.

This tutorial is aimed to show how GeoServer performances change by choosing a different style for the same data set
using JMeter.

3.2. Tutorials 917

GeoNode Documentation, Release 2.8

Fig. 314: Sample request on the Shapefile

918 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Note: This example requires to have already completed the first 9 steps of the Creating a Base Map with a Layer
Group section, Adding a Shapefile and Adding a Style sections .

Configuring GeoServer

1. On your Web browser, navigate to the GeoServer Welcome Page.

2. Go to Styles and click on Add new Style

3. On the bottom of the page, click on Choose File and select the SLD file called line_label in the
$TRAINING_ROOT/data/jmeter_data directory

4. Click on Upload and then on Submit. Now we have a style which supports labeling but has no control on the
label conflicts and overlapping

5. Return to the GeoServer Welcome Page.

6. Go to Layer Groups and click on test

7. Add a new Layer to the Layer Group called bbuildings

Fig. 315: Add a new Layer to the Layer Group

8. Change the associated styles by clicking on each style and choosing another one on the list. Use the following
styles:

Layer Style
geosolutions:Mainrd line_label
geosolutions:BoulderCityLimits polygon
geosolutions:bplandmarks polygon
geosolutions:bbuildings polygon

3.2. Tutorials 919

http://localhost:8083/geoserver/
http://localhost:8083/geoserver/

GeoNode Documentation, Release 2.8

Fig. 316: Styles configuration

920 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

9. Click on Save. With this configuration we have a Layer Group composed by 4 Layers with 4 bad styles associ-
ated. This will result in a low throughput, if compared to that of the test with optimized styles.

Configuring JMeter

1. Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file and create a
styles.jmx one

2. From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start
JMeter

3. On the top left go to File –> Open and search for the new jmx file copied

4. Disable Thread Group 8, 16, 32 and 64

5. In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file
style.csv in the $TRAINING_ROOT/data/jmeter_data directory

6. In the HTTP Request Default element modify the following parameters:

Name Value
layers test
srs EPSG:2876

Test with unoptimized styles

1. Run the test. You should see something like this:

Fig. 317: View Results Tree panel with a bad styling

3.2. Tutorials 921

GeoNode Documentation, Release 2.8

Note: Remember to run and stop the test a few times for having stable results

2. When the test is completed, Save the results in a text file.

3. Remove the result from JMeter by clicking on Run –> Clear All on the menu

Setting optimized styles

1. Go to Layer Groups and click on test

2. Change the associated styles by clicking on each style and choosing another one on the list. Use the following
styles:

Layer Style
geosolutions:Mainrd mainrd
geosolutions:BoulderCityLimits citylimits
geosolutions:bplandmarks arealandmarks
geosolutions:bbuildings buildings

Fig. 318: Styles configuration

3. Click on Save. The new styles contain scale dependencies and label optimization, which will result in a better
throughput.

Test with optimized styles

1. Run again the test.

You may see that the throughput is greater than that of the first test. The use of scale dependencies
reduces the layers to see at lower zoom levels while conflict resolution avoids to show multiple
overlapping label at each zoom level.

Configuring JMeter for testing GeoWebCache fullWMS support

The following section compare GeoServer WMS with GeoWebCache fullWMS support. FullWMS is a new feature
which allows GeoWebCache to act as a WMS endpoint, like GeoServer. Using GeoWebCache, the server is able to
cache the requested tiles in order to return them faster then GeoServer.

This example will show how to configure GeoWebCache with full WMS support and how to improve performance.

922 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 319: View Results Tree panel with good styling

Configuring GeoServer/GeoWebCache

1. On your Web browser, navigate to the GeoServer Welcome Page.

2. Go to Gridsets and click on Create a new gridest

3. Call it EPSG_2876 and set EPSG:2876 as Coordinate Reference System

4. Click on Compute from maximum extent of CRS and add 15 new Zoom Levels (from 0 to 14)by clicking on Add
zoom level. It should look like this picture:

5. Click on Save. Now this GridSet can be added to the Layer Group boulder for caching it with GeoWebCache

6. Go to Layer Groups and click on boulder

7. On the Available gridsets panel add the gridset EPSG_2876 from the list. Then click on Save.

Note: Remember to set Published zoom levels to Min and Max

Configuring JMeter

1. Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file into gwc.jmx

2. From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start
JMeter

3. On the top left go to File –> Open and search for the new jmx file copied

3.2. Tutorials 923

http://localhost:8083/geoserver/

GeoNode Documentation, Release 2.8

Fig. 320: Create a new Gridset

924 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 321: Add the new Gridset

4. Disable all the Thread Groups except for 8

5. Disable the Content-Type Check

6. In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file
gwc.csv in the $TRAINING_ROOT/data/jmeter_data directory

7. In the HTTP Request Default element modify the following parameters:

Name Value
layers boulder
srs EPSG:2876

Test GeoServer WMS

1. Run the test

Note: Remember to run and stop the test a few times for having stable results

2. When the test is completed, Save the results in a text file.

3. Remove the result from JMeter by clicking on Run –> Clear All on the menu

4. Stop GeoServer

Test GeoWebCache fullWMS

1. Go to $TRAINING_ROOT/data/gwc/geowebcache.xml and add the following snippet:

<gwcConfiguration>

...

<fullWMS>true</fullWMS>
</gwcConfiguration>

3.2. Tutorials 925

GeoNode Documentation, Release 2.8

Setting fullWMS to true allows GeoWebCache to use fullWMS support

2. Restart GeoServer

3. On the JMeter HTTP Request Default panel, change the Path from geoserver/ows to geoserver/gwc/
service/wms in order to execute WMS requests directly to GeoWebCache, without passing from GeoServer

4. Add a new parameter called hints which can have 3 values speed, default and quality. The first one
should be used for having a faster response without concerning about image quality; the last one, instead, is
slower but with a better quality; the second one is a good trade off between them. For the first test set hints to
speed.

5. Run the test

Note: At the first run, the throughput should be lower than that of GeoServer, because GeoWeb-
Cache has spent much time on generating the cached tiles.

6. Remove the result from JMeter by clicking on Run –> Clear All on the menu

7. Run the same test again.

Now the throughput should be improved, because GeoWebCache have already generated the tiles
to cache and can reuse them. Image quality should be very poor because of the hints=speed
configuration.

Fig. 322: Result from GeoWebCache fullWMS with hints=speed

8. Run the same test with hints=default

926 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Fig. 323: Result from GeoWebCache fullWMS with hints=default

3.2. Tutorials 927

GeoNode Documentation, Release 2.8

9. Run the same test with hints=quality

Fig. 324: Result from GeoWebCache fullWMS with hints=quality

It should be noted that changing the hints parameter changes the image quality, but the throughput
is always greater than that of GeoServer WMS

Configuring JMeter for testing WMS Resource Limits

The following section explains how GeoServer performances are improved when setting the resource limits for WMS.

Preliminary Steps

1. Open your Web browser and navigate to the GeoServer Welcome Page.

2. Go to Stores and select the storms datastore

3. Change the following parameters:

Name Value
max connections 1
Connection timeout 20000000

It should appear something like this:

928 Chapter 3. Table of contents

http://localhost:8083/geoserver/

GeoNode Documentation, Release 2.8

Fig. 325: Change ‘storms‘ parameters

3.2. Tutorials 929

GeoNode Documentation, Release 2.8

Now you have configured this store to enqueue all the requests in a single queue until they are not
timed out.

Configure JMeter

1. Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file and create
limit.jmx

2. From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start
JMeter

3. On the top left go to File –> Open and search for the new jmx file copied

4. Disable all the Thread Groups except for the 64 one in order to create a test environment with multiple con-
current requests to be enqueued.

5. In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file
limits.csv in the $TRAINING_ROOT/data/jmeter_data directory

6. In the HTTP Request Default element modify the following parameters:

Name Value
layers geosolutions:storm_obs
srs EPSG:4326

Test without WMS Limits

1. Run the test

Note: Remember to run and stop the test a few times for having stable results

2. You should see something like this:

3. When the test is completed, Save the results in a text file and remove them from the console by clicking on Run
–> Clear All on the menu

Configure WMS Limits

1. On your Web browser, navigate to the GeoServer Welcome Page.

2. Go to WMS and edit the Raster Rendering Options section:

Name Value
Max rendering time 10

With this option, GeoServer will cut off all the requests that need more than 10s to be rendered,
making GeoServer more responsive. Note that this will result in various error returned by GeoServer
for those operations which are cut off. You can choose another value to set. For having a good result
you should take a value minor than the average response time of the first test.

930 Chapter 3. Table of contents

http://localhost:8083/geoserver/

GeoNode Documentation, Release 2.8

Fig. 326: View Results Tree

3.2. Tutorials 931

GeoNode Documentation, Release 2.8

Fig. 327: Changing WMS limit configuration

932 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Test with WMS Limits

1. Run again the test. You should see multiple errors like this:

Fig. 328: Exceptions caused by maximum rendering limit exceeded

You may see that the throughput is increased because most of the timed out requests have been
removed. With this kind of configuration you can control the responsiveness of your GeoServer by
removing stale requests instead of waiting for them.

Note: At the end of the test remove the limits and restore the previous configuration of the storms DataStore

Configuring JMeter for testing Control Flow plugin

This section explains how GeoServer performances are improved when using Control-Flow plugin.

This plugin avoid GeoServer to execute too many requests together, which could lead to bad performances, by reduc-
ing the number of concurrent operations to execute and appending the others to a queue. This behaviour improves
GeoServer scalability.

Note: This example requires to have already completed Adding a ShapeFile and Adding a Style sections.

3.2. Tutorials 933

GeoNode Documentation, Release 2.8

Configure JMeter

1. Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file into
controlflow.jmx

2. From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start
JMeter

3. On the top left go to File –> Open and search for the new jmx file copied

4. Disable View Results Tree section

5. In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file
controlflow.csv in the $TRAINING_ROOT/data/jmeter_data directory

6. In the HTTP Request Default element modify the following parameters:

Name Value
layers geosolutions:Mainrd
srs EPSG:2876

Test without Control Flow

1. Run the test

Note: Remember to run and stop the test a few times for having stable results

2. When the test is completed, Save the results in a text file.

You should notice that the throughput initially increases and then starts to decrease. This is associ-
ated to a bad scalability of the input requests. Remember which number of threads provides better
throughput (it should be 8). This value indicates the maximum number of concurrent requests that
the server can execute simultaneously.

Fig. 329: Decreased throughput (Note the results may be different in other machines)

3. Remove the result from JMeter by clicking on Run –> Clear All on the menu

4. Stop GeoServer

Configure Control Flow

1. Go to $TRAINING_ROOT/data/plugins/not_installed and copy geoserver-2.
6-SNAPSHOT-control-flow-plugin.zip zip file inside $TRAINING_ROOT/tomcat-6.0.
36/instances/instance1/webapps/geoserver/WEB-INF/lib

934 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

2. Unzip the content of geoserver-2.6-SNAPSHOT-control-flow-plugin.zip inside the same
folder

3. Go to $TRAINING_ROOT/geoserver_data and create a new file called controlflow.properties
and add the following snippet

don't allow more than 8 WMS GetMap in parallel
ows.wms.getmap=8

This code snippet indicates that no more than 8 GetMap request can be executed simultaneously by
the WMS service. Other informations about the configuration can be found in the next section

Note: If during your test you have found another number for the maximum throughput, you should
set that value instead of 8

Test with Control Flow

1. Restart GeoServer

2. Run again the test.

You may see that the throughput is no more reduced after the control-flow configuration, because
the input requests are scheduled by the control-flow plugin, improving GeoServer scalability.

Fig. 330: Stable throughput (Note the results may be different in other machines)

Configuring JMeter for testing the Marlin renderer

This section explains how GeoServer performances are improved when using the Marlin renderer.

The Oracle JDK and OpenJDK come with two different anti-aliased renderers:

• Oracle JDK uses Ductus, a fast native renderer that has scalability issues (good for desktop use, less so on the
server side)

• OpenJDK uses Pisces, a pure java renderer that is not as fast as “Ductus”, but has good scalability (anecdotally,
it becomes faster than Ductus above the 4 concurrent requests)

The Marlin renderer is an improved version of Pisces that is as fast, if not faster, than Ductus, and scales up just as
well as Pisces.

Configure JMeter

1. Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file creating a
marlin.jmx file

3.2. Tutorials 935

https://github.com/bourgesl/marlin-renderer

GeoNode Documentation, Release 2.8

2. From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start
JMeter

3. On the top left go to File –> Open and search for the new jmx file copied

4. Disable View Results Tree section

5. In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file
controlflow.csv in the $TRAINING_ROOT/data/jmeter_data directory

6. In the HTTP Request Default element modify the following parameters:

Name Value
layers boulder
srs EPSG:2876

Test without Marlin

1. Go and remove the contro

2. Run the test

Note: Remember to run and stop the test a few times for having stable results

3. When the test is completed, Save the results in a text file.

Fig. 331: Throughput without Marlin (Note the results may be different in other machines)

4. Remove the result from JMeter by clicking on Run –> Clear All on the menu

5. Stop GeoServer

Setup Marlin

1. Stop GeoServer

2. Download the Marlin rasterizer library at https://github.com/bourgesl/marlin-renderer/releases/download/v0.4.
4/marlin-0.4.4.jar and save it in %TRAINING_ROOT%\data

3. Open %TRAINING_ROOT%\setenv.bat and add the following lines to enable the Marlin renderer, right
before the “Tomcat options for the JVM” section:

936 Chapter 3. Table of contents

https://github.com/bourgesl/marlin-renderer/releases/download/v0.4.4/marlin-0.4.4.jar
https://github.com/bourgesl/marlin-renderer/releases/download/v0.4.4/marlin-0.4.4.jar

GeoNode Documentation, Release 2.8

REM Marlin support
set JAVA_OPTS=%JAVA_OPTS% -Xbootclasspath/p:"%ROOT%\data\marlin-0.4.4.jar"
set JAVA_OPTS=%JAVA_OPTS% -Dsun.java2d.renderer=org.marlin.pisces.
→˓PiscesRenderingEngine

4. Start GeoServer again

5. Go to the map preview and open the boulder layer, you should see the following in the Tomcat console:

INFO:
→˓===
INFO: Marlin software rasterizer = ENABLED
INFO: Version = [marlin-0.4.4]
INFO: sun.java2d.renderer = org.marlin.pisces.
→˓PiscesRenderingEngine
INFO: sun.java2d.renderer.useThreadLocal = true
INFO: sun.java2d.renderer.useRef = soft
INFO: sun.java2d.renderer.pixelsize = 2048
INFO: sun.java2d.renderer.subPixel_log2_X = 3
INFO: sun.java2d.renderer.subPixel_log2_Y = 3
INFO: sun.java2d.renderer.tileSize_log2 = 5
INFO: sun.java2d.renderer.useFastMath = true
INFO: sun.java2d.renderer.useSimplifier = false
INFO: sun.java2d.renderer.doStats = false
INFO: sun.java2d.renderer.doMonitors = false
INFO: sun.java2d.renderer.doChecks = false
INFO: sun.java2d.renderer.useJul = false
INFO: sun.java2d.renderer.logCreateContext = false
INFO: sun.java2d.renderer.logUnsafeMalloc = false
INFO:
→˓===

Test with Marlin renderer

1. Run again the test.

You may see that the throughput got significantly higher, especially at mid-high thread counts

Fig. 332: Throughput with Marlin (Note the results may be different in other machines)

3.2. Tutorials 937

GeoNode Documentation, Release 2.8

Configuring the Control flow plugin

The control-flow module for GeoServer allows the administrator to control the amount of concurrent requests
actually executing inside the server. This kind of control is useful for a number of reasons:

• Performance: tests show that, with local data sources, the maximum throughput in GetMap requests is achieved
when allowing at most 2 times the number of CPU cores requests to run in parallel.

• Resource control: requests such as GetMap can use a significant amount of memory. The WMS request limits
allow to control the amount of memory used per request, but an OutOfMemoryError is still possible if too
many requests run in parallel. By controlling also the amount of requests executing it’s possible to limit the total
amount of memory used below the memory that was actually given to the Java Virtual Machine.

• Fairness: a single user should not be able to overwhelm the server with a lot of requests, leaving other users
with tiny slices of the overall processing power.

The control flow method does not normally reject requests, it just queues up those in excess and executes them late.
However, it’s possible to configure the module to reject requests that have been waited in queue for too long.

Rule syntax reference

The current implementation of the control flow module reads its rules from a controlflow.properties property
file located in the GeoServer data directory.

Total OWS request count

The global number of OWS requests executing in parallel can be specified with:

ows.global=<count>

Every request in excess will be queued and executed when other requests complete leaving some free execution slot.

Per request control

A per request type control can be demanded using the following syntax:

ows.<service>[.<request>[.<outputFormat>]]=<count>

Where:

• <service> is the OWS service in question (at the time of writing can be wms, wfs, wcs)

• <request>, optional, is the request type. For example, for the wms service it can be GetMap,
GetFeatureInfo, DescribeLayer, GetLegendGraphics, GetCapabilities

• <outputFormat>, optional, is the output format of the request. For example, for the wms GetMap request
it could be image/png, image/gif and so on

A few examples:

don't allow more than 16 WCS requests in parallel
ows.wcs=16
don't allow more than 8 GetMap requests in parallel
ows.wms.getmap=8
don't allow more than 2 WFS GetFeature requests with Excel output format
ows.wfs.getfeature.application/msexcel=2

938 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Per user control

This avoid a single user to make too many requests in parallel:

user=<count>

Where <count> is the maximum number of parallel requests a single user can execute in parallel. The user tracking
mechanism is cookie based, so it will work fine for browsers but not as much for other kinds of clients. An IP based
mechanism is not provided at the time, but it would have its own fallacies as well, as it would limit all the users sitting
behind a single router to <count> requests (imagine the effect on a big public administration).

Timeout

A request timeout is specified with the following syntax:

timeout=<seconds>

where <seconds> is the number of seconds a request can stay queued waiting for execution. If the request does not
enter execution before the timeout expires it will be rejected.

A complete example

Assuming the server we want to protect has 4 cores a sample configuration could be:

if a request waits in queue for more than 60 seconds it's not worth executing,
the client will likely have given up by then
timeout=60
don't allow the execution of more than 100 requests total in parallel
ows.global=100
don't allow more than 10 GetMap in parallel
ows.wms.getmap=10
don't allow more than 4 outputs with Excel output as it's memory bound
ows.wfs.getfeature.application/msexcel=4
don't allow a single user to perform more than 6 requests in parallel
(6 being the Firefox default concurrency level at the time of writing)
user=6

Running GeoNode under SSL

Enabling SSL will encrypt traffic between your GeoNode server and client browsers. This approach involves re-
configuring Apache to serve on port 443, instead of port 80. Other approaches exist and should be added to this
document.

Generate SSL Key & Certificate

The first step is to generate a DES key.:

for CommonName use GeoNode domain name or ip address as specified in GeoNode's
→˓SITEURL
openssl genrsa -des3 -out server.key 1024
openssl req -new -key server.key -out server.csr

(continues on next page)

3.2. Tutorials 939

GeoNode Documentation, Release 2.8

(continued from previous page)

generate new server.key without challenge password, or Apache will ask for password
→˓at startup
mv server.key server.key.tmp
openssl rsa -in server.key.tmp -out server.key

generate certificate
openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

Copy the key and certificate to the standard locations:

sudo cp server.crt /etc/ssl/certs/geonode.crt
sudo cp server.key /etc/ssl/private/geonode.key

It seems not necessary in standard GeoNode installations (via ppa) but if you plan to use other python or java applica-
tions, it could be useful also add the certificate to the cacerts file for python and java:

sudo -s "cat server.crt >> /usr/lib/python2.7/dist-packages/httplib2/cacerts.txt"
sudo keytool -import -alias geonodessl -keystore /etc/ssl/certs/java/cacerts -file
→˓server.crt

Note: keytool will ask for a password and the standard password for the java cacerts file is changeit.

Apache Configuration

Enable the SSL module in Apache with the command:

sudo a2enmod ssl

Next as root edit the Apache geonode config file /etc/apache2/sites-available/geonode.conf. At the
beginning of the file replace:

<VirtualHost *:80>

with:

<IfModule mod_ssl.c>
<VirtualHost _default_:443>

At the bottom of the file, replace:

</VirtualHost>

with:

SSLEngine on
SSLCertificateFile /etc/ssl/certs/geonode.crt
SSLCertificateKeyFile /etc/ssl/private/geonode.key
BrowserMatch "MSIE [2-6]" \

nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0

MSIE 7 and newer should be able to use keepalive
BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown

</VirtualHost>
</IfModule>

(continues on next page)

940 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

<VirtualHost *:80>
Redirect permanent / https://<ipaddressOrDomainName>/

</VirtualHost>

Replace <ipaddressOrDomainName> with current value.

This tells Apache where to fine the key and certificate. There are also some additional lines to handle MSIE, taken
from Apache’s default-ssl file.

Tomcat Configuration

As root edit the Tomcat server config file /etc/tomcat7/server.xml, and replace:

<Connector port="8080" protocol="HTTP/1.1"
connectionTimeout="20000"
URIEncoding="UTF-8"
redirectPort="8443"

/>

with:

<Connector port="8080" protocol="HTTP/1.1"
connectionTimeout="20000"
URIEncoding="UTF-8"
scheme="https"
proxyName="<yourServersIPorDomainName>"
proxyPort="443"

/>

This tells Tomcat that it is running behind an https proxy. If this is omitted Tomcat will try to redirect to http.

GeoNode Configuration

As root edit the geonode config file /etc/geonode/local_settings.py and change the SITEURL protocol
to https:

SITEURL = 'https://<ipaddressOrDomainName>/'

GeoServer Configuration

As root edit the file /usr/share/geoserver/WEB-INF/web.xml and ensure the GEONODE_BASE_URL is
specified as follows:

<context-param>
<param-name>GEONODE_BASE_URL</param-name>
<param-value>https://localhost/</param-value>

</context-param>

Also update proxyBaseUrl in the Geoserver global settings file /var/lib/geoserver/geonode-data/
global.xml:

3.2. Tutorials 941

GeoNode Documentation, Release 2.8

<proxyBaseUrl>https://XXX.XXX.XXX.XXX/geoserver/</proxyBaseUrl>

Replace XXX.XXX.XXX.XXX with your server internal address.

Restart

Finally restart Apache and Tomcat with:

sudo /etc/init.d/apache2 restart
sudo /etc/init.d/tomcat6 restart

This information was complied from a number of sources. The main links are listed below. Please contact the GeoNode
list with any updates or corrections.

• https://confluence.atlassian.com/jira/connecting-to-ssl-services-117455.html

• https://confluence.atlassian.com/adminjiraserver072/integrating-jira-with-apache-using-ssl-828788158.html

• http://www.akadia.com/services/ssh_test_certificate.html

• https://help.ubuntu.com/lts/serverguide/httpd.html

• https://help.ubuntu.com/lts/serverguide/certificates-and-security.html

GeoSites: GeoNode Multi-Tenancy

GeoSites is a way to run multiple websites with a single instance of GeoNode. Each GeoSite can have different
templates, apps, and data permissions but share a single database (useful for sharing users and data layers), GeoServer,
and CSW. This is useful when multiple websites are desired to support different sets of users, but with a similar set of
data and overall look and feel of the sites. Users can be given permission to access multiple sites if needed, which also
allows administrative groups can be set up to support all sites with one account.

Master Website

A GeoSites installation uses a ‘master’ GeoNode website that has some additional administrative pages for doing data
management. Layers, Maps, Documents, Users, and Groups can all be added and removed from different sites. Users
can be given access to any number of sites, and data may appear on only a single site, or all of them. Additionally, if
desired, any or all of the Django apps installed on the other sites can be added to the master site to provide a single
administrative interface that gives full access to all apps. The master site need not be accessible from the outside so
that it can be used as an internal tool to the organization.

Users created on a particular site are created with access to just that site. Data uploaded to a particular site is given
permission on that site as well as the master site. Any further adjustments to site-based permissions must be done from
the master site.

Database

The master site, and all of the individual GeoSites, share a single database. Objects, including users, groups, and data
layers, all appear within the database but an additional sites table indicates which objects have access to which sites.
The geospatial data served by GeoServer (e.g., from PostGIS) can exist in the database like normal, since GeoServer
will authenticate against GeoNode, which will use it’s database to determine permissions based on the object, current
user, and site.

942 Chapter 3. Table of contents

https://confluence.atlassian.com/jira/connecting-to-ssl-services-117455.html
https://confluence.atlassian.com/adminjiraserver072/integrating-jira-with-apache-using-ssl-828788158.html
http://www.akadia.com/services/ssh_test_certificate.html
https://help.ubuntu.com/lts/serverguide/httpd.html
https://help.ubuntu.com/lts/serverguide/certificates-and-security.html

GeoNode Documentation, Release 2.8

GeoServer

A single GeoServer instance is used to serve data to all of the GeoSites. Data that is common to all sites can be added
to the master site which will appear in the generic ‘geonode’ workspace.

Settings Files and Templates

A key component in managing multiple sites is keeping data organized and using a structured series of settings files so
that common settings can be shared and only site specific settings are separated out. It is also best to import the default
GeoNode settings from the GeoNode installation. This prevents the settings from having to be manually upgraded if
there is any default change the GeoNode settings.

Settings which are common to all GeoSites, but differ from the default GeoNode, are separated into a con-
trib/geosites/settings.py file. Then, each individual site has settings file which imports from the master site and will
then only need to specify a small selection that make that site unique, such as:

• SITE_ID: Each one is unique, the master site should have a SITE_ID of 1.

• SITENAME

• SITEURL

• ROOT_URLCONF: This may be optional. The master site url.conf can be configured to automatically import
the urls.py of all SITE_APPS, so a different ROOT_URLCONF is only needed if there are further differences.

• SITE_APPS: Containing the site specific apps

• App settings: Any further settings required for the above sites

• Other site specific settings, such as REGISTRATION_OPEN

A GeoSite therefore has three layers of imports, which is used for settings as well as the search path for templates.
First it uses the individual site files, then the master GeoSite, then default GeoNode. These are specified via variables
defined in settings:

• SITE_ROOT: The directory where the site specific settings and files are located (templates, static)

• PROJECT_ROOT: The top-level directory of all the GeoSites which should include the global settings file as
well as template and static files

• GEONODE_ROOT: The GeoNode directory.

The TEMPLATE_DIRS, and STATICFILES_DIRS will then include all three directories as shown:

TEMPLATE_DIRS = (
os.path.join(SITE_ROOT, 'templates/'),
os.path.join(PROJECT_ROOT,'templates/'), # files common to all sites
os.path.join(GEONODE_ROOT, 'templates/')

)

STATICFILES_DIRS = (
os.path.join(SITE_ROOT, 'static/'),
os.path.join(PROJECT_ROOT, 'static/'),
os.path.join(GEONODE_ROOT, 'static/')

)

At the end of the post_settings.py the following variables will be set based on site specific settings:

3.2. Tutorials 943

GeoNode Documentation, Release 2.8

STATIC_URL = os.path.join(SITEURL,’static/’)
GEONODE_CLIENT_LOCATION = os.path.join(STATIC_URL,’geonode/’)
GEOSERVER_BASE_URL = SITEURL + ‘geoserver/’
if SITE_APPS:

INSTALLED_APPS += SITE_APPS

Templates and Static Files

As mentioned above for each website there will be three directories used for template and static files. The first
template file found will be the one used so templates in the SITE_ROOT/templates directory will override those in
PROJECT_ROOT/templates, which will override those in GEONODE_ROOT/templates.

Static files work differently because (at least on a production server) they are collected and stored in a single location.
Because of this care must be taken to avoid clobbering of files between sites, so each site directory should contain all
static files in a subdirectory with the name of the site (e.g., static_root/siteA/logo.png)

The location of the proper static directory can then be found in the templates syntax such as:

{{ STATIC_URL }}{{ SITENAME|lower }}/logo.png

Permissions by Site

By default GeoNode is publicly available. In the case of GeoSites, new data will be publicly available, but only for the
site it was added to, and the master site (all data is added to the master site).

Activate geosites app

In order to use geonode in Multi-tenancy mode, follow these steps: 1. check in settings.py if ‘geonode.contrib.geosites’
in GEONODE_CONTRIB_APPS is rightly uncommented 2. add in settings.py ‘geonode.contrib.geosites’ in IN-
STALLED_APPS 3. run python manage.py syncdb

Adding New Sites

To add a new site follow the following steps:

1. copy the directory site_template in your geonode-project folder and give it a name

2. from geonode administration pannel add ‘new site’

3. create a virtualhost in the webserver related to the new created site. Remember to setup the WSGIDeamon-
Process with the name you gave to the folder created at point 1. and the path to the geosites directory. WS-
GIProcessGroup have to be pointed to the name you choose for the folder you created at point 1. Eventually,
WSGIScriptAlias have to be set to the wsgi.py you have in your site folder.

4. check the configuration files: local_settings.py, pre_settings.py, post_settings.py in /geonode-project as well as local_settings.py and settings.py in your site folder:

• in /geonode-project/local_settings.py set the variable SERVE_PATH. It has to point geosites folder.

• in the local_setting of the site folder insert the values to the following variables:

– SITE_ID

– SITE_NAME

944 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

– SITE_URL

5. create static_root directory where you usually let the webserver serve webpages (e.g., /var/www) and give it
grants to be accessed by the user www-data

6. create an uploaded/layers and uploaded/thumbs folder in your geonode-project folder and give them grants as follow:
sudo mkdir -p geonode-project/uploaded/thumbs sudo mkdir -p geonode-project/uploaded/layers sudo
chmod -Rf 755 geonode-project/uploaded/thumbs sudo chmod -Rf 755 geonode-project/uploaded/layers

7. run python manage.py collectstatics - Pay attention on the folder where you are running the command and the
folder structure of your geonode/geosites project, in case pass to the path the settings file by using –settings to
the python command

8. you can customize the look and feel of your site working on the css and html file you find in your template site
directory. After a change, run again collectstatics command.

Advanced Data Management and Processing Advanced Data Management and Processing techniques.

GeoNode Advanced Configuration Learn how to deal with advanced GeoNode configuration settings and external
Django Apps.

GeoNode on Production Concepts and techniques for the deployment of GeoNode and GeoServer on a Production
system.

GeoNode Overview & Reference This module guides the user to an overview of GeoNode and its main components.

At the end of this section you will have a clear view of what GeoNode is and can do. You will be able also to
use the GeoNode main functionalities and understand some of the basic concepts of the system infrastructure.

Installation & Admin This module is more oriented to users having some System Administrator background.

At the end of this section you will be able to setup from scratch the whole GeoNode infrastructure and understand
how to the different pieces are interconnected and which are their dependencies.

Prerequisites Before proceeding with the reading, it is strongly recommended to be sure having clear the fol-
lowing concepts:

1. GeoNode and Django framework basic concepts

2. What is Python

3. What is a DBMS

4. What is a Java Virtual Machine and the JDK

5. Linux OS basic shell and maintenance commands

6. Basic TCP/IP and networking concepts

7. Apache HTTPD Server and WSGI Python bindings

Users Workshop This workshop will teach how to use the GeoNode going in depth into what we can do with soft-
ware application. At the end of this section you will master all the GeoNode sections and entities from a user
perspective.

You will know how to:

1. Manage users accounts and how to modify them.

2. Use and manage the different GeoNode basic resources.

3. Use the GeoNode searching tools to find your resources.

4. Manage Layers and Maps, update the styles and publish them.

5. Load datasets into GeoNode and keep them synchronized with GeoServer.

3.2. Tutorials 945

GeoNode Documentation, Release 2.8

Prerequisites Before proceeding with the reading, it is strongly recommended to be sure having clear the fol-
lowing concepts:

1. GeoNode and Django framework basic concepts

2. What is Python

3. What is a geospatial server and a basic knowledge of the geospatial web services.

4. What is a metadata and a catalog.

5. What is a map and a legend.

Administrators Workshop This workshop will teach how to install and manage a deployment of the GeoNode soft-
ware application. At the end of this section you will master all the GeoNode sections and entities from an
administrator perspective.

You will know how to:

1. Use the GeoNode’s Django Administration Panel.

2. Use the console Management Commands for GeoNode.

3. Configure and customize your GeoNode installation.

Prerequisites Before proceeding with the reading, it is strongly recommended to be sure having clear the fol-
lowing concepts:

1. GeoNode and Django framework concepts

2. Good knowledge of Python

3. Good knowledge of what is a geospatial server and geospatial web services.

4. Good knowledge of what is metadata and catalog.

5. Good knowledge of HTML and CSS.

Developers Workshop This workshop will teach how to develop with and for the GeoNode software application. This
module will introduce you to the components that GeoNode is built with, the standards that it supports and the
services it provides based on those standards, and an overview its architecture.

Prerequisites GeoNode is a web based GIS tool, and as such, in order to do development on GeoNode itself or
to integrate it into your own application, you should be familiar with basic web development concepts as
well as with general GIS concepts.

Advanced Workshop This module introduces advanced techniques and methodologies for the management of the
geospatial data and the maintenance and tuning of the servers on Production Environments.

The last sections of the module will teach also you how to add brand new classes and functionalities to your
GeoNode installation.

Prerequisites You should be familiar with GeoNode, GeoServer, Python framework and

development concepts other than with system administrator and caching concepts and techniques.

3.3 Reference

The Reference section provides details about the internals of the GeoNode project. It has background information
about components that make up GeoNode, the security system, APIs and much more.

946 Chapter 3. Table of contents

http://geonode.org/
http://geonode.org

GeoNode Documentation, Release 2.8

3.3.1 Reference documentation

In this section, you will find information about every component of GeoNode, such as GeoServer, GeoNode settings,
security, etc.

Security and Permissions

GeoNode ad-hoc API

Localization

GeoNode Django Apps

JavaScript in GeoNode

Settings

Supported Browsers

GeoSites: GeoNode Multi-Tenancy

3.3.1.1 Security and Permissions

GeoNode has the ability to restrict the access on your layers, maps, and documents to other users or group of users.

This section should help you to understand which restrictions are possible and what to take care of while using them.

Generally permissions can be set on all your uploaded data. Here´s an overview:

1. Users

• Superuser permissions

• Django admin interface permissions

2. Groups

• Public

• Public (invite only)

• Private

3. Layers

• View a layer

• Download a layer

• Change metadata for a layer

• Edit layer’s features

• Edit styles for a layer

• Manage a layer (update, delete, change permissions, publish/unpublish it)

4. Maps

• View a map

• Download a map

• Change metadata for a map

• Manage a map (update, delete, change permissions, publish/unpublish it)

5. Documents

3.3. Reference 947

GeoNode Documentation, Release 2.8

• View a document

• Download a document

• Change metadata for a document

• Manage a document (update, delete, change permissions, publish/unpublish it)

To understand how this permissions can be set, you first have to know about the different kinds of users.

3.3.1.1.1 Permissions and GeoNode objects

Users

GeoNode has two types of users:

• Unregistered users (anonymous)

• Registered users

An unregistered user is someone who is just visiting the site, but doesn’t have any data uploaded yet. A registered user
has already done that. But there are even more kinds of registered users! A registered user can have one or more of
those three status:

• Superuser

• Staff

• Active

A superuser is usually generated directly after the installation of GeoNode via the terminal. When creating a superuser
through the terminal it always has the status active and the status staff as well. It is also important to know that a
superuser is a user that has all permissions without explicitly assigning them! That means that he is able to upload and
edit layers, create maps etc. and can not be restricted from that! So the superuser is basically the administrator, who
knows and has access on everything.

The status staff only implies that a user with this status is able to attend the Django Admin Interface. Active has no
special meaning, it only says that there is a user and it is available. Instead of deleting this user, you could just unset
the status active, your user will still be remaining, but it won´t show up.

There are several options to create a user:

• From the terminal: Here you can only create a superuser

• From the GeoNode interface (when GeoNode registration are open): A normal user will be created by signing
up to GeoNode. It only has the status active so far!

• From the GeoNode interface (when GeoNode registration are closed): A superuser will be able to invite a user

• From the Django administrative interface: a new user can be created as well as the status of an already existing
user can be changed, e.g make a generic user a superuser.

Groups

In GeoNode you can assign permissions to groups, all the users that belong to the group will inherit its permissions.

If you are an administrator you can create a group in the dedicated tab and invite or assign users to it. The group will
be available in the permissions widget in geonode and you will be able to assign object permissions to it.

948 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Layers

As mentioned above, a superuser or the layer owner or a user with management permissions on the layer should be
able to restrict other users from the layer itself.

Generally there are the following types of permissions:

These are permissions that is possible to assign to a GeoNode layer:

• Who can view the layer

• Who can download the layer

• Who can change the metadata of the layer

• Who can edit data of the layer

• Who can edit styles of the layer

• Who can manage the layer (update, delete, change permissions, publish/unpublish it)

Each of these permissions can be assigned to:

• Anyone (only for who can view and download)

• One or more users

• One or more groups

A user with all of these permissions in the layer detail page will have a button to download the layer, a button to
download its metadata, a button to change the layer permissions and an edit button that will display links to:

• Edit metadata

• Edit styles

• Manage styles

• Replace the layer

• Remove the layer

This can also be seen here:

If the layer is vectorial the user will be able also to edit the layer’s features in a GeoNode map (the “Edit” tool should
be enabled).

Now take a closer look on to the section Edit Metadata. All the following things can be edited in the metadata section:

• Owner

• Title

• Date

• Data type

• Edition

• Abstract

• Purpose

• Maintenance frequency

• Keywords region

• Restrictions

• Restrictions other

3.3. Reference 949

GeoNode Documentation, Release 2.8

950 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

• Language

• Category

• Spatial representation type

• Temporal extent start

• Temporal extent end

• Supplemental information

• Distribution URL

• Distribution description

• Data quality statement

• Keywords

• Point of contact

• Metadata author

• Attributes (those can though not be changed!)

Maps

Generally all the same applies to maps, but with fewer options:

• Who can view the map

• Who can download the map

• Who can change the metadata of the map

• Who can manage (delete, change permissions, publish/unpublish it, set map thumbnail)

The section Edit metadata is almost the same as for layers, with two more options:

3.3. Reference 951

GeoNode Documentation, Release 2.8

• Metadata XML

• Thumbnail

In Set map thumbnail the thumbnail of the map can be set.

Documents

The same permissions that can be used on layers can be used on the documents, with the exception of the edit data and
edit styles permissions.

Require authentication to access GeoNode

By default, unregistered users cannot view maps, layers, and documents on your site without being authenticated.
GeoNode comes a security option that requires users to authenticate before accessing any page. To enable this option,
set the LOCKDOWN_GEONODE setting to true in your settings.py file. You can fine-tune which URL routes
are white-listed (accessible by unregistered users) by listing the routes in the AUTH_EXEMPT_URLS tuple. See the
GeoNode Django Apps documentation for more information.

3.3.1.1.2 Publishing and unpublishing objects

By default GeoNode does not implement any kind of mechanism to publish/unpublish resources such as layer, maps
and documents.

Setting the RESOURCE_PUBLISHING to True such a workflow is used, and by default new uploaded resources are
unpublished.

It is possible for any GeoNode staff member that has permissions on the base/ResourceBase model to decide to
publish/unpublish a layer, map or document.

The staff member can go to the resource base Django admin page, and publish or unpublish the resource by checking
or unchecking the is_published field:

When the resource is unpublished, it will be not available to any user, including administrators, in the GeoNode site.
If the unpublished resource is a layer it will be considered in the GetCapabilities generated by GeoServer.

The unpublished resource will not be reachable by anyone using GeoNode search features. The only way to access
to it is by the Django admin site, from where it will be eventually possible to publish again the resource by a staff
member, or from the layer details page, accessible by any user with the publish_resourcebase permission on that layer.

3.3.1.2 GeoNode ad-hoc API

GeoNode provides a JSON API which currently supports the GET method. The API is also used as main search
engine.

952 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.3.1.2.1 API endpoints

GeoNode provides some endpoints and filtering.

• “/api/base” query on the ResourceBase table and returns combined results of Maps, Layers Documents and
Services

• “/api/layers” query the Layer table

• “/api/maps” query the Map table

• “/api/documents” query the Document table

• “/api/groups” query the GroupProfile table (which contains the Groups)

• “/api/profiles” query the Profile table (which is the geonode authentication table)

• “/api/categories” query the Category table

• “/api/keywords” query the Tag table

• “/api/featured” query the ResourceBase table by limiting the items to the ones flagged as “featured” (listed in
home page)

3.3.1.2.2 API filtering

The API allow filtering by adding Django style model filters to the URL.

As an example, filtering by title corresponds to a URL like “/api/layers?title__contains=grid” It’s also possible to
filter by related tables like “/api/layers?keywords__slug__exact=the-keyword”

There are many possible filter, refer to the django filters guide.

3.3.1.2.3 API limit and pagination

It’s possible to limit the number of the results returned by the API by adding a limit parameter like
“/api/layers?limit=10” It’s also possible to specify an offset so that the first results will not be returned (together
with the limit this makes a pagination logic), “/api/layers?offset=5”

So a query like “/api/layers?offset=5&limit=10” will return 10 results starting from the 6th found in the database.

3.3.1.2.4 API settings

You can configure how many results will be lists per page on the client (in the list pages and search page) by changing
this line https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L643

And you can set the amount of data returned by default from the API (if the limit parameter is not set), the default is 0
which means no limit https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L646

3.3.1.2.5 Searching with Haystack

GeoNode is ready to use a complete full text search engine. Note that haystack will be used only on the base, layers,
maps and documents API.

Once activated the full text API is reachable by appending “search” to the URL, for example
“/api/base/search?limit=0&offset=0”

3.3. Reference 953

https://docs.djangoproject.com/en/1.8/ref/models/querysets/
https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L643
https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L646

GeoNode Documentation, Release 2.8

Although the backend type is not mandatory, we suggest (for simplicity) to use Elasticsearch:

To activate the search backend make sure that you have a running instance of Elasticsearch, then uncomment the
following line in the geonode settings:

https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L219

And activate the search through the settings at the line:

https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L607

Also uncomment and correct the address of Elasticsearch if needed: https://github.com/GeoNode/geonode/blob/
master/geonode/settings.py#L612 https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L619

You can do some more customizations like:

• should the search skip the permissions filtering? https://github.com/GeoNode/geonode/blob/master/geonode/
settings.py#L609

• should the search update the facets counts on every search you make or keep the standard behavior? https:
//github.com/GeoNode/geonode/blob/master/geonode/settings.py#L611

• How many results should the backend return by default? https://github.com/GeoNode/geonode/blob/master/
geonode/settings.py#L620

3.3.1.3 Localization

To enable a new language in GeoNode you have to do the following:

1. Install gettext:

sudo apt-get install gettext

2. Create a directory named locale in the root of your project:

mkdir locale

3. In the root of your project, run:

python manage.py makemessages -l fr

4. Navigate to the GeoNode directory and do:

cd src/GeoNodePy/geonode/maps; django-admin.py makemessages -l fr
cd src/GeoNodePy/geonode; django-admin.py makemessages -l fr

Optional steps:

1. Install django-rossetta:

http://code.google.com/p/django-rosetta/

2. Install django-modeltranslation

3. If you want to enable metadata in the other format too, make sure you have model translation installed and create
a translations.py file like this:

from modeltranslation.translator import translator, TranslationOptions
from geonode.maps.models import Layer

(continues on next page)

954 Chapter 3. Table of contents

https://www.elastic.co/products/elasticsearch/
https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L219
https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L607
https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L612
https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L612
https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L619
https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L609
https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L609
https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L611
https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L611
https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L620
https://github.com/GeoNode/geonode/blob/master/geonode/settings.py#L620

GeoNode Documentation, Release 2.8

(continued from previous page)

class LayerTO(TranslationOptions):
fields = (

'title',
'edition',
'abstract',
'purpose',
'constraints_other',
'data_quality_statement',
'supplemental_information',
)

translator.register(FlatBlock, FlatBlockTO)
translator.register(Layer, LayerTO)

3.3.1.4 Developers Reference

Here you will find information about each and every component of GeoNode, for example GeoServer, GeoNode
settings, security, etc.

GeoNode Django Apps

JavaScript in GeoNode

Settings

GeoSites: GeoNode Multi-Tenancy

3.3.1.4.1 GeoNode Django Apps

The user interface of a GeoNode site is built on top of the Django web framework. GeoNode includes a few “apps”
(reusable Django modules) to support development of those user interfaces. While these apps have reasonable default
configurations, for customized GeoNode sites you will probably want to adjust these apps for your specific needs.

geonode.base - GeoNode core functionality

Stores core functionality used throughout the GeoNode application.

Template Tags

num_ratings <object>

Returns the number of ratings an object has. Example usage:

{% load base_tags %}
{% num_ratings map as num_votes %}

<p>Map votes: {{num_votes}}.</p>

categories

Returns topic categories and the count of objects in each category.

3.3. Reference 955

GeoNode Documentation, Release 2.8

geonode.documents - Document creation and management

Manages uploaded files that can be related to maps. Documents can be any type of file that is included in
the ALLOWED_DOCUMENTS_TYPES setting.

settings.py Entries

ALLOWED_DOCUMENT_TYPES Default: ['doc', 'docx', 'xls', 'xslx', 'pdf', 'zip',
'jpg', 'jpeg', 'tif', 'tiff', 'png', 'gif', 'txt']

A list of acceptable file extensions that can be uploaded to the Documents app.

MAX_DOCUMENT_SIZE Default: 2

The maximum size (in megabytes) that an upload will be before it gets rejected.

geonode.layers - Layer creation and geospatial data management

This Django app provides support for managing and manipulating single geospatial datasets known as layers.

Models

• Attribute - Feature attributes for a layer managed by the GeoNode.

• Layer - A data layer managed by the GeoNode

• Style - A data layer’s style managed by the GeoNode

Views

• Creating, viewing, browsing, editing, and deleting layers and their metadata

Template Tags

featured_layers Returns the 7 newest layers.

layer_thumbnail <layer> Returns the layer’s thumbnail.

manage.py Commands

importlayers python manage.py importlayers

Brings a data file or a directory full of data files into a GeoNode site. Layers are added to the Django database,
the GeoServer configuration, and the GeoNetwork metadata index.

updatelayers python manage.py updatelayers

Scan GeoServer for data that has not been added to GeoNode.

956 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

geonode.maps - Map creation and geospatial data management

This Django app provides some support for managing and manipulating geospatial datasets. In particular, it provides
tools for editing, viewing, and searching metadata for data layers, and for editing, viewing, and searching maps that
aggregate data layers to display data about a particular topic.

Models

• Map - A collection of data layers composed in a particular order to form a map

• MapLayer - A model that maintains some map-specific information related to a layer, such as the z-indexing
order.

Views

The maps app provides views for:

• Creating, viewing, browsing, editing, and deleting Maps

These operations require the use of GeoServer to manage map rendering, as well as GeoExt to provide interactive
editing and previewing of maps and data layers.

There are also some URL mappings in the geonode.maps.urls module for easy inclusion in GeoNode sites.

settings.py Entries

OGC_SERVER Default: {} (Empty dictionary)

A dictionary of OGC servers and their options. The main server should be listed in the ‘default’ key. If there
is no ‘default’ key or if the OGC_SERVER setting does not exist GeoNode will raise an Improperly Configured
exception. Below is an example of the OGC_SERVER setting:

OGC_SERVER = {
'default' : {

'LOCATION' : 'http://localhost:8080/geoserver/',
'USER' : 'admin',
'PASSWORD' : 'geoserver',

}
}

BACKEND Default: "geonode.geoserver"

The OGC server backend to use. The backend choices are:

• 'geonode.geoserver'

BACKEND_WRITE_ENABLED Default: True

Specifies whether the OGC server can be written to. If False, actions that modify data on the OGC server
will not execute.

LOCATION Default: "http://localhost:8080/geoserver/"

A base URL from which GeoNode can construct OGC service URLs. If using GeoServer you can deter-
mine this by visiting the GeoServer administration home page without the /web/ at the end. For example,
if your GeoServer administration app is at http://example.com/geoserver/web/, your server’s location is
http://example.com/geoserver.

3.3. Reference 957

http://example.com/geoserver/web/
http://example.com/geoserver

GeoNode Documentation, Release 2.8

PUBLIC_LOCATION Default: "http://localhost:8080/geoserver/"

The URL used to in most public requests from GeoNode. This settings allows a user to write to one OGC
server (the LOCATION setting) and read from a separate server or the PUBLIC_LOCATION.

USER Default: 'admin'

The administrative username for the OGC server as a string.

PASSWORD Default: 'geoserver'

The administrative password for the OGC server as a string.

MAPFISH_PRINT_ENABLED Default: True

A boolean that represents whether the MapFish printing extension is enabled on the server.

PRINT_NG_ENABLED Default: True

A boolean that represents whether printing of maps and layers is enabled.

GEONODE_SECURITY_ENABLED Default: True

A boolean that represents whether GeoNode’s security application is enabled.

GEOGIT_ENABLED Default: False

A boolean that represents whether the OGC server supports GeoGig datastores.

WMST_ENABLED Default: False

Not implemented.

WPS_ENABLED Default: False

Not implemented.

DATASTORE Default: '' (Empty string)

An optional string that represents the name of a vector datastore that GeoNode uploads are imported
into. In order to support vector datastore imports there also needs to be an entry for the datastore in the
DATABASES dictionary with the same name. Example:

OGC_SERVER = {
'default' : {

'LOCATION' : 'http://localhost:8080/geoserver/',
'USER' : 'admin',
'PASSWORD' : 'geoserver',
'DATASTORE': 'geonode_imports'

}
}

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.sqlite3',
'NAME': 'development.db',

},
'geonode_imports' : {

'ENGINE': 'django.contrib.gis.db.backends.postgis',
'NAME': 'geonode_imports',
'USER' : 'geonode_user',
'PASSWORD' : 'a_password',
'HOST' : 'localhost',
'PORT' : '5432',

(continues on next page)

958 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

(continued from previous page)

}
}

GEOSERVER_CREDENTIALS Removed in GeoNode 2.0, this value is now specified in the OGC_SERVER set-
tings.

GEOSERVER_BASE_URL Removed in GeoNode 2.0, this value is now specified in the OGC_SERVER settings.

CATALOGUE A dict with the following keys:

• ENGINE: The CSW backend (default is geonode.catalogue.backends.pycsw_local)

• URL: The FULLY QUALIFIED base URL to the CSW instance for this GeoNode

• USERNAME: login credentials (if required)

• PASSWORD: login credentials (if required)

pycsw is the default CSW enabled in GeoNode. pycsw configuration directives are managed in the PYCSW
entry.

PYCSW A dict with pycsw’s configuration. Of note are the sections metadata:main to set CSW server metadata
and metadata:inspire to set INSPIRE options. Setting metadata:inspire['enabled'] to true
will enable INSPIRE support. Server level configurations can be overridden in the server section. See
http://docs.pycsw.org/en/stable/configuration.html for full pycsw configuration details.

SITEURL Default: 'http://localhost:8000/'

A base URL for use in creating absolute links to Django views.

DEFAULT_MAP_BASE_LAYER The name of the background layer to include in newly created maps.

DEFAULT_MAP_CENTER Default: (0, 0)

A 2-tuple with the latitude/longitude coordinates of the center-point to use in newly created maps.

DEFAULT_MAP_ZOOM Default: 0

The zoom-level to use in newly created maps. This works like the OpenLayers zoom level setting; 0 is at the
world extent and each additional level cuts the viewport in half in each direction.

geonode.proxy - Assist JavaScript applications in accessing remote servers

This Django app provides some HTTP proxies for accessing data from remote servers, to overcome restrictions im-
posed by the same-origin policy used by browsers. This helps the GeoExt applications in a GeoNode site to access
various XML documents from OGC-compliant data services.

Views

geonode.proxy.views.proxy This view forwards requests without authentication to a URL provided in the request,
similar to the proxy.cgi script provided by the OpenLayers project.

geonode.proxy.views.geoserver This view proxies requests to GeoServer. Instead of a URL-encoded URL parameter,
the path component of the request is expected to be a path component for GeoServer. Requests to this URL
require valid authentication against the Django site, and will use the default OGC_SERVER USER, PASSWORD
and LOCATION settings as defined in the maps application.

3.3. Reference 959

http://docs.pycsw.org/en/stable/configuration.html

GeoNode Documentation, Release 2.8

geonode.search - Provides the GeoNode search functionality.

This Django app provides a fast search functionality to GeoNode.

Views

• search_api- Builds and executes a search query based on URL parameters and returns matching results in re-
quested format.

geonode.security - GeoNode granular Auth Backend

This app provides an authentication backend for use in assigning permissions to individual objects (maps and layers).

settings.py Entries

LOCKDOWN_GEONODE Default: False

By default, the GeoNode application allows visitors to view most pages without being authenticated. Set
LOCKDOWN_GEONODE = True to require a user to be authenticated before viewing the application.

AUTH_EXEMPT_URLS Default: () (Empty tuple)

A tuple of URL patterns that the user can visit without being authenticated. This setting has no effect if
LOCKDOWN_GEONODE is not True. For example, AUTH_EXEMPT_URLS = ('/maps',) will allow unau-
thenticated users to browse maps.

Template Tags

geonode_media <media_name> Accesses entries in MEDIA_LOCATIONS without requiring the view to explicitly
add it to the template context. Example usage:

{% include geonode_media %}
{% geonode_media "ext_base" %}

has_obj_perm <user> <obj> <permission> Checks whether the user has the specified permission on an object.

{% has_obj_perm user obj "app.view_thing" as can_view_thing %}

geonode.people - User account registration and profile management

This app provides functionality related to user accounts and user profiles.

User authentication is based on django-allauth, with some geonode-specific customizations. Users can register to a
geonode instance by either creating a new account or by using one of their social providers, such as linkedin, facebook,
etc.

User invitations are leveraged via ‘django-invitations‘_.

960 Chapter 3. Table of contents

https://django-allauth.readthedocs.io/en/latest/index.html

GeoNode Documentation, Release 2.8

Adding authentication with a social provider

Configuring geonode user authentication with a social provider is a multi-step process:

• Create an application on the provider’s developer site. For example, for

linkedin:

• Go to https://developer.linkedin.com/apps and select Create Application

• Proceed to create an application, referring to django-allauth’s documentation where needed. Be sure to select
the r_basicprofile and r_emailaddress application permissions. These will enable geonode to access
some information regarding the user’s linkedin public profile. Once created, take note of the Client ID and
Client Secret parameters which linkedin assigns to your new application

• Follow the post-install instructions on django-allauth’s documentation. These basically instruct you to:

– include the relevant app in geonode’s INSTALLED_APPS setting for the social provider that
you are using. For linkedin this means adding allauth.socialaccount.providers.
linkedin_oauth2.

– Access geonode’s admin interface and add a new Social App for the provider. Add the previously
gathered Client id and Secret key parameters that were obtained when creating a linkedin appli-
cation.

– Optionally add relevant value to geonode’s SOCIALACCOUNT_PROVIDERS setting. Consult django-
allauth’s provider-specific documentation for more information on this setting

• Optionally add a profile extractor entry to geonode’s SOCIALACCOUNT_PROFILE_EXTRACTORS setting.
This setting is specific to geonode and is not part of django-allauth. The expected value is a dictionary with the
provider’s id as key and the python path to a data extractor class as the value. Example:

settings.py
SOCIALACCOUNT_PROFILE_EXTRACTORS = {

"linkedin_oauth2": "geonode.people.profileextractors.LinkedInExtractor"
}

A profile extractor class can retrieve information from each social account
provider and use that to enhance a user's profile information on geonode.
Look into the ``geonode.people.profileextractors`` module on geonode's
source code for more information.

settings.py entries

ACCOUNT_OPEN_SIGNUP Default: True

Whether the geonode site allows new users to register for an account. When set to False new users cannot
register, they must be created by a staff member

ACCOUNT_APPROVAL_REQUIRED Default: False

Whether new user registrations must be manually approved. When set to True, the site’s staff must manually
approve every new account. The approval flow goes like this:

• User registers in the site (either with a local account or by using a social login);

• Staff users receive an email notification that a new user is requesting access;

• Staff users manually approve the user by using geonode’s administration interface;

• User receives an e-mail notification when the account has been approved;

3.3. Reference 961

https://developer.linkedin.com/apps
http://django-allauth.readthedocs.io/en/latest/providers.html#authorized-redirect-urls-oauth2
http://django-allauth.readthedocs.io/en/latest/installation.html#post-installation

GeoNode Documentation, Release 2.8

• User can now login to the geonode site.

ACCOUNT_ADAPTER Default: geonode.people.adapters.LocalAccountAdapter

This is a django-allauth setting. It allows specifying a custom class to handle authentication for local accounts.

ACCOUNT_CONFIRM_EMAIL_ON_GET Default: True

This is a django-allauth setting. It allows specifying the HTTP method used when confirming e-mail addresses.

ACCOUNT_EMAIL_REQUIRED Default: True

This is a django-allauth setting. Controls whehter the user is required to provide an e-mail address upon regis-
tration

ACCOUNT_EMAIL_VERIFICATION Default: optional

This is a django-allauth setting.

SOCIALACCOUNT_ADAPTER Default: geonode.people.adapters.SocialAccountAdapter

This is a django-allauth setting. It allows specifying a custom class to handle authentication for social accounts.

SOCIALACCOUNT_PROVIDERS Default: None

This is a django-allauth setting. It should be a dictionary with provider specific settings

SOCIALACCOUNT_PROFILE_EXTRACTORS Default: None

A dictionary with provider ids as keys and path to custom profile extractor classes as values.

Django’s error templates

GeoNode customizes some of Django’s default error templates.

500.html

If no custom handler for 500 errors is set up in urls.py, Django will call django.views.defaults.server_error which
expects a 500.html file in the root of the templates directory. In GeoNode, we have put a template that does not inherit
from anything as 500.html and because most of Django’s machinery is down when an INTERNAL ERROR (500 code)
is encountered the use of template tags should be avoided.

3rd party apps

pinax.notifications

This application enables users to receive notifications from specific events within GeoNode. For user-specific config-
uration, see Setting notification preferences. For settings, see User notifications settings.

3.3.1.4.2 JavaScript in GeoNode

GeoNode provides a number of facilities for interactivity in the web browser built on top of several high-quality
JavaScript frameworks:

• Bootstrap for GeoNode’s front-end user interface and common user interaction.

• Bower for GeoNode’s front-end package management.

962 Chapter 3. Table of contents

https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration
https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration
https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration
https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration
https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration
https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration
http://getbootstrap.com/
https://bower.io/

GeoNode Documentation, Release 2.8

• ExtJS for component-based UI construction and data access

• OpenLayers for interactive mapping and other geospatial operations

• GeoExt for integrating ExtJS with OpenLayers

• Grunt for front-end task automation.

• GXP for providing some higher-level application building facilities on top of GeoExt, as well as improving
integration with GeoServer.

• jQuery to abstract JavaScript manipulation, event handling, animation and XMLHttpRequest.

GeoNode uses application-specific modules to handle pages and services that are unique to GeoNode. This framework
includes:

• A GeoNode mixin class that provides GeoExplorer with the methods needed to properly function in GeoN-
ode. The class is responsible for checking permissions, retrieving and submitting the CSRF token, and user
authentication.

• A search module responsible for the GeoNode’s site-wide search functionality.

• An upload and status module to support file uploads.

• Template files for generating commonly used HTML sections.

• A front-end testing module to test GeoNode JavaScript.

The following concepts are particularly important for developing on top of the GeoNode’s JavaScript framework.

• Components - Ext components handle most interactive functionality in “regular” web pages. For example, the
scrollable/sortable/filterable table on the default Search page is a Grid component. While GeoNode does use
some custom components, familiarity with the idea of Components used by ExtJS is applicable in GeoNode
development.

• Viewers - Viewers display interactive maps in web pages, optionally decorated with Ext controls for toolbars,
layer selection, etc. Viewers in GeoNode use the GeoExplorer base class, which builds on top of GXP’s Viewer
to provide some common functionality such as respecting site-wide settings for background layers. Viewers can
be used as components embedded in pages, or they can be full-page JavaScript applications.

• Controls - Controls are tools for use in OpenLayers maps (such as a freehand control for drawing new geometries
onto a map, or an identify control for getting information about individual features on a map.) GeoExt provides
tools for using these controls as ExtJS “Actions” - operations that can be invoked as buttons or menu options or
associated with other events.

3.3.1.4.3 Settings

Here’s a list of settings available in GeoNode and their default values. This includes settings for some external
applications that GeoNode depends on.

Documents settings

Here’s a list of settings available for the Documents app in GeoNode.

ALLOWED_DOCUMENT_TYPES

Default: ['doc', 'docx', 'xls', 'xlsx', 'pdf', 'zip', 'jpg', 'jpeg', 'tif',
'tiff', 'png', 'gif', 'txt']

3.3. Reference 963

https://www.sencha.com/products/extjs/
http://openlayers.org/
http://geoext.org/
http://gruntjs.com/
https://github.com/boundlessgeo/gxp
http://jquery.com
https://github.com/GeoNode/geonode/blob/master/geonode/static/geonode/js/extjs/GeoNode-mixin.js
https://docs.djangoproject.com/en/1.8/ref/csrf/
https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/search
https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/upload
https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/templates
https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/tests

GeoNode Documentation, Release 2.8

A list of acceptable file extensions that can be uploaded to the Documents app.

MAX_DOCUMENT_SIZE

Default: 2

Metadata settings

CATALOGUE

A dict with the following keys:

• ENGINE: The CSW backend (default is geonode.catalogue.backends.pycsw_local)

• URL: The FULLY QUALIFIED base URL to the CSW instance for this GeoNode

• USERNAME: login credentials (if required)

• PASSWORD: login credentials (if required)

pycsw is the default CSW enabled in GeoNode. pycsw configuration directives are managed in the PYCSW entry.

PYCSW

A dict with pycsw’s configuration. Of note are the sections metadata:main to set
CSW server metadata and metadata:inspire to set INSPIRE options. Setting
metadata:inspire['enabled'] to true will enable INSPIRE support. Server level configura-
tions can be overridden in the server section. See http://docs.pycsw.org/en/latest/configuration.html
for full pycsw configuration details.

MODIFY_TOPICCATEGORY

Default: False

Metadata Topic Categories list should not be modified, as it is strictly defined by ISO (See:
http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml and check the <CodeListDictionary
gml:id=”MD_MD_TopicCategoryCode”> element).

Some customization is still possible by changing the is_choice and the GeoNode description fields.

In case it is absolutely necessary to add/delete/update categories, it is possible to set the MODIFY_TOPICCATEGORY
setting to True.

Maps settings

DEFAULT_MAP_BASE_LAYER

The name of the background layer to include in newly created maps.

964 Chapter 3. Table of contents

http://docs.pycsw.org/en/latest/configuration.html
http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml

GeoNode Documentation, Release 2.8

DEFAULT_MAP_CENTER

Default: (0, 0)

A 2-tuple with the latitude/longitude coordinates of the center-point to use in newly created maps.

DEFAULT_MAP_ZOOM

Default: 0

The zoom-level to use in newly created maps. This works like the OpenLayers zoom level setting; 0 is at the world
extent and each additional level cuts the viewport in half in each direction.

MAP_BASELAYERS

Default:

MAP_BASELAYERS = [{
"source": {

"ptype": "gxp_wmscsource",
"url": OGC_SERVER['default']['PUBLIC_LOCATION'] + "wms",
"restUrl": "/gs/rest"

}
},{
"source": {"ptype": "gxp_olsource"},
"type":"OpenLayers.Layer",
"args":["No background"],
"visibility": False,
"fixed": True,
"group":"background"

}, {
"source": {"ptype": "gxp_osmsource"},
"type":"OpenLayers.Layer.OSM",
"name":"mapnik",
"visibility": False,
"fixed": True,
"group":"background"

}, {
"source": {"ptype": "gxp_mapquestsource"},
"name":"osm",
"group":"background",
"visibility": True

}, {
"source": {"ptype": "gxp_mapquestsource"},
"name":"naip",
"group":"background",
"visibility": False

},{
"source": {"ptype": "gxp_mapboxsource"},

}, {
"source": {"ptype": "gxp_olsource"},
"type":"OpenLayers.Layer.WMS",
"group":"background",
"visibility": False,
"fixed": True,

(continues on next page)

3.3. Reference 965

GeoNode Documentation, Release 2.8

(continued from previous page)

"args":[
"bluemarble",
"http://maps.opengeo.org/geowebcache/service/wms",
{

"layers":["bluemarble"],
"format":"image/png",
"tiled": True,
"tilesOrigin": [-20037508.34, -20037508.34]

},
{"buffer": 0}

]

}]

A list of dictionaries that specify the default map layers.

Specific settings for map API providers (if they are not set those base maps will not be available):

• ALT_OSM_BASEMAPS set this variable to True if you want additional OSM basemaps

• CARTODB_BASEMAPS set this variable to True if you want CartoDB basemaps

• STAMEN_BASEMAPS set this variable to True if you want stamen basemaps

• THUNDERFOREST_BASEMAPS set this variable to True if you want Thunderforest basemaps

• MAPBOX_ACCESS_TOKEN set this variable to your Mapbox public token

• BING_API_KEY set this variable to your BING Map Key value

GEONODE_CLIENT_LAYER_PREVIEW_LIBRARY

Default: "geoext"

The library to use for display preview images of layers. The library choices are:

• "leaflet"

• "geoext"

• "react"

More instructions can be found here<https://github.com/GeoNode/geonode-client/blob/master/README.md>

OGC_SERVER

Default: {} (Empty dictionary)

A dictionary of OGC servers and their options. The main server should be listed in the ‘default’ key. If there is no
‘default’ key or if the OGC_SERVER setting does not exist GeoNode will raise an Improperly Configured exception.
Below is an example of the OGC_SERVER setting:

OGC_SERVER = {
'default' : {

'LOCATION' : 'http://localhost:8080/geoserver/',
'USER' : 'admin',
'PASSWORD' : 'geoserver',

}
}

966 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

BACKEND

Default: "geonode.geoserver"

The OGC server backend to use. The backend choices are:

• 'geonode.geoserver'

BACKEND_WRITE_ENABLED

Default: True

Specifies whether the OGC server can be written to. If False, actions that modify data on the OGC server will not
execute.

DATASTORE

Default: '' (Empty string)

An optional string that represents the name of a vector datastore that GeoNode uploads are imported into. In order to
support vector datastore imports there also needs to be an entry for the datastore in the DATABASES dictionary with
the same name. Example:

OGC_SERVER = {
'default' : {

'LOCATION' : 'http://localhost:8080/geoserver/',
'USER' : 'admin',
'PASSWORD' : 'geoserver',
'DATASTORE': 'geonode_imports'

}
}

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.sqlite3',
'NAME': 'development.db',

},
'geonode_imports' : {

'ENGINE': 'django.contrib.gis.db.backends.postgis',
'NAME': 'geonode_imports',
'USER' : 'geonode_user',
'PASSWORD' : 'a_password',
'HOST' : 'localhost',
'PORT' : '5432',

}
}

GEOGIG_ENABLED

Default: False

A boolean that represents whether the OGC server supports GeoGig datastores.

3.3. Reference 967

GeoNode Documentation, Release 2.8

GEONODE_SECURITY_ENABLED

Default: True

A boolean that represents whether GeoNode’s security application is enabled.

LOCATION

Default: "http://localhost:8080/geoserver/"

A base URL from which GeoNode can construct OGC service URLs. If using GeoServer you can determine this
by visiting the GeoServer administration home page without the /web/ at the end. For example, if your GeoServer
administration app is at http://example.com/geoserver/web/, your server’s location is http://example.com/geoserver.

MAPFISH_PRINT_ENABLED

Default: True

A boolean that represents whether the MapFish printing extension is enabled on the server.

PASSWORD

Default: 'geoserver'

The administrative password for the OGC server as a string.

PG_GEOGIG

Default: False

A boolean that represents whether GeoNode will use a Postgres database as a backend for GeoGig stores. When set
to true, the DATASTORE field must be set to a Postgres database which will be used.

PRINT_NG_ENABLED

Default: True

A boolean that represents whether printing of maps and layers is enabled.

PUBLIC_LOCATION

Default: "http://localhost:8080/geoserver/"

The URL used to in most public requests from GeoNode. This settings allows a user to write to one OGC server (the
LOCATION setting) and read from a separate server or the PUBLIC_LOCATION.

USER

Default: 'admin'

The administrative username for the OGC server as a string.

968 Chapter 3. Table of contents

http://example.com/geoserver/web/
http://example.com/geoserver

GeoNode Documentation, Release 2.8

WMST_ENABLED

Default: False

Not implemented.

WPS_ENABLED

Default: False

Not implemented.

TIMEOUT

Default: 10

The maximum time, in seconds, to wait for the server to respond.

SITEURL

Default: 'http://localhost:8000/'

A base URL for use in creating absolute links to Django views and generating links in metadata.

Proxy settings

PROXY_ALLOWED_HOSTS

Default: () (Empty tuple)

A tuple of strings representing the host/domain names that GeoNode can proxy requests to. This is a security measure
to prevent an attacker from using the GeoNode proxy to render malicious code or access internal sites.

Values in this tuple can be fully qualified names (e.g. ‘www.geonode.org’), in which case they will be matched against
the request’s Host header exactly (case-insensitive, not including port). A value beginning with a period can be used
as a subdomain wildcard: .geonode.org will match geonode.org, www.geonode.org, and any other subdomain of
geonode.org. A value of ‘*’ will match anything and is not recommended for production deployments.

PROXY_URL

Default /proxy/?url=

The URL to a proxy that will be used when making client-side requests in GeoNode. By default, the internal GeoNode
proxy is used but administrators may favor using their own, less restrictive proxies.

Search settings

DEFAULT_SEARCH_SIZE

Default: 10

3.3. Reference 969

GeoNode Documentation, Release 2.8

An integer that specifies the default search size when using geonode.search for querying data.

API settings

API_LIMIT_PER_PAGE

Default: 20

Number of items returned by the API. 0 equals no limit

API_INCLUDE_REGIONS_COUNT

Default: False

Specifies if to include facets count for regions.

Security settings

AUTH_EXEMPT_URLS

Default: () (Empty tuple)

A tuple of URL patterns that the user can visit without being authenticated. This setting has no effect if
LOCKDOWN_GEONODE is not True. For example, AUTH_EXEMPT_URLS = ('/maps',) will allow unauthen-
ticated users to browse maps.

LOCKDOWN_GEONODE

Default: False

By default, the GeoNode application allows visitors to view most pages without being authenticated. If this is set to
True users must be authenticated before accessing URL routes not included in AUTH_EXEMPT_URLS.

RESOURCE_PUBLISHING

Default: True

By default, the GeoNode application allows GeoNode staff members to publish/unpublish resources. By default
resources are published when created. When this settings is set to True the staff members will be able to unpublish a
resource (and eventually publish it back).

Social settings

SOCIAL_BUTTONS

Default: True

A boolean which specifies whether the social media icons and JavaScript should be rendered in GeoNode.

970 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

SOCIAL_ORIGINS

Default:

SOCIAL_ORIGINS = [{
"label":"Email",
"url":"mailto:?subject={name}&body={url}",
"css_class":"email"

}, {
"label":"Facebook",
"url":"http://www.facebook.com/sharer.php?u={url}",
"css_class":"fb"

}, {
"label":"Twitter",
"url":"https://twitter.com/share?url={url}",
"css_class":"tw"

}, {
"label":"Google +",
"url":"https://plus.google.com/share?url={url}",
"css_class":"gp"

}]

A list of dictionaries that is used to generate the social links displayed in the Share tab. For each origin, the name and
URL format parameters are replaced by the actual values of the ResourceBase object (layer, map, document).

CKAN_ORIGINS

Default:

CKAN_ORIGINS = [{
"label":"Humanitarian Data Exchange (HDX)",
"url":"https://data.hdx.rwlabs.org/dataset/new?title={name}¬es={abstract}",
"css_class":"hdx"

}]

A list of dictionaries that is used to generate the links to CKAN instances displayed in the Share tab. For
each origin, the name and abstract format parameters are replaced by the actual values of the ResourceBase ob-
ject (layer, map, document). This is not enabled by default. To enabled, uncomment the following line: SO-
CIAL_ORIGINS.extend(CKAN_ORIGINS).

TWITTER_CARD

Default:: True

A boolean that specifies whether Twitter cards are enabled.

TWITTER_SITE

Default:: '@GeoNode'

A string that specifies the site to for the twitter:site meta tag for Twitter Cards.

3.3. Reference 971

GeoNode Documentation, Release 2.8

TWITTER_HASHTAGS

Default:: ['geonode']

A list that specifies the hashtags to use when sharing a resource when clicking on a social link.

OPENGRAPH_ENABLED

Default:: True

A boolean that specifies whether Open Graph is enabled. Open Graph is used by Facebook and Slack.

Upload settings

GEOGIG_DATASTORE_NAME

Default: None

A string with the default GeoGig datastore name. This value is only used if no GeoGig datastore name is provided
when data is uploaded but it must be populated if your deployment supports GeoGig.

UPLOADER

Default:

{
'BACKEND' : 'geonode.rest',
'OPTIONS' : {

'TIME_ENABLED': False,
'GEOGIG_ENABLED': False,

}
}

A dictionary of Uploader settings and their values.

BACKEND

Default: 'geonode.rest'

The uploader backend to use. The backend choices are:

• 'geonode.importer'

• 'geonode.rest'

The importer backend requires the GeoServer importer extension to be enabled and is required for uploading data into
GeoGig datastores.

OPTIONS

Default:

972 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

'OPTIONS' : {
'TIME_ENABLED': False,
'GEOGIG_ENABLED': False,

}

TIME_ENABLED

Default: False

A boolean that specifies whether the upload should allow the user to enable time support when uploading data.

GEOGIG_ENABLED

Default: False

A boolean that specifies whether the uploader should allow the user to upload data into a GeoGig datastore.

User Account settings

THEME_ACCOUNT_CONTACT_EMAIL

Default: 'admin@example.com'

This email address is added to the bottom of the password reset page in case users have trouble unlocking-locking
their account.

ACCOUNT_OPEN_SIGNUP

Default: True

Whether the geonode site allows new users to register for an account. When set to False new users cannot register,
they must be created by a staff member

ACCOUNT_APPROVAL_REQUIRED

Default: False

Whether new user registrations must be manually approved. When set to True, the site’s staff must manually approve
every new account. The approval flow goes like this:

• User registers in the site (either with a local account or by using a social login);

• Staff users receive an email notification that a new user is requesting access;

• Staff users manually approve the user by using geonode’s administration interface;

• User receives an e-mail notification when the account has been approved;

• User can now login to the geonode site.

3.3. Reference 973

GeoNode Documentation, Release 2.8

ACCOUNT_ADAPTER

Default: geonode.people.adapters.LocalAccountAdapter

This is a django-allauth setting. It allows specifying a custom class to handle authentication for local accounts.

ACCOUNT_CONFIRM_EMAIL_ON_GET

Default: True

This is a django-allauth setting. It allows specifying the HTTP method used when confirming e-mail addresses.

ACCOUNT_EMAIL_REQUIRED

Default: True

This is a django-allauth setting. Controls whehter the user is required to provide an e-mail address upon registration

ACCOUNT_EMAIL_VERIFICATION

Default: optional

This is a django-allauth setting.

SOCIALACCOUNT_ADAPTER

Default: geonode.people.adapters.SocialAccountAdapter

This is a django-allauth setting. It allows specifying a custom class to handle authentication for social accounts.

SOCIALACCOUNT_PROVIDERS

Default: None

This is a django-allauth setting. It should be a dictionary with provider specific settings

SOCIALACCOUNT_PROFILE_EXTRACTORS

Default: None

A dictionary with lowercase provider names as keys and path to custom profile extractor classes as values.

User notifications settings

Note: PINAX_* settings are relevant if you have pinax.notifications app added to INSTALLED_APPS.

Note: user configuration is described Setting notification preferences.

974 Chapter 3. Table of contents

https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration
https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration
https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration
https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration
https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration
https://django-allauth.readthedocs.io/en/latest/configuration.html#configuration

GeoNode Documentation, Release 2.8

Note: Full list of Pinax-notifications app settings is available in Pinax notifications docs.

PINAX_NOTIFICATIONS_QUEUE_ALL

Default: False

A boolean that specifies if user notifications should be queued and send outside main web application process. If set
to True, additional sending script, python manage.py emit_notices should be called periodically.

PINAX_NOTIFICATIONS_BACKENDS

Default:

[
("email", "pinax.notifications.backends.email.EmailBackend"),
]

List of backends (channels) that delivers messages to receipients.

Download settings

DOWNLOAD_FORMATS_METADATA

Specifies which metadata formats are available for users to download.

Default:

DOWNLOAD_FORMATS_METADATA = [
'Atom', 'DIF', 'Dublin Core', 'ebRIM', 'FGDC', 'ISO',

]

DOWNLOAD_FORMATS_VECTOR

Specifies which formats for vector data are available for users to download.

Default:

DOWNLOAD_FORMATS_VECTOR = [
'JPEG', 'PDF', 'PNG', 'Zipped Shapefile', 'GML 2.0', 'GML 3.1.1', 'CSV',
'Excel', 'GeoJSON', 'KML', 'View in Google Earth', 'Tiles',

]

DOWNLOAD_FORMATS_RASTER

Specifies which formats for raster data are available for users to download.

Default:

3.3. Reference 975

https://pinax-notifications.readthedocs.io/en/latest/settings/

GeoNode Documentation, Release 2.8

DOWNLOAD_FORMATS_RASTER = [
'JPEG', 'PDF', 'PNG' 'Tiles',

]

Contrib settings

EXIF_ENABLED

Default: False

A boolean that specifies whether the Exif contrib app is enabled. If enabled, metadata is generated from Exif tags
when documents are uploaded.

GEOTIFF_IO_ENABLED

Default: False

A boolean that specifies whether the GeoTIFF.io contrib feature is enabled. If enabled, an ‘Analyze with GeoTIFF.io’
button is added to the layer_detail page.

GEOTIFF_IO_BASE_URL

Default: https://app.geotiff.io

A string that specifies what instance of GeoTIFF.io should be opened when the ‘Analyze with GeoTIFF.io’ button is
clicked.

NLP_ENABLED

Default: False

A boolean that specifies whether the NLP (Natural Language Processing) contrib app is enabled. If enabled, NLP
(specifically MITIE) is used to infer additional metadata from uploaded documents to help fill metadata gaps.

NLP_LOCATION_THRESHOLD

Default: 1.0

A float that specifies the threshold for location matches.

NLP_LIBRARY_PATH

Default:: '/opt/MITIE/mitielib'

A string that specifies the location of the MITIE library

976 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

NLP_MODEL_PATH

Default:: '/opt/MITIE/MITIE-models/english/ner_model.dat'

A string that specifies the location of the NER (Named Entity Resolver). MITIE comes with English and Spanish NER
models. Other models can be trained.

SLACK_ENABLED

Default: False

A boolean that specifies whether the Slack contrib app is enabled. If enabled, GeoNode will send messages to the slack
channels specified in SLACK_WEBHOOK_URLS when a document is uploaded, metadata is updated, etc. Coverage
of events is still incomplete.

SLACK_WEBHOOK_URLS

A list that specifies the URLs to post Slack messages to. Each URL is for a different channel. The default URL should
be replaced when slack integration is enabled.

Default:

SLACK_WEBHOOK_URLS = [
"https://hooks.slack.com/services/T000/B000/XX"

]

Amazon Web Services Settings

S3_STATIC_ENABLED

Default: False

A boolean that specifies whether GeoNode’s static files will be served through an S3 bucket. Set through the environ-
ment variable S3_STATIC_ENABLED.

S3_MEDIA_ENABLED

Default: False

A boolean that specifies whether GeoNode’s media files will be served through an S3 bucket. Set through the environ-
ment variable S3_MEDIA_ENABLED.

AWS_BUCKET_NAME

The name of the S3 bucket GeoNode will pull static and/or media files from. Set through the environment variable
S3_BUCKET_NAME.

3.3. Reference 977

GeoNode Documentation, Release 2.8

AWS_STORAGE_BUCKET_NAME

The name of the S3 bucket GeoNode will pull static and/or media files from. Set through the environment variable
S3_BUCKET_NAME.

AWS_ACCESS_KEY_ID

The access key for the S3 bucket GeoNode will pull static and/or media files from. Set through the environment
variable AWS_ACCESS_KEY_ID.

AWS_SECRET_ACCESS_KEY

The secret access key for the S3 bucket GeoNode will pull static and/or media files from. Set through the environment
variable AWS_SECRET_ACCESS_KEY.

AWS_QUERYSTRING_AUTH

Default: False

Generate an S3 auth querystring.

3.3.1.4.4 GeoSites: GeoNode Multi-Tenancy

GeoSites is a way to run multiple websites with a single instance of GeoNode. Each GeoSite can have different
templates, apps, and data permissions but share a single database (useful for sharing users and data layers), GeoServer,
and CSW. This is useful when multiple websites are desired to support different sets of users, but with a similar set of
data and overall look and feel of the sites. Users can be given permission to access multiple sites if needed, which also
allows administrative groups can be set up to support all sites with one account.

Master Website

A GeoSites installation uses a ‘master’ GeoNode website that has some additional administrative pages for doing data
management. Layers, Maps, Documents, Users, and Groups can all be added and removed from different sites. Users
can be given access to any number of sites, and data may appear on only a single site, or all of them. Additionally, if
desired, any or all of the Django apps installed on the other sites can be added to the master site to provide a single
administrative interface that gives full access to all apps. The master site need not be accessible from the outside so
that it can be used as an internal tool to the organization.

Users created on a particular site are created with access to just that site. Data uploaded to a particular site is given
permission on that site as well as the master site. Any further adjustments to site-based permissions must be done from
the master site.

Database

The master site, and all of the individual GeoSites, share a single database. Objects, including users, groups, and data
layers, all appear within the database but an additional sites table indicates which objects have access to which sites.
The geospatial data served by GeoServer (e.g., from PostGIS) can exist in the database like normal, since GeoServer
will authenticate against GeoNode, which will use it’s database to determine permissions based on the object, current
user, and site.

978 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

GeoServer

A single GeoServer instance is used to serve data to all of the GeoSites. To keep data organized each site specifies a
default workspace (DEFAULT_WORKSPACE) that GeoServer will use to partition the data depending on which site
uploaded the data. The workspaces themselves don’t have any impact on permissions, since data can be added and
removed from different sites, however it provides at least some organization of the data based on the initial site.

Data that is common to all sites can be added to the master site which will appear in the generic ‘geonode’ workspace.

Settings Files and Templates

A key component in managing multiple sites is keeping data organized and using a structured series of settings files so
that common settings can be shared and only site specific settings are separated out. It is also best to import the default
GeoNode settings from the GeoNode installation. This prevents the settings from having to be manually upgraded if
there is any default change the GeoNode settings.

Settings which are common to all GeoSites, but differ from the default GeoNode, are separated into a mas-
ter_settings.py file. Then, each individual site has settings file which imports from the master site and will then
only need to specify a small selection that make that site unique, such as:

• SITE_ID: Each one is unique, the master site should have a SITE_ID of 1.

• SITENAME

• SITEURL

• ROOT_URLCONF: This may be optional. The master site url.conf can be configured to automatically import
the urls.py of all SITE_APPS, so a different ROOT_URLCONF is only needed if there are further differences.

• SITE_APPS: Containing the site specific apps

• App settings: Any further settings required for the above sites

• Other site specific settings, such as REGISTRATION_OPEN

A GeoSite therefore has three layers of imports, which is used for settings as well as the search path for templates.
First it uses the individual site files, then the master GeoSite, then default GeoNode. These are specified via variables
defined in settings:

• SITE_ROOT: The directory where the site specific settings and files are located (templates, static)

• PROJECT_ROOT: The top-level directory of all the GeoSites which should include the global settings file as
well as template and static files

• GEONODE_ROOT: The GeoNode directory.

The TEMPLATE_DIRS, and STATICFILES_DIRS will then include all three directories as shown:

TEMPLATE_DIRS = (
os.path.join(SITE_ROOT, 'templates/'),
os.path.join(PROJECT_ROOT,'templates/'), # files common to all sites
os.path.join(GEONODE_ROOT, 'templates/')

)

STATICFILES_DIRS = (
os.path.join(SITE_ROOT, 'static/'),
os.path.join(PROJECT_ROOT, 'static/'),
os.path.join(GEONODE_ROOT, 'static/')

)

At the end of the settings_global.py the following variables will be set based on site specific settings:

3.3. Reference 979

GeoNode Documentation, Release 2.8

STATIC_URL = os.path.join(SITEURL,’static/’)
GEONODE_CLIENT_LOCATION = os.path.join(STATIC_URL,’geonode/’)
GEOSERVER_BASE_URL = SITEURL + ‘geoserver/’
if SITE_APPS:

INSTALLED_APPS += SITE_APPS

Templates and Static Files

As mentioned above for each website there will be three directories used for template and static files. The first
template file found will be the one used so templates in the SITE_ROOT/templates directory will override those in
PROJECT_ROOT/templates, which will override those in GEONODE_ROOT/templates.

Static files work differently because (at least on a production server) they are collected and stored in a single location.
Because of this care must be taken to avoid clobbering of files between sites, so each site directory should contain all
static files in a subdirectory with the name of the site (e.g., static/siteA/logo.png)

The location of the proper static directory can then be found in the templates syntax such as:

{{ STATIC_URL }}{{ SITENAME|lower }}/logo.png

Permissions by Site

By default GeoNode is publicly available. In the case of GeoSites, new data will be publicly available, but only for the
site it was added to, and the master site (all data is added to the master site).

Adding New Sites

A management command exists to easily create a new site. This will create all the needed directories, as well as a site
specific settings file. The command may also create a website configuration file.

3.3.1.5 Supported Browsers

GeoNode is known to work on all modern web browsers. This list includes (but is not limited to):

• Google Chrome.

• Apple Safari.

• Mozilla Firefox.

• Microsoft Edge.

• Microsoft Internet Explorer.

The vast majority of GeoNode developers do their work with Google Chrome.

3.3.1.5.1 Internet Explorer

Versions of Microsoft Internet Explorer older than 10 exhibit known issues when used to browse a GeoNode site. As
such a message is displayed warning the user that they should upgrade their browser.

980 Chapter 3. Table of contents

http://www.google.com/chrome/
https://www.apple.com/safari/
https://www.mozilla.org/en-US/firefox/new/
https://developer.microsoft.com/en-us/microsoft-edge/

GeoNode Documentation, Release 2.8

3.3.1.5.2 Testing on Internet Explorer

When working on front end code, developers should take care to test carefully with Microsoft Internet Explorer to
ensure that the features they are working on do indeed work correctly and on this browser. It is good practice to test on
all browsers available, but the use of modern front end libraries like bootstrap and jQuery make it much more likely
code will work across browsers seamlessly.

In order to test on Internet Explorer, developers can use the Modern IE site to download virtual machines for use in
Oracle VM Virtual Box.

Once the VM is downloaded, follow the instructions to configure it in your VirtualBox setup.

After the VM is setup, you can access your development instance of GeoNode by visiting the IP address of your host
machine or on the bridged interface (usually 10.0.2.2) and begin your testing.

3.3.1.6 WorldMap

By using the WorldMap optional application, GeoNode is extended with the following additional features:

• a customized GeoExplorer viewer

– the table of contents is hierarchical with layer categories. When a layer is added a new category
containing the layer is added to the table of contents. If the category is already in the table of
contents, then the layer is added to it. By default the category is the same as the layer’s topic
category, but that can be renamed by right clicking on it

– the “Add Layers” dialog comes with a “Search” tab which uses Hypermap Registry (Hypermap) as a
catalogue of remote and local layers. Hypermap is a requirement when using the WorldMap contrib
application

3.3. Reference 981

https://www.modern.ie/en-us
https://www.virtualbox.org/

GeoNode Documentation, Release 2.8

• a gazetteer application: it is possible to add a given layer to a gazetteer. The gazetteer can be checked using the
map client. When a layer is part of the gazetter it is possible to include it in a general gazetteer or in a specific
project one. It is possible to search place names in the gazetteer by date range, in which case it is necessary to
specify the layer attributes for the start and end depict dates

3.3.1.6.1 Installation

Requirements

We are assuming a Ubuntu 16.04.1 LTS development environment, but these instructions can be adapted to any recent
Linux distributions:

Install Ubuntu dependencies
sudo apt-get update
sudo apt-get install python-virtualenv python-dev libxml2 libxml2-dev libxslt1-dev
→˓zlib1g-dev libjpeg-dev libpq-dev libgdal-dev git default-jdk postgresql postgis

Install Java 8 (needed by latest GeoServer 2.13)
sudo apt-add-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer

Virtual environment creation and installation of Python packages

Create and activate the virtual environment:

982 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

3.3. Reference 983

GeoNode Documentation, Release 2.8

cd ~
virtualenv --no-site-packages env
. env/bin/activate

Now install GeoNode from source code:

git clone -b https://github.com/geonode/geonode.git
cd geonode
pip install -r requirements.txt
pip install pygdal==1.11.3.3
pip install -e .
paver setup
paver sync

Set the following environment variables as needed (change SITE_NAME and SERVER_IP s needed. Also HYPER-
MAP_REGISTRY_URL and SOLR_URL may be different). Even better, create a file and source it:

export USE_WORLDMAP=True
export SITE_NAME=worldmap
export SERVER_IP=128.31.22.73
export PG_USERNAME=worldmap
export PG_PASSWORD=worldmap
export PG_WORLDMAP_DJANGO_DB=worldmap
export PG_WORLDMAP_UPLOADS_DB=wmdata
export OWNER=$PG_USERNAME
export ALLOWED_HOSTS="localhost, $SERVER_IP, "
export GEOSERVER_LOCATION=http://localhost:8080/geoserver/
export GEOSERVER_PUBLIC_LOCATION=http://$SERVER_IP/geoserver/
export SOLR_URL =http://localhost:8983/solr/hypermap/select/
export HYPERMAP_REGISTRY_URL =http://localhost:8001
export MAPPROXY_URL=http://localhost:8001

You can install GeoNode WorldMap in two different ways:

1) By installing GeoNode itself

2) By using the recommended way of a geonode-project

GeoNode/WorldMap without a geonode-project

Copy the included local_settings.py file and customize it to your needs:

cp local_settings.py.worldmap.sample local_settings.py

GeoNode/WorldMap with a geonode-project

You will use a geonode-project in order to separate the customization of your instance from GeoNode.

Create your geonode project by using the WorldMap geonode-project as a template (https://github.com/cga-harvard/
geonode-project). Rename it to something meaningful (for example your web site name):

cd ~
django-admin startproject $SITE_NAME --template=https://github.com/cga-harvard/
→˓geonode-project/archive/master.zip -epy,rst
cd $SITE_NAME

984 Chapter 3. Table of contents

https://github.com/cga-harvard/geonode-project
https://github.com/cga-harvard/geonode-project

GeoNode Documentation, Release 2.8

Create a local_settings.py by copying the included template:

cp $SITE_NAME/local_settings.py.sample $SITE_NAME/local_settings.py
make build
paver setup

Start the Server

Start GeoNode with Worldmap using pavement:

python manage.py runserver 0.0.0.0:8000
paver start_geoserver

To upload layers you can login with the default GeoNode administrative account:

user: admin password: admin

Configuring instance for production

Please follow best practices suggested by GeoNode documentation:

http://docs.geonode.org/en/master/tutorials/advanced/geonode_production/

Remember to add the ip of your server in ALLOWED_HOSTS in the local_settings.py file:

ALLOWED_HOSTS = ['localhost', '128.31.22.73',]

3.3.1.6.2 Hypermap Registry

GeoNode with the WorldMap contribute module requires a Hypermap Registry (Hypermap) running instance.

You can install Hypermap by following these instructions (use the “Manual Installation” section): https://github.com/
cga-harvard/HHypermap/blob/master/_docs/developers.md

Note that you can bypass Java 8 installation as it was installed previously. As a search engine you should install Solr,
as we haven’t tested Elasticsearch with WorldMap so far. Create a specific virtual environment for Hypermap in order
not to interfere with the GeoNode/WorldMap virtual environment.

After installing Hypermap, start it on a different port than 8000, for example:

python manage.py runserver 0.0.0.0:8001

In another shell start the Celery process as well:

cd HHypermap
celery -A hypermap worker --beat --scheduler django -l info

3.3.1.6.3 Test the stack

Now that GeoNode/WorldMap and Hypermap are both running, test the stack by uploading a layer.

Login in GeoNode (admin/admin) and upload a shapefile from this page: http://localhost:8000/layers/upload

Make sure the shapefile is correctly displayed in GeoNode by going to the layer page.

3.3. Reference 985

http://docs.geonode.org/en/master/tutorials/advanced/geonode_production/
https://github.com/cga-harvard/HHypermap/blob/master/_docs/developers.md
https://github.com/cga-harvard/HHypermap/blob/master/_docs/developers.md
http://localhost:8000/layers/upload

GeoNode Documentation, Release 2.8

Now login in Hypermap (admin/admin) and go to the admin services page: http://localhost:8001/admin/aggregator/
service/ Add a service like this:

• Title: My GeoNode WorldMap SDI

• Url: http://localhost:8000/

• Type: GeoNode WorldMap

Go to the Hypermap service page and check it the service and the layer is there: http://localhost:8001/registry/

In order to have layers in the search engine (Solr) there are two options:

1) from task runner press the “Index cached layers” button

2) schedule a task in celery

We recommend the second option, which can be configured in the next section.

3.3.1.6.4 Schedule Celery tasks

Go to the Periodic Task administrative interface: http://localhost:8001/admin/django_celery_beat/periodictask/

Create the following two tasks:

Index Cached Layer Task

This task will sync the layers from the cache to the search engine. Layers are sent in the cache every time they are
saved:

• Name: Index Cached Layer

• Task (registered): hypermap.aggregator.tasks.index_cached_layers

• Interval: every 1 minute (or as needed)

Check Worldmap Service

This task will do a check of all of WorldMap service:

• Name: Check WorldMap Service

• Task (registered): hypermap.aggregator.tasks.check_service

• Interval: every 1 minute (or as needed)

• Arguments: [1] # 1 is the id of the service. Change it as is needed

Now upload a new layer in GeoNode/WorldMap and check if it appears in Hypermap and in Solr (you may need to
wait for the tasks to be executed)

Update Last GeoNode WorldMap Layers

If your GeoNode/WorldMap instance has many layers, it is preferable to runt the check_service not so often, as it can
be time consuming, and rather use the update_last_wm_layers.

As a first thing, change the interval for the check_service task you created for GeoNode/WorldMap to a value such as
“one day” or “one week”.

Then create the following periodic task:

986 Chapter 3. Table of contents

http://localhost:8001/admin/aggregator/service/
http://localhost:8001/admin/aggregator/service/
http://localhost:8000/
http://localhost:8001/registry/
http://localhost:8001/admin/django_celery_beat/periodictask/

GeoNode Documentation, Release 2.8

• Name: Sync last layers in WorldMap Service

• Task (registered): hypermap.aggregator.update_last_wm_layers

• Interval: every 1 minute

• Arguments: [1] # 1 is the id of the service. Change it as is needed

3.4 Organizational

The Organizational section contains information about the GeoNode project itself, how to contribute, learn about the
community, helpful links, about the patch review process, the project road map and other administrative items.

3.4.1 Organizational

3.4.1.1 Project Information

This is information on existing projects, contributing to GeoNode (code, documentation, translation, . . .) and the
community itself.

About GeoNode - What is GeoNode, the big picture.

Roadmap Process - How GeoNode can move ahead into the future.

Community Resources - Lots of links, think of it like your personal GeoNode bookmarks.

Community Bylaws - Some rules to keeps us stronger.

GeoNode Projects - Who else is doing cool stuff with GeoNode.

GNIPS GeoNode Improvement Proposals.

3.4.1.2 Contributing

Helping out the GeoNode project is great and by contributing we all benefit and here is how:

Contributing to GeoNode is the best way to help out and here we show you how.

GeoNode Patch Review Process is where code review happens, explained for developers.

Patch Review criteria for extending GeoNode.

How to contribute to GeoNode’s translation and update an existing language or add a new one.

How to contribute to GeoNode’s Documentation is outlined how to get started writing documentation.

How to write Documentation a work in progress outlining well ..how to write documentation.

How to Translate the Documentation describes how to translate the documentation.

3.4.1.3 Table of Content

3.4.1.3.1 Roadmap Process

The GeoNode Roadmap Process is designed to complement the more technical GeoNode Improvement Proposals
(GNIPS) and strives to make it easier for the various organizations invested in GeoNode to collaborate on features of
common interest.

3.4. Organizational 987

http://geonode.org/gallery/
https://github.com/GeoNode/geonode/wiki/GeoNode-Improvement-Proposals

GeoNode Documentation, Release 2.8

It is based on the roadmap items developed at the GeoNode Summit held in May 2011.

Overall, the process for adding items to the collective roadmap is as follows:

1. Organizational partner has an intent to add a feature to the roadmap.

2. Organizational partner communicates with the organizational partners list about the change to gauge interest
and determine who else is committed to making it happen.

3. Organizational partner creates a feature specification on the wiki to further flesh out the idea.

4. Organizational partner finds a committer on the developer list to shepherd the roadmap item through the GeoN-
ode Improvement Proposals (GNIPS).

Each roadmap item will go through four stages:

1. Descriptive Stage (under discussion/”Active”)

2. Technical Stage

3. Development Stage

4. Released

After communicating on the organizational partners list the roadmap items enters the Descriptive Stage and must have
a wiki page that lays out the description, user stories, and other interested parties. Optionally, the roadmap item will
also include an idea of the difficulty and goals as well as any wireframes, technical diagrams, or prior art.

A roadmap item enters the Technical Stage once a committer has been found to shepherd the roadmap item through
the GNIPS process, then the wiki page must contain a clear sense of the technical assumptions, requirements or
dependencies, and suggested implementation. Some roadmap items may need to be divided into multiple independent
GNIP proposals.

Once it passes through the Improvement Proposals process, a roadmap item enters the Development Stage on its way
to Release.

[[RoadMap-Items]]

3.4.1.3.2 Community Resources

Here you will find many links to resources on GitHub, external sites using GeoNode. Think of like your GeoNode
Bookmarks.

Main Links

These 3 top links are the GeoNode landing pages and will take you to all other information on GeoNode.

• Main home page and blog http://geonode.org

• Documentation http://docs.geonode.org

• GitHub Code https://github.com/GeoNode

Community Contact

Contact members and ask questions

• Mailing Lists

– Users List http://lists.osgeo.org/cgi-bin/mailman/listinfo/geonode-users

988 Chapter 3. Table of contents

https://groups.google.com/a/opengeo.org/forum/#!forum/geonode-org/
https://groups.google.com/a/opengeo.org/forum/#!forum/geonode-dev/
https://github.com/GeoNode/geonode/wiki/GeoNode-Improvement-Proposals
https://groups.google.com/a/opengeo.org/forum/#!forum/geonode-org
https://github.com/GeoNode/geonode/wiki/GeoNode-Improvement-Proposals
http://geonode.org
http://docs.geonode.org
https://github.com/GeoNode
http://lists.osgeo.org/cgi-bin/mailman/listinfo/geonode-users

GeoNode Documentation, Release 2.8

– Developers List http://lists.osgeo.org/cgi-bin/mailman/listinfo/geonode-devel

• IRC irc://irc.freenode.net/geonode

• Webchat: http://webchat.freenode.net/?channels=#geonode

• Social Media

– Blog http://geonode.org/blog/

– Twitter https://twitter.com/geonode

– Google+ https://plus.google.com/u/0/100587124776656797019

Github Project Links

• Main GitHub page https://github.com/GeoNode/geonode

• Master Branch https://github.com/GeoNode/geonode/tree/master

• Issue Tracker https://github.com/GeoNode/geonode/issues

• Pull Requests https://github.com/GeoNode/geonode/pulls

• geonode.org Homepage Code https://github.com/geonode/geonode.github.com (published to http://geonode.
org)

• Localisation using Transifex https://www.transifex.com/geonode/geonode/

Demo Sites

• Demo GeoNode Site http://demo.geonode.org/

• UI/UX Review Site https://sites.google.com/a/opengeo.org/geonode-ui/

Testing and Packaging

• Testing

– Travis-CI https://travis-ci.org/#!/GeoNode/geonode

– Openhub https://www.openhub.net/p/geonode

• Packages

– PyPI https://pypi.python.org/pypi/GeoNode

– Launchpad

* https://launchpad.net/~geonode

* https://launchpad.net/~geonode/+archive/release

* https://launchpad.net/~geonode/+archive/testing

* https://launchpad.net/~geonode/+archive/snapshots

3.4. Organizational 989

http://lists.osgeo.org/cgi-bin/mailman/listinfo/geonode-devel
irc://irc.freenode.net/geonode
http://webchat.freenode.net/?channels=#geonode
http://geonode.org/blog/
https://twitter.com/geonode
https://plus.google.com/u/0/100587124776656797019
https://github.com/GeoNode/geonode
https://github.com/GeoNode/geonode/tree/master
https://github.com/GeoNode/geonode/issues
https://github.com/GeoNode/geonode/pulls
https://github.com/geonode/geonode.github.com
http://geonode.org
http://geonode.org
https://www.transifex.com/geonode/geonode/
http://demo.geonode.org/
https://sites.google.com/a/opengeo.org/geonode-ui/
https://travis-ci.org/#!/GeoNode/geonode
https://www.openhub.net/p/geonode
https://pypi.python.org/pypi/GeoNode
https://launchpad.net/~geonode
https://launchpad.net/~geonode/+archive/release
https://launchpad.net/~geonode/+archive/testing
https://launchpad.net/~geonode/+archive/snapshots

GeoNode Documentation, Release 2.8

Important Forks

Full List here https://github.com/GeoNode/geonode/network/members

Hint: Look at the branches in these Forks

• https://github.com/cga-harvard/cga-worldmap

• https://github.com/jj0hns0n/geonode

• https://github.com/ingenieroariel/geonode

• https://github.com/gfdrr/geonode

Downstream Github Projects

• https://github.com/aifdr/tsudat2

• https://github.com/aifdr/riab

• https://github.com/gem/

• https://github.com/MapStory/mapstory

• https://github.com/CIGNo-project/CIGNo

• https://github.com/ROGUE-JCTD/rogue_geonode

• https://github.com/boundlessgeo/exchange

• Many More . . .

Additional Modules

• https://github.com/simod/geonode-documents

• https://github.com/GFDRR/geonode-registry

Public Sites

• CIGNo network: CNR - ISMAR Node http://cigno.ve.ismar.cnr.it/

• . . . Many Many More

3.4.1.3.3 Community Bylaws

Committers

The GeoNode community is divided into two groups - users and committers. There are no requirements or respon-
sibilities to be a GeoNode user. To be a committer, you must be voted in by the existing committers (2 +1’s and no
-1’s; a committer must initiate the vote.) Non-committers are encouraged to engage in discussions on the mailing lists,
code review, and issue reports to qualify them to be voted in as committers. Committers (or PRIMARY AUTHORS)
can be found in the [AUTHORS file](https://github.com/GeoNode/geonode/blob/master/AUTHORS)

Committers must:

990 Chapter 3. Table of contents

https://github.com/GeoNode/geonode/network/members
https://github.com/cga-harvard/cga-worldmap
https://github.com/jj0hns0n/geonode
https://github.com/ingenieroariel/geonode
https://github.com/gfdrr/geonode
https://github.com/aifdr/tsudat2
https://github.com/aifdr/riab
https://github.com/gem/
https://github.com/MapStory/mapstory
https://github.com/CIGNo-project/CIGNo
https://github.com/ROGUE-JCTD/rogue_geonode
https://github.com/boundlessgeo/exchange
https://github.com/simod/geonode-documents
https://github.com/GFDRR/geonode-registry
http://cigno.ve.ismar.cnr.it/
https://github.com/GeoNode/geonode/blob/master/AUTHORS

GeoNode Documentation, Release 2.8

• Make useful contributions to the project in the form of commits at least once in a 6-month period, else they fall
back to “committer emeritus” status. A committer emeritus has no special involvement in the project, but may
request committer privileges from the current body of committers.

• Review code contributions, which may come from other committers or from users. Users must submit code
externally to the main GeoNode repository (ie as a patch or a github pull request); committers can do this
as well if they see review as particularly important (for example, a patch might affect a particularly crucial
component of GeoNode, or a committer might be working in a part of the code that he is relatively unfamiliar
with.) A review should result in either (a) instructions on how to bring the code to a more acceptable condition
or (b) merging the changes in and notifying the submitter that this has been done.

• Committers also have the option to “self-review” and commit changes directly. It is at the discretion of individual
committers when this is appropriate, but it should be rare - we encourage committers to only use this option when
they deem a change extremely safe.

GeoNode Improvement Proposals (GNIPS)

GNIPS If a committer thinks a proposed change to the software is particularly destabilizing or far-reaching, that
committer can upgrade the ticket for that change to a GeoNode Improvement Proposal (GNIP). GNIP tickets are an
opportunity for committers and users alike to provide feedback about the design of a proposed feature or architectural
change. The proposal should be iteratively edited in response to community feedback.

To upgrade an issue to a GNIP, an active committer should give the ticket the ‘GNIP’ label in the issue tracker, and
announce the issue on the developer mailing list.

If a ticket has a GNIP label, its patch can’t be committed unless it also has the ‘Approved’ label. To be approved, it
must pass community vote (see below).

When the GNIP is announced, other committers should review and provide feedback in the issue comments. Feedback
should take the form of:

• +1 (with optional comment)

• -1, with mandatory rationale and suggestion for a better approach. The suggestion may be omitted if the objec-
tion doesn’t have a straightforward solution - we don’t want to withhold feedback just because problems with a
proposal are hard to solve.

After receiving feedback, the proposal’s author should discuss the feedback on the list if necessary and adjust the
proposal in response.

A proposal can be Approved when there are 3 +1 responses (including the author’s implicit approval) and no -1
responses from committers; and no feedback is offered in 3 days. If a proposal fails to receive multiple +1 responses
within 5 days of the request for feedback it is rejected and the issue should be closed (but the author is free to draft
similar proposals in the future.) Any committer may reverse or withdraw votes on a proposal until the proposal is
closed.

If a user would like to submit a GNIP, they are welcome to write it as a ticket but should find an active committer
willing to promote it to GNIP status.

Project Steering Committee

In the event that a revision to these bylaws becomes necessary, authority for that decision lies with the currently
presiding Project Steering Committee (PSC). The PSC at any time is made up of the top 7 committers over the past
365 days, by number of commits.

GNIPS: https://github.com/GeoNode/geonode/wiki/GeoNode-Improvement-Proposals

3.4. Organizational 991

https://github.com/GeoNode/geonode/wiki/GeoNode-Improvement-Proposals

GeoNode Documentation, Release 2.8

3.4.1.3.4 Contributing to GeoNode

Warning: This section is freely adapted from the official GitHub guides.

If you are interested in helping us to make GeoNode, there are many ways to do so.

Participate in the Discussion

GeoNode has a mailing list (http://geonode.org/communication/#mailing-lists) where users can ask and answer ques-
tions about the software. There are also IRC chats on Gitter where users (https://gitter.im/GeoNode/general) and
developers (https://gitter.im/GeoNode) can discuss GeoNode in real time. Sometimes users also post interesting tips
for managing sites running GeoNode. If you want to help out with GeoNode, one easy way is to sign up for the mailing
list and help answer questions.

Report Problems on the Issue Tracking System

Informative bug reports are a key part of the bug fixing process, so if you do run into a problem with GeoNode, please
don’t hesitate to report it on our bug tracker, available online at https://github.com/GeoNode/geonode/issues. Useful
information for bug reports includes:

• What were you doing when the bug occurred? Does the problem occur every time you do that, or only occa-
sionally?

• What were you expecting to happen? What happened instead?

• What version of the software are you using? Please also note any changes from the default configuration.

• If there is a data file involved in the bug (such as a Shapefile that doesn’t render properly), please consider
including it in the bug report. Be aware that not all data files are freely distributable.

To help GeoNode address the issue, you can tag the ticket with one or more labels that you can find on the side column.

Write Documentation

GeoNode’s documentation can always use improvement - there are always more questions to be answered. For
managing contributions to the manual, GeoNode uses a process similar to that used for managing the code itself.
The documentation is generated from source files in the docs/ directory within the GeoNode source repository. See
http://www.sphinx-doc.org for more information on the documentation system GeoNode uses.

If you want to learn more about contributing to the documentation, please go ahead to the “How to contribute to
GeoNode’s Documentation”. GeoNode also have some guidelines to help with writing once you are set up “How to
write Documentation”.

Provide Translations

If GeoNode doesn’t provide a user interface in your native language, consider contributing a new translation. To get
started here are the instructions “How to contribute to GeoNode’s Translation”.

992 Chapter 3. Table of contents

https://guides.github.com
http://geonode.org/communication/#mailing-lists
https://gitter.im/GeoNode/general
https://gitter.im/GeoNode
https://github.com/GeoNode/geonode/issues
http://www.sphinx-doc.org
http://docs.geonode.org/en/latest/organizational/contribute/contribute_to_documentation.html#contrib-docu
http://docs.geonode.org/en/latest/organizational/contribute/contribute_to_documentation.html#contrib-docu
http://docs.geonode.org/en/latest/organizational/contribute/documentation_guidelines.html#doc-guidelines
http://docs.geonode.org/en/latest/organizational/contribute/documentation_guidelines.html#doc-guidelines
http://docs.geonode.org/en/latest/organizational/contribute/contribute_to_translation.html

GeoNode Documentation, Release 2.8

Write Code

Of course since GeoNode is an open source project which encourages contributions of source code as well. If you are
interested in making small changes, you can find an open ticket on https://github.com/GeoNode/geonode/issues, hack
away, and get started on the “Patch Review Process”.

Further Reading

Contributing to Open Source on GitHub

Work With GitHub Issues and Pull Requests

Roadmap Process

Contributing to Open Source on GitHub

Warning: This section is freely adapted from the official GitHub guides.

A great way to get involved in open source is to contribute to the existing projects you’re using.

A Typical GitHub Project Structure

The Community

Projects often have a community around them, made up of other users in different (formal or informal) roles:

• Owner is the user or organization that created the project has the project on their account.

• Maintainers and Collaborators are the users primarily doing the work on a project and driving the direction.
Oftentimes the owner and the maintainer are the same. They have write access to the repository.

• Contributors is everyone who has had a pull request merged into a project.

• Community Members are the users who often use and care deeply about the project and are active in discussions
for features and pull requests.

Readme

Nearly all GitHub projects include a README.md file. The readme provides a lay of the land for a project with
details on how to use, build and sometimes contribute to a project.

License

A LICENSE file, well, is the license for the project. An open source project’s license informs users what they can and
can’t do (e.g., use, modify, redistribute), and contributors, what they are allowing others to do.

3.4. Organizational 993

https://github.com/GeoNode/geonode/issues
http://docs.geonode.org/en/latest/organizational/contribute/review_criteria.html
https://guides.github.com

GeoNode Documentation, Release 2.8

Documentation and Wikis

Many larger projects go beyond a readme to give instructions for how people can use their project. In such cases you’ll
often find a link to another file or a folder named docs in the repository.

Alternatively, the repository may instead use the GitHub wiki to break down documentation.

Issues

Issues are a great way to keep track of tasks, enhancements, and bugs for your projects. They’re kind of like
email—except they can be shared and discussed with the rest of your team. Most software projects have a bug tracker
of some kind. GitHub’s tracker is called Issues, and has its own section in every repository.

For more information on how Issues work, see the section “Work With GitHub Issues and Pull Requests”

994 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

Pull Requests

If you’re able to patch the bug or add the feature yourself, make a pull request with the code. Be sure you’ve read any
documents on contributing, understand the license and have signed a CLA if required.

Once you’ve submitted a pull request, the maintainer(s) can compare your branch to the existing one and decide
whether or not to incorporate (pull) your changes.

For more information on how Pull Requests work, see the section “Work With GitHub Issues and Pull Requests”

Work With GitHub Issues and Pull Requests

Warning: This section is freely adapted from the official GitHub guides.

Issues

An Issue is a note on a repository about something that needs attention. It could be a bug, a feature request, a question
or lots of other things. On GitHub you can label, search and assign Issues, making managing an active project easier.

For example, let’s take a look at Bootstrap’s Issues section:

GitHub’s issue tracking is special because of our focus on collaboration, references, and excellent text formatting. A
typical issue on GitHub looks a bit like this:

• A title and description describe what the issue is all about.

• Color-coded labels help you categorize and filter your issues (just like labels in email).

• A milestone acts like a container for issues. This is useful for associating issues with specific features or project
phases (e.g. Weekly Sprint 9/5-9/16 or Shipping 1.0).

• One assignee is responsible for working on the issue at any given time.

3.4. Organizational 995

https://guides.github.com
https://github.com/twbs/bootstrap/issues

GeoNode Documentation, Release 2.8

996 Chapter 3. Table of contents

GeoNode Documentation, Release 2.8

• Comments allow anyone with access to the repository to provide feedback.

Open an Issue

1. Click the Issues tab from the sidebar.

2. Click New Issue.

3. Give your Issue a title and description: Add a new Logo to GeoNode custom.

Click Submit new Issue when you’re done. Now this issue has a permanent home (URL) that you can reference even
after it is closed.

3.4. Organizational 997

GeoNode Documentation, Release 2.8

Issues Pro Tips

• Check existing issues for your issue. Duplicating an issue is slower for both parties so search through open and
closed issues to see if what you’re running into has been addressed already.

• Be clear about what your problem is: what was the expected outcome, what happened instead? Detail how
someone else can recreate the problem.

• Link to demos recreating the problem on things like JSFiddle or CodePen.

• Include system details like what the browser, library or operating system you’re using and its version.

• Paste error output or logs in your issue or in a Gist. If pasting them in the issue, wrap it in three backticks:
``` so that it renders nicely.

Branching

Branching is the way to work on different parts of a repository at one time.

When you create a repository, by default it has one branch with the name master. You could keep working on this
branch and have only one, that’s fine. But if you have another feature or idea you want to work on, you can create
another branch, starting from master, so that you can leave master in its working state.

When you create a branch, you’re making a copy of the original branch as it was at that point in time (like a photo
snapshot). If the original branch changes while you’re working on your new branch, no worries, you can always pull
in those updates.

At GeoNode developers use branches for keeping bug fixes and feature work separate from master (production)
branch. When a feature or fix is ready, the branch is merged into master through a Pull Request.

To create a new branch

• Go to the project folder and create a new branch

$ cd /home/geonode/geonode_custom/
$ sudo git branch add_logo
$ sudo git checkout add_logo

• Check that you are working on the correct branch: add_logo.

$ cd /home/geonode/geonode_custom/
$ git branch

• Push the new branch to GitHub.

998 Chapter 3. Table of contents



GeoNode Documentation, Release 2.8

$ cd /home/geonode/geonode_custom/
$ sudo git push origin add_logo

Make a commit

On GitHub, saved changes are called commits.

Each commit has an associated commit message, which is a description explaining why a particular change was made.
Thanks to these messages, you and others can read through commits and understand what you’ve done and why.

• Add a new logo to your custom GeoNode as described in the section Theming your GeoNode project

• Stash the new files into the working project using git add

$ cd /home/geonode/geonode_custom/
$ sudo git add geonode_custom/static
$ git status

• Commit the changes providing a commit messages and push them into your branch : add_logo.

$ cd /home/geonode/geonode_custom/
$ sudo git commit -m "Adding a new logo to the custom GeoNode"
$ sudo git push origin add_logo

3.4. Organizational 999



GeoNode Documentation, Release 2.8

Pull Requests

Pull Requests are the heart of collaboration on GitHub. When you make a pull request, you’re proposing your changes
and requesting that someone pull in your contribution - aka merge them into their branch. GitHub’s Pull Request
feature allows you to compare the content on two branches. The changes, additions and subtractions, are shown in
green and red and called diffs (differences).

As soon as you make a change, you can open a Pull Request. People use Pull Requests to start a discussion about
commits (code review) even before the code is finished. This way you can get feedback as you go or help when you’re
stuck.

By using GitHub’s @mention system in your Pull Request message, you can ask for feedback from specific people or
teams.

Create a Pull Request for changes to the Logo

• Click the Pull Request icon on the sidebar, then from the Pull Request page, click the green New pull request
button.

• Select the branch you made, add_logo, to compare with master (the original).

• Look over your changes in the diffs on the Compare page, make sure they’re what you want to submit.

• When you’re satisfied that these are the changes you want to submit, click the big green Create Pull Request
button.

1000 Chapter 3. Table of contents



GeoNode Documentation, Release 2.8

3.4. Organizational 1001



GeoNode Documentation, Release 2.8

• Give your pull request a title and since it relates directly to an open issue, include “fixes #” and the issue number
in the title. Write a brief description of your changes.

When you’re done with your message, click Create pull request!

Merge your Pull Request

It’s time to bring your changes together – merge your add_logo branch into the master (the original) branch.

Click the green button to merge the changes into master. Click Confirm merge. Go ahead and delete the branch, since
its changes have been incorporated, with the Delete branch button in the purple box.

If you revisit the issue you opened, it’s now closed! Because you included “fixes #1” in your Pull Request title, GitHub
took care of closing that issue when the Pull Request was merged!

1002 Chapter 3. Table of contents



GeoNode Documentation, Release 2.8

Roadmap Process

The GeoNode Roadmap Process is designed to complement the more technical GeoNode Improvement Proposals
and strives to make it easier for the various organizations invested in GeoNode to collaborate on features of common
interest.

It is based on the roadmap items developed at the GeoNode Summit held in May 2011.

Overall, the process for adding items to the collective roadmap is as follows:

1. Organizational partner has an intent to add a feature to the roadmap.

2. Organizational partner communicates with the organizational partners list about the change to gauge interest
and determine who else is committed to making it happen.

3. Organizational partner creates a feature specification on the wiki to further flesh out the idea.

4. Organizational partner finds a committer on the developer list to shepherd the roadmap item through the GeoN-
ode Improvement Proposals.

Each roadmap item will go through four stages:

1. Descriptive Stage (under discussion/”Active”)

2. Technical Stage

3. Development Stage

4. Released

After communicating on the organizational partners list the roadmap items enters the Descriptive Stage and must have
a wiki page that lays out the description, user stories, and other interested parties. Optionally, the roadmap item will
also include an idea of the difficulty and goals as well as any wireframes, technical diagrams, or prior art.

A roadmap item enters the Technical Stage once a committer has been found to shepherd the roadmap item through the
GeoNode Improvement Proposals process, then the wiki page must contain a clear sense of the technical assump-
tions, requirements or dependencies, and suggested implementation. Some roadmap items may need to be divided into
multiple independent GNIP proposals.

Once it passes through the GeoNode Improvement Proposals process, a roadmap item enters the Development Stage
on its way to Release.

3.4.1.3.5 GeoNode Patch Review Process

This document outlines the code review process for GeoNode code. Each commit proposed for inclusion in GeoNode
should be reviewed by at least one developer other than the author. For pragmatic reasons, some developers, referred
to in this document as core committers, may commit directly to the GeoNode repository without waiting for review.
Such changes are still subject to review, and may be reverted if they fail any of the [[Review Criteria]].

A related process is [[Improvement Proposals]]. While patch review protects code quality in the GeoNode project at
a small granularity, the Improvement Proposal process is intended to promote coordinated design and feedback for
larger modifications such as new features or architectural changes.

Goals

By requiring a review of code coming into GeoNode, we aim to maintain code quality within the GeoNode project
while still allowing contributions from the GeoNode community.

3.4. Organizational 1003

https://groups.google.com/a/opengeo.org/forum/#!forum/geonode-org/
https://groups.google.com/a/opengeo.org/forum/#!forum/geonode-dev/
https://groups.google.com/a/opengeo.org/forum/#!forum/geonode-org/


GeoNode Documentation, Release 2.8

Review Criteria

Patch reviews should adhere to the standards set in the [[Review Criteria]], a [[Project Steering Committee]] approved
set of criteria for the inclusion of new code.

Process

For contributors who do not have commit access to the GeoNode repository, the review process is as follows:

0. Find or create a ticket describing the feature or bug to be resolved.

1. Create changes to GeoNode code addressing the ticket.

2. Publish those changes and request a review from the GeoNode committers. The recommended format is a
GitHub [pull request](https://help.github.com/articles/about-pull-requests/). If you are unable or unwilling to
provide a change as a branch on GitHub, please consult the developer’s list for advice.

3. At least one GeoNode committer should review the submitted changes. If he finds the patch acceptable, the
changes will be pulled into GeoNode. If problems are found, then he should list them clearly in order to allow
the original author to update the submission (at which point we return to point 2 in this process.) In the case of a
feature idea which is simply not suitable for inclusion as core GeoNode functionality, the patch may be rejected
outright.

_Note: If after a few days your patch has not been reviewed by any GeoNode committer, please feel free to bring it up
either in the mailing list or the IRC channel. The GeoNode community (and it’s committers) try to respond quickly and
give adequate feedback to maintain the interest of new potential members. However, sometimes other responsibilities
prevent us from responding quickly._

Core Committers

It is assumed that core committers are familiar with the quality guidelines and capable of producing acceptable patches
without the need for waiting on review. Therefore, core committers may make changes without requesting review first
(although they are welcome to request review for code if they feel it is appropriate.) For commits made without prior
review, committers should review the changes and revert them if they are in violation of the project quality guidelines.

Becoming a Core Committer

In order for a developer to become a core committer, he must demonstrate familiarity with the quality guidelines
for the GeoNode project by producing at least two patches which successfully pass review and are merged without
requiring modification. A candidate for core committer-ship must be nominated by a member of the [[Project Steering
Committee]], and approved via Apache consensus voting among PSC members.

3.4.1.3.6 Patch Review criteria

When a patch is rejected in the Patch Review Process, it should be given a valid review.

This review should point out issues with the patch where it fails to meet one or more of the following criteria.

• Major new features must be approved by the Improvement Process

GeoNode needs to be coherent software despite the diverse interests driving its development. Therefor, major new
features need to first be approved according to the [[Improvement Process]].

1004 Chapter 3. Table of contents

https://help.github.com/articles/about-pull-requests/


GeoNode Documentation, Release 2.8

If a patch fails by this criterion, then its developer is welcome to go through the improvement process to get approval.
Otherwise, they can refactor their patch into a GeoNode extension.

• Patches need sufficient documentation

We strive to keep GeoNode well-documented. If a patch contributes significant functionality to GeoNode that requires
documentation to be understood, the patch review is an opportunity to hold the developer accountable for providing
the adequate documentation.

• New functionality needs to be internationalized

We strive to build GeoNode in a way that can be used in many different localities, by all languages. While there is
no localization requirement for GeoNode besides providing default English text, new user-facing features need to be
sufficiently internationalized so that others can write translations.

• Design consistency

We strive to keep the default user interface for GeoNode appealing for new users and developer’s approaching the
project. If a patch significantly diminishes the user experience of the software, then a patch may be rejected with a
review of how to improve it.

Note: Good design can sometimes be in the eye of the beholder. Developer’s are encouraged to consult the community
and/or a designer about the user interface design of their patches, and to be humble in their design criticisms of others.

• Code should be covered by automated tests

To make development easier for others and guarantee software quality, we strive to have good automated test coverage
in GeoNode. Patches may fail a review for having insufficient unit and/or integration tests.

Reviews saying that a patch has insufficient tests should offer actionable advice on how to improve those tests. This
advice could be to improve code coverage. It may also be a list of possible cases that currently lack tests.

• Patches should not have known bugs

A patch may be rejected for having a known bug, (e.g.) one discovered by reading the code or
testing it at the time of review.

• Patches should meet GeoNode’s code style guidelines

New patches should meet GeoNode’s code style guidelines. We follow different conventions per
language:

– In Java we use the GeoTools/GeoServer convention, essentially the [conventions rec-
ommended by Oracle](http://www.oracle.com/ technetwork/ java/codeconvtoc-136057.html)
modified to make the recommended line length 100 columns instead of 80 to accommo-
date the long identifiers commonly used in GeoTools code. The GeoServer project provides
an [Eclipse configuration](http://docs.geoserver.org/stable/en/developer/eclipse-guide/index.
html#eclipse-preferences) which helps to stick to this convention.

– In Python we use the conventions enumerated in [PEP8](https://www.python.org/dev/peps/
pep-0008/). Many editors have plugins available to assist with conformance to this conven-
tion.

– In JavaScript we use the OpenLayers conventions, described on the [OpenLayers wiki](http:
//trac.osgeo.org/openlayers/wiki/CodingStandards).

3.4. Organizational 1005

http://www.oracle.com/
http://docs.geoserver.org/stable/en/developer/eclipse-guide/index.html#eclipse-preferences
http://docs.geoserver.org/stable/en/developer/eclipse-guide/index.html#eclipse-preferences
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
http://trac.osgeo.org/openlayers/wiki/CodingStandards
http://trac.osgeo.org/openlayers/wiki/CodingStandards


GeoNode Documentation, Release 2.8

3.4.1.3.7 How to contribute to GeoNode’s translation

Everyone is welcome to contribute to the GeoNode’s translation. There are two different ways to translate the GeoNode
user interface: you can use the Transifex web application or you can edit the translation files on your local machine
using Git and send Pull Requests (PR) to the GeoNode repository.

Edit translations using Transifex

The first workflow for contributing to GeoNode’s translation is by using Transifex. In this step you will see how to
update the translations directly on the Transifex website.

1. Create account

Go to https://www.transifex.com and, click Try it for free and enter the needed information to create your free
account

2. Join our project

After activating the link you’ve got in your email, you will be asked whether you want to start a new project or
to join an existing project

1006 Chapter 3. Table of contents

https://www.transifex.com/geonode/geonode/
https://www.transifex.com


GeoNode Documentation, Release 2.8

Click join an existing project and type geonode into the search bar. Select the GeoNode project from the
GeoNode organization (not the other ones!). You will be directed to the GeoNode project site on transifex. To
join the team, click on the Join team button, then click on the language you want to add a translation in.

3. Wait for permission to update translations from translation leader (email)

4. Start a translation

Click on the Translate button, then select the language where you want to add a translation

You’ll see two main translation areas: javascript and master. Choose the one you want to add a translation and
you’ll see an interface like this

Click untranslated and add your translation like shown below

3.4. Organizational 1007



GeoNode Documentation, Release 2.8

1008 Chapter 3. Table of contents



GeoNode Documentation, Release 2.8

When you stop translating, do not forget to hit the green save button at the top right!

5. See the strings translated in GeoNode

In order to see the strings translated in your GeoNode instance, you will need to synchronize your GeoNode
instance with what it is in Transifex. For this purpose the best workflow it is to wait that a Transifex maintainer
(see below section) will pull the files from Transifex, run the makemessages and compilemessages and finally
send a PR to the GeoNode official repository. Or you can follow the following step, which uses github and does
not require the help from a Transifex maintainer.

Translate on local machine from github

The second workflow for contributing to GeoNode’s translation is by translating the files on your local machine and
send the translation to the GeoNode official repository in GitHub with pull requests.

Using this option it is assumed that you have a local Geonode GitHub repository forked.

Note: It is recommended to first create a new branch e.g. translation in your repository for your translations.

1. As a first step, generate all of the needed .pot files (any time the master documentation changes):

$ cd docs
$ sphinx-build -b gettext . i18n/pot

2. Run the pre_translate.sh script to generate/merge (update) all of the .po files for each language:

$ sh i18n/scripts/pre_translate.sh

3. Do a pull from Transifex to get latest translations:

$ tx pull -a

4. Now edit the .po files you need, make the translations and then run the post_translate.sh script:

$ vi i18n/it/LC_MESSAGES/index.po
$ sh i18n/scripts/post_translate.sh

5. Now you have to push the changed .po files and the appropriate .pot file (can be found in geonode/docs/i18n/pot)
to your remote repository using:

$ git commit
$ git push

6. Now make a pull request and GeoNode will push your changes to Transifex and include them in its official
repository.

Only for transifex maintainers

Note: This section is only for the maintainers of a transifex group!

3.4. Organizational 1009



GeoNode Documentation, Release 2.8

For main Geonode localization files

These files are generated using standard django-admin tools : makemessages and compilemessages command line
tools.

At first make sure to install Transifex client and configure your .transifexrc with our credentials as:

[https://www.transifex.com]
username = YOURUSERNAME
token =
password = PUTYOURPW
hostname = https://www.transifex.com

To prepare the PR in your branch, execute following steps. First go to the [yourpath]/geonode/geonode/ subdirectory
and get all translations from transifex.com and force their replacement:

$ tx pull -a -s -f

Then update the messages in the po and compile the corresponding mo:

$ geonode makemessages --all
$ geonode makemessages -d djangojs --all
$ geonode compiliemessages

Now you can send the PR to GeoNode GitHub repository.

Finally update resources on transifex.com:

$ tx push -s -t

How to add a new language

To add a new language, click on Request language on the right top of the Transifex webpage.

3.4.1.3.8 How to contribute to GeoNode’s Documentation

If you feel like adding or changing something in the GeoNode documentation you are very welcome to do so. The
documentation always needs improvement as the development of the software is going quite fast.

In order to contribute to the GeoNode documentation you should:

• Create an account on GitHub

• Fork the GeoNode repository

• Edit the files in the /docs directory

• Submit pull requests

All these things can generally be done on the web, you won’t need to download anything. But if you want to add
images to the documentation you will have to do some more initial steps, because this can’t be done on the web. To

1010 Chapter 3. Table of contents



GeoNode Documentation, Release 2.8

learn about how images can be added to your documentation and which additional steps have to be done, read the
section Add images.

The general steps are explained in more detail below.

Create an account on GitHub

The first step is to create an account on GitHub. Just go to Github, find a username that suits you, enter your email
and a password and hit Sign up for GitHub. Now you’ve signed in, you can type geonode into the searching area at the
top of the website. On top of the search results you will find the repository GeoNode/geonode. By clicking on it you
will be entering the repository and will be able to see all the folders and files that are needed for GeoNode. The files
needed for the documentation can be found in /docs.

Fork a repository

In order to make changes to these files, you first have to fork the repository. On the top of the website you can see the
following buttons:

organizational/contribute/img/fork_repo.PNG

Click on the button Fork at the top right and the geonode repository will be forked. You should now be able to see
your repository your_name/geonode. If you want to read more about how to fork a repository go to https://help.github.
com/articles/fork-a-repo.

Edit files

To make some changes to already exiting files or to create new files, go to your GitHub account. Under repositories
you will find the geonode repository that you have forked. Click on it and you will again see all the folders and files
GeoNode needs.

organizational/contribute/img/repository_geonode.PNG

Click on the folder docs and search for the file that you want to edit. If you found it, click on it and you will be able to
see the content of this file.

organizational/contribute/img/index_txt.PNG

To make changes to this file, hit the button edit on the right top. You can now make your changes or add something to
the existing content.

3.4. Organizational 1011

https://github.com
https://help.github.com/articles/fork-a-repo
https://help.github.com/articles/fork-a-repo


GeoNode Documentation, Release 2.8

organizational/contribute/img/index_edit.PNG

As you can see now, the documentation is written in reStructeredText, a lightweight markup language. To learn how to
use it you should read the documentation that can be found here http://docutils.sourceforge.net/docs/user/rst/quickref.
html. By hitting the preview button you will be able to see how your text it is going to look like on the web. To save
your changes, click on Commit Changes at the bottom of the site. Now you’ve saved the changes in your repository,
but the original geonode repository still doesn’t know anything about that! In order to tell them that you have made
some changes you have to send a pull request (as described below).

To see your modifications for validation purpose just make sure you installed sphinx tools as:

pip install sphinx
pip install sphinx_rtd_theme

Just go to the docs subdirectory and use the make command with the html option, after you can open the result in your
browser as:

cd [yourpath]/geonode/docs
make html
#you can open the index.html in _build subdirectory

Create a new branch

If you are planning bigger changes on the structure of the documentation it is recommended to create a new branch
and make your edits here. A new branch can be created by clicking on the button branch: master as shown here.

organizational/contribute/img/create_branch_example.PNG

Just type the name of your new branch, hit enter and your branch will be created. To learn more about branches it is
recommended to take a look here https://git-scm.com/book/en/Git-Branching-What-a-Branch-Is.

Note: Before you start editing make sure that you are in the right branch!

Create a new folder/file

If you want to add a completely new issue to the documentation, you have to create a new file (and maybe even folder).
As you will see there is no possibility to create an empty folder. You always have to create a new file as well! This can
be done here

If you click on create new file here you can first change into another folder by typing the foldername followed by /. If
this folder doesn’t exist until now, one will be created. To create a new file in this folder just type filename.txt into the
box and hit enter. A short example on how to manage this is given here http://i.stack.imgur.com/n3Wg3.gif.

1012 Chapter 3. Table of contents

http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
https://git-scm.com/book/en/Git-Branching-What-a-Branch-Is
http://i.stack.imgur.com/n3Wg3.gif


GeoNode Documentation, Release 2.8

organizational/contribute/img/create_file_test.PNG

Now a black box will appear where you can add your comments. To save the file, hit the green Commit New File
button at the bottom.

Add images

This section is about adding images to your documentation. Providing that you’ve read and done the steps described
above you can now follow those further steps.

Install and set up Git

To add images to your documentation you have to get your repository onto your local machine. So far you only had
your repository on the web. To be able to work on your local machine as well, you have to install git. To do so, type:

sudo apt-get install git

(Usually git has already been installed during geonode installation)

Before you go further you should do some setup steps (can be found here: https://help.github.com/articles/set-up-git).

Clone repository

We assume you have already forked the geonode repository. If not, please do so following _link and return back if
ready.

Until now your repository only exists on the web! To get your forked repository on to your machine, you have to clone
it. To do so, open a terminal, go to the folder where you want the project to be and type:

git clone https://github.com/your_username/geonode.git my_geonode

Now change the active directory to the newly cloned geonode directory using:

cd my_geonode

To keep track of the original repository (the geonode repository where you forked from), you need to add a remote
named upstream. Therefore type:

git remote add upstream https://github.com/GeoNode/geonode.git

By typing:

git fetch upstream

Changes not present in your local repository will be pulled in without modifying your files.

Add folder with images

Warning: If you’ve already made some changes and commits to your repository on the web (during cloning the
repository and now), you have to update your repository on the local machine!

Therefore you have to run the following commands:

3.4. Organizational 1013

https://help.github.com/articles/set-up-git


GeoNode Documentation, Release 2.8

git fetch origin

git merge

Or instead you could use:

git pull

Your repository should now be up to date! For more information on those commands go to https://git-scm.com/docs.

Note: If you’ve created a new branch, and you want to add the new folder to this branch, make sure you are working
on this branch!

Typing:

git status

will show you the current branch. To change this you have to run this command (your_branch is the name of the
branch you want to change in):

git checkout your_branch

Now you can easily add a new folder containing images to your repository. Go to the repository on your local machine
and decide where you want your new folder containing the images to be (e.g in docs_example). There create a new
folder (e.g. images) and add the images manually. Once you’ve done this, open a terminal and direct to to the folder
docs_example. To add the folder images including all content to the repository, type:

git add images

If this command doesn’t work, check your path, maybe it is incorrect!

Remark: In order to commit and push the folder, it must not be empty!

The next step is to commit the folder/files:

git commit -m 'Message'

Instead of ‘Message’ write something like ‘add images’. To push the files to the repository type:

git push

Now you are able to see the folder on the web as well!

Include images

To include the images in to your documentation, you have to add the following lines to your file:

.. image:: images/test_img.png

Note: Be aware that everytime you commit something on the web, you have to make git pull on your machine, to
keep it up to date!

1014 Chapter 3. Table of contents

https://git-scm.com/docs


GeoNode Documentation, Release 2.8

Pull Request

If you are done with your changes, you can send a pull request. This means, that you let the core developers know that
you have done some changes and you would like them to review. They can hit accept and your changes will go in to
the main line. The pull request can be found here.

organizational/contribute/img/pull_request.PNG

3.4.1.3.9 How to write Documentation

GeoNode uses reStructuredText with Sphinx . Writing style should follow the same policies as GeoServer does in
their Documentation Style Guide

Sphinx Syntax

This page contains syntax rules, tips, and tricks for using Sphinx and reStructuredText. For more information, please see:

• RST Quick Reference

• Comprehensive guide to reStructuredText

• Sphinx reStructuredText Primer

Basic markup

A reStructuredText document is written in plain text. Without the need for complex formatting, one can be composed
simply, just like one would any plain text document. For basic formatting, see this table:

Format Syntax Output
Italics *italics* (single asterisk) italics
Bold **bold** (double asterisk) bold
Monospace ‘‘ monospace ‘‘ (double back quote) monospace

Sections, subtitles and titles

Use sections to break up long pages and to help Sphinx generate tables of contents.

The top of the page (i.e. the title) should have an equals sign (=) above and below:

==============
Camel Spotting
==============

Level 2 section headers should have an equals sign (=) below the section name with same length as name:

3.4. Organizational 1015

http://www.sphinx-doc.org
http://docs.geoserver.org/latest/en/docguide/style.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html#section-structure
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://www.sphinx-doc.org/rest.html


GeoNode Documentation, Release 2.8

I am a level 2 header
=====================

Level 3 sections should have a single minus symbol (-):

I am a level 3 header
---------------------

Level 4 sections should have a single dot, period symbol (.):

I am a level 4 header
.....................

Level 5 sections should have a single dot, period symbol (.):

I am a level 5 header
+++++++++++++++++++++

Page labels

Ensure every page has a label. For example if the page is named foo_bar.txt then the page should have the
label at the top of the file (line1)

.. _foo_bar:

Other pages can then link to that page by using the following code:

:ref:`foo_bar`

Linking

Links to other pages should never be titled as “here”. Sphinx makes this easy by automatically inserting the title of the
linked document.

Using the following code:

:ref:`linking`

And here is the link in action Linking to use the link place this code some where in your open file:

.. _linking:

To insert a link to an external website:

`Text of the link <http://docs.geoserver.org/latest/en/docguide/style.html>`_

The resulting link would look like this: Text of the link

Lists

There are two types of lists, bulleted lists and numbered lists.

A bulleted list looks like this:

1016 Chapter 3. Table of contents

http://example.com


GeoNode Documentation, Release 2.8

• An item

• Another item

• Yet another item

This is accomplished with the following code:

* An item

* Another item

* Yet another item

A numbered list looks like this:

1. First item

2. Second item

3. Third item

This is accomplished with the following code:

#. First item
#. Second item
#. Third item

Note that numbers are automatically generated, making it easy to add/remove items.

List-tables

Bulleted lists can sometimes be cumbersome and hard to follow. When dealing with a long list of items, use list-tables.
For example, to talk about a list of options, create a table that looks like this:

Shapes Description
Square Four sides of equal length, 90 degree angles
Rectangle Four sides, 90 degree angles

This is done with the following code:

.. list-table::
:widths: 20 80
:header-rows: 1

* - Shapes
- Description

* - Square
- Four sides of equal length, 90 degree angles

* - Rectangle
- Four sides, 90 degree angles

Notes and warnings

To emphasize something Sphinx has two ways, a note and a warning. They work the same, and only differ in their
coloring. You should use notes and warnings sparingly, however, as adding emphasis to everything makes the emphasis
less effective.

Here is an example of a note:

3.4. Organizational 1017



GeoNode Documentation, Release 2.8

Note: This is a note.

This note is generated with the following code:

.. note:: This is a note.

Similarly, here is an example of a warning:

Warning: Beware of dragons.

This warning is generated by the following code:

.. warning:: Beware of dragons.

Images

Add images to your documentation when possible. Images, such as screen shots, are a very helpful way of making
documentation understandable. When making screenshots, try to crop out unnecessary content (browser window,
desktop, etc). Avoid scaling the images, as the Sphinx theme automatically resizes large images. It is also helpful to
include a caption underneath the image.

Fig. 333: The GeoNode logo as shown on the homepage.

This image is generated by the following code:

.. figure:: img/logo.png
:align: center

*The GeoNode logo as shown on the homepage.*

In this example, the image file exists in the same directory as the source page. If this is not the case, you can insert
path information in the above command.

External files

Text snippets, large blocks of downloadable code, and even zip files or other binary sources can all be included as part
of the documentation. To include files as part of the build process, use the following syntax:

:download:`An external file <README>`

The result of this code will generate a standard link to an external file

1018 Chapter 3. Table of contents



GeoNode Documentation, Release 2.8

Reference files and paths

Use the following syntax to reference files and paths:

:file:`myfile.txt`

This will output: myfile.txt.

You can reference paths in the same way:

:file:`path/to/myfile.txt`

This will output: path/to/myfile.txt.

For Windows paths, use double backslashes:

:file:`C:\\myfile.txt`

This will output: C:\myfile.txt.

If you want to reference a non-specific path or file name:

:file:`{your/own/path/to}/myfile.txt`

This will output: your/own/path/to/myfile.txt

Reference commands

Reference commands (such as make) with the following syntax:

:command:`make`

Reference an element in a GUI

Use the following syntax to direct a user to click a link or look to a certain area of the GUI:

:guilabel:`Main Menu`

This will output: Main Menu.

Menu traversal

Direct a user through a menu with the following syntax:

:menuselection:`Start Menu --> Programs --> Geonode`

This will output Start Menu → Programs → Geonode.

Show Source

Every page in the GeoNode documentation has a link for Show Source under the Table of Contents on the right
side of the page. This allows for easy reverse engineering of unfamiliar markup. When in doubt, look at the source!

3.4. Organizational 1019



GeoNode Documentation, Release 2.8

3.4.1.3.10 How to Translate the Documentation

All documentation is written in English as the master language but can be translated into your native language. This
write up will show you how to translate the documentation. There are different methods to translate the documentation
and here we list a few.

Translate using Github Locally

Here we assume you have GitHub running locally and that you are familiar with the command line.

1. Get latest version from GitHub:

$ git pull

2. Get latest version from Transifex (it should be synced with Github, but just in case):

$ tx pull -a

3. Edit your files for example (if using vi):

$ vi i18n/it/LC_MESSAGES/index.po

4. Build the documentation now, before committing and pushing, build the doc to see if everything worked
smoothly:

$ make html LANG=it

5. Push changes if everything worked well, push the changes:

$ tx push -s -t

1020 Chapter 3. Table of contents



CHAPTER 4

Need Help?

Having trouble? Cant find what you are looking for? We’d like to help!

• Search for information in the archives of the GeoNode mailing list, or subscribe and post a question.

• Join the GeoNode chat in gitter.im/GeoNode.

• Ask a question in the #geonode IRC channel using Freenode’s web based client.

• Report bugs with GeoNode in our issue tracker.

1021

https://lists.osgeo.org/pipermail/geonode-users/
https://lists.osgeo.org/mailman/listinfo/geonode-users
https://gitter.im/GeoNode
irc://irc.freenode.net/geonode
http://webchat.freenode.net
https://github.com/GeoNode/geonode/issues


GeoNode Documentation, Release 2.8

1022 Chapter 4. Need Help?



Python Module Index

_
_geoserver_adv_config, 870

g
geoserver.add_geotiff, 599
geoserver.add_shp, 588
geoserver.add_sqllayers, 613
geoserver.add_style, 646
geoserver.add_wfscascade, 610
geoserver.add_wmscascade, 599
geoserver.adding_base_types, 587
geoserver.adding_data, 585
geoserver.advanced_gdal, 787
geoserver.creating_setting, 585
geoserver.crs_handling, 876
geoserver.data_format, 626
geoserver.db_pooling, 879
geoserver.example1, 788
geoserver.example2, 793
geoserver.example3, 798
geoserver.gs_data_dir, 585
geoserver.gsproduction, 871
geoserver.imagemosaic_footprint, 774
geoserver.introducing_rest, 493
geoserver.jmeter, 896
geoserver.mosaic_pyramid, 766
geoserver.parameters, 870
geoserver.postgis_lay, 596
geoserver.pretty_maps, 685
geoserver.processing, 752
geoserver.raster_data, 752
geoserver.rest, 493
geoserver.shp_postgis, 591
geoserver.structure, 586
geoserver.using_rest, 494
geoserver.vector_data, 810

1023



GeoNode Documentation, Release 2.8

1024 Python Module Index



Index

Symbols
_geoserver_adv_config (module), 870

G
geoserver.add_geotiff (module), 599
geoserver.add_shp (module), 588
geoserver.add_sqllayers (module), 613
geoserver.add_style (module), 646
geoserver.add_wfscascade (module), 610
geoserver.add_wmscascade (module), 599
geoserver.adding_base_types (module), 587
geoserver.adding_data (module), 585
geoserver.advanced_gdal (module), 787
geoserver.creating_setting (module), 585
geoserver.crs_handling (module), 876
geoserver.data_format (module), 626
geoserver.db_pooling (module), 879
geoserver.example1 (module), 788
geoserver.example2 (module), 793
geoserver.example3 (module), 798
geoserver.gs_data_dir (module), 585
geoserver.gsproduction (module), 871
geoserver.imagemosaic_footprint (module),

774
geoserver.introducing_rest (module), 493
geoserver.jmeter (module), 896
geoserver.mosaic_pyramid (module), 766
geoserver.parameters (module), 870
geoserver.postgis_lay (module), 596
geoserver.pretty_maps (module), 646, 677, 685,

748
geoserver.processing (module), 752
geoserver.raster_data (module), 752
geoserver.rest (module), 493
geoserver.shp_postgis (module), 591
geoserver.structure (module), 586
geoserver.using_rest (module), 494
geoserver.vector_data (module), 810

1025


	First Steps
	How To Use The Documentation
	Table of contents
	About GeoNode
	About GeoNode
	Online demo
	Geospatial data storage
	Data mixing, maps creation
	GeoNode as a building block
	Convinced! Where do I sign?


	Tutorials
	Tutorials
	GeoNode Overview & Reference
	Users’ Features
	Introduction
	Reference Doc

	Installation & Admin
	Quick Installation Guide
	Linux Admin Intro
	Running Ansible scripts
	GeoNode (v2.8) on Docker
	VM Setup with VirtualBox
	Running a VM with Vagrant
	GeoNode (v2.8) installation on Ubuntu 16.04
	GeoNode (v2.8) installation on CentOS 7
	Network configuration issues
	Windows Binary Installer
	GeoNode (v2.8) update from older versions

	Users Workshop
	Accounts and users
	Document Types
	Searching
	Managing layers
	Edit Layer Style
	Managing maps
	Using GeoNode with other applications

	Administrators Workshop
	GeoNode and GeoServer Advanced Security
	Usage of the GeoNode’s Django Administration Panel
	Management Commands for GeoNode
	Configuring Alternate CSW Backends
	LDAP configuration
	Customize the look and feel
	Debugging GeoNode Installations
	Changing the Default Language
	More on Security and Permissions
	Loading Data into a GeoNode
	Implementing S3 Bucket for Static and Media Files
	Backup & Restore GeoNode - Data Migration
	GeoNode Monitoring
	Use datastore shards in GeoNode
	Asynchronous signals handling
	GeoNode Social Accounts

	Developers Workshop
	Introduction to GeoNode development
	Django Overview
	Development Prerequisites and Core Modules
	Install GeoNode for Development
	Start working on Geonode the next day after install
	GeoNode debugging techniques
	GeoNode APIs
	Testing in GeoNode
	Pavement.py and Paver
	Introduction to GeoNode Projects
	Make a GeoNode release

	Advanced Workshop
	Advanced Data Management and Processing
	GeoNode Advanced Configuration
	GeoNode on Production



	Reference
	Reference documentation
	Security and Permissions
	Permissions and GeoNode objects
	Publishing and unpublishing objects

	GeoNode ad-hoc API
	API endpoints
	API filtering
	API limit and pagination
	API settings
	Searching with Haystack

	Localization
	Developers Reference
	GeoNode Django Apps
	JavaScript in GeoNode
	Settings
	GeoSites: GeoNode Multi-Tenancy

	Supported Browsers
	Internet Explorer
	Testing on Internet Explorer

	WorldMap
	Installation
	Hypermap Registry
	Test the stack
	Schedule Celery tasks



	Organizational
	Organizational
	Project Information
	Contributing
	Table of Content
	Roadmap Process
	Community Resources
	Community Bylaws
	Contributing to GeoNode
	GeoNode Patch Review Process
	Patch Review criteria
	How to contribute to GeoNode’s translation
	How to contribute to GeoNode’s Documentation
	How to write Documentation
	How to Translate the Documentation




	Need Help?
	Python Module Index
	Index

